Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 1995 Linus Torvalds |
| 3 | * |
| 4 | * Pentium III FXSR, SSE support |
| 5 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 6 | * |
| 7 | * X86-64 port |
| 8 | * Andi Kleen. |
| 9 | * |
| 10 | * CPU hotplug support - ashok.raj@intel.com |
| 11 | */ |
| 12 | |
| 13 | /* |
| 14 | * This file handles the architecture-dependent parts of process handling.. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/cpu.h> |
| 18 | #include <linux/errno.h> |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/sched/task.h> |
| 21 | #include <linux/sched/task_stack.h> |
| 22 | #include <linux/fs.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/mm.h> |
| 25 | #include <linux/elfcore.h> |
| 26 | #include <linux/smp.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/user.h> |
| 29 | #include <linux/interrupt.h> |
| 30 | #include <linux/delay.h> |
| 31 | #include <linux/export.h> |
| 32 | #include <linux/ptrace.h> |
| 33 | #include <linux/notifier.h> |
| 34 | #include <linux/kprobes.h> |
| 35 | #include <linux/kdebug.h> |
| 36 | #include <linux/prctl.h> |
| 37 | #include <linux/uaccess.h> |
| 38 | #include <linux/io.h> |
| 39 | #include <linux/ftrace.h> |
| 40 | #include <linux/syscalls.h> |
| 41 | |
| 42 | #include <asm/pgtable.h> |
| 43 | #include <asm/processor.h> |
| 44 | #include <asm/fpu/internal.h> |
| 45 | #include <asm/mmu_context.h> |
| 46 | #include <asm/prctl.h> |
| 47 | #include <asm/desc.h> |
| 48 | #include <asm/proto.h> |
| 49 | #include <asm/ia32.h> |
| 50 | #include <asm/syscalls.h> |
| 51 | #include <asm/debugreg.h> |
| 52 | #include <asm/switch_to.h> |
| 53 | #include <asm/xen/hypervisor.h> |
| 54 | #include <asm/vdso.h> |
| 55 | #include <asm/intel_rdt_sched.h> |
| 56 | #include <asm/unistd.h> |
| 57 | #ifdef CONFIG_IA32_EMULATION |
| 58 | /* Not included via unistd.h */ |
| 59 | #include <asm/unistd_32_ia32.h> |
| 60 | #endif |
| 61 | |
| 62 | #include "process.h" |
| 63 | |
| 64 | __visible DEFINE_PER_CPU(unsigned long, rsp_scratch); |
| 65 | |
| 66 | /* Prints also some state that isn't saved in the pt_regs */ |
| 67 | void __show_regs(struct pt_regs *regs, enum show_regs_mode mode) |
| 68 | { |
| 69 | unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; |
| 70 | unsigned long d0, d1, d2, d3, d6, d7; |
| 71 | unsigned int fsindex, gsindex; |
| 72 | unsigned int ds, cs, es; |
| 73 | |
| 74 | show_iret_regs(regs); |
| 75 | |
| 76 | if (regs->orig_ax != -1) |
| 77 | pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax); |
| 78 | else |
| 79 | pr_cont("\n"); |
| 80 | |
| 81 | printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", |
| 82 | regs->ax, regs->bx, regs->cx); |
| 83 | printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", |
| 84 | regs->dx, regs->si, regs->di); |
| 85 | printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", |
| 86 | regs->bp, regs->r8, regs->r9); |
| 87 | printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", |
| 88 | regs->r10, regs->r11, regs->r12); |
| 89 | printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", |
| 90 | regs->r13, regs->r14, regs->r15); |
| 91 | |
| 92 | if (mode == SHOW_REGS_SHORT) |
| 93 | return; |
| 94 | |
| 95 | if (mode == SHOW_REGS_USER) { |
| 96 | rdmsrl(MSR_FS_BASE, fs); |
| 97 | rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); |
| 98 | printk(KERN_DEFAULT "FS: %016lx GS: %016lx\n", |
| 99 | fs, shadowgs); |
| 100 | return; |
| 101 | } |
| 102 | |
| 103 | asm("movl %%ds,%0" : "=r" (ds)); |
| 104 | asm("movl %%cs,%0" : "=r" (cs)); |
| 105 | asm("movl %%es,%0" : "=r" (es)); |
