blob: a6d1b0241aea66594b1dca87978a1c691dfd8a44 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001#include <linux/init.h>
2
3#include <linux/mm.h>
4#include <linux/spinlock.h>
5#include <linux/smp.h>
6#include <linux/interrupt.h>
7#include <linux/export.h>
8#include <linux/cpu.h>
9#include <linux/debugfs.h>
10
11#include <asm/tlbflush.h>
12#include <asm/mmu_context.h>
13#include <asm/nospec-branch.h>
14#include <asm/cache.h>
15#include <asm/apic.h>
16#include <asm/uv/uv.h>
17
18/*
19 * TLB flushing, formerly SMP-only
20 * c/o Linus Torvalds.
21 *
22 * These mean you can really definitely utterly forget about
23 * writing to user space from interrupts. (Its not allowed anyway).
24 *
25 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 *
27 * More scalable flush, from Andi Kleen
28 *
29 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30 */
31
32/*
33 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
34 * stored in cpu_tlb_state.last_user_mm_ibpb.
35 */
36#define LAST_USER_MM_IBPB 0x1UL
37
38/*
39 * We get here when we do something requiring a TLB invalidation
40 * but could not go invalidate all of the contexts. We do the
41 * necessary invalidation by clearing out the 'ctx_id' which
42 * forces a TLB flush when the context is loaded.
43 */
44static void clear_asid_other(void)
45{
46 u16 asid;
47
48 /*
49 * This is only expected to be set if we have disabled
50 * kernel _PAGE_GLOBAL pages.
51 */
52 if (!static_cpu_has(X86_FEATURE_PTI)) {
53 WARN_ON_ONCE(1);
54 return;
55 }
56
57 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
58 /* Do not need to flush the current asid */
59 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
60 continue;
61 /*
62 * Make sure the next time we go to switch to
63 * this asid, we do a flush:
64 */
65 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
66 }
67 this_cpu_write(cpu_tlbstate.invalidate_other, false);
68}
69
70atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
71
72
73static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
74 u16 *new_asid, bool *need_flush)
75{
76 u16 asid;
77
78 if (!static_cpu_has(X86_FEATURE_PCID)) {
79 *new_asid = 0;
80 *need_flush = true;
81 return;
82 }
83
84 if (this_cpu_read(cpu_tlbstate.invalidate_other))
85 clear_asid_other();
86
87 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
88 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
89 next->context.ctx_id)
90 continue;
91
92 *new_asid = asid;
93 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
94 next_tlb_gen);
95 return;
96 }
97
98 /*
99 * We don't currently own an ASID slot on this CPU.
100 * Allocate a slot.
101 */
102 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
103 if (*new_asid >= TLB_NR_DYN_ASIDS) {
104 *new_asid = 0;
105 this_cpu_write(cpu_tlbstate.next_asid, 1);
106 }
107 *need_flush = true;
108}
109
110static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
111{
112 unsigned long new_mm_cr3;
113
114 if (need_flush) {
115 invalidate_user_asid(new_asid);
116 new_mm_cr3 = build_cr3(pgdir, new_asid);
117 } else {
118 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
119 }
120
121 /*
122 * Caution: many callers of this function expect
123 * that load_cr3() is serializing and orders TLB
124 * fills with respect to the mm_cpumask writes.
125 */
126 write_cr3(new_mm_cr3);
127}
128
129void leave_mm(int cpu)
130{
131 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
132
133 /*
134 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
135 * If so, our callers still expect us to flush the TLB, but there
136 * aren't any user TLB entries in init_mm to worry about.
137 *
138 * This needs to happen before any other sanity checks due to
139 * intel_idle's shenanigans.
