blob: 8689a02b7df87f116684154768ea11ab5565f366 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14/*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18#include <linux/errno.h>
19#include <linux/sched.h>
20#include <linux/sched/debug.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/pkeys.h>
24#include <linux/stddef.h>
25#include <linux/unistd.h>
26#include <linux/ptrace.h>
27#include <linux/user.h>
28#include <linux/interrupt.h>
29#include <linux/init.h>
30#include <linux/extable.h>
31#include <linux/module.h> /* print_modules */
32#include <linux/prctl.h>
33#include <linux/delay.h>
34#include <linux/kprobes.h>
35#include <linux/kexec.h>
36#include <linux/backlight.h>
37#include <linux/bug.h>
38#include <linux/kdebug.h>
39#include <linux/ratelimit.h>
40#include <linux/context_tracking.h>
41#include <linux/smp.h>
42#include <linux/console.h>
43#include <linux/kmsg_dump.h>
44
45#include <asm/emulated_ops.h>
46#include <asm/pgtable.h>
47#include <linux/uaccess.h>
48#include <asm/debugfs.h>
49#include <asm/io.h>
50#include <asm/machdep.h>
51#include <asm/rtas.h>
52#include <asm/pmc.h>
53#include <asm/reg.h>
54#ifdef CONFIG_PMAC_BACKLIGHT
55#include <asm/backlight.h>
56#endif
57#ifdef CONFIG_PPC64
58#include <asm/firmware.h>
59#include <asm/processor.h>
60#include <asm/tm.h>
61#endif
62#include <asm/kexec.h>
63#include <asm/ppc-opcode.h>
64#include <asm/rio.h>
65#include <asm/fadump.h>
66#include <asm/switch_to.h>
67#include <asm/tm.h>
68#include <asm/debug.h>
69#include <asm/asm-prototypes.h>
70#include <asm/hmi.h>
71#include <sysdev/fsl_pci.h>
72#include <asm/kprobes.h>
73#include <asm/stacktrace.h>
74
75#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
76int (*__debugger)(struct pt_regs *regs) __read_mostly;
77int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
78int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
79int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
80int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
81int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
82int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
83
84EXPORT_SYMBOL(__debugger);
85EXPORT_SYMBOL(__debugger_ipi);
86EXPORT_SYMBOL(__debugger_bpt);
87EXPORT_SYMBOL(__debugger_sstep);
88EXPORT_SYMBOL(__debugger_iabr_match);
89EXPORT_SYMBOL(__debugger_break_match);
90EXPORT_SYMBOL(__debugger_fault_handler);
91#endif
92
93/* Transactional Memory trap debug */
94#ifdef TM_DEBUG_SW
95#define TM_DEBUG(x...) printk(KERN_INFO x)
96#else
97#define TM_DEBUG(x...) do { } while(0)
98#endif
99
100static const char *signame(int signr)
101{
102 switch (signr) {
103 case SIGBUS: return "bus error";
104 case SIGFPE: return "floating point exception";
105 case SIGILL: return "illegal instruction";
106 case SIGSEGV: return "segfault";
107 case SIGTRAP: return "unhandled trap";
108 }
109
110 return "unknown signal";
111}
112
113/*
114 * Trap & Exception support
115 */
116
117#ifdef CONFIG_PMAC_BACKLIGHT
118static void pmac_backlight_unblank(void)
119{
120 mutex_lock(&pmac_backlight_mutex);
121 if (pmac_backlight) {
122 struct backlight_properties *props;
123
124 props = &pmac_backlight->props;
125 props->brightness = props->max_brightness;
126 props->power = FB_BLANK_UNBLANK;
127 backlight_update_status(pmac_backlight);
128 }
129 mutex_unlock(&pmac_backlight_mutex);
130}
131#else
132static inline void pmac_backlight_unblank(void) { }
133#endif
134
135/*
136 * If oops/die is expected to crash the machine, return true here.
137 *
138 * This should not be expected to be 100% accurate, there may be
139 * notifiers registered or other unexpected conditions that may bring
140 * down the kernel. Or if the current process in the kernel is holding
141 * locks or has other critical state, the kernel may become effectively
142 * unusable anyway.
143 */
144bool die_will_crash(void)
145{
146 if (should_fadump_crash())
147 return true;
148 if (kexec_should_crash(current))
149 return true;
150 if (in_interrupt() || panic_on_oops ||
151 !current->pid || is_global_init(current))
152 return true;
153
154 return false;
155}
156
157static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
158static int die_owner = -1;
159static unsigned int die_nest_count;
160static int die_counter;
161
162extern void panic_flush_kmsg_start(void)
163{
164 /*
165 * These are mostly taken from kernel/panic.c, but tries to do
166 * relatively minimal work. Don't use delay functions (TB may
167 * be broken), don't crash dump (need to set a firmware log),
168 * don't run notifiers. We do want to get some information to
169 * Linux console.
170 */
171 console_verbose();
172 bust_spinlocks(1);
173}
174
175extern void panic_flush_kmsg_end(void)
176{
177 printk_safe_flush_on_panic();
178 kmsg_dump(KMSG_DUMP_PANIC);
179 bust_spinlocks(0);
180 debug_locks_off();
181 console_flush_on_panic();
182}
183
184static unsigned long oops_begin(struct pt_regs *regs)
185{
186 int cpu;
187 unsigned long flags;
188
189 oops_enter();
190
191 /* racy, but better than risking deadlock. */
192 raw_local_irq_save(flags);
193 cpu = smp_processor_id();
194 if (!arch_spin_trylock(&die_lock)) {
195 if (cpu == die_owner)
196 /* nested oops. should stop eventually */;
197 else
198 arch_spin_lock(&die_lock);
199 }
200 die_nest_count++;
201 die_owner = cpu;
202 console_verbose();
203 bust_spinlocks(1);
204 if (machine_is(powermac))
205 pmac_backlight_unblank();
206 return flags;
207}
208NOKPROBE_SYMBOL(oops_begin);
209
210static void oops_end(unsigned long flags, struct pt_regs *regs,
211 int signr)
212{
213 bust_spinlocks(0);
214 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
215 die_nest_count--;
216 oops_exit();
217 printk("\n");
218 if (!die_nest_count) {
219 /* Nest count reaches zero, release the lock. */
220 die_owner = -1;
221 arch_spin_unlock(&die_lock);
222 }
223 raw_local_irq_restore(flags);
224
225 /*
226 * system_reset_excption handles debugger, crash dump, panic, for 0x100
227 */
228 if (TRAP(regs) == 0x100)
229 return;
230
231 crash_fadump(regs, "die oops");
232
233 if (kexec_should_crash(current))
234 crash_kexec(regs);
235
236 if (!signr)
237 return;
238
239 /*
240 * While our oops output is serialised by a spinlock, output
241 * from panic() called below can race and corrupt it. If we
242 * know we are going to panic, delay for 1 second so we have a
243 * chance to get clean backtraces from all CPUs that are oopsing.