| 106 | asm("movl %%fs,%0" : "=r" (fsindex)); |
| 107 | asm("movl %%gs,%0" : "=r" (gsindex)); |
| 108 | |
| 109 | rdmsrl(MSR_FS_BASE, fs); |
| 110 | rdmsrl(MSR_GS_BASE, gs); |
| 111 | rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); |
| 112 | |
| 113 | cr0 = read_cr0(); |
| 114 | cr2 = read_cr2(); |
| 115 | cr3 = __read_cr3(); |
| 116 | cr4 = __read_cr4(); |
| 117 | |
| 118 | printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", |
| 119 | fs, fsindex, gs, gsindex, shadowgs); |
| 120 | printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, |
| 121 | es, cr0); |
| 122 | printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, |
| 123 | cr4); |
| 124 | |
| 125 | get_debugreg(d0, 0); |
| 126 | get_debugreg(d1, 1); |
| 127 | get_debugreg(d2, 2); |
| 128 | get_debugreg(d3, 3); |
| 129 | get_debugreg(d6, 6); |
| 130 | get_debugreg(d7, 7); |
| 131 | |
| 132 | /* Only print out debug registers if they are in their non-default state. */ |
| 133 | if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && |
| 134 | (d6 == DR6_RESERVED) && (d7 == 0x400))) { |
| 135 | printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", |
| 136 | d0, d1, d2); |
| 137 | printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", |
| 138 | d3, d6, d7); |
| 139 | } |
| 140 | |
| 141 | if (boot_cpu_has(X86_FEATURE_OSPKE)) |
| 142 | printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru()); |
| 143 | } |
| 144 | |
| 145 | void release_thread(struct task_struct *dead_task) |
| 146 | { |
| 147 | if (dead_task->mm) { |
| 148 | #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| 149 | if (dead_task->mm->context.ldt) { |
| 150 | pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n", |
| 151 | dead_task->comm, |
| 152 | dead_task->mm->context.ldt->entries, |
| 153 | dead_task->mm->context.ldt->nr_entries); |
| 154 | BUG(); |
| 155 | } |
| 156 | #endif |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | enum which_selector { |
| 161 | FS, |
| 162 | GS |
| 163 | }; |
| 164 | |
| 165 | /* |
| 166 | * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are |
| 167 | * not available. The goal is to be reasonably fast on non-FSGSBASE systems. |
| 168 | * It's forcibly inlined because it'll generate better code and this function |
| 169 | * is hot. |
| 170 | */ |
| 171 | static __always_inline void save_base_legacy(struct task_struct *prev_p, |
| 172 | unsigned short selector, |
| 173 | enum which_selector which) |
| 174 | { |
| 175 | if (likely(selector == 0)) { |
| 176 | /* |
| 177 | * On Intel (without X86_BUG_NULL_SEG), the segment base could |
| 178 | * be the pre-existing saved base or it could be zero. On AMD |
| 179 | * (with X86_BUG_NULL_SEG), the segment base could be almost |
| 180 | * anything. |
| 181 | * |
| 182 | * This branch is very hot (it's hit twice on almost every |
| 183 | * context switch between 64-bit programs), and avoiding |
| 184 | * the RDMSR helps a lot, so we just assume that whatever |
| 185 | * value is already saved is correct. This matches historical |
| 186 | * Linux behavior, so it won't break existing applications. |
| 187 | * |
| 188 | * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we |
| 189 | * report that the base is zero, it needs to actually be zero: |
| 190 | * see the corresponding logic in load_seg_legacy. |
| 191 | */ |
| 192 | } else { |
| 193 | /* |
| 194 | * If the selector is 1, 2, or 3, then the base is zero on |
| 195 | * !X86_BUG_NULL_SEG CPUs and could be anything on |
| 196 | * X86_BUG_NULL_SEG CPUs. In the latter case, Linux |
| 197 | * has never attempted to preserve the base across context |
