Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| 4 | * |
| 5 | * Pentium III FXSR, SSE support |
| 6 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * Handle hardware traps and faults. |
| 11 | */ |
| 12 | |
| 13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 14 | |
| 15 | #include <linux/context_tracking.h> |
| 16 | #include <linux/interrupt.h> |
| 17 | #include <linux/kallsyms.h> |
| 18 | #include <linux/spinlock.h> |
| 19 | #include <linux/kprobes.h> |
| 20 | #include <linux/uaccess.h> |
| 21 | #include <linux/kdebug.h> |
| 22 | #include <linux/kgdb.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/export.h> |
| 25 | #include <linux/ptrace.h> |
| 26 | #include <linux/uprobes.h> |
| 27 | #include <linux/string.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/errno.h> |
| 30 | #include <linux/kexec.h> |
| 31 | #include <linux/sched.h> |
| 32 | #include <linux/sched/task_stack.h> |
| 33 | #include <linux/timer.h> |
| 34 | #include <linux/init.h> |
| 35 | #include <linux/bug.h> |
| 36 | #include <linux/nmi.h> |
| 37 | #include <linux/mm.h> |
| 38 | #include <linux/smp.h> |
| 39 | #include <linux/io.h> |
| 40 | |
| 41 | #if defined(CONFIG_EDAC) |
| 42 | #include <linux/edac.h> |
| 43 | #endif |
| 44 | |
| 45 | #include <asm/stacktrace.h> |
| 46 | #include <asm/processor.h> |
| 47 | #include <asm/debugreg.h> |
| 48 | #include <linux/atomic.h> |
| 49 | #include <asm/text-patching.h> |
| 50 | #include <asm/ftrace.h> |
| 51 | #include <asm/traps.h> |
| 52 | #include <asm/desc.h> |
| 53 | #include <asm/fpu/internal.h> |
| 54 | #include <asm/cpu_entry_area.h> |
| 55 | #include <asm/mce.h> |
| 56 | #include <asm/fixmap.h> |
| 57 | #include <asm/mach_traps.h> |
| 58 | #include <asm/alternative.h> |
| 59 | #include <asm/fpu/xstate.h> |
| 60 | #include <asm/trace/mpx.h> |
| 61 | #include <asm/mpx.h> |
| 62 | #include <asm/vm86.h> |
| 63 | #include <asm/umip.h> |
| 64 | |
| 65 | #ifdef CONFIG_X86_64 |
| 66 | #include <asm/x86_init.h> |
| 67 | #include <asm/pgalloc.h> |
| 68 | #include <asm/proto.h> |
| 69 | #else |
| 70 | #include <asm/processor-flags.h> |
| 71 | #include <asm/setup.h> |
| 72 | #include <asm/proto.h> |
| 73 | #endif |
| 74 | |
| 75 | DECLARE_BITMAP(system_vectors, NR_VECTORS); |
| 76 | |
| 77 | static inline void cond_local_irq_enable(struct pt_regs *regs) |
| 78 | { |
| 79 | if (regs->flags & X86_EFLAGS_IF) |
| 80 | local_irq_enable(); |
| 81 | } |
| 82 | |
| 83 | static inline void cond_local_irq_disable(struct pt_regs *regs) |
| 84 | { |
| 85 | if (regs->flags & X86_EFLAGS_IF) |
| 86 | local_irq_disable(); |
| 87 | } |
| 88 | |
| 89 | /* |
| 90 | * In IST context, we explicitly disable preemption. This serves two |
| 91 | * purposes: it makes it much less likely that we would accidentally |
| 92 | * schedule in IST context and it will force a warning if we somehow |
| 93 | * manage to schedule by accident. |
| 94 | */ |
| 95 | void ist_enter(struct pt_regs *regs) |
| 96 | { |
| 97 | if (user_mode(regs)) { |
| 98 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 99 | } else { |
| 100 | /* |
| 101 | * We might have interrupted pretty much anything. In |
| 102 | * fact, if we're a machine check, we can even interrupt |
| 103 | * NMI processing. We don't want in_nmi() to return true, |
| 104 | * but we need to notify RCU. |
| 105 | */ |
| 106 | rcu_nmi_enter(); |
| 107 | } |
| 108 | |
| 109 | preempt_disable(); |
| 110 | |
| 111 | /* This code is a bit fragile. Test it. */ |
| 112 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); |
| 113 | } |
| 114 | |
| 115 | void ist_exit(struct pt_regs *regs) |
| 116 | { |
| 117 | preempt_enable_no_resched(); |
| 118 | |
| 119 | if (!user_mode(regs)) |
| 120 | rcu_nmi_exit(); |
| 121 | } |
| 122 | |
| 123 | /** |
| 124 | * ist_begin_non_atomic() - begin a non-atomic section in an IST exception |
| 125 | * @regs: regs passed to the IST exception handler |
| 126 | * |
| 127 | * IST exception handlers normally cannot schedule. As a special |
| 128 | * exception, if the exception interrupted userspace code (i.e. |
| 129 | * user_mode(regs) would return true) and the exception was not |
| 130 | * a double fault, it can be safe to schedule. ist_begin_non_atomic() |
| 131 | * begins a non-atomic section within an ist_enter()/ist_exit() region. |
| 132 | * Callers are responsible for enabling interrupts themselves inside |