244 */
245 if (in_interrupt() || panic_on_oops || !current->pid ||
246 is_global_init(current)) {
247 mdelay(MSEC_PER_SEC);
248 }
249
250 if (in_interrupt())
251 panic("Fatal exception in interrupt");
252 if (panic_on_oops)
253 panic("Fatal exception");
254 do_exit(signr);
255}
256NOKPROBE_SYMBOL(oops_end);
257
258static int __die(const char *str, struct pt_regs *regs, long err)
259{
260 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
261
262 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
263 printk("LE ");
264 else
265 printk("BE ");
266
267 if (IS_ENABLED(CONFIG_PREEMPT))
268 pr_cont("PREEMPT ");
269
270 if (IS_ENABLED(CONFIG_SMP))
271 pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
272
273 if (debug_pagealloc_enabled())
274 pr_cont("DEBUG_PAGEALLOC ");
275
276 if (IS_ENABLED(CONFIG_NUMA))
277 pr_cont("NUMA ");
278
279 pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
280
281 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
282 return 1;
283
284 print_modules();
285 show_regs(regs);
286
287 return 0;
288}
289NOKPROBE_SYMBOL(__die);
290
291void die(const char *str, struct pt_regs *regs, long err)
292{
293 unsigned long flags;
294
295 /*
296 * system_reset_excption handles debugger, crash dump, panic, for 0x100
297 */
298 if (TRAP(regs) != 0x100) {
299 if (debugger(regs))
300 return;
301 }
302
303 flags = oops_begin(regs);
304 if (__die(str, regs, err))
305 err = 0;
306 oops_end(flags, regs, err);
307}
308NOKPROBE_SYMBOL(die);
309
310void user_single_step_siginfo(struct task_struct *tsk,
311 struct pt_regs *regs, siginfo_t *info)
312{
313 info->si_signo = SIGTRAP;
314 info->si_code = TRAP_TRACE;
315 info->si_addr = (void __user *)regs->nip;
316}
317
318static void show_signal_msg(int signr, struct pt_regs *regs, int code,
319 unsigned long addr)
320{
321 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
322 DEFAULT_RATELIMIT_BURST);
323
324 if (!show_unhandled_signals)
325 return;
326
327 if (!unhandled_signal(current, signr))
328 return;
329
330 if (!__ratelimit(&rs))
331 return;
332
333 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
334 current->comm, current->pid, signame(signr), signr,
335 addr, regs->nip, regs->link, code);
336
337 print_vma_addr(KERN_CONT " in ", regs->nip);
338
339 pr_cont("\n");
340
341 show_user_instructions(regs);
342}
343
344void _exception_pkey(int signr, struct pt_regs *regs, int code,
345 unsigned long addr, int key)
346{
347 siginfo_t info;
348
349 if (!user_mode(regs)) {
350 die("Exception in kernel mode", regs, signr);
351 return;
352 }
353
354 show_signal_msg(signr, regs, code, addr);
355
356 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
357 local_irq_enable();
358
359 current->thread.trap_nr = code;
360
361 /*
362 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
363 * to capture the content, if the task gets killed.
364 */
365 thread_pkey_regs_save(&current->thread);
366
367 clear_siginfo(&info);
368 info.si_signo = signr;
369 info.si_code = code;
370 info.si_addr = (void __user *) addr;
371 info.si_pkey = key;
372
373 force_sig_info(signr, &info, current);
374}
375
376void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
377{
378 _exception_pkey(signr, regs, code, addr, 0);
379}
380
381void system_reset_exception(struct pt_regs *regs)
382{
383 /*
384 * Avoid crashes in case of nested NMI exceptions. Recoverability
385 * is determined by RI and in_nmi
386 */
387 bool nested = in_nmi();
388 if (!nested)
389 nmi_enter();
390
391 __this_cpu_inc(irq_stat.sreset_irqs);
392
393 /* See if any machine dependent calls */
394 if (ppc_md.system_reset_exception) {
395 if (ppc_md.system_reset_exception(regs))
396 goto out;
397 }
398
399 if (debugger(regs))
400 goto out;
401
402 /*
403 * A system reset is a request to dump, so we always send
404 * it through the crashdump code (if fadump or kdump are
405 * registered).
406 */
407 crash_fadump(regs, "System Reset");
408
409 crash_kexec(regs);
410
411 /*
412 * We aren't the primary crash CPU. We need to send it
413 * to a holding pattern to avoid it ending up in the panic
414 * code.
415 */
416 crash_kexec_secondary(regs);
417
418 /*
419 * No debugger or crash dump registered, print logs then
420 * panic.
421 */
422 die("System Reset", regs, SIGABRT);
423
424 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
425 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
426 nmi_panic(regs, "System Reset");
427
428out:
429#ifdef CONFIG_PPC_BOOK3S_64
430 BUG_ON(get_paca()->in_nmi == 0);
431 if (get_paca()->in_nmi > 1)
432 nmi_panic(regs, "Unrecoverable nested System Reset");
433#endif
434 /* Must die if the interrupt is not recoverable */
435 if (!(regs->msr & MSR_RI))
436 nmi_panic(regs, "Unrecoverable System Reset");
437
438 if (!nested)
439 nmi_exit();
440
441 /* What should we do here? We could issue a shutdown or hard reset. */
442}
443
444/*
445 * I/O accesses can cause machine checks on powermacs.
446 * Check if the NIP corresponds to the address of a sync
447 * instruction for which there is an entry in the exception
448 * table.
449 * Note that the 601 only takes a machine check on TEA
450 * (transfer error ack) signal assertion, and does not
451 * set any of the top 16 bits of SRR1.
452 * -- paulus.
453 */
454static inline int check_io_access(struct pt_regs *regs)
455{
456#ifdef CONFIG_PPC32
457 unsigned long msr = regs->msr;
458 const struct exception_table_entry *entry;
459 unsigned int *nip = (unsigned int *)regs->nip;
460
461 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
462 && (entry = search_exception_tables(regs->nip)) != NULL) {
463 /*
464 * Check that it's a sync instruction, or somewhere
465 * in the twi; isync; nop sequence that inb/inw/inl uses.
466 * As the address is in the exception table
467 * we should be able to read the instr there.
468 * For the debug message, we look at the preceding
469 * load or store.