| 198 | * switches. |
| 199 | * |
| 200 | * If selector > 3, then it refers to a real segment, and |
| 201 | * saving the base isn't necessary. |
| 202 | */ |
| 203 | if (which == FS) |
| 204 | prev_p->thread.fsbase = 0; |
| 205 | else |
| 206 | prev_p->thread.gsbase = 0; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | static __always_inline void save_fsgs(struct task_struct *task) |
| 211 | { |
| 212 | savesegment(fs, task->thread.fsindex); |
| 213 | savesegment(gs, task->thread.gsindex); |
| 214 | save_base_legacy(task, task->thread.fsindex, FS); |
| 215 | save_base_legacy(task, task->thread.gsindex, GS); |
| 216 | } |
| 217 | |
| 218 | #if IS_ENABLED(CONFIG_KVM) |
| 219 | /* |
| 220 | * While a process is running,current->thread.fsbase and current->thread.gsbase |
| 221 | * may not match the corresponding CPU registers (see save_base_legacy()). KVM |
| 222 | * wants an efficient way to save and restore FSBASE and GSBASE. |
| 223 | * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE. |
| 224 | */ |
| 225 | void save_fsgs_for_kvm(void) |
| 226 | { |
| 227 | save_fsgs(current); |
| 228 | } |
| 229 | EXPORT_SYMBOL_GPL(save_fsgs_for_kvm); |
| 230 | #endif |
| 231 | |
| 232 | static __always_inline void loadseg(enum which_selector which, |
| 233 | unsigned short sel) |
| 234 | { |
| 235 | if (which == FS) |
| 236 | loadsegment(fs, sel); |
| 237 | else |
| 238 | load_gs_index(sel); |
| 239 | } |
| 240 | |
| 241 | static __always_inline void load_seg_legacy(unsigned short prev_index, |
| 242 | unsigned long prev_base, |
| 243 | unsigned short next_index, |
| 244 | unsigned long next_base, |
| 245 | enum which_selector which) |
| 246 | { |
| 247 | if (likely(next_index <= 3)) { |
| 248 | /* |
| 249 | * The next task is using 64-bit TLS, is not using this |
| 250 | * segment at all, or is having fun with arcane CPU features. |
| 251 | */ |
| 252 | if (next_base == 0) { |
| 253 | /* |
| 254 | * Nasty case: on AMD CPUs, we need to forcibly zero |
| 255 | * the base. |
| 256 | */ |
| 257 | if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { |
| 258 | loadseg(which, __USER_DS); |
| 259 | loadseg(which, next_index); |
| 260 | } else { |
| 261 | /* |
| 262 | * We could try to exhaustively detect cases |
| 263 | * under which we can skip the segment load, |
| 264 | * but there's really only one case that matters |
| 265 | * for performance: if both the previous and |
| 266 | * next states are fully zeroed, we can skip |
| 267 | * the load. |
| 268 | * |
| 269 | * (This assumes that prev_base == 0 has no |
| 270 | * false positives. This is the case on |
| 271 | * Intel-style CPUs.) |
| 272 | */ |
| 273 | if (likely(prev_index | next_index | prev_base)) |
| 274 | loadseg(which, next_index); |
| 275 | } |
| 276 | } else { |
| 277 | if (prev_index != next_index) |
| 278 | loadseg(which, next_index); |
| 279 | wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE, |
| 280 | next_base); |
| 281 | } |
| 282 | } else { |
| 283 | /* |
| 284 | * The next task is using a real segment. Loading the selector |
| 285 | * is sufficient. |
| 286 | */ |
| 287 | loadseg(which, next_index); |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | int copy_thread_tls(unsigned long clone_flags, unsigned long sp, |
| 292 | unsigned long arg, struct task_struct *p, unsigned long tls) |
| 293 | { |
| 294 | int err; |
| 295 | struct pt_regs *childregs; |
| 296 | struct fork_frame *fork_frame; |
| 297 | struct inactive_task_frame *frame; |
| 298 | struct task_struct *me = current; |
| 299 | |
| 300 | childregs = task_pt_regs(p); |
| 301 | fork_frame = container_of(childregs, struct fork_frame, regs); |