140 */
141 if (loaded_mm == &init_mm)
142 return;
143
144 /* Warn if we're not lazy. */
145 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
146
147 switch_mm(NULL, &init_mm, NULL);
148}
149EXPORT_SYMBOL_GPL(leave_mm);
150
151void switch_mm(struct mm_struct *prev, struct mm_struct *next,
152 struct task_struct *tsk)
153{
154 unsigned long flags;
155
156 local_irq_save(flags);
157 switch_mm_irqs_off(prev, next, tsk);
158 local_irq_restore(flags);
159}
160
161static void sync_current_stack_to_mm(struct mm_struct *mm)
162{
163 unsigned long sp = current_stack_pointer;
164 pgd_t *pgd = pgd_offset(mm, sp);
165
166 if (pgtable_l5_enabled()) {
167 if (unlikely(pgd_none(*pgd))) {
168 pgd_t *pgd_ref = pgd_offset_k(sp);
169
170 set_pgd(pgd, *pgd_ref);
171 }
172 } else {
173 /*
174 * "pgd" is faked. The top level entries are "p4d"s, so sync
175 * the p4d. This compiles to approximately the same code as
176 * the 5-level case.
177 */
178 p4d_t *p4d = p4d_offset(pgd, sp);
179
180 if (unlikely(p4d_none(*p4d))) {
181 pgd_t *pgd_ref = pgd_offset_k(sp);
182 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
183
184 set_p4d(p4d, *p4d_ref);
185 }
186 }
187}
188
189static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
190{
191 unsigned long next_tif = task_thread_info(next)->flags;
192 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
193
194 return (unsigned long)next->mm | ibpb;
195}
196
197static void cond_ibpb(struct task_struct *next)
198{
199 if (!next || !next->mm)
200 return;
201
202 /*
203 * Both, the conditional and the always IBPB mode use the mm
204 * pointer to avoid the IBPB when switching between tasks of the
205 * same process. Using the mm pointer instead of mm->context.ctx_id
206 * opens a hypothetical hole vs. mm_struct reuse, which is more or
207 * less impossible to control by an attacker. Aside of that it
208 * would only affect the first schedule so the theoretically
209 * exposed data is not really interesting.
210 */
211 if (static_branch_likely(&switch_mm_cond_ibpb)) {
212 unsigned long prev_mm, next_mm;
213
214 /*
215 * This is a bit more complex than the always mode because
216 * it has to handle two cases:
217 *
218 * 1) Switch from a user space task (potential attacker)
219 * which has TIF_SPEC_IB set to a user space task
220 * (potential victim) which has TIF_SPEC_IB not set.
221 *
222 * 2) Switch from a user space task (potential attacker)
223 * which has TIF_SPEC_IB not set to a user space task
224 * (potential victim) which has TIF_SPEC_IB set.
225 *
226 * This could be done by unconditionally issuing IBPB when
227 * a task which has TIF_SPEC_IB set is either scheduled in
228 * or out. Though that results in two flushes when:
229 *
230 * - the same user space task is scheduled out and later
231 * scheduled in again and only a kernel thread ran in
232 * between.
233 *
234 * - a user space task belonging to the same process is
235 * scheduled in after a kernel thread ran in between
236 *
237 * - a user space task belonging to the same process is
238 * scheduled in immediately.
239 *
240 * Optimize this with reasonably small overhead for the
241 * above cases. Mangle the TIF_SPEC_IB bit into the mm
242 * pointer of the incoming task which is stored in
243 * cpu_tlbstate.last_user_mm_ibpb for comparison.
244 */
245 next_mm = mm_mangle_tif_spec_ib(next);
246 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
247
248 /*
249 * Issue IBPB only if the mm's are different and one or
250 * both have the IBPB bit set.
251 */
252 if (next_mm != prev_mm &&
253 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
254 indirect_branch_prediction_barrier();
255
256 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
257 }
258
259 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
260 /*
261 * Only flush when switching to a user space task with a
262 * different context than the user space task which ran
263 * last on this CPU.
264 */
265 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
266 indirect_branch_prediction_barrier();
267 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
268 }
269 }
270}
271
272void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
273 struct task_struct *tsk)
274{
275 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
276 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
277 unsigned cpu = smp_processor_id();
278 u64 next_tlb_gen;
279
280 /*
281 * NB: The scheduler will call us with prev == next when switching
282 * from lazy TLB mode to normal mode if active_mm isn't changing.
