Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 3 | |
| 4 | #include <linux/kernel.h> |
| 5 | #include <linux/export.h> |
| 6 | #include <linux/init.h> |
| 7 | #include <linux/bootmem.h> |
| 8 | #include <linux/percpu.h> |
| 9 | #include <linux/kexec.h> |
| 10 | #include <linux/crash_dump.h> |
| 11 | #include <linux/smp.h> |
| 12 | #include <linux/topology.h> |
| 13 | #include <linux/pfn.h> |
| 14 | #include <asm/sections.h> |
| 15 | #include <asm/processor.h> |
| 16 | #include <asm/desc.h> |
| 17 | #include <asm/setup.h> |
| 18 | #include <asm/mpspec.h> |
| 19 | #include <asm/apicdef.h> |
| 20 | #include <asm/highmem.h> |
| 21 | #include <asm/proto.h> |
| 22 | #include <asm/cpumask.h> |
| 23 | #include <asm/cpu.h> |
| 24 | #include <asm/stackprotector.h> |
| 25 | |
| 26 | DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); |
| 27 | EXPORT_PER_CPU_SYMBOL(cpu_number); |
| 28 | |
| 29 | #ifdef CONFIG_X86_64 |
| 30 | #define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load) |
| 31 | #else |
| 32 | #define BOOT_PERCPU_OFFSET 0 |
| 33 | #endif |
| 34 | |
| 35 | DEFINE_PER_CPU_READ_MOSTLY(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET; |
| 36 | EXPORT_PER_CPU_SYMBOL(this_cpu_off); |
| 37 | |
| 38 | unsigned long __per_cpu_offset[NR_CPUS] __ro_after_init = { |
| 39 | [0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET, |
| 40 | }; |
| 41 | EXPORT_SYMBOL(__per_cpu_offset); |
| 42 | |
| 43 | /* |
| 44 | * On x86_64 symbols referenced from code should be reachable using |
| 45 | * 32bit relocations. Reserve space for static percpu variables in |
| 46 | * modules so that they are always served from the first chunk which |
| 47 | * is located at the percpu segment base. On x86_32, anything can |
| 48 | * address anywhere. No need to reserve space in the first chunk. |
| 49 | */ |
| 50 | #ifdef CONFIG_X86_64 |
| 51 | #define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE |
| 52 | #else |
| 53 | #define PERCPU_FIRST_CHUNK_RESERVE 0 |
| 54 | #endif |
| 55 | |
| 56 | #ifdef CONFIG_X86_32 |
| 57 | /** |
| 58 | * pcpu_need_numa - determine percpu allocation needs to consider NUMA |
| 59 | * |
| 60 | * If NUMA is not configured or there is only one NUMA node available, |
| 61 | * there is no reason to consider NUMA. This function determines |
| 62 | * whether percpu allocation should consider NUMA or not. |
| 63 | * |
| 64 | * RETURNS: |
| 65 | * true if NUMA should be considered; otherwise, false. |
| 66 | */ |
| 67 | static bool __init pcpu_need_numa(void) |
| 68 | { |
| 69 | #ifdef CONFIG_NEED_MULTIPLE_NODES |
| 70 | pg_data_t *last = NULL; |
| 71 | unsigned int cpu; |
| 72 | |
| 73 | for_each_possible_cpu(cpu) { |
| 74 | int node = early_cpu_to_node(cpu); |
| 75 | |
| 76 | if (node_online(node) && NODE_DATA(node) && |
| 77 | last && last != NODE_DATA(node)) |
| 78 | return true; |
| 79 | |
| 80 | last = NODE_DATA(node); |
| 81 | } |
| 82 | #endif |
| 83 | return false; |
| 84 | } |
| 85 | #endif |
| 86 | |
| 87 | /** |
| 88 | * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu |
| 89 | * @cpu: cpu to allocate for |
| 90 | * @size: size allocation in bytes |
| 91 | * @align: alignment |
| 92 | * |
| 93 | * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper |
| 94 | * does the right thing for NUMA regardless of the current |
| 95 | * configuration. |
| 96 | * |
| 97 | * RETURNS: |
| 98 | * Pointer to the allocated area on success, NULL on failure. |
| 99 | */ |
| 100 | static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size, |
| 101 | unsigned long align) |
| 102 | { |
| 103 | const unsigned long goal = __pa(MAX_DMA_ADDRESS); |
| 104 | #ifdef CONFIG_NEED_MULTIPLE_NODES |
| 105 | int node = early_cpu_to_node(cpu); |
