blob: 0c5fcbd998cf11badefad906a2122400a3512d58 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Routines to identify caches on Intel CPU.
4 *
5 * Changes:
6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
9 */
10
11#include <linux/slab.h>
12#include <linux/cacheinfo.h>
13#include <linux/cpu.h>
14#include <linux/sched.h>
15#include <linux/capability.h>
16#include <linux/sysfs.h>
17#include <linux/pci.h>
18
19#include <asm/cpufeature.h>
20#include <asm/amd_nb.h>
21#include <asm/smp.h>
22
23#include "cpu.h"
24
25#define LVL_1_INST 1
26#define LVL_1_DATA 2
27#define LVL_2 3
28#define LVL_3 4
29#define LVL_TRACE 5
30
31struct _cache_table {
32 unsigned char descriptor;
33 char cache_type;
34 short size;
35};
36
37#define MB(x) ((x) * 1024)
38
39/* All the cache descriptor types we care about (no TLB or
40 trace cache entries) */
41
42static const struct _cache_table cache_table[] =
43{
44 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
45 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
46 { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
47 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
48 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
49 { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
50 { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
51 { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
52 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
53 { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
54 { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
55 { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
56 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
57 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
58 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
59 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
60 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
61 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
62 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
63 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
64 { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
65 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
66 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
67 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
68 { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
69 { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
70 { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
71 { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
72 { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
73 { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
74 { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
75 { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
76 { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
77 { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
78 { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
79 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
80 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
81 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
82 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
83 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
84 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
85 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
86 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
87 { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
88 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
89 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
90 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
91 { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
92 { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
93 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
94 { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
95 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
96 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
97 { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
98 { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
99 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
100 { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
101 { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
102 { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
103 { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
104 { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
105 { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
106 { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
107 { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
108 { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
109 { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
110 { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
111 { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
112 { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
113 { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
114 { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
115 { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
116 { 0x00, 0, 0}
117};
118
119
120enum _cache_type {
121 CTYPE_NULL = 0,
122 CTYPE_DATA = 1,
123 CTYPE_INST = 2,
124 CTYPE_UNIFIED = 3
125};
126
127union _cpuid4_leaf_eax {
128 struct {
129 enum _cache_type type:5;
130 unsigned int level:3;
131 unsigned int is_self_initializing:1;
132 unsigned int is_fully_associative:1;
133 unsigned int reserved:4;
134 unsigned int num_threads_sharing:12;
135 unsigned int num_cores_on_die:6;
136 } split;
137 u32 full;
138};
139
140union _cpuid4_leaf_ebx {
141 struct {
142 unsigned int coherency_line_size:12;
143 unsigned int physical_line_partition:10;
144 unsigned int ways_of_associativity:10;
145 } split;
146 u32 full;
147};
148
149union _cpuid4_leaf_ecx {
150 struct {
151 unsigned int number_of_sets:32;
152 } split;
153 u32 full;
154};
155
156struct _cpuid4_info_regs {
157 union _cpuid4_leaf_eax eax;
158 union _cpuid4_leaf_ebx ebx;
159 union _cpuid4_leaf_ecx ecx;
160 unsigned int id;
161 unsigned long size;
162 struct amd_northbridge *nb;
163};
164
165static unsigned short num_cache_leaves;
166
167/* AMD doesn't have CPUID4. Emulate it here to report the same
168 information to the user. This makes some assumptions about the machine:
