Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * KVM paravirt_ops implementation |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 17 | * |
| 18 | * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| 19 | * Copyright IBM Corporation, 2007 |
| 20 | * Authors: Anthony Liguori <aliguori@us.ibm.com> |
| 21 | */ |
| 22 | |
| 23 | #include <linux/context_tracking.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/kvm_para.h> |
| 27 | #include <linux/cpu.h> |
| 28 | #include <linux/mm.h> |
| 29 | #include <linux/highmem.h> |
| 30 | #include <linux/hardirq.h> |
| 31 | #include <linux/notifier.h> |
| 32 | #include <linux/reboot.h> |
| 33 | #include <linux/hash.h> |
| 34 | #include <linux/sched.h> |
| 35 | #include <linux/slab.h> |
| 36 | #include <linux/kprobes.h> |
| 37 | #include <linux/debugfs.h> |
| 38 | #include <linux/nmi.h> |
| 39 | #include <linux/swait.h> |
| 40 | #include <asm/timer.h> |
| 41 | #include <asm/cpu.h> |
| 42 | #include <asm/traps.h> |
| 43 | #include <asm/desc.h> |
| 44 | #include <asm/tlbflush.h> |
| 45 | #include <asm/apic.h> |
| 46 | #include <asm/apicdef.h> |
| 47 | #include <asm/hypervisor.h> |
| 48 | #include <asm/tlb.h> |
| 49 | |
| 50 | static int kvmapf = 1; |
| 51 | |
| 52 | static int __init parse_no_kvmapf(char *arg) |
| 53 | { |
| 54 | kvmapf = 0; |
| 55 | return 0; |
| 56 | } |
| 57 | |
| 58 | early_param("no-kvmapf", parse_no_kvmapf); |
| 59 | |
| 60 | static int steal_acc = 1; |
| 61 | static int __init parse_no_stealacc(char *arg) |
| 62 | { |
| 63 | steal_acc = 0; |
| 64 | return 0; |
| 65 | } |
| 66 | |
| 67 | early_param("no-steal-acc", parse_no_stealacc); |
| 68 | |
| 69 | static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); |
| 70 | static DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64); |
| 71 | static int has_steal_clock = 0; |
| 72 | |
| 73 | /* |
| 74 | * No need for any "IO delay" on KVM |
| 75 | */ |
| 76 | static void kvm_io_delay(void) |
| 77 | { |
| 78 | } |
| 79 | |
| 80 | #define KVM_TASK_SLEEP_HASHBITS 8 |
| 81 | #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) |
| 82 | |
| 83 | struct kvm_task_sleep_node { |
| 84 | struct hlist_node link; |
| 85 | struct swait_queue_head wq; |
| 86 | u32 token; |
| 87 | int cpu; |
| 88 | bool halted; |
| 89 | }; |
| 90 | |
| 91 | static struct kvm_task_sleep_head { |
| 92 | raw_spinlock_t lock; |
| 93 | struct hlist_head list; |
| 94 | } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; |
| 95 | |
| 96 | static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, |
| 97 | u32 token) |
| 98 | { |
| 99 | struct hlist_node *p; |
| 100 | |
| 101 | hlist_for_each(p, &b->list) { |
| 102 | struct kvm_task_sleep_node *n = |
| 103 | hlist_entry(p, typeof(*n), link); |
| 104 | if (n->token == token) |
| 105 | return n; |
| 106 | } |
| 107 | |
| 108 | return NULL; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * @interrupt_kernel: Is this called from a routine which interrupts the kernel |
| 113 | * (other than user space)? |
| 114 | */ |
| 115 | void kvm_async_pf_task_wait(u32 token, int interrupt_kernel) |
| 116 | { |
| 117 | u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); |
| 118 | struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; |
| 119 | struct kvm_task_sleep_node n, *e; |
| 120 | DECLARE_SWAITQUEUE(wait); |
| 121 | |
| 122 | rcu_irq_enter(); |
| 123 | |
| 124 | raw_spin_lock(&b->lock); |
| 125 | e = _find_apf_task(b, token); |