| 302 | frame = &fork_frame->frame; |
| 303 | frame->bp = 0; |
| 304 | frame->ret_addr = (unsigned long) ret_from_fork; |
| 305 | p->thread.sp = (unsigned long) fork_frame; |
| 306 | p->thread.io_bitmap_ptr = NULL; |
| 307 | |
| 308 | savesegment(gs, p->thread.gsindex); |
| 309 | p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase; |
| 310 | savesegment(fs, p->thread.fsindex); |
| 311 | p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase; |
| 312 | savesegment(es, p->thread.es); |
| 313 | savesegment(ds, p->thread.ds); |
| 314 | memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); |
| 315 | |
| 316 | if (unlikely(p->flags & PF_KTHREAD)) { |
| 317 | /* kernel thread */ |
| 318 | memset(childregs, 0, sizeof(struct pt_regs)); |
| 319 | frame->bx = sp; /* function */ |
| 320 | frame->r12 = arg; |
| 321 | return 0; |
| 322 | } |
| 323 | frame->bx = 0; |
| 324 | *childregs = *current_pt_regs(); |
| 325 | |
| 326 | childregs->ax = 0; |
| 327 | if (sp) |
| 328 | childregs->sp = sp; |
| 329 | |
| 330 | err = -ENOMEM; |
| 331 | if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) { |
| 332 | p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr, |
| 333 | IO_BITMAP_BYTES, GFP_KERNEL); |
| 334 | if (!p->thread.io_bitmap_ptr) { |
| 335 | p->thread.io_bitmap_max = 0; |
| 336 | return -ENOMEM; |
| 337 | } |
| 338 | set_tsk_thread_flag(p, TIF_IO_BITMAP); |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * Set a new TLS for the child thread? |
| 343 | */ |
| 344 | if (clone_flags & CLONE_SETTLS) { |
| 345 | #ifdef CONFIG_IA32_EMULATION |
| 346 | if (in_ia32_syscall()) |
| 347 | err = do_set_thread_area(p, -1, |
| 348 | (struct user_desc __user *)tls, 0); |
| 349 | else |
| 350 | #endif |
| 351 | err = do_arch_prctl_64(p, ARCH_SET_FS, tls); |
| 352 | if (err) |
| 353 | goto out; |
| 354 | } |
| 355 | err = 0; |
| 356 | out: |
| 357 | if (err && p->thread.io_bitmap_ptr) { |
| 358 | kfree(p->thread.io_bitmap_ptr); |
| 359 | p->thread.io_bitmap_max = 0; |
| 360 | } |
| 361 | |
| 362 | return err; |
| 363 | } |
| 364 | |
| 365 | static void |
| 366 | start_thread_common(struct pt_regs *regs, unsigned long new_ip, |
| 367 | unsigned long new_sp, |
| 368 | unsigned int _cs, unsigned int _ss, unsigned int _ds) |
| 369 | { |
| 370 | WARN_ON_ONCE(regs != current_pt_regs()); |
| 371 | |
| 372 | if (static_cpu_has(X86_BUG_NULL_SEG)) { |
| 373 | /* Loading zero below won't clear the base. */ |
| 374 | loadsegment(fs, __USER_DS); |
| 375 | load_gs_index(__USER_DS); |
| 376 | } |
| 377 | |
| 378 | loadsegment(fs, 0); |
| 379 | loadsegment(es, _ds); |
| 380 | loadsegment(ds, _ds); |
| 381 | load_gs_index(0); |
| 382 | |
| 383 | regs->ip = new_ip; |
| 384 | regs->sp = new_sp; |
| 385 | regs->cs = _cs; |
| 386 | regs->ss = _ss; |
| 387 | regs->flags = X86_EFLAGS_IF; |
| 388 | force_iret(); |
| 389 | } |
| 390 | |
| 391 | void |
| 392 | start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) |
| 393 | { |
| 394 | start_thread_common(regs, new_ip, new_sp, |
| 395 | __USER_CS, __USER_DS, 0); |
| 396 | } |
| 397 | EXPORT_SYMBOL_GPL(start_thread); |
| 398 | |
| 399 | #ifdef CONFIG_COMPAT |
| 400 | void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp) |
| 401 | { |
| 402 | start_thread_common(regs, new_ip, new_sp, |
| 403 | test_thread_flag(TIF_X32) |
| 404 | ? __USER_CS : __USER32_CS, |
| 405 | __USER_DS, __USER_DS); |
| 406 | } |
| 407 | #endif |
| 408 | |
| 409 | /* |
| 410 | * switch_to(x,y) should switch tasks from x to y. |
| 411 | * |
| 412 | * This could still be optimized: |