169 L2 not shared, no SMT etc. that is currently true on AMD CPUs.
170
171 In theory the TLBs could be reported as fake type (they are in "dummy").
172 Maybe later */
173union l1_cache {
174 struct {
175 unsigned line_size:8;
176 unsigned lines_per_tag:8;
177 unsigned assoc:8;
178 unsigned size_in_kb:8;
179 };
180 unsigned val;
181};
182
183union l2_cache {
184 struct {
185 unsigned line_size:8;
186 unsigned lines_per_tag:4;
187 unsigned assoc:4;
188 unsigned size_in_kb:16;
189 };
190 unsigned val;
191};
192
193union l3_cache {
194 struct {
195 unsigned line_size:8;
196 unsigned lines_per_tag:4;
197 unsigned assoc:4;
198 unsigned res:2;
199 unsigned size_encoded:14;
200 };
201 unsigned val;
202};
203
204static const unsigned short assocs[] = {
205 [1] = 1,
206 [2] = 2,
207 [4] = 4,
208 [6] = 8,
209 [8] = 16,
210 [0xa] = 32,
211 [0xb] = 48,
212 [0xc] = 64,
213 [0xd] = 96,
214 [0xe] = 128,
215 [0xf] = 0xffff /* fully associative - no way to show this currently */
216};
217
218static const unsigned char levels[] = { 1, 1, 2, 3 };
219static const unsigned char types[] = { 1, 2, 3, 3 };
220
221static const enum cache_type cache_type_map[] = {
222 [CTYPE_NULL] = CACHE_TYPE_NOCACHE,
223 [CTYPE_DATA] = CACHE_TYPE_DATA,
224 [CTYPE_INST] = CACHE_TYPE_INST,
225 [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
226};
227
228static void
229amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
230 union _cpuid4_leaf_ebx *ebx,
231 union _cpuid4_leaf_ecx *ecx)
232{
233 unsigned dummy;
234 unsigned line_size, lines_per_tag, assoc, size_in_kb;
235 union l1_cache l1i, l1d;
236 union l2_cache l2;
237 union l3_cache l3;
238 union l1_cache *l1 = &l1d;
239
240 eax->full = 0;
241 ebx->full = 0;
242 ecx->full = 0;
243
244 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
245 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
246
247 switch (leaf) {
248 case 1:
249 l1 = &l1i;
250 case 0:
251 if (!l1->val)
252 return;
253 assoc = assocs[l1->assoc];
254 line_size = l1->line_size;
255 lines_per_tag = l1->lines_per_tag;
256 size_in_kb = l1->size_in_kb;
257 break;
258 case 2:
259 if (!l2.val)
260 return;
261 assoc = assocs[l2.assoc];
262 line_size = l2.line_size;
263 lines_per_tag = l2.lines_per_tag;
264 /* cpu_data has errata corrections for K7 applied */
265 size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
266 break;
267 case 3:
268 if (!l3.val)
269 return;
270 assoc = assocs[l3.assoc];
271 line_size = l3.line_size;
272 lines_per_tag = l3.lines_per_tag;
273 size_in_kb = l3.size_encoded * 512;
274 if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
275 size_in_kb = size_in_kb >> 1;
276 assoc = assoc >> 1;
277 }
278 break;
279 default:
280 return;
281 }
282
283 eax->split.is_self_initializing = 1;
284 eax->split.type = types[leaf];
285 eax->split.level = levels[leaf];
286 eax->split.num_threads_sharing = 0;
287 eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
288
289
290 if (assoc == 0xffff)
291 eax->split.is_fully_associative = 1;
292 ebx->split.coherency_line_size = line_size - 1;
293 ebx->split.ways_of_associativity = assoc - 1;
294 ebx->split.physical_line_partition = lines_per_tag - 1;
295 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
296 (ebx->split.ways_of_associativity + 1) - 1;
297}
298
299#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
300
301/*
302 * L3 cache descriptors
303 */
304static void amd_calc_l3_indices(struct amd_northbridge *nb)
305{
306 struct amd_l3_cache *l3 = &nb->l3_cache;
307 unsigned int sc0, sc1, sc2, sc3;
308 u32 val = 0;
309
310 pci_read_config_dword(nb->misc, 0x1C4, &val);
311
312 /* calculate subcache sizes */
313 l3->subcaches[0] = sc0 = !(val & BIT(0));
314 l3->subcaches[1] = sc1 = !(val & BIT(4));
315
316 if (boot_cpu_data.x86 == 0x15) {
317 l3->subcaches[0] = sc0 += !(val & BIT(1));
318 l3->subcaches[1] = sc1 += !(val & BIT(5));
319 }
320
321 l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
322 l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
323
324 l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
325}
326
327/*
328 * check whether a slot used for disabling an L3 index is occupied.