| 126 | if (e) { |
| 127 | /* dummy entry exist -> wake up was delivered ahead of PF */ |
| 128 | hlist_del(&e->link); |
| 129 | kfree(e); |
| 130 | raw_spin_unlock(&b->lock); |
| 131 | |
| 132 | rcu_irq_exit(); |
| 133 | return; |
| 134 | } |
| 135 | |
| 136 | n.token = token; |
| 137 | n.cpu = smp_processor_id(); |
| 138 | n.halted = is_idle_task(current) || |
| 139 | (IS_ENABLED(CONFIG_PREEMPT_COUNT) |
| 140 | ? preempt_count() > 1 || rcu_preempt_depth() |
| 141 | : interrupt_kernel); |
| 142 | init_swait_queue_head(&n.wq); |
| 143 | hlist_add_head(&n.link, &b->list); |
| 144 | raw_spin_unlock(&b->lock); |
| 145 | |
| 146 | for (;;) { |
| 147 | if (!n.halted) |
| 148 | prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE); |
| 149 | if (hlist_unhashed(&n.link)) |
| 150 | break; |
| 151 | |
| 152 | rcu_irq_exit(); |
| 153 | |
| 154 | if (!n.halted) { |
| 155 | local_irq_enable(); |
| 156 | schedule(); |
| 157 | local_irq_disable(); |
| 158 | } else { |
| 159 | /* |
| 160 | * We cannot reschedule. So halt. |
| 161 | */ |
| 162 | native_safe_halt(); |
| 163 | local_irq_disable(); |
| 164 | } |
| 165 | |
| 166 | rcu_irq_enter(); |
| 167 | } |
| 168 | if (!n.halted) |
| 169 | finish_swait(&n.wq, &wait); |
| 170 | |
| 171 | rcu_irq_exit(); |
| 172 | return; |
| 173 | } |
| 174 | EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait); |
| 175 | |
| 176 | static void apf_task_wake_one(struct kvm_task_sleep_node *n) |
| 177 | { |
| 178 | hlist_del_init(&n->link); |
| 179 | if (n->halted) |
| 180 | smp_send_reschedule(n->cpu); |
| 181 | else if (swq_has_sleeper(&n->wq)) |
| 182 | swake_up_one(&n->wq); |
| 183 | } |
| 184 | |
| 185 | static void apf_task_wake_all(void) |
| 186 | { |
| 187 | int i; |
| 188 | |
| 189 | for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { |
| 190 | struct hlist_node *p, *next; |
| 191 | struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; |
| 192 | raw_spin_lock(&b->lock); |
| 193 | hlist_for_each_safe(p, next, &b->list) { |
| 194 | struct kvm_task_sleep_node *n = |
| 195 | hlist_entry(p, typeof(*n), link); |
| 196 | if (n->cpu == smp_processor_id()) |
| 197 | apf_task_wake_one(n); |
| 198 | } |
| 199 | raw_spin_unlock(&b->lock); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | void kvm_async_pf_task_wake(u32 token) |
| 204 | { |
| 205 | u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); |
| 206 | struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; |
| 207 | struct kvm_task_sleep_node *n; |
| 208 | |
| 209 | if (token == ~0) { |
| 210 | apf_task_wake_all(); |
| 211 | return; |
| 212 | } |
| 213 | |
| 214 | again: |
| 215 | raw_spin_lock(&b->lock); |
| 216 | n = _find_apf_task(b, token); |
| 217 | if (!n) { |
| 218 | /* |
| 219 | * async PF was not yet handled. |
| 220 | * Add dummy entry for the token. |
| 221 | */ |
| 222 | n = kzalloc(sizeof(*n), GFP_ATOMIC); |
| 223 | if (!n) { |
| 224 | /* |
| 225 | * Allocation failed! Busy wait while other cpu |
| 226 | * handles async PF. |
| 227 | */ |
| 228 | raw_spin_unlock(&b->lock); |
| 229 | cpu_relax(); |
| 230 | goto again; |
| 231 | } |
| 232 | n->token = token; |
| 233 | n->cpu = smp_processor_id(); |
| 234 | init_swait_queue_head(&n->wq); |
| 235 | hlist_add_head(&n->link, &b->list); |
| 236 | } else |
| 237 | apf_task_wake_one(n); |
| 238 | raw_spin_unlock(&b->lock); |
| 239 | return; |
| 240 | } |
| 241 | EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); |