| 133 | * the non-atomic section, and callers must call ist_end_non_atomic() |
| 134 | * before ist_exit(). |
| 135 | */ |
| 136 | void ist_begin_non_atomic(struct pt_regs *regs) |
| 137 | { |
| 138 | BUG_ON(!user_mode(regs)); |
| 139 | |
| 140 | /* |
| 141 | * Sanity check: we need to be on the normal thread stack. This |
| 142 | * will catch asm bugs and any attempt to use ist_preempt_enable |
| 143 | * from double_fault. |
| 144 | */ |
| 145 | BUG_ON(!on_thread_stack()); |
| 146 | |
| 147 | preempt_enable_no_resched(); |
| 148 | } |
| 149 | |
| 150 | /** |
| 151 | * ist_end_non_atomic() - begin a non-atomic section in an IST exception |
| 152 | * |
| 153 | * Ends a non-atomic section started with ist_begin_non_atomic(). |
| 154 | */ |
| 155 | void ist_end_non_atomic(void) |
| 156 | { |
| 157 | preempt_disable(); |
| 158 | } |
| 159 | |
| 160 | int is_valid_bugaddr(unsigned long addr) |
| 161 | { |
| 162 | unsigned short ud; |
| 163 | |
| 164 | if (addr < TASK_SIZE_MAX) |
| 165 | return 0; |
| 166 | |
| 167 | if (probe_kernel_address((unsigned short *)addr, ud)) |
| 168 | return 0; |
| 169 | |
| 170 | return ud == INSN_UD0 || ud == INSN_UD2; |
| 171 | } |
| 172 | |
| 173 | int fixup_bug(struct pt_regs *regs, int trapnr) |
| 174 | { |
| 175 | if (trapnr != X86_TRAP_UD) |
| 176 | return 0; |
| 177 | |
| 178 | switch (report_bug(regs->ip, regs)) { |
| 179 | case BUG_TRAP_TYPE_NONE: |
| 180 | case BUG_TRAP_TYPE_BUG: |
| 181 | break; |
| 182 | |
| 183 | case BUG_TRAP_TYPE_WARN: |
| 184 | regs->ip += LEN_UD2; |
| 185 | return 1; |
| 186 | } |
| 187 | |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | static nokprobe_inline int |
| 192 | do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, |
| 193 | struct pt_regs *regs, long error_code) |
| 194 | { |
| 195 | if (v8086_mode(regs)) { |
| 196 | /* |
| 197 | * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
| 198 | * On nmi (interrupt 2), do_trap should not be called. |
| 199 | */ |
| 200 | if (trapnr < X86_TRAP_UD) { |
| 201 | if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, |
| 202 | error_code, trapnr)) |
| 203 | return 0; |
| 204 | } |
| 205 | return -1; |
| 206 | } |
| 207 | |
| 208 | if (!user_mode(regs)) { |
| 209 | if (fixup_exception(regs, trapnr)) |
| 210 | return 0; |
| 211 | |
| 212 | tsk->thread.error_code = error_code; |
| 213 | tsk->thread.trap_nr = trapnr; |
| 214 | die(str, regs, error_code); |
| 215 | } |
| 216 | |
| 217 | return -1; |
| 218 | } |
| 219 | |
| 220 | static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, |
| 221 | siginfo_t *info) |
| 222 | { |
| 223 | unsigned long siaddr; |
| 224 | int sicode; |
| 225 | |
| 226 | switch (trapnr) { |
| 227 | default: |
| 228 | return SEND_SIG_PRIV; |
| 229 | |
| 230 | case X86_TRAP_DE: |
| 231 | sicode = FPE_INTDIV; |
| 232 | siaddr = uprobe_get_trap_addr(regs); |
| 233 | break; |
| 234 | case X86_TRAP_UD: |
| 235 | sicode = ILL_ILLOPN; |
| 236 | siaddr = uprobe_get_trap_addr(regs); |
| 237 | break; |
| 238 | case X86_TRAP_AC: |
| 239 | sicode = BUS_ADRALN; |
| 240 | siaddr = 0; |
| 241 | break; |
| 242 | } |
| 243 | |
| 244 | info->si_signo = signr; |
| 245 | info->si_errno = 0; |
| 246 | info->si_code = sicode; |
| 247 | info->si_addr = (void __user *)siaddr; |
| 248 | return info; |
| 249 | } |
| 250 | |
| 251 | static void |
| 252 | do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| 253 | long error_code, siginfo_t *info) |
| 254 | { |
| 255 | struct task_struct *tsk = current; |
| 256 | |
| 257 | |
| 258 | if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) |
| 259 | return; |
| 260 | /* |
| 261 | * We want error_code and trap_nr set for userspace faults and |
| 262 | * kernelspace faults which result in die(), but not |
| 263 | * kernelspace faults which are fixed up. die() gives the |
| 264 | * process no chance to handle the signal and notice the |
| 265 | * kernel fault information, so that won't result in polluting |
| 266 | * the information about previously queued, but not yet |
| 267 | * delivered, faults. See also do_general_protection below. |
| 268 | */ |
| 269 | tsk->thread.error_code = error_code; |
| 270 | tsk->thread.trap_nr = trapnr; |
| 271 | |
| 272 | if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| 273 | printk_ratelimit()) { |
| 274 | pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", |
| 275 | tsk->comm, tsk->pid, str, |
| 276 | regs->ip, regs->sp, error_code); |