470 */
471 if (*nip == PPC_INST_NOP)
472 nip -= 2;
473 else if (*nip == PPC_INST_ISYNC)
474 --nip;
475 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
476 unsigned int rb;
477
478 --nip;
479 rb = (*nip >> 11) & 0x1f;
480 printk(KERN_DEBUG "%s bad port %lx at %p\n",
481 (*nip & 0x100)? "OUT to": "IN from",
482 regs->gpr[rb] - _IO_BASE, nip);
483 regs->msr |= MSR_RI;
484 regs->nip = extable_fixup(entry);
485 return 1;
486 }
487 }
488#endif /* CONFIG_PPC32 */
489 return 0;
490}
491
492#ifdef CONFIG_PPC_ADV_DEBUG_REGS
493/* On 4xx, the reason for the machine check or program exception
494 is in the ESR. */
495#define get_reason(regs) ((regs)->dsisr)
496#define REASON_FP ESR_FP
497#define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
498#define REASON_PRIVILEGED ESR_PPR
499#define REASON_TRAP ESR_PTR
500
501/* single-step stuff */
502#define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
503#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
504#define clear_br_trace(regs) do {} while(0)
505#else
506/* On non-4xx, the reason for the machine check or program
507 exception is in the MSR. */
508#define get_reason(regs) ((regs)->msr)
509#define REASON_TM SRR1_PROGTM
510#define REASON_FP SRR1_PROGFPE
511#define REASON_ILLEGAL SRR1_PROGILL
512#define REASON_PRIVILEGED SRR1_PROGPRIV
513#define REASON_TRAP SRR1_PROGTRAP
514
515#define single_stepping(regs) ((regs)->msr & MSR_SE)
516#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
517#define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
518#endif
519
520#if defined(CONFIG_E500)
521int machine_check_e500mc(struct pt_regs *regs)
522{
523 unsigned long mcsr = mfspr(SPRN_MCSR);
524 unsigned long pvr = mfspr(SPRN_PVR);
525 unsigned long reason = mcsr;
526 int recoverable = 1;
527
528 if (reason & MCSR_LD) {
529 recoverable = fsl_rio_mcheck_exception(regs);
530 if (recoverable == 1)
531 goto silent_out;
532 }
533
534 printk("Machine check in kernel mode.\n");
535 printk("Caused by (from MCSR=%lx): ", reason);
536
537 if (reason & MCSR_MCP)
538 printk("Machine Check Signal\n");
539
540 if (reason & MCSR_ICPERR) {
541 printk("Instruction Cache Parity Error\n");
542
543 /*
544 * This is recoverable by invalidating the i-cache.
545 */
546 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
547 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
548 ;
549
550 /*
551 * This will generally be accompanied by an instruction
552 * fetch error report -- only treat MCSR_IF as fatal
553 * if it wasn't due to an L1 parity error.
554 */
555 reason &= ~MCSR_IF;
556 }
557
558 if (reason & MCSR_DCPERR_MC) {
559 printk("Data Cache Parity Error\n");
560
561 /*
562 * In write shadow mode we auto-recover from the error, but it
563 * may still get logged and cause a machine check. We should
564 * only treat the non-write shadow case as non-recoverable.
565 */
566 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
567 * is not implemented but L1 data cache always runs in write
568 * shadow mode. Hence on data cache parity errors HW will
569 * automatically invalidate the L1 Data Cache.
570 */
571 if (PVR_VER(pvr) != PVR_VER_E6500) {
572 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
573 recoverable = 0;
574 }
575 }
576
577 if (reason & MCSR_L2MMU_MHIT) {
578 printk("Hit on multiple TLB entries\n");
579 recoverable = 0;
580 }
581
582 if (reason & MCSR_NMI)
583 printk("Non-maskable interrupt\n");
584
585 if (reason & MCSR_IF) {
586 printk("Instruction Fetch Error Report\n");
587 recoverable = 0;
588 }
589
590 if (reason & MCSR_LD) {
591 printk("Load Error Report\n");
592 recoverable = 0;
593 }
594
595 if (reason & MCSR_ST) {
596 printk("Store Error Report\n");
597 recoverable = 0;
598 }
599
600 if (reason & MCSR_LDG) {
601 printk("Guarded Load Error Report\n");
602 recoverable = 0;
603 }
604
605 if (reason & MCSR_TLBSYNC)
606 printk("Simultaneous tlbsync operations\n");
607
608 if (reason & MCSR_BSL2_ERR) {
609 printk("Level 2 Cache Error\n");
610 recoverable = 0;
611 }
612
613 if (reason & MCSR_MAV) {
614 u64 addr;
615
616 addr = mfspr(SPRN_MCAR);
617 addr |= (u64)mfspr(SPRN_MCARU) << 32;
618
619 printk("Machine Check %s Address: %#llx\n",
620 reason & MCSR_MEA ? "Effective" : "Physical", addr);
621 }
622
623silent_out:
624 mtspr(SPRN_MCSR, mcsr);
625 return mfspr(SPRN_MCSR) == 0 && recoverable;
626}
627
628int machine_check_e500(struct pt_regs *regs)
629{
630 unsigned long reason = mfspr(SPRN_MCSR);
631
632 if (reason & MCSR_BUS_RBERR) {
633 if (fsl_rio_mcheck_exception(regs))
634 return 1;
635 if (fsl_pci_mcheck_exception(regs))
636 return 1;
637 }
638
639 printk("Machine check in kernel mode.\n");
640 printk("Caused by (from MCSR=%lx): ", reason);
641
642 if (reason & MCSR_MCP)
643 printk("Machine Check Signal\n");
644 if (reason & MCSR_ICPERR)
645 printk("Instruction Cache Parity Error\n");
646 if (reason & MCSR_DCP_PERR)
647 printk("Data Cache Push Parity Error\n");
648 if (reason & MCSR_DCPERR)
649 printk("Data Cache Parity Error\n");
650 if (reason & MCSR_BUS_IAERR)
651 printk("Bus - Instruction Address Error\n");
652 if (reason & MCSR_BUS_RAERR)
653 printk("Bus - Read Address Error\n");
654 if (reason & MCSR_BUS_WAERR)
655 printk("Bus - Write Address Error\n");
656 if (reason & MCSR_BUS_IBERR)
657 printk("Bus - Instruction Data Error\n");
658 if (reason & MCSR_BUS_RBERR)
659 printk("Bus - Read Data Bus Error\n");
660 if (reason & MCSR_BUS_WBERR)
661 printk("Bus - Write Data Bus Error\n");
662 if (reason & MCSR_BUS_IPERR)
663 printk("Bus - Instruction Parity Error\n");
664 if (reason & MCSR_BUS_RPERR)
665 printk("Bus - Read Parity Error\n");
666
667 return 0;
668}
669
670int machine_check_generic(struct pt_regs *regs)
671{
672 return 0;
673}
674#elif defined(CONFIG_E200)
675int machine_check_e200(struct pt_regs *regs)
676{
677 unsigned long reason = mfspr(SPRN_MCSR);
678
679 printk("Machine check in kernel mode.\n");
680 printk("Caused by (from MCSR=%lx): ", reason);
681
682 if (reason & MCSR_MCP)
683 printk("Machine Check Signal\n");
684 if (reason & MCSR_CP_PERR)
685 printk("Cache Push Parity Error\n");
686 if (reason & MCSR_CPERR)
687 printk("Cache Parity Error\n");
688 if (reason & MCSR_EXCP_ERR)
689 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
690 if (reason & MCSR_BUS_IRERR)
691 printk("Bus - Read Bus Error on instruction fetch\n");
692 if (reason & MCSR_BUS_DRERR)
693 printk("Bus - Read Bus Error on data load\n");
694 if (reason & MCSR_BUS_WRERR)
695 printk("Bus - Write Bus Error on buffered store or cache line push\n");
696
697 return 0;
698}
699#elif defined(CONFIG_PPC32)
700int machine_check_generic(struct pt_regs *regs)
701{
702 unsigned long reason = regs->msr;
703
704 printk("Machine check in kernel mode.\n");
705 printk("Caused by (from SRR1=%lx): ", reason);
706 switch (reason & 0x601F0000) {
707 case 0x80000:
708 printk("Machine check signal\n");
709 break;
710 case 0: /* for 601 */
711 case 0x40000:
712 case 0x140000: /* 7450 MSS error and TEA */
713 printk("Transfer error ack signal\n");
714 break;
715 case 0x20000:
716 printk("Data parity error signal\n");
717 break;
718 case 0x10000:
719 printk("Address parity error signal\n");
720 break;
721 case 0x20000000:
722 printk("L1 Data Cache error\n");
723 break;
724 case 0x40000000:
725 printk("L1 Instruction Cache error\n");
726 break;
727 case 0x00100000:
728 printk("L2 data cache parity error\n");
729 break;
730 default:
731 printk("Unknown values in msr\n");
732 }
733 return 0;
734}
735#endif /* everything else */
736
737void machine_check_exception(struct pt_regs *regs)
738{
739 int recover = 0;
740 bool nested = in_nmi();
741 if (!nested)
742 nmi_enter();
743
744 /* 64s accounts the mce in machine_check_early when in HVMODE */
745 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
746 __this_cpu_inc(irq_stat.mce_exceptions);
747
748 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
749
750 /* See if any machine dependent calls. In theory, we would want
751 * to call the CPU first, and call the ppc_md. one if the CPU
752 * one returns a positive number. However there is existing code
753 * that assumes the board gets a first chance, so let's keep it
754 * that way for now and fix things later. --BenH.