| 242 | |
| 243 | u32 kvm_read_and_reset_pf_reason(void) |
| 244 | { |
| 245 | u32 reason = 0; |
| 246 | |
| 247 | if (__this_cpu_read(apf_reason.enabled)) { |
| 248 | reason = __this_cpu_read(apf_reason.reason); |
| 249 | __this_cpu_write(apf_reason.reason, 0); |
| 250 | } |
| 251 | |
| 252 | return reason; |
| 253 | } |
| 254 | EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason); |
| 255 | NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason); |
| 256 | |
| 257 | dotraplinkage void |
| 258 | do_async_page_fault(struct pt_regs *regs, unsigned long error_code) |
| 259 | { |
| 260 | enum ctx_state prev_state; |
| 261 | |
| 262 | switch (kvm_read_and_reset_pf_reason()) { |
| 263 | default: |
| 264 | do_page_fault(regs, error_code); |
| 265 | break; |
| 266 | case KVM_PV_REASON_PAGE_NOT_PRESENT: |
| 267 | /* page is swapped out by the host. */ |
| 268 | prev_state = exception_enter(); |
| 269 | kvm_async_pf_task_wait((u32)read_cr2(), !user_mode(regs)); |
| 270 | exception_exit(prev_state); |
| 271 | break; |
| 272 | case KVM_PV_REASON_PAGE_READY: |
| 273 | rcu_irq_enter(); |
| 274 | kvm_async_pf_task_wake((u32)read_cr2()); |
| 275 | rcu_irq_exit(); |
| 276 | break; |
| 277 | } |
| 278 | } |
| 279 | NOKPROBE_SYMBOL(do_async_page_fault); |
| 280 | |
| 281 | static void __init paravirt_ops_setup(void) |
| 282 | { |
| 283 | pv_info.name = "KVM"; |
| 284 | |
| 285 | if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) |
| 286 | pv_cpu_ops.io_delay = kvm_io_delay; |
| 287 | |
| 288 | #ifdef CONFIG_X86_IO_APIC |
| 289 | no_timer_check = 1; |
| 290 | #endif |
| 291 | } |
| 292 | |
| 293 | static void kvm_register_steal_time(void) |
| 294 | { |
| 295 | int cpu = smp_processor_id(); |
| 296 | struct kvm_steal_time *st = &per_cpu(steal_time, cpu); |
| 297 | |
| 298 | if (!has_steal_clock) |
| 299 | return; |
| 300 | |
| 301 | wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); |
| 302 | pr_info("kvm-stealtime: cpu %d, msr %llx\n", |
| 303 | cpu, (unsigned long long) slow_virt_to_phys(st)); |
| 304 | } |
| 305 | |
| 306 | static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; |
| 307 | |
| 308 | static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val) |
| 309 | { |
| 310 | /** |
| 311 | * This relies on __test_and_clear_bit to modify the memory |
| 312 | * in a way that is atomic with respect to the local CPU. |
| 313 | * The hypervisor only accesses this memory from the local CPU so |
| 314 | * there's no need for lock or memory barriers. |
| 315 | * An optimization barrier is implied in apic write. |
| 316 | */ |
| 317 | if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi))) |
| 318 | return; |
| 319 | apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK); |
| 320 | } |
| 321 | |
| 322 | static void kvm_guest_cpu_init(void) |
| 323 | { |
| 324 | if (!kvm_para_available()) |
| 325 | return; |
| 326 | |
| 327 | if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) { |
| 328 | u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); |
| 329 | |
| 330 | #ifdef CONFIG_PREEMPT |
| 331 | pa |= KVM_ASYNC_PF_SEND_ALWAYS; |
| 332 | #endif |
| 333 | pa |= KVM_ASYNC_PF_ENABLED; |
| 334 | |
| 335 | if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT)) |
| 336 | pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; |
| 337 | |
| 338 | wrmsrl(MSR_KVM_ASYNC_PF_EN, pa); |
| 339 | __this_cpu_write(apf_reason.enabled, 1); |