| 413 | * - fold all the options into a flag word and test it with a single test. |
| 414 | * - could test fs/gs bitsliced |
| 415 | * |
| 416 | * Kprobes not supported here. Set the probe on schedule instead. |
| 417 | * Function graph tracer not supported too. |
| 418 | */ |
| 419 | __visible __notrace_funcgraph struct task_struct * |
| 420 | __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| 421 | { |
| 422 | struct thread_struct *prev = &prev_p->thread; |
| 423 | struct thread_struct *next = &next_p->thread; |
| 424 | struct fpu *prev_fpu = &prev->fpu; |
| 425 | struct fpu *next_fpu = &next->fpu; |
| 426 | int cpu = smp_processor_id(); |
| 427 | |
| 428 | WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && |
| 429 | this_cpu_read(irq_count) != -1); |
| 430 | |
| 431 | switch_fpu_prepare(prev_fpu, cpu); |
| 432 | |
| 433 | /* We must save %fs and %gs before load_TLS() because |
| 434 | * %fs and %gs may be cleared by load_TLS(). |
| 435 | * |
| 436 | * (e.g. xen_load_tls()) |
| 437 | */ |
| 438 | save_fsgs(prev_p); |
| 439 | |
| 440 | /* |
| 441 | * Load TLS before restoring any segments so that segment loads |
| 442 | * reference the correct GDT entries. |
| 443 | */ |
| 444 | load_TLS(next, cpu); |
| 445 | |
| 446 | /* |
| 447 | * Leave lazy mode, flushing any hypercalls made here. This |
| 448 | * must be done after loading TLS entries in the GDT but before |
| 449 | * loading segments that might reference them, and and it must |
| 450 | * be done before fpu__restore(), so the TS bit is up to |
| 451 | * date. |
| 452 | */ |
| 453 | arch_end_context_switch(next_p); |
| 454 | |
| 455 | /* Switch DS and ES. |
| 456 | * |
| 457 | * Reading them only returns the selectors, but writing them (if |
| 458 | * nonzero) loads the full descriptor from the GDT or LDT. The |
| 459 | * LDT for next is loaded in switch_mm, and the GDT is loaded |
| 460 | * above. |
| 461 | * |
| 462 | * We therefore need to write new values to the segment |
| 463 | * registers on every context switch unless both the new and old |
| 464 | * values are zero. |
| 465 | * |
| 466 | * Note that we don't need to do anything for CS and SS, as |
| 467 | * those are saved and restored as part of pt_regs. |
| 468 | */ |
| 469 | savesegment(es, prev->es); |
| 470 | if (unlikely(next->es | prev->es)) |
| 471 | loadsegment(es, next->es); |
| 472 | |
| 473 | savesegment(ds, prev->ds); |
| 474 | if (unlikely(next->ds | prev->ds)) |
| 475 | loadsegment(ds, next->ds); |
| 476 | |
| 477 | load_seg_legacy(prev->fsindex, prev->fsbase, |
| 478 | next->fsindex, next->fsbase, FS); |
| 479 | load_seg_legacy(prev->gsindex, prev->gsbase, |
| 480 | next->gsindex, next->gsbase, GS); |
| 481 | |
| 482 | switch_fpu_finish(next_fpu, cpu); |
| 483 | |
| 484 | /* |
| 485 | * Switch the PDA and FPU contexts. |
| 486 | */ |
| 487 | this_cpu_write(current_task, next_p); |
| 488 | this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p)); |
| 489 | |
| 490 | /* Reload sp0. */ |
| 491 | update_task_stack(next_p); |
| 492 | |
| 493 | switch_to_extra(prev_p, next_p); |
| 494 | |
| 495 | #ifdef CONFIG_XEN_PV |
| 496 | /* |
| 497 | * On Xen PV, IOPL bits in pt_regs->flags have no effect, and |
| 498 | * current_pt_regs()->flags may not match the current task's |
| 499 | * intended IOPL. We need to switch it manually. |
| 500 | */ |
| 501 | if (unlikely(static_cpu_has(X86_FEATURE_XENPV) && |
| 502 | prev->iopl != next->iopl)) |
| 503 | xen_set_iopl_mask(next->iopl); |
| 504 | #endif |
| 505 | |
| 506 | if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { |
| 507 | /* |
| 508 | * AMD CPUs have a misfeature: SYSRET sets the SS selector but |