329 * @l3: L3 cache descriptor
330 * @slot: slot number (0..1)
331 *
332 * @returns: the disabled index if used or negative value if slot free.
333 */
334static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
335{
336 unsigned int reg = 0;
337
338 pci_read_config_dword(nb->misc, 0x1BC + slot * 4, &reg);
339
340 /* check whether this slot is activated already */
341 if (reg & (3UL << 30))
342 return reg & 0xfff;
343
344 return -1;
345}
346
347static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
348 unsigned int slot)
349{
350 int index;
351 struct amd_northbridge *nb = this_leaf->priv;
352
353 index = amd_get_l3_disable_slot(nb, slot);
354 if (index >= 0)
355 return sprintf(buf, "%d\n", index);
356
357 return sprintf(buf, "FREE\n");
358}
359
360#define SHOW_CACHE_DISABLE(slot) \
361static ssize_t \
362cache_disable_##slot##_show(struct device *dev, \
363 struct device_attribute *attr, char *buf) \
364{ \
365 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
366 return show_cache_disable(this_leaf, buf, slot); \
367}
368SHOW_CACHE_DISABLE(0)
369SHOW_CACHE_DISABLE(1)
370
371static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
372 unsigned slot, unsigned long idx)
373{
374 int i;
375
376 idx |= BIT(30);
377
378 /*
379 * disable index in all 4 subcaches
380 */
381 for (i = 0; i < 4; i++) {
382 u32 reg = idx | (i << 20);
383
384 if (!nb->l3_cache.subcaches[i])
385 continue;
386
387 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
388
389 /*
390 * We need to WBINVD on a core on the node containing the L3
391 * cache which indices we disable therefore a simple wbinvd()
392 * is not sufficient.
393 */
394 wbinvd_on_cpu(cpu);
395
396 reg |= BIT(31);
397 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
398 }
399}
400
401/*
402 * disable a L3 cache index by using a disable-slot
403 *
404 * @l3: L3 cache descriptor
405 * @cpu: A CPU on the node containing the L3 cache
406 * @slot: slot number (0..1)
407 * @index: index to disable
408 *
409 * @return: 0 on success, error status on failure
410 */
411static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
412 unsigned slot, unsigned long index)
413{
414 int ret = 0;
415
416 /* check if @slot is already used or the index is already disabled */
417 ret = amd_get_l3_disable_slot(nb, slot);
418 if (ret >= 0)
419 return -EEXIST;
420
421 if (index > nb->l3_cache.indices)
422 return -EINVAL;
423
424 /* check whether the other slot has disabled the same index already */
425 if (index == amd_get_l3_disable_slot(nb, !slot))
426 return -EEXIST;
427
428 amd_l3_disable_index(nb, cpu, slot, index);
429
430 return 0;
431}
432
433static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
434 const char *buf, size_t count,
435 unsigned int slot)
436{
437 unsigned long val = 0;
438 int cpu, err = 0;
439 struct amd_northbridge *nb = this_leaf->priv;
440
441 if (!capable(CAP_SYS_ADMIN))
442 return -EPERM;
443
444 cpu = cpumask_first(&this_leaf->shared_cpu_map);
445
446 if (kstrtoul(buf, 10, &val) < 0)
447 return -EINVAL;
448
449 err = amd_set_l3_disable_slot(nb, cpu, slot, val);
450 if (err) {
451 if (err == -EEXIST)
452 pr_warn("L3 slot %d in use/index already disabled!\n",
453 slot);
454 return err;
455 }
456 return count;
457}
458
459#define STORE_CACHE_DISABLE(slot) \
460static ssize_t \
461cache_disable_##slot##_store(struct device *dev, \
462 struct device_attribute *attr, \
463 const char *buf, size_t count) \
464{ \
465 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
466 return store_cache_disable(this_leaf, buf, count, slot); \
467}
468STORE_CACHE_DISABLE(0)
469STORE_CACHE_DISABLE(1)
470
471static ssize_t subcaches_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473{
474 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
475 int cpu = cpumask_first(&this_leaf->shared_cpu_map);
476
477 return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
478}
479
480static ssize_t subcaches_store(struct device *dev,
481 struct device_attribute *attr,
482 const char *buf, size_t count)
483{
484 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
485 int cpu = cpumask_first(&this_leaf->shared_cpu_map);
486 unsigned long val;
487
488 if (!capable(CAP_SYS_ADMIN))
489 return -EPERM;