| 340 | printk(KERN_INFO"KVM setup async PF for cpu %d\n", |
| 341 | smp_processor_id()); |
| 342 | } |
| 343 | |
| 344 | if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { |
| 345 | unsigned long pa; |
| 346 | /* Size alignment is implied but just to make it explicit. */ |
| 347 | BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); |
| 348 | __this_cpu_write(kvm_apic_eoi, 0); |
| 349 | pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi)) |
| 350 | | KVM_MSR_ENABLED; |
| 351 | wrmsrl(MSR_KVM_PV_EOI_EN, pa); |
| 352 | } |
| 353 | |
| 354 | if (has_steal_clock) |
| 355 | kvm_register_steal_time(); |
| 356 | } |
| 357 | |
| 358 | static void kvm_pv_disable_apf(void) |
| 359 | { |
| 360 | if (!__this_cpu_read(apf_reason.enabled)) |
| 361 | return; |
| 362 | |
| 363 | wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); |
| 364 | __this_cpu_write(apf_reason.enabled, 0); |
| 365 | |
| 366 | printk(KERN_INFO"Unregister pv shared memory for cpu %d\n", |
| 367 | smp_processor_id()); |
| 368 | } |
| 369 | |
| 370 | static void kvm_pv_guest_cpu_reboot(void *unused) |
| 371 | { |
| 372 | /* |
| 373 | * We disable PV EOI before we load a new kernel by kexec, |
| 374 | * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory. |
| 375 | * New kernel can re-enable when it boots. |
| 376 | */ |
| 377 | if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) |
| 378 | wrmsrl(MSR_KVM_PV_EOI_EN, 0); |
| 379 | kvm_pv_disable_apf(); |
| 380 | kvm_disable_steal_time(); |
| 381 | } |
| 382 | |
| 383 | static int kvm_pv_reboot_notify(struct notifier_block *nb, |
| 384 | unsigned long code, void *unused) |
| 385 | { |
| 386 | if (code == SYS_RESTART) |
| 387 | on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); |
| 388 | return NOTIFY_DONE; |
| 389 | } |
| 390 | |
| 391 | static struct notifier_block kvm_pv_reboot_nb = { |
| 392 | .notifier_call = kvm_pv_reboot_notify, |
| 393 | }; |
| 394 | |
| 395 | static u64 kvm_steal_clock(int cpu) |
| 396 | { |
| 397 | u64 steal; |
| 398 | struct kvm_steal_time *src; |
| 399 | int version; |
| 400 | |
| 401 | src = &per_cpu(steal_time, cpu); |
| 402 | do { |
| 403 | version = src->version; |
| 404 | virt_rmb(); |
| 405 | steal = src->steal; |
| 406 | virt_rmb(); |
| 407 | } while ((version & 1) || (version != src->version)); |
| 408 | |
| 409 | return steal; |
| 410 | } |
| 411 | |
| 412 | void kvm_disable_steal_time(void) |
| 413 | { |
| 414 | if (!has_steal_clock) |
| 415 | return; |
| 416 | |
| 417 | wrmsr(MSR_KVM_STEAL_TIME, 0, 0); |
| 418 | } |
| 419 | |
| 420 | static inline void __set_percpu_decrypted(void *ptr, unsigned long size) |
| 421 | { |
| 422 | early_set_memory_decrypted((unsigned long) ptr, size); |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * Iterate through all possible CPUs and map the memory region pointed |
| 427 | * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once. |
| 428 | * |
| 429 | * Note: we iterate through all possible CPUs to ensure that CPUs |
| 430 | * hotplugged will have their per-cpu variable already mapped as |
| 431 | * decrypted. |
| 432 | */ |
| 433 | static void __init sev_map_percpu_data(void) |
| 434 | { |
| 435 | int cpu; |
| 436 | |
| 437 | if (!sev_active()) |
| 438 | return; |
| 439 | |
| 440 | for_each_possible_cpu(cpu) { |
| 441 | __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason)); |
| 442 | __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time)); |
