Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Intel SMP support routines. |
| 3 | * |
| 4 | * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> |
| 5 | * (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com> |
| 6 | * (c) 2002,2003 Andi Kleen, SuSE Labs. |
| 7 | * |
| 8 | * i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com> |
| 9 | * |
| 10 | * This code is released under the GNU General Public License version 2 or |
| 11 | * later. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/init.h> |
| 15 | |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/delay.h> |
| 18 | #include <linux/spinlock.h> |
| 19 | #include <linux/export.h> |
| 20 | #include <linux/kernel_stat.h> |
| 21 | #include <linux/mc146818rtc.h> |
| 22 | #include <linux/cache.h> |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/cpu.h> |
| 25 | #include <linux/gfp.h> |
| 26 | |
| 27 | #include <asm/mtrr.h> |
| 28 | #include <asm/tlbflush.h> |
| 29 | #include <asm/mmu_context.h> |
| 30 | #include <asm/proto.h> |
| 31 | #include <asm/apic.h> |
| 32 | #include <asm/nmi.h> |
| 33 | #include <asm/mce.h> |
| 34 | #include <asm/trace/irq_vectors.h> |
| 35 | #include <asm/kexec.h> |
| 36 | #include <asm/virtext.h> |
| 37 | |
| 38 | /* |
| 39 | * Some notes on x86 processor bugs affecting SMP operation: |
| 40 | * |
| 41 | * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. |
| 42 | * The Linux implications for SMP are handled as follows: |
| 43 | * |
| 44 | * Pentium III / [Xeon] |
| 45 | * None of the E1AP-E3AP errata are visible to the user. |
| 46 | * |
| 47 | * E1AP. see PII A1AP |
| 48 | * E2AP. see PII A2AP |
| 49 | * E3AP. see PII A3AP |
| 50 | * |
| 51 | * Pentium II / [Xeon] |
| 52 | * None of the A1AP-A3AP errata are visible to the user. |
| 53 | * |
| 54 | * A1AP. see PPro 1AP |
| 55 | * A2AP. see PPro 2AP |
| 56 | * A3AP. see PPro 7AP |
| 57 | * |
| 58 | * Pentium Pro |
| 59 | * None of 1AP-9AP errata are visible to the normal user, |
| 60 | * except occasional delivery of 'spurious interrupt' as trap #15. |
| 61 | * This is very rare and a non-problem. |
| 62 | * |
| 63 | * 1AP. Linux maps APIC as non-cacheable |
| 64 | * 2AP. worked around in hardware |
| 65 | * 3AP. fixed in C0 and above steppings microcode update. |
| 66 | * Linux does not use excessive STARTUP_IPIs. |
| 67 | * 4AP. worked around in hardware |
| 68 | * 5AP. symmetric IO mode (normal Linux operation) not affected. |
| 69 | * 'noapic' mode has vector 0xf filled out properly. |
| 70 | * 6AP. 'noapic' mode might be affected - fixed in later steppings |
| 71 | * 7AP. We do not assume writes to the LVT deassering IRQs |
| 72 | * 8AP. We do not enable low power mode (deep sleep) during MP bootup |
| 73 | * 9AP. We do not use mixed mode |
| 74 | * |
| 75 | * Pentium |
| 76 | * There is a marginal case where REP MOVS on 100MHz SMP |
| 77 | * machines with B stepping processors can fail. XXX should provide |
| 78 | * an L1cache=Writethrough or L1cache=off option. |
| 79 | * |
| 80 | * B stepping CPUs may hang. There are hardware work arounds |
| 81 | * for this. We warn about it in case your board doesn't have the work |
| 82 | * arounds. Basically that's so I can tell anyone with a B stepping |
| 83 | * CPU and SMP problems "tough". |
| 84 | * |
| 85 | * Specific items [From Pentium Processor Specification Update] |
| 86 | * |
| 87 | * 1AP. Linux doesn't use remote read |
| 88 | * 2AP. Linux doesn't trust APIC errors |
| 89 | * 3AP. We work around this |
| 90 | * 4AP. Linux never generated 3 interrupts of the same priority |
| 91 | * to cause a lost local interrupt. |
| 92 | * 5AP. Remote read is never used |
| 93 | * 6AP. not affected - worked around in hardware |
| 94 | * 7AP. not affected - worked around in hardware |
| 95 | * 8AP. worked around in hardware - we get explicit CS errors if not |
| 96 | * 9AP. only 'noapic' mode affected. Might generate spurious |
| 97 | * interrupts, we log only the first one and count the |
| 98 | * rest silently. |
| 99 | * 10AP. not affected - worked around in hardware |