| 277 | print_vma_addr(KERN_CONT " in ", regs->ip); |
| 278 | pr_cont("\n"); |
| 279 | } |
| 280 | |
| 281 | force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); |
| 282 | } |
| 283 | NOKPROBE_SYMBOL(do_trap); |
| 284 | |
| 285 | static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
| 286 | unsigned long trapnr, int signr) |
| 287 | { |
| 288 | siginfo_t info; |
| 289 | |
| 290 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 291 | |
| 292 | /* |
| 293 | * WARN*()s end up here; fix them up before we call the |
| 294 | * notifier chain. |
| 295 | */ |
| 296 | if (!user_mode(regs) && fixup_bug(regs, trapnr)) |
| 297 | return; |
| 298 | |
| 299 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != |
| 300 | NOTIFY_STOP) { |
| 301 | cond_local_irq_enable(regs); |
| 302 | clear_siginfo(&info); |
| 303 | do_trap(trapnr, signr, str, regs, error_code, |
| 304 | fill_trap_info(regs, signr, trapnr, &info)); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | #define DO_ERROR(trapnr, signr, str, name) \ |
| 309 | dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
| 310 | { \ |
| 311 | do_error_trap(regs, error_code, str, trapnr, signr); \ |
| 312 | } |
| 313 | |
| 314 | DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) |
| 315 | DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) |
| 316 | DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) |
| 317 | DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) |
| 318 | DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) |
| 319 | DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) |
| 320 | DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) |
| 321 | DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) |
| 322 | |
| 323 | #ifdef CONFIG_VMAP_STACK |
| 324 | __visible void __noreturn handle_stack_overflow(const char *message, |
| 325 | struct pt_regs *regs, |
| 326 | unsigned long fault_address) |
| 327 | { |
| 328 | printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", |
| 329 | (void *)fault_address, current->stack, |
| 330 | (char *)current->stack + THREAD_SIZE - 1); |
| 331 | die(message, regs, 0); |
| 332 | |
| 333 | /* Be absolutely certain we don't return. */ |
| 334 | panic(message); |
| 335 | } |
| 336 | #endif |
| 337 | |
| 338 | #ifdef CONFIG_X86_64 |
| 339 | /* Runs on IST stack */ |
| 340 | dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) |
| 341 | { |
| 342 | static const char str[] = "double fault"; |
| 343 | struct task_struct *tsk = current; |
| 344 | #ifdef CONFIG_VMAP_STACK |
| 345 | unsigned long cr2; |
| 346 | #endif |
| 347 | |
| 348 | #ifdef CONFIG_X86_ESPFIX64 |
| 349 | extern unsigned char native_irq_return_iret[]; |
| 350 | |
| 351 | /* |
| 352 | * If IRET takes a non-IST fault on the espfix64 stack, then we |
| 353 | * end up promoting it to a doublefault. In that case, take |
| 354 | * advantage of the fact that we're not using the normal (TSS.sp0) |
| 355 | * stack right now. We can write a fake #GP(0) frame at TSS.sp0 |
| 356 | * and then modify our own IRET frame so that, when we return, |
| 357 | * we land directly at the #GP(0) vector with the stack already |
| 358 | * set up according to its expectations. |
| 359 | * |
| 360 | * The net result is that our #GP handler will think that we |
| 361 | * entered from usermode with the bad user context. |
| 362 | * |
| 363 | * No need for ist_enter here because we don't use RCU. |
| 364 | */ |
| 365 | if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && |
| 366 | regs->cs == __KERNEL_CS && |
| 367 | regs->ip == (unsigned long)native_irq_return_iret) |
| 368 | { |
| 369 | struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| 370 | |
| 371 | /* |
| 372 | * regs->sp points to the failing IRET frame on the |
| 373 | * ESPFIX64 stack. Copy it to the entry stack. This fills |
| 374 | * in gpregs->ss through gpregs->ip. |
| 375 | * |
| 376 | */ |
| 377 | memmove(&gpregs->ip, (void *)regs->sp, 5*8); |
| 378 | gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ |
| 379 | |
| 380 | /* |
| 381 | * Adjust our frame so that we return straight to the #GP |
| 382 | * vector with the expected RSP value. This is safe because |
| 383 | * we won't enable interupts or schedule before we invoke |
| 384 | * general_protection, so nothing will clobber the stack |
| 385 | * frame we just set up. |
| 386 | */ |
| 387 | regs->ip = (unsigned long)general_protection; |