| 443 | __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi)); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | #ifdef CONFIG_SMP |
| 448 | #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG) |
| 449 | |
| 450 | static void __send_ipi_mask(const struct cpumask *mask, int vector) |
| 451 | { |
| 452 | unsigned long flags; |
| 453 | int cpu, apic_id, icr; |
| 454 | int min = 0, max = 0; |
| 455 | #ifdef CONFIG_X86_64 |
| 456 | __uint128_t ipi_bitmap = 0; |
| 457 | #else |
| 458 | u64 ipi_bitmap = 0; |
| 459 | #endif |
| 460 | |
| 461 | if (cpumask_empty(mask)) |
| 462 | return; |
| 463 | |
| 464 | local_irq_save(flags); |
| 465 | |
| 466 | switch (vector) { |
| 467 | default: |
| 468 | icr = APIC_DM_FIXED | vector; |
| 469 | break; |
| 470 | case NMI_VECTOR: |
| 471 | icr = APIC_DM_NMI; |
| 472 | break; |
| 473 | } |
| 474 | |
| 475 | for_each_cpu(cpu, mask) { |
| 476 | apic_id = per_cpu(x86_cpu_to_apicid, cpu); |
| 477 | if (!ipi_bitmap) { |
| 478 | min = max = apic_id; |
| 479 | } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) { |
| 480 | ipi_bitmap <<= min - apic_id; |
| 481 | min = apic_id; |
| 482 | } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) { |
| 483 | max = apic_id < max ? max : apic_id; |
| 484 | } else { |
| 485 | kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, |
| 486 | (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); |
| 487 | min = max = apic_id; |
| 488 | ipi_bitmap = 0; |
| 489 | } |
| 490 | __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap); |
| 491 | } |
| 492 | |
| 493 | if (ipi_bitmap) { |
| 494 | kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, |
| 495 | (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); |
| 496 | } |
| 497 | |
| 498 | local_irq_restore(flags); |
| 499 | } |
| 500 | |
| 501 | static void kvm_send_ipi_mask(const struct cpumask *mask, int vector) |
| 502 | { |
| 503 | __send_ipi_mask(mask, vector); |
| 504 | } |
| 505 | |
| 506 | static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) |
| 507 | { |
| 508 | unsigned int this_cpu = smp_processor_id(); |
| 509 | struct cpumask new_mask; |
| 510 | const struct cpumask *local_mask; |
| 511 | |
| 512 | cpumask_copy(&new_mask, mask); |
| 513 | cpumask_clear_cpu(this_cpu, &new_mask); |
| 514 | local_mask = &new_mask; |
| 515 | __send_ipi_mask(local_mask, vector); |
| 516 | } |
| 517 | |
| 518 | static void kvm_send_ipi_allbutself(int vector) |
| 519 | { |
| 520 | kvm_send_ipi_mask_allbutself(cpu_online_mask, vector); |
| 521 | } |
| 522 | |
| 523 | static void kvm_send_ipi_all(int vector) |
| 524 | { |
| 525 | __send_ipi_mask(cpu_online_mask, vector); |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Set the IPI entry points |
| 530 | */ |
| 531 | static void kvm_setup_pv_ipi(void) |
| 532 | { |
| 533 | apic->send_IPI_mask = kvm_send_ipi_mask; |
| 534 | apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself; |
| 535 | apic->send_IPI_allbutself = kvm_send_ipi_allbutself; |
| 536 | apic->send_IPI_all = kvm_send_ipi_all; |
| 537 | pr_info("KVM setup pv IPIs\n"); |
| 538 | } |
| 539 | |
| 540 | static void __init kvm_smp_prepare_cpus(unsigned int max_cpus) |
| 541 | { |
| 542 | native_smp_prepare_cpus(max_cpus); |
| 543 | if (kvm_para_has_hint(KVM_HINTS_REALTIME)) |
| 544 | static_branch_disable(&virt_spin_lock_key); |
| 545 | } |
| 546 | |
| 547 | static void __init kvm_smp_prepare_boot_cpu(void) |
| 548 | { |
| 549 | /* |