| 100 | * 11AP. Linux reads the APIC between writes to avoid this, as per |
| 101 | * the documentation. Make sure you preserve this as it affects |
| 102 | * the C stepping chips too. |
| 103 | * 12AP. not affected - worked around in hardware |
| 104 | * 13AP. not affected - worked around in hardware |
| 105 | * 14AP. we always deassert INIT during bootup |
| 106 | * 15AP. not affected - worked around in hardware |
| 107 | * 16AP. not affected - worked around in hardware |
| 108 | * 17AP. not affected - worked around in hardware |
| 109 | * 18AP. not affected - worked around in hardware |
| 110 | * 19AP. not affected - worked around in BIOS |
| 111 | * |
| 112 | * If this sounds worrying believe me these bugs are either ___RARE___, |
| 113 | * or are signal timing bugs worked around in hardware and there's |
| 114 | * about nothing of note with C stepping upwards. |
| 115 | */ |
| 116 | |
| 117 | static atomic_t stopping_cpu = ATOMIC_INIT(-1); |
| 118 | static bool smp_no_nmi_ipi = false; |
| 119 | |
| 120 | /* |
| 121 | * this function sends a 'reschedule' IPI to another CPU. |
| 122 | * it goes straight through and wastes no time serializing |
| 123 | * anything. Worst case is that we lose a reschedule ... |
| 124 | */ |
| 125 | static void native_smp_send_reschedule(int cpu) |
| 126 | { |
| 127 | if (unlikely(cpu_is_offline(cpu))) { |
| 128 | WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu); |
| 129 | return; |
| 130 | } |
| 131 | apic->send_IPI(cpu, RESCHEDULE_VECTOR); |
| 132 | } |
| 133 | |
| 134 | void native_send_call_func_single_ipi(int cpu) |
| 135 | { |
| 136 | apic->send_IPI(cpu, CALL_FUNCTION_SINGLE_VECTOR); |
| 137 | } |
| 138 | |
| 139 | void native_send_call_func_ipi(const struct cpumask *mask) |
| 140 | { |
| 141 | cpumask_var_t allbutself; |
| 142 | |
| 143 | if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) { |
| 144 | apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR); |
| 145 | return; |
| 146 | } |
| 147 | |
| 148 | cpumask_copy(allbutself, cpu_online_mask); |
| 149 | cpumask_clear_cpu(smp_processor_id(), allbutself); |
| 150 | |
| 151 | if (cpumask_equal(mask, allbutself) && |
| 152 | cpumask_equal(cpu_online_mask, cpu_callout_mask)) |
| 153 | apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR); |
| 154 | else |
| 155 | apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR); |
| 156 | |
| 157 | free_cpumask_var(allbutself); |
| 158 | } |
| 159 | |
| 160 | static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs) |
| 161 | { |
| 162 | /* We are registered on stopping cpu too, avoid spurious NMI */ |
| 163 | if (raw_smp_processor_id() == atomic_read(&stopping_cpu)) |
| 164 | return NMI_HANDLED; |
| 165 | |
| 166 | cpu_emergency_vmxoff(); |
| 167 | stop_this_cpu(NULL); |
| 168 | |
| 169 | return NMI_HANDLED; |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * this function calls the 'stop' function on all other CPUs in the system. |
| 174 | */ |
| 175 | |
| 176 | asmlinkage __visible void smp_reboot_interrupt(void) |
| 177 | { |
| 178 | ipi_entering_ack_irq(); |
| 179 | cpu_emergency_vmxoff(); |
| 180 | stop_this_cpu(NULL); |
| 181 | irq_exit(); |
| 182 | } |
| 183 | |
| 184 | static void native_stop_other_cpus(int wait) |
| 185 | { |
| 186 | unsigned long flags; |
| 187 | unsigned long timeout; |
| 188 | |
| 189 | if (reboot_force) |
| 190 | return; |
| 191 | |
| 192 | /* |
| 193 | * Use an own vector here because smp_call_function |
| 194 | * does lots of things not suitable in a panic situation. |
| 195 | */ |
| 196 | |
| 197 | /* |
| 198 | * We start by using the REBOOT_VECTOR irq. |
| 199 | * The irq is treated as a sync point to allow critical |
| 200 | * regions of code on other cpus to release their spin locks |
| 201 | * and re-enable irqs. Jumping straight to an NMI might |
| 202 | * accidentally cause deadlocks with further shutdown/panic |
| 203 | * code. By syncing, we give the cpus up to one second to |
| 204 | * finish their work before we force them off with the NMI. |
| 205 | */ |
| 206 | if (num_online_cpus() > 1) { |
| 207 | /* did someone beat us here? */ |
