Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h |
| 3 | * which was based on arch/arm/include/io.h |
| 4 | * |
| 5 | * Copyright (C) 1996-2000 Russell King |
| 6 | * Copyright (C) 2012 ARM Ltd. |
| 7 | * Copyright (C) 2014 Regents of the University of California |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation, version 2. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | */ |
| 18 | |
| 19 | #ifndef _ASM_RISCV_IO_H |
| 20 | #define _ASM_RISCV_IO_H |
| 21 | |
| 22 | #include <linux/types.h> |
| 23 | |
| 24 | extern void __iomem *ioremap(phys_addr_t offset, unsigned long size); |
| 25 | |
| 26 | /* |
| 27 | * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't |
| 28 | * change the properties of memory regions. This should be fixed by the |
| 29 | * upcoming platform spec. |
| 30 | */ |
| 31 | #define ioremap_nocache(addr, size) ioremap((addr), (size)) |
| 32 | #define ioremap_wc(addr, size) ioremap((addr), (size)) |
| 33 | #define ioremap_wt(addr, size) ioremap((addr), (size)) |
| 34 | |
| 35 | extern void iounmap(volatile void __iomem *addr); |
| 36 | |
| 37 | /* Generic IO read/write. These perform native-endian accesses. */ |
| 38 | #define __raw_writeb __raw_writeb |
| 39 | static inline void __raw_writeb(u8 val, volatile void __iomem *addr) |
| 40 | { |
| 41 | asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr)); |
| 42 | } |
| 43 | |
| 44 | #define __raw_writew __raw_writew |
| 45 | static inline void __raw_writew(u16 val, volatile void __iomem *addr) |
| 46 | { |
| 47 | asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr)); |
| 48 | } |
| 49 | |
| 50 | #define __raw_writel __raw_writel |
| 51 | static inline void __raw_writel(u32 val, volatile void __iomem *addr) |
| 52 | { |
| 53 | asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr)); |
| 54 | } |
| 55 | |
| 56 | #ifdef CONFIG_64BIT |
| 57 | #define __raw_writeq __raw_writeq |
| 58 | static inline void __raw_writeq(u64 val, volatile void __iomem *addr) |
| 59 | { |
| 60 | asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr)); |
| 61 | } |
| 62 | #endif |
| 63 | |
| 64 | #define __raw_readb __raw_readb |
| 65 | static inline u8 __raw_readb(const volatile void __iomem *addr) |
| 66 | { |
| 67 | u8 val; |
| 68 | |
| 69 | asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| 70 | return val; |
| 71 | } |
| 72 | |
| 73 | #define __raw_readw __raw_readw |
| 74 | static inline u16 __raw_readw(const volatile void __iomem *addr) |
| 75 | { |
| 76 | u16 val; |
| 77 | |
| 78 | asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| 79 | return val; |
| 80 | } |
| 81 | |
| 82 | #define __raw_readl __raw_readl |
| 83 | static inline u32 __raw_readl(const volatile void __iomem *addr) |
| 84 | { |
| 85 | u32 val; |
| 86 | |
| 87 | asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| 88 | return val; |
| 89 | } |
| 90 | |
| 91 | #ifdef CONFIG_64BIT |
| 92 | #define __raw_readq __raw_readq |
| 93 | static inline u64 __raw_readq(const volatile void __iomem *addr) |
| 94 | { |
| 95 | u64 val; |
| 96 | |
| 97 | asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| 98 | return val; |
| 99 | } |
| 100 | #endif |
| 101 | |
| 102 | /* |
| 103 | * FIXME: I'm flip-flopping on whether or not we should keep this or enforce |
| 104 | * the ordering with I/O on spinlocks like PowerPC does. The worry is that |
| 105 | * drivers won't get this correct, but I also don't want to introduce a fence |
| 106 | * into the lock code that otherwise only uses AMOs (and is essentially defined |
| 107 | * by the ISA to be correct). For now I'm leaving this here: "o,w" is |
| 108 | * sufficient to ensure that all writes to the device have completed before the |
| 109 | * write to the spinlock is allowed to commit. I surmised this from reading |
| 110 | * "ACQUIRES VS I/O ACCESSES" in memory-barriers.txt. |
| 111 | */ |
| 112 | #define mmiowb() __asm__ __volatile__ ("fence o,w" : : : "memory"); |
| 113 | |
| 114 | /* |
| 115 | * Unordered I/O memory access primitives. These are even more relaxed than |
| 116 | * the relaxed versions, as they don't even order accesses between successive |
| 117 | * operations to the I/O regions. |
| 118 | */ |
| 119 | #define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; }) |
| 120 | #define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; }) |
| 121 | #define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; }) |
| 122 | |
| 123 | #define writeb_cpu(v,c) ((void)__raw_writeb((v),(c))) |
| 124 | #define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c))) |