| 550 | * Map the per-cpu variables as decrypted before kvm_guest_cpu_init() |
| 551 | * shares the guest physical address with the hypervisor. |
| 552 | */ |
| 553 | sev_map_percpu_data(); |
| 554 | |
| 555 | kvm_guest_cpu_init(); |
| 556 | native_smp_prepare_boot_cpu(); |
| 557 | kvm_spinlock_init(); |
| 558 | } |
| 559 | |
| 560 | static void kvm_guest_cpu_offline(void) |
| 561 | { |
| 562 | kvm_disable_steal_time(); |
| 563 | if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) |
| 564 | wrmsrl(MSR_KVM_PV_EOI_EN, 0); |
| 565 | kvm_pv_disable_apf(); |
| 566 | apf_task_wake_all(); |
| 567 | } |
| 568 | |
| 569 | static int kvm_cpu_online(unsigned int cpu) |
| 570 | { |
| 571 | local_irq_disable(); |
| 572 | kvm_guest_cpu_init(); |
| 573 | local_irq_enable(); |
| 574 | return 0; |
| 575 | } |
| 576 | |
| 577 | static int kvm_cpu_down_prepare(unsigned int cpu) |
| 578 | { |
| 579 | local_irq_disable(); |
| 580 | kvm_guest_cpu_offline(); |
| 581 | local_irq_enable(); |
| 582 | return 0; |
| 583 | } |
| 584 | #endif |
| 585 | |
| 586 | static void __init kvm_apf_trap_init(void) |
| 587 | { |
| 588 | update_intr_gate(X86_TRAP_PF, async_page_fault); |
| 589 | } |
| 590 | |
| 591 | static DEFINE_PER_CPU(cpumask_var_t, __pv_tlb_mask); |
| 592 | |
| 593 | static void kvm_flush_tlb_others(const struct cpumask *cpumask, |
| 594 | const struct flush_tlb_info *info) |
| 595 | { |
| 596 | u8 state; |
| 597 | int cpu; |
| 598 | struct kvm_steal_time *src; |
| 599 | struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_tlb_mask); |
| 600 | |
| 601 | cpumask_copy(flushmask, cpumask); |
| 602 | /* |
| 603 | * We have to call flush only on online vCPUs. And |
| 604 | * queue flush_on_enter for pre-empted vCPUs |
| 605 | */ |
| 606 | for_each_cpu(cpu, flushmask) { |
| 607 | src = &per_cpu(steal_time, cpu); |
| 608 | state = READ_ONCE(src->preempted); |
| 609 | if ((state & KVM_VCPU_PREEMPTED)) { |
| 610 | if (try_cmpxchg(&src->preempted, &state, |
| 611 | state | KVM_VCPU_FLUSH_TLB)) |
| 612 | __cpumask_clear_cpu(cpu, flushmask); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | native_flush_tlb_others(flushmask, info); |
| 617 | } |
| 618 | |
| 619 | static void __init kvm_guest_init(void) |
| 620 | { |
| 621 | int i; |
| 622 | |
| 623 | if (!kvm_para_available()) |
| 624 | return; |
| 625 | |
| 626 | paravirt_ops_setup(); |
| 627 | register_reboot_notifier(&kvm_pv_reboot_nb); |
| 628 | for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) |
| 629 | raw_spin_lock_init(&async_pf_sleepers[i].lock); |
| 630 | if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF)) |
| 631 | x86_init.irqs.trap_init = kvm_apf_trap_init; |
| 632 | |
| 633 | if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { |
| 634 | has_steal_clock = 1; |
| 635 | pv_time_ops.steal_clock = kvm_steal_clock; |
| 636 | } |
| 637 | |
| 638 | if (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && |
| 639 | !kvm_para_has_hint(KVM_HINTS_REALTIME) && |
| 640 | kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { |
| 641 | pv_mmu_ops.flush_tlb_others = kvm_flush_tlb_others; |
| 642 | pv_mmu_ops.tlb_remove_table = tlb_remove_table; |
| 643 | } |
| 644 | |
| 645 | if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) |
| 646 | apic_set_eoi_write(kvm_guest_apic_eoi_write); |
| 647 | |
| 648 | #ifdef CONFIG_SMP |
| 649 | smp_ops.smp_prepare_cpus = kvm_smp_prepare_cpus; |