755 */
756 if (ppc_md.machine_check_exception)
757 recover = ppc_md.machine_check_exception(regs);
758 else if (cur_cpu_spec->machine_check)
759 recover = cur_cpu_spec->machine_check(regs);
760
761 if (recover > 0)
762 goto bail;
763
764 if (debugger_fault_handler(regs))
765 goto bail;
766
767 if (check_io_access(regs))
768 goto bail;
769
770 /* Must die if the interrupt is not recoverable */
771 if (!(regs->msr & MSR_RI))
772 nmi_panic(regs, "Unrecoverable Machine check");
773
774 if (!nested)
775 nmi_exit();
776
777 die("Machine check", regs, SIGBUS);
778
779 return;
780
781bail:
782 if (!nested)
783 nmi_exit();
784}
785
786void SMIException(struct pt_regs *regs)
787{
788 die("System Management Interrupt", regs, SIGABRT);
789}
790
791#ifdef CONFIG_VSX
792static void p9_hmi_special_emu(struct pt_regs *regs)
793{
794 unsigned int ra, rb, t, i, sel, instr, rc;
795 const void __user *addr;
796 u8 vbuf[16], *vdst;
797 unsigned long ea, msr, msr_mask;
798 bool swap;
799
800 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
801 return;
802
803 /*
804 * lxvb16x opcode: 0x7c0006d8
805 * lxvd2x opcode: 0x7c000698
806 * lxvh8x opcode: 0x7c000658
807 * lxvw4x opcode: 0x7c000618
808 */
809 if ((instr & 0xfc00073e) != 0x7c000618) {
810 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
811 " instr=%08x\n",
812 smp_processor_id(), current->comm, current->pid,
813 regs->nip, instr);
814 return;
815 }
816
817 /* Grab vector registers into the task struct */
818 msr = regs->msr; /* Grab msr before we flush the bits */
819 flush_vsx_to_thread(current);
820 enable_kernel_altivec();
821
822 /*
823 * Is userspace running with a different endian (this is rare but
824 * not impossible)
825 */
826 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
827
828 /* Decode the instruction */
829 ra = (instr >> 16) & 0x1f;
830 rb = (instr >> 11) & 0x1f;
831 t = (instr >> 21) & 0x1f;
832 if (instr & 1)
833 vdst = (u8 *)&current->thread.vr_state.vr[t];
834 else
835 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
836
837 /* Grab the vector address */
838 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
839 if (is_32bit_task())
840 ea &= 0xfffffffful;
841 addr = (__force const void __user *)ea;
842
843 /* Check it */
844 if (!access_ok(VERIFY_READ, addr, 16)) {
845 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
846 " instr=%08x addr=%016lx\n",
847 smp_processor_id(), current->comm, current->pid,
848 regs->nip, instr, (unsigned long)addr);
849 return;
850 }
851
852 /* Read the vector */
853 rc = 0;
854 if ((unsigned long)addr & 0xfUL)
855 /* unaligned case */
856 rc = __copy_from_user_inatomic(vbuf, addr, 16);
857 else
858 __get_user_atomic_128_aligned(vbuf, addr, rc);
859 if (rc) {
860 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
861 " instr=%08x addr=%016lx\n",
862 smp_processor_id(), current->comm, current->pid,
863 regs->nip, instr, (unsigned long)addr);
864 return;
865 }
866
867 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
868 " instr=%08x addr=%016lx\n",
869 smp_processor_id(), current->comm, current->pid, regs->nip,
870 instr, (unsigned long) addr);
871
872 /* Grab instruction "selector" */
873 sel = (instr >> 6) & 3;
874
875 /*
876 * Check to make sure the facility is actually enabled. This
877 * could happen if we get a false positive hit.
878 *
879 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
880 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
881 */
882 msr_mask = MSR_VSX;
883 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
884 msr_mask = MSR_VEC;
885 if (!(msr & msr_mask)) {
886 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
887 " instr=%08x msr:%016lx\n",
888 smp_processor_id(), current->comm, current->pid,
889 regs->nip, instr, msr);
890 return;
891 }
892
893 /* Do logging here before we modify sel based on endian */
894 switch (sel) {
895 case 0: /* lxvw4x */
896 PPC_WARN_EMULATED(lxvw4x, regs);
897 break;
898 case 1: /* lxvh8x */
899 PPC_WARN_EMULATED(lxvh8x, regs);
900 break;
901 case 2: /* lxvd2x */
902 PPC_WARN_EMULATED(lxvd2x, regs);
903 break;
904 case 3: /* lxvb16x */
905 PPC_WARN_EMULATED(lxvb16x, regs);
906 break;
907 }
908
909#ifdef __LITTLE_ENDIAN__
910 /*
911 * An LE kernel stores the vector in the task struct as an LE
912 * byte array (effectively swapping both the components and
913 * the content of the components). Those instructions expect
914 * the components to remain in ascending address order, so we
915 * swap them back.