| 388 | regs->sp = (unsigned long)&gpregs->orig_ax; |
| 389 | |
| 390 | return; |
| 391 | } |
| 392 | #endif |
| 393 | |
| 394 | ist_enter(regs); |
| 395 | notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); |
| 396 | |
| 397 | tsk->thread.error_code = error_code; |
| 398 | tsk->thread.trap_nr = X86_TRAP_DF; |
| 399 | |
| 400 | #ifdef CONFIG_VMAP_STACK |
| 401 | /* |
| 402 | * If we overflow the stack into a guard page, the CPU will fail |
| 403 | * to deliver #PF and will send #DF instead. Similarly, if we |
| 404 | * take any non-IST exception while too close to the bottom of |
| 405 | * the stack, the processor will get a page fault while |
| 406 | * delivering the exception and will generate a double fault. |
| 407 | * |
| 408 | * According to the SDM (footnote in 6.15 under "Interrupt 14 - |
| 409 | * Page-Fault Exception (#PF): |
| 410 | * |
| 411 | * Processors update CR2 whenever a page fault is detected. If a |
| 412 | * second page fault occurs while an earlier page fault is being |
| 413 | * delivered, the faulting linear address of the second fault will |
| 414 | * overwrite the contents of CR2 (replacing the previous |
| 415 | * address). These updates to CR2 occur even if the page fault |
| 416 | * results in a double fault or occurs during the delivery of a |
| 417 | * double fault. |
| 418 | * |
| 419 | * The logic below has a small possibility of incorrectly diagnosing |
| 420 | * some errors as stack overflows. For example, if the IDT or GDT |
| 421 | * gets corrupted such that #GP delivery fails due to a bad descriptor |
| 422 | * causing #GP and we hit this condition while CR2 coincidentally |
| 423 | * points to the stack guard page, we'll think we overflowed the |
| 424 | * stack. Given that we're going to panic one way or another |
| 425 | * if this happens, this isn't necessarily worth fixing. |
| 426 | * |
| 427 | * If necessary, we could improve the test by only diagnosing |
| 428 | * a stack overflow if the saved RSP points within 47 bytes of |
| 429 | * the bottom of the stack: if RSP == tsk_stack + 48 and we |
| 430 | * take an exception, the stack is already aligned and there |
| 431 | * will be enough room SS, RSP, RFLAGS, CS, RIP, and a |
| 432 | * possible error code, so a stack overflow would *not* double |
| 433 | * fault. With any less space left, exception delivery could |
| 434 | * fail, and, as a practical matter, we've overflowed the |
| 435 | * stack even if the actual trigger for the double fault was |
| 436 | * something else. |
| 437 | */ |
| 438 | cr2 = read_cr2(); |
| 439 | if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) |
| 440 | handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); |
| 441 | #endif |
| 442 | |
| 443 | #ifdef CONFIG_DOUBLEFAULT |
| 444 | df_debug(regs, error_code); |
| 445 | #endif |
| 446 | /* |
| 447 | * This is always a kernel trap and never fixable (and thus must |
| 448 | * never return). |
| 449 | */ |
| 450 | for (;;) |
| 451 | die(str, regs, error_code); |
| 452 | } |
| 453 | #endif |
| 454 | |
| 455 | dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) |
| 456 | { |
| 457 | const struct mpx_bndcsr *bndcsr; |
| 458 | siginfo_t *info; |
| 459 | |
| 460 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 461 | if (notify_die(DIE_TRAP, "bounds", regs, error_code, |
| 462 | X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) |
| 463 | return; |
| 464 | cond_local_irq_enable(regs); |
| 465 | |
| 466 | if (!user_mode(regs)) |
| 467 | die("bounds", regs, error_code); |
| 468 | |
| 469 | if (!cpu_feature_enabled(X86_FEATURE_MPX)) { |
| 470 | /* The exception is not from Intel MPX */ |
| 471 | goto exit_trap; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * We need to look at BNDSTATUS to resolve this exception. |
| 476 | * A NULL here might mean that it is in its 'init state', |
| 477 | * which is all zeros which indicates MPX was not |
| 478 | * responsible for the exception. |
| 479 | */ |
| 480 | bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); |
| 481 | if (!bndcsr) |
| 482 | goto exit_trap; |
| 483 | |
| 484 | trace_bounds_exception_mpx(bndcsr); |
| 485 | /* |
| 486 | * The error code field of the BNDSTATUS register communicates status |
| 487 | * information of a bound range exception #BR or operation involving |
| 488 | * bound directory. |
| 489 | */ |
| 490 | switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { |
| 491 | case 2: /* Bound directory has invalid entry. */ |
| 492 | if (mpx_handle_bd_fault()) |
| 493 | goto exit_trap; |
| 494 | break; /* Success, it was handled */ |
| 495 | case 1: /* Bound violation. */ |
| 496 | info = mpx_generate_siginfo(regs); |
| 497 | if (IS_ERR(info)) { |
| 498 | /* |
| 499 | * We failed to decode the MPX instruction. Act as if |
| 500 | * the exception was not caused by MPX. |
| 501 | */ |
| 502 | goto exit_trap; |
| 503 | } |
| 504 | /* |
| 505 | * Success, we decoded the instruction and retrieved |
| 506 | * an 'info' containing the address being accessed |
| 507 | * which caused the exception. This information |
| 508 | * allows and application to possibly handle the |
| 509 | * #BR exception itself. |
| 510 | */ |
| 511 | do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); |
| 512 | kfree(info); |
| 513 | break; |
| 514 | case 0: /* No exception caused by Intel MPX operations. */ |
| 515 | goto exit_trap; |
| 516 | default: |
| 517 | die("bounds", regs, error_code); |
| 518 | } |
| 519 | |
| 520 | return; |
| 521 | |
| 522 | exit_trap: |
| 523 | /* |
| 524 | * This path out is for all the cases where we could not |
| 525 | * handle the exception in some way (like allocating a |
| 526 | * table or telling userspace about it. We will also end |
| 527 | * up here if the kernel has MPX turned off at compile |
| 528 | * time.. |
| 529 | */ |
| 530 | do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); |
| 531 | } |
| 532 | |
| 533 | dotraplinkage void |
| 534 | do_general_protection(struct pt_regs *regs, long error_code) |
| 535 | { |
| 536 | struct task_struct *tsk; |
| 537 | |
| 538 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 539 | cond_local_irq_enable(regs); |
| 540 | |
| 541 | if (static_cpu_has(X86_FEATURE_UMIP)) { |
| 542 | if (user_mode(regs) && fixup_umip_exception(regs)) |
| 543 | return; |
| 544 | } |
| 545 | |
| 546 | if (v8086_mode(regs)) { |
| 547 | local_irq_enable(); |
| 548 | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| 549 | return; |
| 550 | } |
| 551 | |
| 552 | tsk = current; |
| 553 | if (!user_mode(regs)) { |
| 554 | if (fixup_exception(regs, X86_TRAP_GP)) |
| 555 | return; |
| 556 | |
| 557 | tsk->thread.error_code = error_code; |
| 558 | tsk->thread.trap_nr = X86_TRAP_GP; |
| 559 | if (notify_die(DIE_GPF, "general protection fault", regs, error_code, |
| 560 | X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) |
| 561 | die("general protection fault", regs, error_code); |
| 562 | return; |
| 563 | } |
| 564 | |
| 565 | tsk->thread.error_code = error_code; |
| 566 | tsk->thread.trap_nr = X86_TRAP_GP; |
| 567 | |
| 568 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
| 569 | printk_ratelimit()) { |
| 570 | pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", |
| 571 | tsk->comm, task_pid_nr(tsk), |
| 572 | regs->ip, regs->sp, error_code); |
| 573 | print_vma_addr(KERN_CONT " in ", regs->ip); |
| 574 | pr_cont("\n"); |
| 575 | } |
| 576 | |
| 577 | force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); |
| 578 | } |
| 579 | NOKPROBE_SYMBOL(do_general_protection); |
| 580 | |
| 581 | dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) |
| 582 | { |
| 583 | #ifdef CONFIG_DYNAMIC_FTRACE |
| 584 | /* |
| 585 | * ftrace must be first, everything else may cause a recursive crash. |
| 586 | * See note by declaration of modifying_ftrace_code in ftrace.c |
| 587 | */ |
| 588 | if (unlikely(atomic_read(&modifying_ftrace_code)) && |
| 589 | ftrace_int3_handler(regs)) |
| 590 | return; |
| 591 | #endif |
| 592 | if (poke_int3_handler(regs)) |
| 593 | return; |
| 594 | |
| 595 | /* |
| 596 | * Use ist_enter despite the fact that we don't use an IST stack. |
| 597 | * We can be called from a kprobe in non-CONTEXT_KERNEL kernel |
| 598 | * mode or even during context tracking state changes. |
| 599 | * |
| 600 | * This means that we can't schedule. That's okay. |
| 601 | */ |
| 602 | ist_enter(regs); |
| 603 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 604 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| 605 | if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| 606 | SIGTRAP) == NOTIFY_STOP) |
| 607 | goto exit; |
| 608 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| 609 | |
| 610 | #ifdef CONFIG_KPROBES |
| 611 | if (kprobe_int3_handler(regs)) |
| 612 | goto exit; |
| 613 | #endif |