| 509 | * does not update the cached descriptor. As a result, if we |
| 510 | * do SYSRET while SS is NULL, we'll end up in user mode with |
| 511 | * SS apparently equal to __USER_DS but actually unusable. |
| 512 | * |
| 513 | * The straightforward workaround would be to fix it up just |
| 514 | * before SYSRET, but that would slow down the system call |
| 515 | * fast paths. Instead, we ensure that SS is never NULL in |
| 516 | * system call context. We do this by replacing NULL SS |
| 517 | * selectors at every context switch. SYSCALL sets up a valid |
| 518 | * SS, so the only way to get NULL is to re-enter the kernel |
| 519 | * from CPL 3 through an interrupt. Since that can't happen |
| 520 | * in the same task as a running syscall, we are guaranteed to |
| 521 | * context switch between every interrupt vector entry and a |
| 522 | * subsequent SYSRET. |
| 523 | * |
| 524 | * We read SS first because SS reads are much faster than |
| 525 | * writes. Out of caution, we force SS to __KERNEL_DS even if |
| 526 | * it previously had a different non-NULL value. |
| 527 | */ |
| 528 | unsigned short ss_sel; |
| 529 | savesegment(ss, ss_sel); |
| 530 | if (ss_sel != __KERNEL_DS) |
| 531 | loadsegment(ss, __KERNEL_DS); |
| 532 | } |
| 533 | |
| 534 | /* Load the Intel cache allocation PQR MSR. */ |
| 535 | intel_rdt_sched_in(); |
| 536 | |
| 537 | return prev_p; |
| 538 | } |
| 539 | |
| 540 | void set_personality_64bit(void) |
| 541 | { |
| 542 | /* inherit personality from parent */ |
| 543 | |
| 544 | /* Make sure to be in 64bit mode */ |
| 545 | clear_thread_flag(TIF_IA32); |
| 546 | clear_thread_flag(TIF_ADDR32); |
| 547 | clear_thread_flag(TIF_X32); |
| 548 | /* Pretend that this comes from a 64bit execve */ |
| 549 | task_pt_regs(current)->orig_ax = __NR_execve; |
| 550 | current_thread_info()->status &= ~TS_COMPAT; |
| 551 | |
| 552 | /* Ensure the corresponding mm is not marked. */ |
| 553 | if (current->mm) |
| 554 | current->mm->context.ia32_compat = 0; |
| 555 | |
| 556 | /* TBD: overwrites user setup. Should have two bits. |
| 557 | But 64bit processes have always behaved this way, |
| 558 | so it's not too bad. The main problem is just that |
| 559 | 32bit childs are affected again. */ |
| 560 | current->personality &= ~READ_IMPLIES_EXEC; |
| 561 | } |
| 562 | |
| 563 | static void __set_personality_x32(void) |
| 564 | { |
| 565 | #ifdef CONFIG_X86_X32 |
| 566 | clear_thread_flag(TIF_IA32); |
| 567 | set_thread_flag(TIF_X32); |
| 568 | if (current->mm) |
| 569 | current->mm->context.ia32_compat = TIF_X32; |
| 570 | current->personality &= ~READ_IMPLIES_EXEC; |
| 571 | /* |
| 572 | * in_compat_syscall() uses the presence of the x32 syscall bit |
| 573 | * flag to determine compat status. The x86 mmap() code relies on |
| 574 | * the syscall bitness so set x32 syscall bit right here to make |
| 575 | * in_compat_syscall() work during exec(). |
| 576 | * |
| 577 | * Pretend to come from a x32 execve. |
| 578 | */ |
| 579 | task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT; |
| 580 | current_thread_info()->status &= ~TS_COMPAT; |
| 581 | #endif |
| 582 | } |
| 583 | |
| 584 | static void __set_personality_ia32(void) |
| 585 | { |
| 586 | #ifdef CONFIG_IA32_EMULATION |
| 587 | set_thread_flag(TIF_IA32); |
| 588 | clear_thread_flag(TIF_X32); |
| 589 | if (current->mm) |
| 590 | current->mm->context.ia32_compat = TIF_IA32; |
| 591 | current->personality |= force_personality32; |
| 592 | /* Prepare the first "return" to user space */ |
| 593 | task_pt_regs(current)->orig_ax = __NR_ia32_execve; |
| 594 | current_thread_info()->status |= TS_COMPAT; |