490
491 if (kstrtoul(buf, 16, &val) < 0)
492 return -EINVAL;
493
494 if (amd_set_subcaches(cpu, val))
495 return -EINVAL;
496
497 return count;
498}
499
500static DEVICE_ATTR_RW(cache_disable_0);
501static DEVICE_ATTR_RW(cache_disable_1);
502static DEVICE_ATTR_RW(subcaches);
503
504static umode_t
505cache_private_attrs_is_visible(struct kobject *kobj,
506 struct attribute *attr, int unused)
507{
508 struct device *dev = kobj_to_dev(kobj);
509 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
510 umode_t mode = attr->mode;
511
512 if (!this_leaf->priv)
513 return 0;
514
515 if ((attr == &dev_attr_subcaches.attr) &&
516 amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
517 return mode;
518
519 if ((attr == &dev_attr_cache_disable_0.attr ||
520 attr == &dev_attr_cache_disable_1.attr) &&
521 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
522 return mode;
523
524 return 0;
525}
526
527static struct attribute_group cache_private_group = {
528 .is_visible = cache_private_attrs_is_visible,
529};
530
531static void init_amd_l3_attrs(void)
532{
533 int n = 1;
534 static struct attribute **amd_l3_attrs;
535
536 if (amd_l3_attrs) /* already initialized */
537 return;
538
539 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
540 n += 2;
541 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
542 n += 1;
543
544 amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
545 if (!amd_l3_attrs)
546 return;
547
548 n = 0;
549 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
550 amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
551 amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
552 }
553 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
554 amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
555
556 cache_private_group.attrs = amd_l3_attrs;
557}
558
559const struct attribute_group *
560cache_get_priv_group(struct cacheinfo *this_leaf)
561{
562 struct amd_northbridge *nb = this_leaf->priv;
563
564 if (this_leaf->level < 3 || !nb)
565 return NULL;
566
567 if (nb && nb->l3_cache.indices)
568 init_amd_l3_attrs();
569
570 return &cache_private_group;
571}
572
573static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
574{
575 int node;
576
577 /* only for L3, and not in virtualized environments */
578 if (index < 3)
579 return;
580
581 node = amd_get_nb_id(smp_processor_id());
582 this_leaf->nb = node_to_amd_nb(node);
583 if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
584 amd_calc_l3_indices(this_leaf->nb);
585}
586#else
587#define amd_init_l3_cache(x, y)
588#endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
589
590static int
591cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
592{
593 union _cpuid4_leaf_eax eax;
594 union _cpuid4_leaf_ebx ebx;
595 union _cpuid4_leaf_ecx ecx;
596 unsigned edx;
597
598 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
599 if (boot_cpu_has(X86_FEATURE_TOPOEXT))
600 cpuid_count(0x8000001d, index, &eax.full,
601 &ebx.full, &ecx.full, &edx);
602 else
603 amd_cpuid4(index, &eax, &ebx, &ecx);
604 amd_init_l3_cache(this_leaf, index);
605 } else {
606 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
607 }
608
609 if (eax.split.type == CTYPE_NULL)
610 return -EIO; /* better error ? */
611
612 this_leaf->eax = eax;
613 this_leaf->ebx = ebx;
614 this_leaf->ecx = ecx;
615 this_leaf->size = (ecx.split.number_of_sets + 1) *
616 (ebx.split.coherency_line_size + 1) *
617 (ebx.split.physical_line_partition + 1) *
618 (ebx.split.ways_of_associativity + 1);
619 return 0;
620}
621
622static int find_num_cache_leaves(struct cpuinfo_x86 *c)
623{
624 unsigned int eax, ebx, ecx, edx, op;
625 union _cpuid4_leaf_eax cache_eax;
626 int i = -1;
627
628 if (c->x86_vendor == X86_VENDOR_AMD)
629 op = 0x8000001d;
630 else
631 op = 4;
632
633 do {
634 ++i;
635 /* Do cpuid(op) loop to find out num_cache_leaves */
636 cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
637 cache_eax.full = eax;
638 } while (cache_eax.split.type != CTYPE_NULL);
639 return i;
640}
641
642void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu, u8 node_id)
643{
644 /*
645 * We may have multiple LLCs if L3 caches exist, so check if we
646 * have an L3 cache by looking at the L3 cache CPUID leaf.