| 125 | #define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c))) |
| 126 | |
| 127 | #ifdef CONFIG_64BIT |
| 128 | #define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; }) |
| 129 | #define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c))) |
| 130 | #endif |
| 131 | |
| 132 | /* |
| 133 | * Relaxed I/O memory access primitives. These follow the Device memory |
| 134 | * ordering rules but do not guarantee any ordering relative to Normal memory |
| 135 | * accesses. These are defined to order the indicated access (either a read or |
| 136 | * write) with all other I/O memory accesses. Since the platform specification |
| 137 | * defines that all I/O regions are strongly ordered on channel 2, no explicit |
| 138 | * fences are required to enforce this ordering. |
| 139 | */ |
| 140 | /* FIXME: These are now the same as asm-generic */ |
| 141 | #define __io_rbr() do {} while (0) |
| 142 | #define __io_rar() do {} while (0) |
| 143 | #define __io_rbw() do {} while (0) |
| 144 | #define __io_raw() do {} while (0) |
| 145 | |
| 146 | #define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; }) |
| 147 | #define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; }) |
| 148 | #define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; }) |
| 149 | |
| 150 | #define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); }) |
| 151 | #define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); }) |
| 152 | #define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); }) |
| 153 | |
| 154 | #ifdef CONFIG_64BIT |
| 155 | #define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; }) |
| 156 | #define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); }) |
| 157 | #endif |
| 158 | |
| 159 | /* |
| 160 | * I/O memory access primitives. Reads are ordered relative to any |
| 161 | * following Normal memory access. Writes are ordered relative to any prior |
| 162 | * Normal memory access. The memory barriers here are necessary as RISC-V |
| 163 | * doesn't define any ordering between the memory space and the I/O space. |
| 164 | */ |
| 165 | #define __io_br() do {} while (0) |
| 166 | #define __io_ar() __asm__ __volatile__ ("fence i,r" : : : "memory"); |
| 167 | #define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory"); |
| 168 | #define __io_aw() do {} while (0) |
| 169 | |
| 170 | #define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(); __v; }) |
| 171 | #define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(); __v; }) |
| 172 | #define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(); __v; }) |
| 173 | |
| 174 | #define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); }) |
| 175 | #define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); }) |
| 176 | #define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); }) |
| 177 | |
| 178 | #ifdef CONFIG_64BIT |
| 179 | #define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(); __v; }) |
| 180 | #define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); }) |
| 181 | #endif |
| 182 | |
| 183 | /* |
| 184 | * Emulation routines for the port-mapped IO space used by some PCI drivers. |
| 185 | * These are defined as being "fully synchronous", but also "not guaranteed to |
| 186 | * be fully ordered with respect to other memory and I/O operations". We're |
| 187 | * going to be on the safe side here and just make them: |
| 188 | * - Fully ordered WRT each other, by bracketing them with two fences. The |
| 189 | * outer set contains both I/O so inX is ordered with outX, while the inner just |
| 190 | * needs the type of the access (I for inX and O for outX). |
| 191 | * - Ordered in the same manner as readX/writeX WRT memory by subsuming their |
| 192 | * fences. |
| 193 | * - Ordered WRT timer reads, so udelay and friends don't get elided by the |
| 194 | * implementation. |
| 195 | * Note that there is no way to actually enforce that outX is a non-posted |
| 196 | * operation on RISC-V, but hopefully the timer ordering constraint is |
| 197 | * sufficient to ensure this works sanely on controllers that support I/O |
| 198 | * writes. |
| 199 | */ |
| 200 | #define __io_pbr() __asm__ __volatile__ ("fence io,i" : : : "memory"); |
| 201 | #define __io_par() __asm__ __volatile__ ("fence i,ior" : : : "memory"); |
| 202 | #define __io_pbw() __asm__ __volatile__ ("fence iow,o" : : : "memory"); |
| 203 | #define __io_paw() __asm__ __volatile__ ("fence o,io" : : : "memory"); |
| 204 | |