283 * When this happens, we don't assume that CR3 (and hence
284 * cpu_tlbstate.loaded_mm) matches next.
285 *
286 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
287 */
288
289 /* We don't want flush_tlb_func_* to run concurrently with us. */
290 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
291 WARN_ON_ONCE(!irqs_disabled());
292
293 /*
294 * Verify that CR3 is what we think it is. This will catch
295 * hypothetical buggy code that directly switches to swapper_pg_dir
296 * without going through leave_mm() / switch_mm_irqs_off() or that
297 * does something like write_cr3(read_cr3_pa()).
298 *
299 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
300 * isn't free.
301 */
302#ifdef CONFIG_DEBUG_VM
303 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
304 /*
305 * If we were to BUG here, we'd be very likely to kill
306 * the system so hard that we don't see the call trace.
307 * Try to recover instead by ignoring the error and doing
308 * a global flush to minimize the chance of corruption.
309 *
310 * (This is far from being a fully correct recovery.
311 * Architecturally, the CPU could prefetch something
312 * back into an incorrect ASID slot and leave it there
313 * to cause trouble down the road. It's better than
314 * nothing, though.)
315 */
316 __flush_tlb_all();
317 }
318#endif
319 this_cpu_write(cpu_tlbstate.is_lazy, false);
320
321 /*
322 * The membarrier system call requires a full memory barrier and
323 * core serialization before returning to user-space, after
324 * storing to rq->curr. Writing to CR3 provides that full
325 * memory barrier and core serializing instruction.
326 */
327 if (real_prev == next) {
328 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
329 next->context.ctx_id);
330
331 /*
332 * We don't currently support having a real mm loaded without
333 * our cpu set in mm_cpumask(). We have all the bookkeeping
334 * in place to figure out whether we would need to flush
335 * if our cpu were cleared in mm_cpumask(), but we don't
336 * currently use it.
337 */
338 if (WARN_ON_ONCE(real_prev != &init_mm &&
339 !cpumask_test_cpu(cpu, mm_cpumask(next))))
340 cpumask_set_cpu(cpu, mm_cpumask(next));
341
342 return;
343 } else {
344 u16 new_asid;
345 bool need_flush;
346
347 /*
348 * Avoid user/user BTB poisoning by flushing the branch
349 * predictor when switching between processes. This stops
350 * one process from doing Spectre-v2 attacks on another.
351 */
352 cond_ibpb(tsk);
353
354 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
355 /*
356 * If our current stack is in vmalloc space and isn't
357 * mapped in the new pgd, we'll double-fault. Forcibly
358 * map it.
359 */
360 sync_current_stack_to_mm(next);
361 }
362
363 /*
364 * Stop remote flushes for the previous mm.
365 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
366 * but the bitmap manipulation can cause cache line contention.
367 */
368 if (real_prev != &init_mm) {
369 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
370 mm_cpumask(real_prev)));
371 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
372 }
373
374 /*
375 * Start remote flushes and then read tlb_gen.
376 */
377 if (next != &init_mm)
378 cpumask_set_cpu(cpu, mm_cpumask(next));
379 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
380
381 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
382
383 /* Let nmi_uaccess_okay() know that we're changing CR3. */
384 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
385 barrier();
386
387 if (need_flush) {
388 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
389 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
390 load_new_mm_cr3(next->pgd, new_asid, true);
391
392 /*
393 * NB: This gets called via leave_mm() in the idle path
394 * where RCU functions differently. Tracing normally
395 * uses RCU, so we need to use the _rcuidle variant.
396 *
397 * (There is no good reason for this. The idle code should
398 * be rearranged to call this before rcu_idle_enter().)
399 */
400 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
401 } else {
402 /* The new ASID is already up to date. */
403 load_new_mm_cr3(next->pgd, new_asid, false);
404
405 /* See above wrt _rcuidle. */
406 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
407 }
408
409 /* Make sure we write CR3 before loaded_mm. */
410 barrier();
411
412 this_cpu_write(cpu_tlbstate.loaded_mm, next);
413 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
414 }
415
416 load_mm_cr4(next);
417 switch_ldt(real_prev, next);
418}
419
420/*
421 * Please ignore the name of this function. It should be called
422 * switch_to_kernel_thread().