| 106 | void *ptr; |
| 107 | |
| 108 | if (!node_online(node) || !NODE_DATA(node)) { |
| 109 | ptr = __alloc_bootmem_nopanic(size, align, goal); |
| 110 | pr_info("cpu %d has no node %d or node-local memory\n", |
| 111 | cpu, node); |
| 112 | pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", |
| 113 | cpu, size, __pa(ptr)); |
| 114 | } else { |
| 115 | ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node), |
| 116 | size, align, goal); |
| 117 | pr_debug("per cpu data for cpu%d %lu bytes on node%d at %016lx\n", |
| 118 | cpu, size, node, __pa(ptr)); |
| 119 | } |
| 120 | return ptr; |
| 121 | #else |
| 122 | return __alloc_bootmem_nopanic(size, align, goal); |
| 123 | #endif |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Helpers for first chunk memory allocation |
| 128 | */ |
| 129 | static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) |
| 130 | { |
| 131 | return pcpu_alloc_bootmem(cpu, size, align); |
| 132 | } |
| 133 | |
| 134 | static void __init pcpu_fc_free(void *ptr, size_t size) |
| 135 | { |
| 136 | free_bootmem(__pa(ptr), size); |
| 137 | } |
| 138 | |
| 139 | static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) |
| 140 | { |
| 141 | #ifdef CONFIG_NEED_MULTIPLE_NODES |
| 142 | if (early_cpu_to_node(from) == early_cpu_to_node(to)) |
| 143 | return LOCAL_DISTANCE; |
| 144 | else |
| 145 | return REMOTE_DISTANCE; |
| 146 | #else |
| 147 | return LOCAL_DISTANCE; |
| 148 | #endif |
| 149 | } |
| 150 | |
| 151 | static void __init pcpup_populate_pte(unsigned long addr) |
| 152 | { |
| 153 | populate_extra_pte(addr); |
| 154 | } |
| 155 | |
| 156 | static inline void setup_percpu_segment(int cpu) |
| 157 | { |
| 158 | #ifdef CONFIG_X86_32 |
| 159 | struct desc_struct d = GDT_ENTRY_INIT(0x8092, per_cpu_offset(cpu), |
| 160 | 0xFFFFF); |
| 161 | |
| 162 | write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_PERCPU, &d, DESCTYPE_S); |
| 163 | #endif |
| 164 | } |
| 165 | |
| 166 | void __init setup_per_cpu_areas(void) |
| 167 | { |
| 168 | unsigned int cpu; |
| 169 | unsigned long delta; |
| 170 | int rc; |
| 171 | |
| 172 | pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%u nr_node_ids:%d\n", |
| 173 | NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids); |
| 174 | |
| 175 | /* |
| 176 | * Allocate percpu area. Embedding allocator is our favorite; |
| 177 | * however, on NUMA configurations, it can result in very |
| 178 | * sparse unit mapping and vmalloc area isn't spacious enough |
| 179 | * on 32bit. Use page in that case. |
| 180 | */ |
| 181 | #ifdef CONFIG_X86_32 |
| 182 | if (pcpu_chosen_fc == PCPU_FC_AUTO && pcpu_need_numa()) |
| 183 | pcpu_chosen_fc = PCPU_FC_PAGE; |
| 184 | #endif |
| 185 | rc = -EINVAL; |
| 186 | if (pcpu_chosen_fc != PCPU_FC_PAGE) { |
| 187 | const size_t dyn_size = PERCPU_MODULE_RESERVE + |
| 188 | PERCPU_DYNAMIC_RESERVE - PERCPU_FIRST_CHUNK_RESERVE; |
| 189 | size_t atom_size; |
| 190 | |
| 191 | /* |
| 192 | * On 64bit, use PMD_SIZE for atom_size so that embedded |
| 193 | * percpu areas are aligned to PMD. This, in the future, |
| 194 | * can also allow using PMD mappings in vmalloc area. Use |
| 195 | * PAGE_SIZE on 32bit as vmalloc space is highly contended |
| 196 | * and large vmalloc area allocs can easily fail. |
| 197 | */ |
| 198 | #ifdef CONFIG_X86_64 |
| 199 | atom_size = PMD_SIZE; |
| 200 | #else |
| 201 | atom_size = PAGE_SIZE; |
| 202 | #endif |
| 203 | rc = pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE, |
| 204 | dyn_size, atom_size, |
| 205 | pcpu_cpu_distance, |
| 206 | pcpu_fc_alloc, pcpu_fc_free); |
| 207 | if (rc < 0) |
| 208 | pr_warning("%s allocator failed (%d), falling back to page size\n", |
| 209 | pcpu_fc_names[pcpu_chosen_fc], rc); |