| 595 | #endif |
| 596 | } |
| 597 | |
| 598 | void set_personality_ia32(bool x32) |
| 599 | { |
| 600 | /* Make sure to be in 32bit mode */ |
| 601 | set_thread_flag(TIF_ADDR32); |
| 602 | |
| 603 | if (x32) |
| 604 | __set_personality_x32(); |
| 605 | else |
| 606 | __set_personality_ia32(); |
| 607 | } |
| 608 | EXPORT_SYMBOL_GPL(set_personality_ia32); |
| 609 | |
| 610 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 611 | static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr) |
| 612 | { |
| 613 | int ret; |
| 614 | |
| 615 | ret = map_vdso_once(image, addr); |
| 616 | if (ret) |
| 617 | return ret; |
| 618 | |
| 619 | return (long)image->size; |
| 620 | } |
| 621 | #endif |
| 622 | |
| 623 | long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) |
| 624 | { |
| 625 | int ret = 0; |
| 626 | int doit = task == current; |
| 627 | int cpu; |
| 628 | |
| 629 | switch (option) { |
| 630 | case ARCH_SET_GS: |
| 631 | if (arg2 >= TASK_SIZE_MAX) |
| 632 | return -EPERM; |
| 633 | cpu = get_cpu(); |
| 634 | task->thread.gsindex = 0; |
| 635 | task->thread.gsbase = arg2; |
| 636 | if (doit) { |
| 637 | load_gs_index(0); |
| 638 | ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2); |
| 639 | } |
| 640 | put_cpu(); |
| 641 | break; |
| 642 | case ARCH_SET_FS: |
| 643 | /* Not strictly needed for fs, but do it for symmetry |
| 644 | with gs */ |
| 645 | if (arg2 >= TASK_SIZE_MAX) |
| 646 | return -EPERM; |
| 647 | cpu = get_cpu(); |
| 648 | task->thread.fsindex = 0; |
| 649 | task->thread.fsbase = arg2; |
| 650 | if (doit) { |
| 651 | /* set the selector to 0 to not confuse __switch_to */ |
| 652 | loadsegment(fs, 0); |
| 653 | ret = wrmsrl_safe(MSR_FS_BASE, arg2); |
| 654 | } |
| 655 | put_cpu(); |
| 656 | break; |
| 657 | case ARCH_GET_FS: { |
| 658 | unsigned long base; |
| 659 | |
| 660 | if (doit) |
| 661 | rdmsrl(MSR_FS_BASE, base); |
| 662 | else |
| 663 | base = task->thread.fsbase; |
| 664 | ret = put_user(base, (unsigned long __user *)arg2); |
| 665 | break; |
| 666 | } |
| 667 | case ARCH_GET_GS: { |
| 668 | unsigned long base; |
| 669 | |
| 670 | if (doit) |
| 671 | rdmsrl(MSR_KERNEL_GS_BASE, base); |
| 672 | else |
| 673 | base = task->thread.gsbase; |
| 674 | ret = put_user(base, (unsigned long __user *)arg2); |
| 675 | break; |
| 676 | } |
| 677 | |
| 678 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 679 | # ifdef CONFIG_X86_X32_ABI |
| 680 | case ARCH_MAP_VDSO_X32: |
| 681 | return prctl_map_vdso(&vdso_image_x32, arg2); |
| 682 | # endif |
| 683 | # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION |
| 684 | case ARCH_MAP_VDSO_32: |
| 685 | return prctl_map_vdso(&vdso_image_32, arg2); |
| 686 | # endif |
| 687 | case ARCH_MAP_VDSO_64: |
| 688 | return prctl_map_vdso(&vdso_image_64, arg2); |
| 689 | #endif |
| 690 | |
| 691 | default: |
| 692 | ret = -EINVAL; |
| 693 | break; |
| 694 | } |
| 695 | |
| 696 | return ret; |
| 697 | } |
| 698 | |
| 699 | SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) |
| 700 | { |
| 701 | long ret; |
| 702 | |
| 703 | ret = do_arch_prctl_64(current, option, arg2); |
| 704 | if (ret == -EINVAL) |
| 705 | ret = do_arch_prctl_common(current, option, arg2); |
| 706 | |
| 707 | return ret; |
| 708 | } |
| 709 | |
| 710 | #ifdef CONFIG_IA32_EMULATION |
| 711 | COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) |
| 712 | { |
| 713 | return do_arch_prctl_common(current, option, arg2); |
| 714 | } |
| 715 | #endif |
| 716 | |
| 717 | unsigned long KSTK_ESP(struct task_struct *task) |
| 718 | { |
| 719 | return task_pt_regs(task)->sp; |
| 720 | } |