423 *
424 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
425 * kernel thread or other context without an mm. Acceptable implementations
426 * include doing nothing whatsoever, switching to init_mm, or various clever
427 * lazy tricks to try to minimize TLB flushes.
428 *
429 * The scheduler reserves the right to call enter_lazy_tlb() several times
430 * in a row. It will notify us that we're going back to a real mm by
431 * calling switch_mm_irqs_off().
432 */
433void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
434{
435 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
436 return;
437
438 if (tlb_defer_switch_to_init_mm()) {
439 /*
440 * There's a significant optimization that may be possible
441 * here. We have accurate enough TLB flush tracking that we
442 * don't need to maintain coherence of TLB per se when we're
443 * lazy. We do, however, need to maintain coherence of
444 * paging-structure caches. We could, in principle, leave our
445 * old mm loaded and only switch to init_mm when
446 * tlb_remove_page() happens.
447 */
448 this_cpu_write(cpu_tlbstate.is_lazy, true);
449 } else {
450 switch_mm(NULL, &init_mm, NULL);
451 }
452}
453
454/*
455 * Call this when reinitializing a CPU. It fixes the following potential
456 * problems:
457 *
458 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
459 * because the CPU was taken down and came back up with CR3's PCID
460 * bits clear. CPU hotplug can do this.
461 *
462 * - The TLB contains junk in slots corresponding to inactive ASIDs.
463 *
464 * - The CPU went so far out to lunch that it may have missed a TLB
465 * flush.
466 */
467void initialize_tlbstate_and_flush(void)
468{
469 int i;
470 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
471 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
472 unsigned long cr3 = __read_cr3();
473
474 /* Assert that CR3 already references the right mm. */
475 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
476
477 /*
478 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
479 * doesn't work like other CR4 bits because it can only be set from
480 * long mode.)
481 */
482 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
483 !(cr4_read_shadow() & X86_CR4_PCIDE));
484
485 /* Force ASID 0 and force a TLB flush. */
486 write_cr3(build_cr3(mm->pgd, 0));
487
488 /* Reinitialize tlbstate. */
489 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
490 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
491 this_cpu_write(cpu_tlbstate.next_asid, 1);
492 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
493 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
494
495 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
496 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
497}
498
499/*
500 * flush_tlb_func_common()'s memory ordering requirement is that any
501 * TLB fills that happen after we flush the TLB are ordered after we
502 * read active_mm's tlb_gen. We don't need any explicit barriers
503 * because all x86 flush operations are serializing and the
504 * atomic64_read operation won't be reordered by the compiler.
505 */
506static void flush_tlb_func_common(const struct flush_tlb_info *f,
507 bool local, enum tlb_flush_reason reason)
508{
509 /*
510 * We have three different tlb_gen values in here. They are:
511 *
512 * - mm_tlb_gen: the latest generation.
513 * - local_tlb_gen: the generation that this CPU has already caught
514 * up to.
515 * - f->new_tlb_gen: the generation that the requester of the flush
516 * wants us to catch up to.
517 */
518 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
519 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
520 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
521 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
522
523 /* This code cannot presently handle being reentered. */
524 VM_WARN_ON(!irqs_disabled());
525
526 if (unlikely(loaded_mm == &init_mm))
527 return;
528
529 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
530 loaded_mm->context.ctx_id);
531
532 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
533 /*
534 * We're in lazy mode. We need to at least flush our
535 * paging-structure cache to avoid speculatively reading
536 * garbage into our TLB. Since switching to init_mm is barely
537 * slower than a minimal flush, just switch to init_mm.
538 */
539 switch_mm_irqs_off(NULL, &init_mm, NULL);
540 return;
541 }
542
543 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
544 /*
545 * There's nothing to do: we're already up to date. This can
546 * happen if two concurrent flushes happen -- the first flush to
547 * be handled can catch us all the way up, leaving no work for
548 * the second flush.