| 614 | |
| 615 | if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| 616 | SIGTRAP) == NOTIFY_STOP) |
| 617 | goto exit; |
| 618 | |
| 619 | cond_local_irq_enable(regs); |
| 620 | do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); |
| 621 | cond_local_irq_disable(regs); |
| 622 | |
| 623 | exit: |
| 624 | ist_exit(regs); |
| 625 | } |
| 626 | NOKPROBE_SYMBOL(do_int3); |
| 627 | |
| 628 | #ifdef CONFIG_X86_64 |
| 629 | /* |
| 630 | * Help handler running on a per-cpu (IST or entry trampoline) stack |
| 631 | * to switch to the normal thread stack if the interrupted code was in |
| 632 | * user mode. The actual stack switch is done in entry_64.S |
| 633 | */ |
| 634 | asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) |
| 635 | { |
| 636 | struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; |
| 637 | if (regs != eregs) |
| 638 | *regs = *eregs; |
| 639 | return regs; |
| 640 | } |
| 641 | NOKPROBE_SYMBOL(sync_regs); |
| 642 | |
| 643 | struct bad_iret_stack { |
| 644 | void *error_entry_ret; |
| 645 | struct pt_regs regs; |
| 646 | }; |
| 647 | |
| 648 | asmlinkage __visible notrace |
| 649 | struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) |
| 650 | { |
| 651 | /* |
| 652 | * This is called from entry_64.S early in handling a fault |
| 653 | * caused by a bad iret to user mode. To handle the fault |
| 654 | * correctly, we want to move our stack frame to where it would |
| 655 | * be had we entered directly on the entry stack (rather than |
| 656 | * just below the IRET frame) and we want to pretend that the |
| 657 | * exception came from the IRET target. |
| 658 | */ |
| 659 | struct bad_iret_stack *new_stack = |
| 660 | (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| 661 | |
| 662 | /* Copy the IRET target to the new stack. */ |
| 663 | memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); |
| 664 | |
| 665 | /* Copy the remainder of the stack from the current stack. */ |
| 666 | memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); |
| 667 | |
| 668 | BUG_ON(!user_mode(&new_stack->regs)); |
| 669 | return new_stack; |
| 670 | } |
| 671 | NOKPROBE_SYMBOL(fixup_bad_iret); |
| 672 | #endif |
| 673 | |
| 674 | static bool is_sysenter_singlestep(struct pt_regs *regs) |
| 675 | { |
| 676 | /* |
| 677 | * We don't try for precision here. If we're anywhere in the region of |
| 678 | * code that can be single-stepped in the SYSENTER entry path, then |
| 679 | * assume that this is a useless single-step trap due to SYSENTER |
| 680 | * being invoked with TF set. (We don't know in advance exactly |
| 681 | * which instructions will be hit because BTF could plausibly |
| 682 | * be set.) |
| 683 | */ |
| 684 | #ifdef CONFIG_X86_32 |
| 685 | return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < |
| 686 | (unsigned long)__end_SYSENTER_singlestep_region - |
| 687 | (unsigned long)__begin_SYSENTER_singlestep_region; |
| 688 | #elif defined(CONFIG_IA32_EMULATION) |
| 689 | return (regs->ip - (unsigned long)entry_SYSENTER_compat) < |
| 690 | (unsigned long)__end_entry_SYSENTER_compat - |
| 691 | (unsigned long)entry_SYSENTER_compat; |
| 692 | #else |
| 693 | return false; |
| 694 | #endif |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * Our handling of the processor debug registers is non-trivial. |
| 699 | * We do not clear them on entry and exit from the kernel. Therefore |
| 700 | * it is possible to get a watchpoint trap here from inside the kernel. |
| 701 | * However, the code in ./ptrace.c has ensured that the user can |
| 702 | * only set watchpoints on userspace addresses. Therefore the in-kernel |
| 703 | * watchpoint trap can only occur in code which is reading/writing |
| 704 | * from user space. Such code must not hold kernel locks (since it |
| 705 | * can equally take a page fault), therefore it is safe to call |
| 706 | * force_sig_info even though that claims and releases locks. |
| 707 | * |
| 708 | * Code in ./signal.c ensures that the debug control register |
| 709 | * is restored before we deliver any signal, and therefore that |
| 710 | * user code runs with the correct debug control register even though |
| 711 | * we clear it here. |
| 712 | * |
| 713 | * Being careful here means that we don't have to be as careful in a |
| 714 | * lot of more complicated places (task switching can be a bit lazy |
| 715 | * about restoring all the debug state, and ptrace doesn't have to |