| 650 | smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; |
| 651 | if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online", |
| 652 | kvm_cpu_online, kvm_cpu_down_prepare) < 0) |
| 653 | pr_err("kvm_guest: Failed to install cpu hotplug callbacks\n"); |
| 654 | #else |
| 655 | sev_map_percpu_data(); |
| 656 | kvm_guest_cpu_init(); |
| 657 | #endif |
| 658 | |
| 659 | /* |
| 660 | * Hard lockup detection is enabled by default. Disable it, as guests |
| 661 | * can get false positives too easily, for example if the host is |
| 662 | * overcommitted. |
| 663 | */ |
| 664 | hardlockup_detector_disable(); |
| 665 | } |
| 666 | |
| 667 | static noinline uint32_t __kvm_cpuid_base(void) |
| 668 | { |
| 669 | if (boot_cpu_data.cpuid_level < 0) |
| 670 | return 0; /* So we don't blow up on old processors */ |
| 671 | |
| 672 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| 673 | return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0); |
| 674 | |
| 675 | return 0; |
| 676 | } |
| 677 | |
| 678 | static inline uint32_t kvm_cpuid_base(void) |
| 679 | { |
| 680 | static int kvm_cpuid_base = -1; |
| 681 | |
| 682 | if (kvm_cpuid_base == -1) |
| 683 | kvm_cpuid_base = __kvm_cpuid_base(); |
| 684 | |
| 685 | return kvm_cpuid_base; |
| 686 | } |
| 687 | |
| 688 | bool kvm_para_available(void) |
| 689 | { |
| 690 | return kvm_cpuid_base() != 0; |
| 691 | } |
| 692 | EXPORT_SYMBOL_GPL(kvm_para_available); |
| 693 | |
| 694 | unsigned int kvm_arch_para_features(void) |
| 695 | { |
| 696 | return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES); |
| 697 | } |
| 698 | |
| 699 | unsigned int kvm_arch_para_hints(void) |
| 700 | { |
| 701 | return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES); |
| 702 | } |
| 703 | |
| 704 | static uint32_t __init kvm_detect(void) |
| 705 | { |
| 706 | return kvm_cpuid_base(); |
| 707 | } |
| 708 | |
| 709 | static void __init kvm_apic_init(void) |
| 710 | { |
| 711 | #if defined(CONFIG_SMP) |
| 712 | if (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI)) |
| 713 | kvm_setup_pv_ipi(); |
| 714 | #endif |
| 715 | } |
| 716 | |
| 717 | static void __init kvm_init_platform(void) |
| 718 | { |
| 719 | kvmclock_init(); |
| 720 | x86_platform.apic_post_init = kvm_apic_init; |
| 721 | } |
| 722 | |
| 723 | const __initconst struct hypervisor_x86 x86_hyper_kvm = { |
| 724 | .name = "KVM", |
| 725 | .detect = kvm_detect, |
| 726 | .type = X86_HYPER_KVM, |
| 727 | .init.guest_late_init = kvm_guest_init, |
| 728 | .init.x2apic_available = kvm_para_available, |
| 729 | .init.init_platform = kvm_init_platform, |
| 730 | }; |
| 731 | |
| 732 | static __init int activate_jump_labels(void) |
| 733 | { |
| 734 | if (has_steal_clock) { |
| 735 | static_key_slow_inc(¶virt_steal_enabled); |
| 736 | if (steal_acc) |
| 737 | static_key_slow_inc(¶virt_steal_rq_enabled); |
| 738 | } |
| 739 | |
| 740 | return 0; |
| 741 | } |
| 742 | arch_initcall(activate_jump_labels); |
| 743 | |
| 744 | static __init int kvm_setup_pv_tlb_flush(void) |
| 745 | { |
| 746 | int cpu; |
| 747 | |
| 748 | if (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && |
| 749 | !kvm_para_has_hint(KVM_HINTS_REALTIME) && |
| 750 | kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { |
| 751 | for_each_possible_cpu(cpu) { |
| 752 | zalloc_cpumask_var_node(per_cpu_ptr(&__pv_tlb_mask, cpu), |
| 753 | GFP_KERNEL, cpu_to_node(cpu)); |
| 754 | } |
| 755 | pr_info("KVM setup pv remote TLB flush\n"); |