647 */
648 if (!cpuid_edx(0x80000006))
649 return;
650
651 if (c->x86 < 0x17) {
652 /* LLC is at the node level. */
653 per_cpu(cpu_llc_id, cpu) = node_id;
654 } else if (c->x86 == 0x17 &&
655 c->x86_model >= 0 && c->x86_model <= 0x1F) {
656 /*
657 * LLC is at the core complex level.
658 * Core complex ID is ApicId[3] for these processors.
659 */
660 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
661 } else {
662 /*
663 * LLC ID is calculated from the number of threads sharing the
664 * cache.
665 * */
666 u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
667 u32 llc_index = find_num_cache_leaves(c) - 1;
668
669 cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
670 if (eax)
671 num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
672
673 if (num_sharing_cache) {
674 int bits = get_count_order(num_sharing_cache);
675
676 per_cpu(cpu_llc_id, cpu) = c->apicid >> bits;
677 }
678 }
679}
680
681void init_amd_cacheinfo(struct cpuinfo_x86 *c)
682{
683
684 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
685 num_cache_leaves = find_num_cache_leaves(c);
686 } else if (c->extended_cpuid_level >= 0x80000006) {
687 if (cpuid_edx(0x80000006) & 0xf000)
688 num_cache_leaves = 4;
689 else
690 num_cache_leaves = 3;
691 }
692}
693
694void init_intel_cacheinfo(struct cpuinfo_x86 *c)
695{
696 /* Cache sizes */
697 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
698 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
699 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
700 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
701#ifdef CONFIG_SMP
702 unsigned int cpu = c->cpu_index;
703#endif
704
705 if (c->cpuid_level > 3) {
706 static int is_initialized;
707
708 if (is_initialized == 0) {
709 /* Init num_cache_leaves from boot CPU */
710 num_cache_leaves = find_num_cache_leaves(c);
711 is_initialized++;
712 }
713
714 /*
715 * Whenever possible use cpuid(4), deterministic cache
716 * parameters cpuid leaf to find the cache details
717 */
718 for (i = 0; i < num_cache_leaves; i++) {
719 struct _cpuid4_info_regs this_leaf = {};
720 int retval;
721
722 retval = cpuid4_cache_lookup_regs(i, &this_leaf);
723 if (retval < 0)
724 continue;
725
726 switch (this_leaf.eax.split.level) {
727 case 1:
728 if (this_leaf.eax.split.type == CTYPE_DATA)
729 new_l1d = this_leaf.size/1024;
730 else if (this_leaf.eax.split.type == CTYPE_INST)
731 new_l1i = this_leaf.size/1024;
732 break;
733 case 2:
734 new_l2 = this_leaf.size/1024;
735 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
736 index_msb = get_count_order(num_threads_sharing);
737 l2_id = c->apicid & ~((1 << index_msb) - 1);
738 break;
739 case 3:
740 new_l3 = this_leaf.size/1024;
741 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