916 *
917 * If we are running a BE user space, the expectation is that
918 * of a simple memcpy, so forcing the emulation to look like
919 * a lxvb16x should do the trick.
920 */
921 if (swap)
922 sel = 3;
923
924 switch (sel) {
925 case 0: /* lxvw4x */
926 for (i = 0; i < 4; i++)
927 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
928 break;
929 case 1: /* lxvh8x */
930 for (i = 0; i < 8; i++)
931 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
932 break;
933 case 2: /* lxvd2x */
934 for (i = 0; i < 2; i++)
935 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
936 break;
937 case 3: /* lxvb16x */
938 for (i = 0; i < 16; i++)
939 vdst[i] = vbuf[15-i];
940 break;
941 }
942#else /* __LITTLE_ENDIAN__ */
943 /* On a big endian kernel, a BE userspace only needs a memcpy */
944 if (!swap)
945 sel = 3;
946
947 /* Otherwise, we need to swap the content of the components */
948 switch (sel) {
949 case 0: /* lxvw4x */
950 for (i = 0; i < 4; i++)
951 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
952 break;
953 case 1: /* lxvh8x */
954 for (i = 0; i < 8; i++)
955 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
956 break;
957 case 2: /* lxvd2x */
958 for (i = 0; i < 2; i++)
959 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
960 break;
961 case 3: /* lxvb16x */
962 memcpy(vdst, vbuf, 16);
963 break;
964 }
965#endif /* !__LITTLE_ENDIAN__ */
966
967 /* Go to next instruction */
968 regs->nip += 4;
969}
970#endif /* CONFIG_VSX */
971
972void handle_hmi_exception(struct pt_regs *regs)
973{
974 struct pt_regs *old_regs;
975
976 old_regs = set_irq_regs(regs);
977 irq_enter();
978
979#ifdef CONFIG_VSX
980 /* Real mode flagged P9 special emu is needed */
981 if (local_paca->hmi_p9_special_emu) {
982 local_paca->hmi_p9_special_emu = 0;
983
984 /*
985 * We don't want to take page faults while doing the
986 * emulation, we just replay the instruction if necessary.
987 */
988 pagefault_disable();
989 p9_hmi_special_emu(regs);
990 pagefault_enable();
991 }
992#endif /* CONFIG_VSX */
993
994 if (ppc_md.handle_hmi_exception)
995 ppc_md.handle_hmi_exception(regs);
996
997 irq_exit();
998 set_irq_regs(old_regs);
999}
1000
1001void unknown_exception(struct pt_regs *regs)
1002{
1003 enum ctx_state prev_state = exception_enter();
1004
1005 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1006 regs->nip, regs->msr, regs->trap);
1007
1008 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1009
1010 exception_exit(prev_state);
1011}
1012
1013void instruction_breakpoint_exception(struct pt_regs *regs)
1014{
1015 enum ctx_state prev_state = exception_enter();
1016
1017 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1018 5, SIGTRAP) == NOTIFY_STOP)
1019 goto bail;
1020 if (debugger_iabr_match(regs))
1021 goto bail;
1022 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1023
1024bail:
1025 exception_exit(prev_state);
1026}
1027
1028void RunModeException(struct pt_regs *regs)
1029{
1030 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1031}
1032
1033void single_step_exception(struct pt_regs *regs)
1034{
1035 enum ctx_state prev_state = exception_enter();
1036
1037 clear_single_step(regs);
1038 clear_br_trace(regs);
1039
1040 if (kprobe_post_handler(regs))
1041 return;
1042
1043 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1044 5, SIGTRAP) == NOTIFY_STOP)
1045 goto bail;
1046 if (debugger_sstep(regs))
1047 goto bail;
1048
1049 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1050
1051bail:
1052 exception_exit(prev_state);
1053}
1054NOKPROBE_SYMBOL(single_step_exception);
1055
1056/*
1057 * After we have successfully emulated an instruction, we have to
1058 * check if the instruction was being single-stepped, and if so,
1059 * pretend we got a single-step exception. This was pointed out
1060 * by Kumar Gala. -- paulus
1061 */
1062static void emulate_single_step(struct pt_regs *regs)
1063{
1064 if (single_stepping(regs))
1065 single_step_exception(regs);
1066}
1067
1068static inline int __parse_fpscr(unsigned long fpscr)
1069{
1070 int ret = FPE_FLTUNK;
1071
1072 /* Invalid operation */
1073 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1074 ret = FPE_FLTINV;
1075
1076 /* Overflow */
1077 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1078 ret = FPE_FLTOVF;
1079
1080 /* Underflow */
1081 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1082 ret = FPE_FLTUND;
1083
1084 /* Divide by zero */
1085 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1086 ret = FPE_FLTDIV;
1087
1088 /* Inexact result */
1089 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1090 ret = FPE_FLTRES;
1091
1092 return ret;
1093}
1094
1095static void parse_fpe(struct pt_regs *regs)
1096{
1097 int code = 0;
1098
1099 flush_fp_to_thread(current);
1100
1101 code = __parse_fpscr(current->thread.fp_state.fpscr);
1102
1103 _exception(SIGFPE, regs, code, regs->nip);
1104}
1105
1106/*
1107 * Illegal instruction emulation support. Originally written to
1108 * provide the PVR to user applications using the mfspr rd, PVR.
1109 * Return non-zero if we can't emulate, or -EFAULT if the associated
1110 * memory access caused an access fault. Return zero on success.
1111 *
1112 * There are a couple of ways to do this, either "decode" the instruction
1113 * or directly match lots of bits. In this case, matching lots of
1114 * bits is faster and easier.