| 210 | } |
| 211 | if (rc < 0) |
| 212 | rc = pcpu_page_first_chunk(PERCPU_FIRST_CHUNK_RESERVE, |
| 213 | pcpu_fc_alloc, pcpu_fc_free, |
| 214 | pcpup_populate_pte); |
| 215 | if (rc < 0) |
| 216 | panic("cannot initialize percpu area (err=%d)", rc); |
| 217 | |
| 218 | /* alrighty, percpu areas up and running */ |
| 219 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| 220 | for_each_possible_cpu(cpu) { |
| 221 | per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; |
| 222 | per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu); |
| 223 | per_cpu(cpu_number, cpu) = cpu; |
| 224 | setup_percpu_segment(cpu); |
| 225 | setup_stack_canary_segment(cpu); |
| 226 | /* |
| 227 | * Copy data used in early init routines from the |
| 228 | * initial arrays to the per cpu data areas. These |
| 229 | * arrays then become expendable and the *_early_ptr's |
| 230 | * are zeroed indicating that the static arrays are |
| 231 | * gone. |
| 232 | */ |
| 233 | #ifdef CONFIG_X86_LOCAL_APIC |
| 234 | per_cpu(x86_cpu_to_apicid, cpu) = |
| 235 | early_per_cpu_map(x86_cpu_to_apicid, cpu); |
| 236 | per_cpu(x86_bios_cpu_apicid, cpu) = |
| 237 | early_per_cpu_map(x86_bios_cpu_apicid, cpu); |
| 238 | per_cpu(x86_cpu_to_acpiid, cpu) = |
| 239 | early_per_cpu_map(x86_cpu_to_acpiid, cpu); |
| 240 | #endif |
| 241 | #ifdef CONFIG_X86_32 |
| 242 | per_cpu(x86_cpu_to_logical_apicid, cpu) = |
| 243 | early_per_cpu_map(x86_cpu_to_logical_apicid, cpu); |
| 244 | #endif |
| 245 | #ifdef CONFIG_X86_64 |
| 246 | per_cpu(irq_stack_ptr, cpu) = |
| 247 | per_cpu(irq_stack_union.irq_stack, cpu) + |
| 248 | IRQ_STACK_SIZE; |
| 249 | #endif |
| 250 | #ifdef CONFIG_NUMA |
| 251 | per_cpu(x86_cpu_to_node_map, cpu) = |
| 252 | early_per_cpu_map(x86_cpu_to_node_map, cpu); |
| 253 | /* |
| 254 | * Ensure that the boot cpu numa_node is correct when the boot |
| 255 | * cpu is on a node that doesn't have memory installed. |
| 256 | * Also cpu_up() will call cpu_to_node() for APs when |
| 257 | * MEMORY_HOTPLUG is defined, before per_cpu(numa_node) is set |
| 258 | * up later with c_init aka intel_init/amd_init. |
| 259 | * So set them all (boot cpu and all APs). |
| 260 | */ |
| 261 | set_cpu_numa_node(cpu, early_cpu_to_node(cpu)); |
| 262 | #endif |
| 263 | /* |
| 264 | * Up to this point, the boot CPU has been using .init.data |
| 265 | * area. Reload any changed state for the boot CPU. |
| 266 | */ |
| 267 | if (!cpu) |
| 268 | switch_to_new_gdt(cpu); |
| 269 | } |
| 270 | |
| 271 | /* indicate the early static arrays will soon be gone */ |
| 272 | #ifdef CONFIG_X86_LOCAL_APIC |
| 273 | early_per_cpu_ptr(x86_cpu_to_apicid) = NULL; |
| 274 | early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL; |
| 275 | early_per_cpu_ptr(x86_cpu_to_acpiid) = NULL; |
| 276 | #endif |
| 277 | #ifdef CONFIG_X86_32 |
| 278 | early_per_cpu_ptr(x86_cpu_to_logical_apicid) = NULL; |
| 279 | #endif |
| 280 | #ifdef CONFIG_NUMA |
| 281 | early_per_cpu_ptr(x86_cpu_to_node_map) = NULL; |
| 282 | #endif |
| 283 | |
| 284 | /* Setup node to cpumask map */ |
| 285 | setup_node_to_cpumask_map(); |
| 286 | |
| 287 | /* Setup cpu initialized, callin, callout masks */ |
| 288 | setup_cpu_local_masks(); |
| 289 | |
| 290 | /* |
| 291 | * Sync back kernel address range again. We already did this in |
| 292 | * setup_arch(), but percpu data also needs to be available in |
| 293 | * the smpboot asm. We can't reliably pick up percpu mappings |
| 294 | * using vmalloc_fault(), because exception dispatch needs |
| 295 | * percpu data. |
| 296 | * |
| 297 | * FIXME: Can the later sync in setup_cpu_entry_areas() replace |
| 298 | * this call? |
| 299 | */ |
| 300 | sync_initial_page_table(); |
| 301 | } |