| 716 | * find every occurrence of the TF bit that could be saved away even |
| 717 | * by user code) |
| 718 | * |
| 719 | * May run on IST stack. |
| 720 | */ |
| 721 | dotraplinkage void do_debug(struct pt_regs *regs, long error_code) |
| 722 | { |
| 723 | struct task_struct *tsk = current; |
| 724 | int user_icebp = 0; |
| 725 | unsigned long dr6; |
| 726 | int si_code; |
| 727 | |
| 728 | ist_enter(regs); |
| 729 | |
| 730 | get_debugreg(dr6, 6); |
| 731 | /* |
| 732 | * The Intel SDM says: |
| 733 | * |
| 734 | * Certain debug exceptions may clear bits 0-3. The remaining |
| 735 | * contents of the DR6 register are never cleared by the |
| 736 | * processor. To avoid confusion in identifying debug |
| 737 | * exceptions, debug handlers should clear the register before |
| 738 | * returning to the interrupted task. |
| 739 | * |
| 740 | * Keep it simple: clear DR6 immediately. |
| 741 | */ |
| 742 | set_debugreg(0, 6); |
| 743 | |
| 744 | /* Filter out all the reserved bits which are preset to 1 */ |
| 745 | dr6 &= ~DR6_RESERVED; |
| 746 | |
| 747 | /* |
| 748 | * The SDM says "The processor clears the BTF flag when it |
| 749 | * generates a debug exception." Clear TIF_BLOCKSTEP to keep |
| 750 | * TIF_BLOCKSTEP in sync with the hardware BTF flag. |
| 751 | */ |
| 752 | clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); |
| 753 | |
| 754 | if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && |
| 755 | is_sysenter_singlestep(regs))) { |
| 756 | dr6 &= ~DR_STEP; |
| 757 | if (!dr6) |
| 758 | goto exit; |
| 759 | /* |
| 760 | * else we might have gotten a single-step trap and hit a |
| 761 | * watchpoint at the same time, in which case we should fall |
| 762 | * through and handle the watchpoint. |
| 763 | */ |
| 764 | } |
| 765 | |
| 766 | /* |
| 767 | * If dr6 has no reason to give us about the origin of this trap, |
| 768 | * then it's very likely the result of an icebp/int01 trap. |
| 769 | * User wants a sigtrap for that. |
| 770 | */ |
| 771 | if (!dr6 && user_mode(regs)) |
| 772 | user_icebp = 1; |
| 773 | |
| 774 | /* Store the virtualized DR6 value */ |
| 775 | tsk->thread.debugreg6 = dr6; |
| 776 | |
| 777 | #ifdef CONFIG_KPROBES |
| 778 | if (kprobe_debug_handler(regs)) |
| 779 | goto exit; |
| 780 | #endif |
| 781 | |
| 782 | if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, |
| 783 | SIGTRAP) == NOTIFY_STOP) |
| 784 | goto exit; |
| 785 | |
| 786 | /* |
| 787 | * Let others (NMI) know that the debug stack is in use |
| 788 | * as we may switch to the interrupt stack. |
| 789 | */ |
| 790 | debug_stack_usage_inc(); |
| 791 | |
| 792 | /* It's safe to allow irq's after DR6 has been saved */ |
| 793 | cond_local_irq_enable(regs); |
| 794 | |
| 795 | if (v8086_mode(regs)) { |
| 796 | handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, |
| 797 | X86_TRAP_DB); |
| 798 | cond_local_irq_disable(regs); |
| 799 | debug_stack_usage_dec(); |
| 800 | goto exit; |
| 801 | } |
| 802 | |
| 803 | if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { |
| 804 | /* |
| 805 | * Historical junk that used to handle SYSENTER single-stepping. |
| 806 | * This should be unreachable now. If we survive for a while |
| 807 | * without anyone hitting this warning, we'll turn this into |
| 808 | * an oops. |
| 809 | */ |
| 810 | tsk->thread.debugreg6 &= ~DR_STEP; |
| 811 | set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| 812 | regs->flags &= ~X86_EFLAGS_TF; |
| 813 | } |
| 814 | si_code = get_si_code(tsk->thread.debugreg6); |
| 815 | if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) |
| 816 | send_sigtrap(tsk, regs, error_code, si_code); |
| 817 | cond_local_irq_disable(regs); |
| 818 | debug_stack_usage_dec(); |
| 819 | |
| 820 | exit: |
| 821 | ist_exit(regs); |
| 822 | } |
| 823 | NOKPROBE_SYMBOL(do_debug); |
| 824 | |
| 825 | /* |
| 826 | * Note that we play around with the 'TS' bit in an attempt to get |
| 827 | * the correct behaviour even in the presence of the asynchronous |
| 828 | * IRQ13 behaviour |
| 829 | */ |
| 830 | static void math_error(struct pt_regs *regs, int error_code, int trapnr) |
| 831 | { |
| 832 | struct task_struct *task = current; |
| 833 | struct fpu *fpu = &task->thread.fpu; |
| 834 | siginfo_t info; |
| 835 | char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
| 836 | "simd exception"; |
| 837 | |
| 838 | cond_local_irq_enable(regs); |