| 756 | } |
| 757 | |
| 758 | return 0; |
| 759 | } |
| 760 | arch_initcall(kvm_setup_pv_tlb_flush); |
| 761 | |
| 762 | #ifdef CONFIG_PARAVIRT_SPINLOCKS |
| 763 | |
| 764 | /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ |
| 765 | static void kvm_kick_cpu(int cpu) |
| 766 | { |
| 767 | int apicid; |
| 768 | unsigned long flags = 0; |
| 769 | |
| 770 | apicid = per_cpu(x86_cpu_to_apicid, cpu); |
| 771 | kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); |
| 772 | } |
| 773 | |
| 774 | #include <asm/qspinlock.h> |
| 775 | |
| 776 | static void kvm_wait(u8 *ptr, u8 val) |
| 777 | { |
| 778 | unsigned long flags; |
| 779 | |
| 780 | if (in_nmi()) |
| 781 | return; |
| 782 | |
| 783 | local_irq_save(flags); |
| 784 | |
| 785 | if (READ_ONCE(*ptr) != val) |
| 786 | goto out; |
| 787 | |
| 788 | /* |
| 789 | * halt until it's our turn and kicked. Note that we do safe halt |
| 790 | * for irq enabled case to avoid hang when lock info is overwritten |
| 791 | * in irq spinlock slowpath and no spurious interrupt occur to save us. |
| 792 | */ |
| 793 | if (arch_irqs_disabled_flags(flags)) |
| 794 | halt(); |
| 795 | else |
| 796 | safe_halt(); |
| 797 | |
| 798 | out: |
| 799 | local_irq_restore(flags); |
| 800 | } |
| 801 | |
| 802 | #ifdef CONFIG_X86_32 |
| 803 | __visible bool __kvm_vcpu_is_preempted(long cpu) |
| 804 | { |
| 805 | struct kvm_steal_time *src = &per_cpu(steal_time, cpu); |
| 806 | |
| 807 | return !!(src->preempted & KVM_VCPU_PREEMPTED); |
| 808 | } |
| 809 | PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted); |
| 810 | |
| 811 | #else |
| 812 | |
| 813 | #include <asm/asm-offsets.h> |
| 814 | |
| 815 | extern bool __raw_callee_save___kvm_vcpu_is_preempted(long); |
| 816 | |
| 817 | /* |
| 818 | * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and |
| 819 | * restoring to/from the stack. |
| 820 | */ |
| 821 | asm( |
| 822 | ".pushsection .text;" |
| 823 | ".global __raw_callee_save___kvm_vcpu_is_preempted;" |
| 824 | ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;" |
| 825 | "__raw_callee_save___kvm_vcpu_is_preempted:" |
| 826 | "movq __per_cpu_offset(,%rdi,8), %rax;" |
| 827 | "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);" |
| 828 | "setne %al;" |
| 829 | "ret;" |
| 830 | ".popsection"); |
| 831 | |
| 832 | #endif |
| 833 | |
| 834 | /* |
| 835 | * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. |
| 836 | */ |
| 837 | void __init kvm_spinlock_init(void) |
| 838 | { |
| 839 | if (!kvm_para_available()) |
| 840 | return; |
| 841 | /* Does host kernel support KVM_FEATURE_PV_UNHALT? */ |
| 842 | if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) |
| 843 | return; |
| 844 | |
| 845 | if (kvm_para_has_hint(KVM_HINTS_REALTIME)) |
| 846 | return; |
| 847 | |
| 848 | /* Don't use the pvqspinlock code if there is only 1 vCPU. */ |
| 849 | if (num_possible_cpus() == 1) |
| 850 | return; |
| 851 | |
| 852 | __pv_init_lock_hash(); |
| 853 | pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; |
| 854 | pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock); |
| 855 | pv_lock_ops.wait = kvm_wait; |
| 856 | pv_lock_ops.kick = kvm_kick_cpu; |
| 857 | |
| 858 | if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { |
| 859 | pv_lock_ops.vcpu_is_preempted = |
| 860 | PV_CALLEE_SAVE(__kvm_vcpu_is_preempted); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | #endif /* CONFIG_PARAVIRT_SPINLOCKS */ |