1115 *
1116 */
1117static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1118{
1119 u8 rT = (instword >> 21) & 0x1f;
1120 u8 rA = (instword >> 16) & 0x1f;
1121 u8 NB_RB = (instword >> 11) & 0x1f;
1122 u32 num_bytes;
1123 unsigned long EA;
1124 int pos = 0;
1125
1126 /* Early out if we are an invalid form of lswx */
1127 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1128 if ((rT == rA) || (rT == NB_RB))
1129 return -EINVAL;
1130
1131 EA = (rA == 0) ? 0 : regs->gpr[rA];
1132
1133 switch (instword & PPC_INST_STRING_MASK) {
1134 case PPC_INST_LSWX:
1135 case PPC_INST_STSWX:
1136 EA += NB_RB;
1137 num_bytes = regs->xer & 0x7f;
1138 break;
1139 case PPC_INST_LSWI:
1140 case PPC_INST_STSWI:
1141 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1142 break;
1143 default:
1144 return -EINVAL;
1145 }
1146
1147 while (num_bytes != 0)
1148 {
1149 u8 val;
1150 u32 shift = 8 * (3 - (pos & 0x3));
1151
1152 /* if process is 32-bit, clear upper 32 bits of EA */
1153 if ((regs->msr & MSR_64BIT) == 0)
1154 EA &= 0xFFFFFFFF;
1155
1156 switch ((instword & PPC_INST_STRING_MASK)) {
1157 case PPC_INST_LSWX:
1158 case PPC_INST_LSWI:
1159 if (get_user(val, (u8 __user *)EA))
1160 return -EFAULT;
1161 /* first time updating this reg,
1162 * zero it out */
1163 if (pos == 0)
1164 regs->gpr[rT] = 0;
1165 regs->gpr[rT] |= val << shift;
1166 break;
1167 case PPC_INST_STSWI:
1168 case PPC_INST_STSWX:
1169 val = regs->gpr[rT] >> shift;
1170 if (put_user(val, (u8 __user *)EA))
1171 return -EFAULT;
1172 break;
1173 }
1174 /* move EA to next address */
1175 EA += 1;
1176 num_bytes--;
1177
1178 /* manage our position within the register */
1179 if (++pos == 4) {
1180 pos = 0;
1181 if (++rT == 32)
1182 rT = 0;
1183 }
1184 }
1185
1186 return 0;
1187}
1188
1189static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1190{
1191 u32 ra,rs;
1192 unsigned long tmp;
1193
1194 ra = (instword >> 16) & 0x1f;
1195 rs = (instword >> 21) & 0x1f;
1196
1197 tmp = regs->gpr[rs];
1198 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1199 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1200 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1201 regs->gpr[ra] = tmp;
1202
1203 return 0;
1204}
1205
1206static int emulate_isel(struct pt_regs *regs, u32 instword)
1207{
1208 u8 rT = (instword >> 21) & 0x1f;
1209 u8 rA = (instword >> 16) & 0x1f;
1210 u8 rB = (instword >> 11) & 0x1f;
1211 u8 BC = (instword >> 6) & 0x1f;
1212 u8 bit;
1213 unsigned long tmp;
1214
1215 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1216 bit = (regs->ccr >> (31 - BC)) & 0x1;
1217
1218 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1219
1220 return 0;
1221}
1222
1223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1224static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1225{
1226 /* If we're emulating a load/store in an active transaction, we cannot
1227 * emulate it as the kernel operates in transaction suspended context.
1228 * We need to abort the transaction. This creates a persistent TM
1229 * abort so tell the user what caused it with a new code.
1230 */
1231 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1232 tm_enable();
1233 tm_abort(cause);
1234 return true;
1235 }
1236 return false;
1237}
1238#else
1239static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1240{
1241 return false;
1242}
1243#endif
1244
1245static int emulate_instruction(struct pt_regs *regs)
1246{
1247 u32 instword;
1248 u32 rd;
1249
1250 if (!user_mode(regs))
1251 return -EINVAL;
1252 CHECK_FULL_REGS(regs);
1253
1254 if (get_user(instword, (u32 __user *)(regs->nip)))
1255 return -EFAULT;
1256
1257 /* Emulate the mfspr rD, PVR. */
1258 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1259 PPC_WARN_EMULATED(mfpvr, regs);
1260 rd = (instword >> 21) & 0x1f;
1261 regs->gpr[rd] = mfspr(SPRN_PVR);
1262 return 0;
1263 }
1264
1265 /* Emulating the dcba insn is just a no-op. */
1266 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1267 PPC_WARN_EMULATED(dcba, regs);
1268 return 0;
1269 }
1270
1271 /* Emulate the mcrxr insn. */
1272 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1273 int shift = (instword >> 21) & 0x1c;
1274 unsigned long msk = 0xf0000000UL >> shift;
1275
1276 PPC_WARN_EMULATED(mcrxr, regs);
1277 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1278 regs->xer &= ~0xf0000000UL;
1279 return 0;
1280 }
1281
1282 /* Emulate load/store string insn. */
1283 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1284 if (tm_abort_check(regs,
1285 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1286 return -EINVAL;
1287 PPC_WARN_EMULATED(string, regs);
1288 return emulate_string_inst(regs, instword);
1289 }
1290
1291 /* Emulate the popcntb (Population Count Bytes) instruction. */
1292 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1293 PPC_WARN_EMULATED(popcntb, regs);
1294 return emulate_popcntb_inst(regs, instword);
1295 }
1296
1297 /* Emulate isel (Integer Select) instruction */
1298 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1299 PPC_WARN_EMULATED(isel, regs);
1300 return emulate_isel(regs, instword);
1301 }
1302
1303 /* Emulate sync instruction variants */
1304 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1305 PPC_WARN_EMULATED(sync, regs);
1306 asm volatile("sync");
1307 return 0;
1308 }
1309
1310#ifdef CONFIG_PPC64
1311 /* Emulate the mfspr rD, DSCR. */
1312 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1313 PPC_INST_MFSPR_DSCR_USER) ||
1314 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1315 PPC_INST_MFSPR_DSCR)) &&
1316 cpu_has_feature(CPU_FTR_DSCR)) {
1317 PPC_WARN_EMULATED(mfdscr, regs);
1318 rd = (instword >> 21) & 0x1f;
1319 regs->gpr[rd] = mfspr(SPRN_DSCR);
1320 return 0;
1321 }
1322 /* Emulate the mtspr DSCR, rD. */
1323 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1324 PPC_INST_MTSPR_DSCR_USER) ||
1325 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1326 PPC_INST_MTSPR_DSCR)) &&
1327 cpu_has_feature(CPU_FTR_DSCR)) {
1328 PPC_WARN_EMULATED(mtdscr, regs);
1329 rd = (instword >> 21) & 0x1f;
1330 current->thread.dscr = regs->gpr[rd];
1331 current->thread.dscr_inherit = 1;
1332 mtspr(SPRN_DSCR, current->thread.dscr);
1333 return 0;
1334 }
1335#endif
1336
1337 return -EINVAL;
1338}
1339
1340int is_valid_bugaddr(unsigned long addr)
1341{
1342 return is_kernel_addr(addr);
1343}
1344
1345#ifdef CONFIG_MATH_EMULATION
1346static int emulate_math(struct pt_regs *regs)
1347{
1348 int ret;
1349 extern int do_mathemu(struct pt_regs *regs);
1350
1351 ret = do_mathemu(regs);
1352 if (ret >= 0)
1353 PPC_WARN_EMULATED(math, regs);
1354
1355 switch (ret) {
1356 case 0:
1357 emulate_single_step(regs);
1358 return 0;
1359 case 1: {
1360 int code = 0;
1361 code = __parse_fpscr(current->thread.fp_state.fpscr);
1362 _exception(SIGFPE, regs, code, regs->nip);
1363 return 0;
1364 }
1365 case -EFAULT:
1366 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1367 return 0;
1368 }
1369
1370 return -1;
1371}
1372#else
1373static inline int emulate_math(struct pt_regs *regs) { return -1; }
1374#endif
1375
1376void program_check_exception(struct pt_regs *regs)
1377{
1378 enum ctx_state prev_state = exception_enter();
1379 unsigned int reason = get_reason(regs);
1380
1381 /* We can now get here via a FP Unavailable exception if the core
1382 * has no FPU, in that case the reason flags will be 0 */
1383
1384 if (reason & REASON_FP) {
1385 /* IEEE FP exception */
1386 parse_fpe(regs);
1387 goto bail;
1388 }
1389 if (reason & REASON_TRAP) {
1390 unsigned long bugaddr;
1391 /* Debugger is first in line to stop recursive faults in
1392 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1393 if (debugger_bpt(regs))
1394 goto bail;
1395
1396 if (kprobe_handler(regs))
1397 goto bail;
1398
1399 /* trap exception */
1400 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1401 == NOTIFY_STOP)
1402 goto bail;
1403
1404 bugaddr = regs->nip;
1405 /*
1406 * Fixup bugaddr for BUG_ON() in real mode
1407 */
1408 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1409 bugaddr += PAGE_OFFSET;
1410
1411 if (!(regs->msr & MSR_PR) && /* not user-mode */
1412 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1413 regs->nip += 4;
1414 goto bail;
1415 }
1416 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1417 goto bail;
1418 }
1419#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1420 if (reason & REASON_TM) {
1421 /* This is a TM "Bad Thing Exception" program check.