| 205 | #define inb(c) ({ u8 __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; }) |
| 206 | #define inw(c) ({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; }) |
| 207 | #define inl(c) ({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; }) |
| 208 | |
| 209 | #define outb(v,c) ({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); }) |
| 210 | #define outw(v,c) ({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); }) |
| 211 | #define outl(v,c) ({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); }) |
| 212 | |
| 213 | #ifdef CONFIG_64BIT |
| 214 | #define inq(c) ({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(); __v; }) |
| 215 | #define outq(v,c) ({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); }) |
| 216 | #endif |
| 217 | |
| 218 | /* |
| 219 | * Accesses from a single hart to a single I/O address must be ordered. This |
| 220 | * allows us to use the raw read macros, but we still need to fence before and |
| 221 | * after the block to ensure ordering WRT other macros. These are defined to |
| 222 | * perform host-endian accesses so we use __raw instead of __cpu. |
| 223 | */ |
| 224 | #define __io_reads_ins(port, ctype, len, bfence, afence) \ |
| 225 | static inline void __ ## port ## len(const volatile void __iomem *addr, \ |
| 226 | void *buffer, \ |
| 227 | unsigned int count) \ |
| 228 | { \ |
| 229 | bfence; \ |
| 230 | if (count) { \ |
| 231 | ctype *buf = buffer; \ |
| 232 | \ |
| 233 | do { \ |
| 234 | ctype x = __raw_read ## len(addr); \ |
| 235 | *buf++ = x; \ |
| 236 | } while (--count); \ |
| 237 | } \ |
| 238 | afence; \ |
| 239 | } |
| 240 | |
| 241 | #define __io_writes_outs(port, ctype, len, bfence, afence) \ |
| 242 | static inline void __ ## port ## len(volatile void __iomem *addr, \ |
| 243 | const void *buffer, \ |
| 244 | unsigned int count) \ |
| 245 | { \ |
| 246 | bfence; \ |
| 247 | if (count) { \ |
| 248 | const ctype *buf = buffer; \ |
| 249 | \ |
| 250 | do { \ |
| 251 | __raw_write ## len(*buf++, addr); \ |
| 252 | } while (--count); \ |
| 253 | } \ |
| 254 | afence; \ |
| 255 | } |
| 256 | |
| 257 | __io_reads_ins(reads, u8, b, __io_br(), __io_ar()) |
| 258 | __io_reads_ins(reads, u16, w, __io_br(), __io_ar()) |
| 259 | __io_reads_ins(reads, u32, l, __io_br(), __io_ar()) |
| 260 | #define readsb(addr, buffer, count) __readsb(addr, buffer, count) |
| 261 | #define readsw(addr, buffer, count) __readsw(addr, buffer, count) |
| 262 | #define readsl(addr, buffer, count) __readsl(addr, buffer, count) |
| 263 | |
| 264 | __io_reads_ins(ins, u8, b, __io_pbr(), __io_par()) |
| 265 | __io_reads_ins(ins, u16, w, __io_pbr(), __io_par()) |
| 266 | __io_reads_ins(ins, u32, l, __io_pbr(), __io_par()) |
| 267 | #define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count) |
| 268 | #define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count) |
| 269 | #define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count) |
| 270 | |
| 271 | __io_writes_outs(writes, u8, b, __io_bw(), __io_aw()) |
| 272 | __io_writes_outs(writes, u16, w, __io_bw(), __io_aw()) |
| 273 | __io_writes_outs(writes, u32, l, __io_bw(), __io_aw()) |
| 274 | #define writesb(addr, buffer, count) __writesb(addr, buffer, count) |
| 275 | #define writesw(addr, buffer, count) __writesw(addr, buffer, count) |
| 276 | #define writesl(addr, buffer, count) __writesl(addr, buffer, count) |
| 277 | |
| 278 | __io_writes_outs(outs, u8, b, __io_pbw(), __io_paw()) |
| 279 | __io_writes_outs(outs, u16, w, __io_pbw(), __io_paw()) |
| 280 | __io_writes_outs(outs, u32, l, __io_pbw(), __io_paw()) |
| 281 | #define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count) |
| 282 | #define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count) |
| 283 | #define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count) |
| 284 | |
| 285 | #ifdef CONFIG_64BIT |
| 286 | __io_reads_ins(reads, u64, q, __io_br(), __io_ar()) |
| 287 | #define readsq(addr, buffer, count) __readsq(addr, buffer, count) |
| 288 | |
| 289 | __io_reads_ins(ins, u64, q, __io_pbr(), __io_par()) |
| 290 | #define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count) |
| 291 | |
| 292 | __io_writes_outs(writes, u64, q, __io_bw(), __io_aw()) |
| 293 | #define writesq(addr, buffer, count) __writesq(addr, buffer, count) |
| 294 | |
| 295 | __io_writes_outs(outs, u64, q, __io_pbr(), __io_paw()) |
| 296 | #define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count) |
| 297 | #endif |
| 298 | |
| 299 | #include <asm-generic/io.h> |
| 300 | |
| 301 | #endif /* _ASM_RISCV_IO_H */ |