| 839 | |
| 840 | if (!user_mode(regs)) { |
| 841 | if (fixup_exception(regs, trapnr)) |
| 842 | return; |
| 843 | |
| 844 | task->thread.error_code = error_code; |
| 845 | task->thread.trap_nr = trapnr; |
| 846 | |
| 847 | if (notify_die(DIE_TRAP, str, regs, error_code, |
| 848 | trapnr, SIGFPE) != NOTIFY_STOP) |
| 849 | die(str, regs, error_code); |
| 850 | return; |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * Save the info for the exception handler and clear the error. |
| 855 | */ |
| 856 | fpu__save(fpu); |
| 857 | |
| 858 | task->thread.trap_nr = trapnr; |
| 859 | task->thread.error_code = error_code; |
| 860 | clear_siginfo(&info); |
| 861 | info.si_signo = SIGFPE; |
| 862 | info.si_errno = 0; |
| 863 | info.si_addr = (void __user *)uprobe_get_trap_addr(regs); |
| 864 | |
| 865 | info.si_code = fpu__exception_code(fpu, trapnr); |
| 866 | |
| 867 | /* Retry when we get spurious exceptions: */ |
| 868 | if (!info.si_code) |
| 869 | return; |
| 870 | |
| 871 | force_sig_info(SIGFPE, &info, task); |
| 872 | } |
| 873 | |
| 874 | dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) |
| 875 | { |
| 876 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 877 | math_error(regs, error_code, X86_TRAP_MF); |
| 878 | } |
| 879 | |
| 880 | dotraplinkage void |
| 881 | do_simd_coprocessor_error(struct pt_regs *regs, long error_code) |
| 882 | { |
| 883 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 884 | math_error(regs, error_code, X86_TRAP_XF); |
| 885 | } |
| 886 | |
| 887 | dotraplinkage void |
| 888 | do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) |
| 889 | { |
| 890 | cond_local_irq_enable(regs); |
| 891 | } |
| 892 | |
| 893 | dotraplinkage void |
| 894 | do_device_not_available(struct pt_regs *regs, long error_code) |
| 895 | { |
| 896 | unsigned long cr0; |
| 897 | |
| 898 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 899 | |
| 900 | #ifdef CONFIG_MATH_EMULATION |
| 901 | if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { |
| 902 | struct math_emu_info info = { }; |
| 903 | |
| 904 | cond_local_irq_enable(regs); |
| 905 | |
| 906 | info.regs = regs; |
| 907 | math_emulate(&info); |
| 908 | return; |
| 909 | } |
| 910 | #endif |
| 911 | |
| 912 | /* This should not happen. */ |
| 913 | cr0 = read_cr0(); |
| 914 | if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { |
| 915 | /* Try to fix it up and carry on. */ |
| 916 | write_cr0(cr0 & ~X86_CR0_TS); |
| 917 | } else { |
| 918 | /* |
| 919 | * Something terrible happened, and we're better off trying |
| 920 | * to kill the task than getting stuck in a never-ending |
| 921 | * loop of #NM faults. |
| 922 | */ |
| 923 | die("unexpected #NM exception", regs, error_code); |
| 924 | } |
| 925 | } |
| 926 | NOKPROBE_SYMBOL(do_device_not_available); |
| 927 | |
| 928 | #ifdef CONFIG_X86_32 |
| 929 | dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) |
| 930 | { |
| 931 | siginfo_t info; |
| 932 | |
| 933 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| 934 | local_irq_enable(); |
| 935 | |
| 936 | clear_siginfo(&info); |
| 937 | info.si_signo = SIGILL; |
| 938 | info.si_errno = 0; |
| 939 | info.si_code = ILL_BADSTK; |
| 940 | info.si_addr = NULL; |
| 941 | if (notify_die(DIE_TRAP, "iret exception", regs, error_code, |
| 942 | X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
| 943 | do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, |
| 944 | &info); |
| 945 | } |
| 946 | } |
| 947 | #endif |
| 948 | |
| 949 | void __init trap_init(void) |
| 950 | { |
| 951 | /* Init cpu_entry_area before IST entries are set up */ |
| 952 | setup_cpu_entry_areas(); |
| 953 | |
| 954 | idt_setup_traps(); |
| 955 | |
| 956 | /* |
| 957 | * Set the IDT descriptor to a fixed read-only location, so that the |
| 958 | * "sidt" instruction will not leak the location of the kernel, and |
| 959 | * to defend the IDT against arbitrary memory write vulnerabilities. |
| 960 | * It will be reloaded in cpu_init() */ |
| 961 | cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), |
| 962 | PAGE_KERNEL_RO); |
| 963 | idt_descr.address = CPU_ENTRY_AREA_RO_IDT; |
| 964 | |
| 965 | /* |
| 966 | * Should be a barrier for any external CPU state: |
| 967 | */ |
| 968 | cpu_init(); |
| 969 | |
| 970 | idt_setup_ist_traps(); |
| 971 | |
| 972 | x86_init.irqs.trap_init(); |
| 973 | |
| 974 | idt_setup_debugidt_traps(); |
| 975 | } |