1422 * This occurs when:
1423 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1424 * transition in TM states.
1425 * - A trechkpt is attempted when transactional.
1426 * - A treclaim is attempted when non transactional.
1427 * - A tend is illegally attempted.
1428 * - writing a TM SPR when transactional.
1429 *
1430 * If usermode caused this, it's done something illegal and
1431 * gets a SIGILL slap on the wrist. We call it an illegal
1432 * operand to distinguish from the instruction just being bad
1433 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1434 * illegal /placement/ of a valid instruction.
1435 */
1436 if (user_mode(regs)) {
1437 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1438 goto bail;
1439 } else {
1440 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1441 "at %lx (msr 0x%x)\n", regs->nip, reason);
1442 die("Unrecoverable exception", regs, SIGABRT);
1443 }
1444 }
1445#endif
1446
1447 /*
1448 * If we took the program check in the kernel skip down to sending a
1449 * SIGILL. The subsequent cases all relate to emulating instructions
1450 * which we should only do for userspace. We also do not want to enable
1451 * interrupts for kernel faults because that might lead to further
1452 * faults, and loose the context of the original exception.
1453 */
1454 if (!user_mode(regs))
1455 goto sigill;
1456
1457 /* We restore the interrupt state now */
1458 if (!arch_irq_disabled_regs(regs))
1459 local_irq_enable();
1460
1461 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1462 * but there seems to be a hardware bug on the 405GP (RevD)
1463 * that means ESR is sometimes set incorrectly - either to
1464 * ESR_DST (!?) or 0. In the process of chasing this with the
1465 * hardware people - not sure if it can happen on any illegal
1466 * instruction or only on FP instructions, whether there is a
1467 * pattern to occurrences etc. -dgibson 31/Mar/2003
1468 */
1469 if (!emulate_math(regs))
1470 goto bail;
1471
1472 /* Try to emulate it if we should. */
1473 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1474 switch (emulate_instruction(regs)) {
1475 case 0:
1476 regs->nip += 4;
1477 emulate_single_step(regs);
1478 goto bail;
1479 case -EFAULT:
1480 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1481 goto bail;
1482 }
1483 }
1484
1485sigill:
1486 if (reason & REASON_PRIVILEGED)
1487 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1488 else
1489 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1490
1491bail:
1492 exception_exit(prev_state);
1493}
1494NOKPROBE_SYMBOL(program_check_exception);
1495
1496/*
1497 * This occurs when running in hypervisor mode on POWER6 or later
1498 * and an illegal instruction is encountered.
1499 */
1500void emulation_assist_interrupt(struct pt_regs *regs)
1501{
1502 regs->msr |= REASON_ILLEGAL;
1503 program_check_exception(regs);
1504}
1505NOKPROBE_SYMBOL(emulation_assist_interrupt);
1506
1507void alignment_exception(struct pt_regs *regs)
1508{
1509 enum ctx_state prev_state = exception_enter();
1510 int sig, code, fixed = 0;
1511
1512 /* We restore the interrupt state now */
1513 if (!arch_irq_disabled_regs(regs))
1514 local_irq_enable();
1515
1516 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1517 goto bail;
1518
1519 /* we don't implement logging of alignment exceptions */
1520 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1521 fixed = fix_alignment(regs);
1522
1523 if (fixed == 1) {
1524 regs->nip += 4; /* skip over emulated instruction */
1525 emulate_single_step(regs);
1526 goto bail;
1527 }
1528
1529 /* Operand address was bad */
1530 if (fixed == -EFAULT) {
1531 sig = SIGSEGV;
1532 code = SEGV_ACCERR;
1533 } else {
1534 sig = SIGBUS;
1535 code = BUS_ADRALN;
1536 }
1537 if (user_mode(regs))
1538 _exception(sig, regs, code, regs->dar);
1539 else
1540 bad_page_fault(regs, regs->dar, sig);
1541
1542bail:
1543 exception_exit(prev_state);
1544}
1545
1546void StackOverflow(struct pt_regs *regs)
1547{
1548 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1549 current, regs->gpr[1]);
1550 debugger(regs);
1551 show_regs(regs);
1552 panic("kernel stack overflow");
1553}
1554
1555void nonrecoverable_exception(struct pt_regs *regs)
1556{
1557 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1558 regs->nip, regs->msr);
1559 debugger(regs);
1560 die("nonrecoverable exception", regs, SIGKILL);
1561}
1562
1563void kernel_fp_unavailable_exception(struct pt_regs *regs)
1564{
1565 enum ctx_state prev_state = exception_enter();
1566
1567 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1568 "%lx at %lx\n", regs->trap, regs->nip);
1569 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1570
1571 exception_exit(prev_state);
1572}
1573
1574void altivec_unavailable_exception(struct pt_regs *regs)
1575{
1576 enum ctx_state prev_state = exception_enter();
1577
1578 if (user_mode(regs)) {
1579 /* A user program has executed an altivec instruction,
1580 but this kernel doesn't support altivec. */
1581 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1582 goto bail;
1583 }
1584
1585 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1586 "%lx at %lx\n", regs->trap, regs->nip);
1587 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1588
1589bail:
1590 exception_exit(prev_state);
1591}
1592
1593void vsx_unavailable_exception(struct pt_regs *regs)
1594{
1595 if (user_mode(regs)) {
1596 /* A user program has executed an vsx instruction,
1597 but this kernel doesn't support vsx. */
1598 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1599 return;
1600 }
1601
1602 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1603 "%lx at %lx\n", regs->trap, regs->nip);
1604 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1605}
1606
1607#ifdef CONFIG_PPC64
1608static void tm_unavailable(struct pt_regs *regs)
1609{
1610#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1611 if (user_mode(regs)) {
1612 current->thread.load_tm++;
1613 regs->msr |= MSR_TM;
1614 tm_enable();
1615 tm_restore_sprs(&current->thread);
1616 return;
1617 }
1618#endif
1619 pr_emerg("Unrecoverable TM Unavailable Exception "
1620 "%lx at %lx\n", regs->trap, regs->nip);
1621 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1622}
1623
1624void facility_unavailable_exception(struct pt_regs *regs)
1625{