742 index_msb = get_count_order(num_threads_sharing);
743 l3_id = c->apicid & ~((1 << index_msb) - 1);
744 break;
745 default:
746 break;
747 }
748 }
749 }
750 /*
751 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
752 * trace cache
753 */
754 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
755 /* supports eax=2 call */
756 int j, n;
757 unsigned int regs[4];
758 unsigned char *dp = (unsigned char *)regs;
759 int only_trace = 0;
760
761 if (num_cache_leaves != 0 && c->x86 == 15)
762 only_trace = 1;
763
764 /* Number of times to iterate */
765 n = cpuid_eax(2) & 0xFF;
766
767 for (i = 0 ; i < n ; i++) {
768 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
769
770 /* If bit 31 is set, this is an unknown format */
771 for (j = 0 ; j < 3 ; j++)
772 if (regs[j] & (1 << 31))
773 regs[j] = 0;
774
775 /* Byte 0 is level count, not a descriptor */
776 for (j = 1 ; j < 16 ; j++) {
777 unsigned char des = dp[j];
778 unsigned char k = 0;
779
780 /* look up this descriptor in the table */
781 while (cache_table[k].descriptor != 0) {
782 if (cache_table[k].descriptor == des) {
783 if (only_trace && cache_table[k].cache_type != LVL_TRACE)
784 break;
785 switch (cache_table[k].cache_type) {
786 case LVL_1_INST:
787 l1i += cache_table[k].size;
788 break;
789 case LVL_1_DATA:
790 l1d += cache_table[k].size;
791 break;
792 case LVL_2:
793 l2 += cache_table[k].size;
794 break;
795 case LVL_3:
796 l3 += cache_table[k].size;
797 break;
798 case LVL_TRACE:
799 trace += cache_table[k].size;
800 break;
801 }
802
803 break;
804 }
805
806 k++;
807 }
808 }
809 }
810 }
811
812 if (new_l1d)
813 l1d = new_l1d;
814
815 if (new_l1i)
816 l1i = new_l1i;
817
818 if (new_l2) {
819 l2 = new_l2;
820#ifdef CONFIG_SMP
821 per_cpu(cpu_llc_id, cpu) = l2_id;
822#endif
823 }
824
825 if (new_l3) {
826 l3 = new_l3;
827#ifdef CONFIG_SMP
828 per_cpu(cpu_llc_id, cpu) = l3_id;
829#endif
830 }
831
832#ifdef CONFIG_SMP
833 /*
834 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
835 * turns means that the only possibility is SMT (as indicated in
836 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
837 * that SMT shares all caches, we can unconditionally set cpu_llc_id to
838 * c->phys_proc_id.
839 */
840 if (per_cpu(cpu_llc_id, cpu) == BAD_APICID)
841 per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
842#endif
843
844 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
845
846 if (!l2)
847 cpu_detect_cache_sizes(c);
848}
849
850static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
851 struct _cpuid4_info_regs *base)
852{
853 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
854 struct cacheinfo *this_leaf;
855 int i, sibling;
856
857 /*
858 * For L3, always use the pre-calculated cpu_llc_shared_mask
859 * to derive shared_cpu_map.