549 */
550 trace_tlb_flush(reason, 0);
551 return;
552 }
553
554 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
555 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
556
557 /*
558 * If we get to this point, we know that our TLB is out of date.
559 * This does not strictly imply that we need to flush (it's
560 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
561 * going to need to flush in the very near future, so we might
562 * as well get it over with.
563 *
564 * The only question is whether to do a full or partial flush.
565 *
566 * We do a partial flush if requested and two extra conditions
567 * are met:
568 *
569 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
570 * we've always done all needed flushes to catch up to
571 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
572 * f->new_tlb_gen == 3, then we know that the flush needed to bring
573 * us up to date for tlb_gen 3 is the partial flush we're
574 * processing.
575 *
576 * As an example of why this check is needed, suppose that there
577 * are two concurrent flushes. The first is a full flush that
578 * changes context.tlb_gen from 1 to 2. The second is a partial
579 * flush that changes context.tlb_gen from 2 to 3. If they get
580 * processed on this CPU in reverse order, we'll see
581 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
582 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
583 * 3, we'd be break the invariant: we'd update local_tlb_gen above
584 * 1 without the full flush that's needed for tlb_gen 2.
585 *
586 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
587 * Partial TLB flushes are not all that much cheaper than full TLB
588 * flushes, so it seems unlikely that it would be a performance win
589 * to do a partial flush if that won't bring our TLB fully up to
590 * date. By doing a full flush instead, we can increase
591 * local_tlb_gen all the way to mm_tlb_gen and we can probably
592 * avoid another flush in the very near future.
593 */
594 if (f->end != TLB_FLUSH_ALL &&
595 f->new_tlb_gen == local_tlb_gen + 1 &&
596 f->new_tlb_gen == mm_tlb_gen) {
597 /* Partial flush */
598 unsigned long addr;
599 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
600
601 addr = f->start;
602 while (addr < f->end) {
603 __flush_tlb_one_user(addr);
604 addr += PAGE_SIZE;
605 }
606 if (local)
607 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
608 trace_tlb_flush(reason, nr_pages);
609 } else {
610 /* Full flush. */
611 local_flush_tlb();
612 if (local)
613 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
614 trace_tlb_flush(reason, TLB_FLUSH_ALL);
615 }
616
617 /* Both paths above update our state to mm_tlb_gen. */
618 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
619}
620
621static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
622{
623 const struct flush_tlb_info *f = info;
624
625 flush_tlb_func_common(f, true, reason);
626}
627
628static void flush_tlb_func_remote(void *info)
629{
630 const struct flush_tlb_info *f = info;
631
632 inc_irq_stat(irq_tlb_count);
633
634 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
635 return;
636
637 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
638 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
639}
640
641void native_flush_tlb_others(const struct cpumask *cpumask,
642 const struct flush_tlb_info *info)
643{
644 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
645 if (info->end == TLB_FLUSH_ALL)
646 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
647 else
648 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
649 (info->end - info->start) >> PAGE_SHIFT);
650
651 if (is_uv_system()) {
652 /*
653 * This whole special case is confused. UV has a "Broadcast
654 * Assist Unit", which seems to be a fancy way to send IPIs.
655 * Back when x86 used an explicit TLB flush IPI, UV was
656 * optimized to use its own mechanism. These days, x86 uses
657 * smp_call_function_many(), but UV still uses a manual IPI,
658 * and that IPI's action is out of date -- it does a manual
659 * flush instead of calling flush_tlb_func_remote(). This
660 * means that the percpu tlb_gen variables won't be updated
661 * and we'll do pointless flushes on future context switches.
662 *
663 * Rather than hooking native_flush_tlb_others() here, I think
664 * that UV should be updated so that smp_call_function_many(),
665 * etc, are optimal on UV.
666 */
667 unsigned int cpu;
668
669 cpu = smp_processor_id();
670 cpumask = uv_flush_tlb_others(cpumask, info);
671 if (cpumask)
672 smp_call_function_many(cpumask, flush_tlb_func_remote,
673 (void *)info, 1);
674 return;
675 }
676 smp_call_function_many(cpumask, flush_tlb_func_remote,
677 (void *)info, 1);
678}
679
680/*
681 * See Documentation/x86/tlb.txt for details. We choose 33
682 * because it is large enough to cover the vast majority (at
683 * least 95%) of allocations, and is small enough that we are
684 * confident it will not cause too much overhead. Each single
685 * flush is about 100 ns, so this caps the maximum overhead at
686 * _about_ 3,000 ns.