| 208 | if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1) |
| 209 | return; |
| 210 | |
| 211 | /* sync above data before sending IRQ */ |
| 212 | wmb(); |
| 213 | |
| 214 | apic->send_IPI_allbutself(REBOOT_VECTOR); |
| 215 | |
| 216 | /* |
| 217 | * Don't wait longer than a second if the caller |
| 218 | * didn't ask us to wait. |
| 219 | */ |
| 220 | timeout = USEC_PER_SEC; |
| 221 | while (num_online_cpus() > 1 && (wait || timeout--)) |
| 222 | udelay(1); |
| 223 | } |
| 224 | |
| 225 | /* if the REBOOT_VECTOR didn't work, try with the NMI */ |
| 226 | if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi)) { |
| 227 | if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback, |
| 228 | NMI_FLAG_FIRST, "smp_stop")) |
| 229 | /* Note: we ignore failures here */ |
| 230 | /* Hope the REBOOT_IRQ is good enough */ |
| 231 | goto finish; |
| 232 | |
| 233 | /* sync above data before sending IRQ */ |
| 234 | wmb(); |
| 235 | |
| 236 | pr_emerg("Shutting down cpus with NMI\n"); |
| 237 | |
| 238 | apic->send_IPI_allbutself(NMI_VECTOR); |
| 239 | |
| 240 | /* |
| 241 | * Don't wait longer than a 10 ms if the caller |
| 242 | * didn't ask us to wait. |
| 243 | */ |
| 244 | timeout = USEC_PER_MSEC * 10; |
| 245 | while (num_online_cpus() > 1 && (wait || timeout--)) |
| 246 | udelay(1); |
| 247 | } |
| 248 | |
| 249 | finish: |
| 250 | local_irq_save(flags); |
| 251 | disable_local_APIC(); |
| 252 | mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); |
| 253 | local_irq_restore(flags); |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * Reschedule call back. KVM uses this interrupt to force a cpu out of |
| 258 | * guest mode |
| 259 | */ |
| 260 | __visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs) |
| 261 | { |
| 262 | ack_APIC_irq(); |
| 263 | inc_irq_stat(irq_resched_count); |
| 264 | kvm_set_cpu_l1tf_flush_l1d(); |
| 265 | |
| 266 | if (trace_resched_ipi_enabled()) { |
| 267 | /* |
| 268 | * scheduler_ipi() might call irq_enter() as well, but |
| 269 | * nested calls are fine. |
| 270 | */ |
| 271 | irq_enter(); |
| 272 | trace_reschedule_entry(RESCHEDULE_VECTOR); |
| 273 | scheduler_ipi(); |
| 274 | trace_reschedule_exit(RESCHEDULE_VECTOR); |
| 275 | irq_exit(); |
| 276 | return; |
| 277 | } |
| 278 | scheduler_ipi(); |
| 279 | } |
| 280 | |
| 281 | __visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs) |
| 282 | { |
| 283 | ipi_entering_ack_irq(); |
| 284 | trace_call_function_entry(CALL_FUNCTION_VECTOR); |
| 285 | inc_irq_stat(irq_call_count); |
| 286 | generic_smp_call_function_interrupt(); |
| 287 | trace_call_function_exit(CALL_FUNCTION_VECTOR); |
| 288 | exiting_irq(); |
| 289 | } |
| 290 | |
| 291 | __visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r) |
| 292 | { |
| 293 | ipi_entering_ack_irq(); |
| 294 | trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR); |
| 295 | inc_irq_stat(irq_call_count); |
| 296 | generic_smp_call_function_single_interrupt(); |
| 297 | trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR); |
| 298 | exiting_irq(); |
| 299 | } |
| 300 | |
| 301 | static int __init nonmi_ipi_setup(char *str) |
| 302 | { |
| 303 | smp_no_nmi_ipi = true; |
| 304 | return 1; |
| 305 | } |
| 306 | |
| 307 | __setup("nonmi_ipi", nonmi_ipi_setup); |
| 308 | |
| 309 | struct smp_ops smp_ops = { |
| 310 | .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu, |
| 311 | .smp_prepare_cpus = native_smp_prepare_cpus, |
| 312 | .smp_cpus_done = native_smp_cpus_done, |
| 313 | |
| 314 | .stop_other_cpus = native_stop_other_cpus, |
| 315 | #if defined(CONFIG_KEXEC_CORE) |
| 316 | .crash_stop_other_cpus = kdump_nmi_shootdown_cpus, |
| 317 | #endif |
| 318 | .smp_send_reschedule = native_smp_send_reschedule, |
| 319 | |
| 320 | .cpu_up = native_cpu_up, |
| 321 | .cpu_die = native_cpu_die, |
| 322 | .cpu_disable = native_cpu_disable, |
| 323 | .play_dead = native_play_dead, |
| 324 | |
| 325 | .send_call_func_ipi = native_send_call_func_ipi, |
| 326 | .send_call_func_single_ipi = native_send_call_func_single_ipi, |
| 327 | }; |
| 328 | EXPORT_SYMBOL_GPL(smp_ops); |