860 */
861 if (index == 3) {
862 for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
863 this_cpu_ci = get_cpu_cacheinfo(i);
864 if (!this_cpu_ci->info_list)
865 continue;
866 this_leaf = this_cpu_ci->info_list + index;
867 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
868 if (!cpu_online(sibling))
869 continue;
870 cpumask_set_cpu(sibling,
871 &this_leaf->shared_cpu_map);
872 }
873 }
874 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
875 unsigned int apicid, nshared, first, last;
876
877 nshared = base->eax.split.num_threads_sharing + 1;
878 apicid = cpu_data(cpu).apicid;
879 first = apicid - (apicid % nshared);
880 last = first + nshared - 1;
881
882 for_each_online_cpu(i) {
883 this_cpu_ci = get_cpu_cacheinfo(i);
884 if (!this_cpu_ci->info_list)
885 continue;
886
887 apicid = cpu_data(i).apicid;
888 if ((apicid < first) || (apicid > last))
889 continue;
890
891 this_leaf = this_cpu_ci->info_list + index;
892
893 for_each_online_cpu(sibling) {
894 apicid = cpu_data(sibling).apicid;
895 if ((apicid < first) || (apicid > last))
896 continue;
897 cpumask_set_cpu(sibling,
898 &this_leaf->shared_cpu_map);
899 }
900 }
901 } else
902 return 0;
903
904 return 1;
905}
906
907static void __cache_cpumap_setup(unsigned int cpu, int index,
908 struct _cpuid4_info_regs *base)
909{
910 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
911 struct cacheinfo *this_leaf, *sibling_leaf;
912 unsigned long num_threads_sharing;
913 int index_msb, i;
914 struct cpuinfo_x86 *c = &cpu_data(cpu);
915
916 if (c->x86_vendor == X86_VENDOR_AMD) {
917 if (__cache_amd_cpumap_setup(cpu, index, base))
918 return;
919 }
920
921 this_leaf = this_cpu_ci->info_list + index;
922 num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
923
924 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
925 if (num_threads_sharing == 1)
926 return;
927
928 index_msb = get_count_order(num_threads_sharing);
929
930 for_each_online_cpu(i)
931 if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
932 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
933
934 if (i == cpu || !sib_cpu_ci->info_list)
935 continue;/* skip if itself or no cacheinfo */
936 sibling_leaf = sib_cpu_ci->info_list + index;
937 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
938 cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
939 }
940}
941
942static void ci_leaf_init(struct cacheinfo *this_leaf,
943 struct _cpuid4_info_regs *base)
944{
945 this_leaf->id = base->id;
946 this_leaf->attributes = CACHE_ID;
947 this_leaf->level = base->eax.split.level;
948 this_leaf->type = cache_type_map[base->eax.split.type];
949 this_leaf->coherency_line_size =
950 base->ebx.split.coherency_line_size + 1;
951 this_leaf->ways_of_associativity =
952 base->ebx.split.ways_of_associativity + 1;
953 this_leaf->size = base->size;
954 this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
955 this_leaf->physical_line_partition =
956 base->ebx.split.physical_line_partition + 1;
957 this_leaf->priv = base->nb;
958}
959
960static int __init_cache_level(unsigned int cpu)
961{
962 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
963
964 if (!num_cache_leaves)
965 return -ENOENT;
966 if (!this_cpu_ci)
967 return -EINVAL;
968 this_cpu_ci->num_levels = 3;
969 this_cpu_ci->num_leaves = num_cache_leaves;
970 return 0;
971}
972
973/*
974 * The max shared threads number comes from CPUID.4:EAX[25-14] with input
975 * ECX as cache index. Then right shift apicid by the number's order to get
976 * cache id for this cache node.
977 */
978static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
979{
980 struct cpuinfo_x86 *c = &cpu_data(cpu);
981 unsigned long num_threads_sharing;
982 int index_msb;
983
984 num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
985 index_msb = get_count_order(num_threads_sharing);
986 id4_regs->id = c->apicid >> index_msb;
987}
988
989static int __populate_cache_leaves(unsigned int cpu)
990{
991 unsigned int idx, ret;
992 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
993 struct cacheinfo *this_leaf = this_cpu_ci->info_list;
994 struct _cpuid4_info_regs id4_regs = {};
995
996 for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
997 ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
998 if (ret)
999 return ret;
1000 get_cache_id(cpu, &id4_regs);
1001 ci_leaf_init(this_leaf++, &id4_regs);
1002 __cache_cpumap_setup(cpu, idx, &id4_regs);
1003 }
1004 this_cpu_ci->cpu_map_populated = true;
1005
1006 return 0;
1007}
1008
1009DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level)
1010DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)