687 *
688 * This is in units of pages.
689 */
690static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
691
692void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
693 unsigned long end, unsigned long vmflag)
694{
695 int cpu;
696
697 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
698 .mm = mm,
699 };
700
701 cpu = get_cpu();
702
703 /* This is also a barrier that synchronizes with switch_mm(). */
704 info.new_tlb_gen = inc_mm_tlb_gen(mm);
705
706 /* Should we flush just the requested range? */
707 if ((end != TLB_FLUSH_ALL) &&
708 !(vmflag & VM_HUGETLB) &&
709 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
710 info.start = start;
711 info.end = end;
712 } else {
713 info.start = 0UL;
714 info.end = TLB_FLUSH_ALL;
715 }
716
717 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
718 VM_WARN_ON(irqs_disabled());
719 local_irq_disable();
720 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
721 local_irq_enable();
722 }
723
724 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
725 flush_tlb_others(mm_cpumask(mm), &info);
726
727 put_cpu();
728}
729
730
731static void do_flush_tlb_all(void *info)
732{
733 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
734 __flush_tlb_all();
735}
736
737void flush_tlb_all(void)
738{
739 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
740 on_each_cpu(do_flush_tlb_all, NULL, 1);
741}
742
743static void do_kernel_range_flush(void *info)
744{
745 struct flush_tlb_info *f = info;
746 unsigned long addr;
747
748 /* flush range by one by one 'invlpg' */
749 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
750 __flush_tlb_one_kernel(addr);
751}
752
753void flush_tlb_kernel_range(unsigned long start, unsigned long end)
754{
755
756 /* Balance as user space task's flush, a bit conservative */
757 if (end == TLB_FLUSH_ALL ||
758 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
759 on_each_cpu(do_flush_tlb_all, NULL, 1);
760 } else {
761 struct flush_tlb_info info;
762 info.start = start;
763 info.end = end;
764 on_each_cpu(do_kernel_range_flush, &info, 1);
765 }
766}
767
768void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
769{
770 struct flush_tlb_info info = {
771 .mm = NULL,
772 .start = 0UL,
773 .end = TLB_FLUSH_ALL,
774 };
775
776 int cpu = get_cpu();
777
778 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
779 VM_WARN_ON(irqs_disabled());
780 local_irq_disable();
781 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
782 local_irq_enable();
783 }
784
785 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
786 flush_tlb_others(&batch->cpumask, &info);
787
788 cpumask_clear(&batch->cpumask);
789
790 put_cpu();
791}
792
793static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
794 size_t count, loff_t *ppos)
795{
796 char buf[32];
797 unsigned int len;
798
799 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
800 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
801}
802
803static ssize_t tlbflush_write_file(struct file *file,
804 const char __user *user_buf, size_t count, loff_t *ppos)
805{
806 char buf[32];
807 ssize_t len;
808 int ceiling;
809
810 len = min(count, sizeof(buf) - 1);
811 if (copy_from_user(buf, user_buf, len))
812 return -EFAULT;
813
814 buf[len] = '\0';
815 if (kstrtoint(buf, 0, &ceiling))
816 return -EINVAL;
817
818 if (ceiling < 0)
819 return -EINVAL;
820
821 tlb_single_page_flush_ceiling = ceiling;
822 return count;
823}
824
825static const struct file_operations fops_tlbflush = {
826 .read = tlbflush_read_file,
827 .write = tlbflush_write_file,
828 .llseek = default_llseek,
829};
830
831static int __init create_tlb_single_page_flush_ceiling(void)
832{
833 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
834 arch_debugfs_dir, NULL, &fops_tlbflush);
835 return 0;
836}
837late_initcall(create_tlb_single_page_flush_ceiling);