1626 static char *facility_strings[] = {
1627 [FSCR_FP_LG] = "FPU",
1628 [FSCR_VECVSX_LG] = "VMX/VSX",
1629 [FSCR_DSCR_LG] = "DSCR",
1630 [FSCR_PM_LG] = "PMU SPRs",
1631 [FSCR_BHRB_LG] = "BHRB",
1632 [FSCR_TM_LG] = "TM",
1633 [FSCR_EBB_LG] = "EBB",
1634 [FSCR_TAR_LG] = "TAR",
1635 [FSCR_MSGP_LG] = "MSGP",
1636 [FSCR_SCV_LG] = "SCV",
1637 };
1638 char *facility = "unknown";
1639 u64 value;
1640 u32 instword, rd;
1641 u8 status;
1642 bool hv;
1643
1644 hv = (TRAP(regs) == 0xf80);
1645 if (hv)
1646 value = mfspr(SPRN_HFSCR);
1647 else
1648 value = mfspr(SPRN_FSCR);
1649
1650 status = value >> 56;
1651 if ((hv || status >= 2) &&
1652 (status < ARRAY_SIZE(facility_strings)) &&
1653 facility_strings[status])
1654 facility = facility_strings[status];
1655
1656 /* We should not have taken this interrupt in kernel */
1657 if (!user_mode(regs)) {
1658 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1659 facility, status, regs->nip);
1660 die("Unexpected facility unavailable exception", regs, SIGABRT);
1661 }
1662
1663 /* We restore the interrupt state now */
1664 if (!arch_irq_disabled_regs(regs))
1665 local_irq_enable();
1666
1667 if (status == FSCR_DSCR_LG) {
1668 /*
1669 * User is accessing the DSCR register using the problem
1670 * state only SPR number (0x03) either through a mfspr or
1671 * a mtspr instruction. If it is a write attempt through
1672 * a mtspr, then we set the inherit bit. This also allows
1673 * the user to write or read the register directly in the
1674 * future by setting via the FSCR DSCR bit. But in case it
1675 * is a read DSCR attempt through a mfspr instruction, we
1676 * just emulate the instruction instead. This code path will
1677 * always emulate all the mfspr instructions till the user
1678 * has attempted at least one mtspr instruction. This way it
1679 * preserves the same behaviour when the user is accessing
1680 * the DSCR through privilege level only SPR number (0x11)
1681 * which is emulated through illegal instruction exception.
1682 * We always leave HFSCR DSCR set.
1683 */
1684 if (get_user(instword, (u32 __user *)(regs->nip))) {
1685 pr_err("Failed to fetch the user instruction\n");
1686 return;
1687 }
1688
1689 /* Write into DSCR (mtspr 0x03, RS) */
1690 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1691 == PPC_INST_MTSPR_DSCR_USER) {
1692 rd = (instword >> 21) & 0x1f;
1693 current->thread.dscr = regs->gpr[rd];
1694 current->thread.dscr_inherit = 1;
1695 current->thread.fscr |= FSCR_DSCR;
1696 mtspr(SPRN_FSCR, current->thread.fscr);
1697 }
1698
1699 /* Read from DSCR (mfspr RT, 0x03) */
1700 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1701 == PPC_INST_MFSPR_DSCR_USER) {
1702 if (emulate_instruction(regs)) {
1703 pr_err("DSCR based mfspr emulation failed\n");
1704 return;
1705 }
1706 regs->nip += 4;
1707 emulate_single_step(regs);
1708 }
1709 return;
1710 }
1711
1712 if (status == FSCR_TM_LG) {
1713 /*
1714 * If we're here then the hardware is TM aware because it
1715 * generated an exception with FSRM_TM set.
1716 *
1717 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1718 * told us not to do TM, or the kernel is not built with TM
1719 * support.
1720 *
1721 * If both of those things are true, then userspace can spam the
1722 * console by triggering the printk() below just by continually
1723 * doing tbegin (or any TM instruction). So in that case just
1724 * send the process a SIGILL immediately.
1725 */
1726 if (!cpu_has_feature(CPU_FTR_TM))
1727 goto out;
1728
1729 tm_unavailable(regs);
1730 return;
1731 }
1732
1733 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1734 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1735
1736out:
1737 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1738}
1739#endif
1740
1741#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1742
1743void fp_unavailable_tm(struct pt_regs *regs)
1744{
1745 /* Note: This does not handle any kind of FP laziness. */
1746
1747 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1748 regs->nip, regs->msr);
1749
1750 /* We can only have got here if the task started using FP after
1751 * beginning the transaction. So, the transactional regs are just a
1752 * copy of the checkpointed ones. But, we still need to recheckpoint
1753 * as we're enabling FP for the process; it will return, abort the
1754 * transaction, and probably retry but now with FP enabled. So the
1755 * checkpointed FP registers need to be loaded.
1756 */
1757 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1758 /* Reclaim didn't save out any FPRs to transact_fprs. */
1759
1760 /* Enable FP for the task: */
1761 current->thread.load_fp = 1;
1762
1763 /* This loads and recheckpoints the FP registers from
1764 * thread.fpr[]. They will remain in registers after the
1765 * checkpoint so we don't need to reload them after.
1766 * If VMX is in use, the VRs now hold checkpointed values,
1767 * so we don't want to load the VRs from the thread_struct.
1768 */
1769 tm_recheckpoint(&current->thread);
1770}
1771
1772void altivec_unavailable_tm(struct pt_regs *regs)
1773{
1774 /* See the comments in fp_unavailable_tm(). This function operates
1775 * the same way.
1776 */
1777
1778 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1779 "MSR=%lx\n",
1780 regs->nip, regs->msr);
1781 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1782 current->thread.load_vec = 1;
1783 tm_recheckpoint(&current->thread);
1784 current->thread.used_vr = 1;
1785}
1786
1787void vsx_unavailable_tm(struct pt_regs *regs)
1788{
1789 /* See the comments in fp_unavailable_tm(). This works similarly,
1790 * though we're loading both FP and VEC registers in here.
1791 *
1792 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1793 * regs. Either way, set MSR_VSX.
1794 */
1795
1796 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1797 "MSR=%lx\n",
1798 regs->nip, regs->msr);
1799
1800 current->thread.used_vsr = 1;
1801
1802 /* This reclaims FP and/or VR regs if they're already enabled */
1803 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1804
1805 current->thread.load_vec = 1;
1806 current->thread.load_fp = 1;
1807
1808 tm_recheckpoint(&current->thread);
1809}
1810#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1811
1812void performance_monitor_exception(struct pt_regs *regs)
1813{
1814 __this_cpu_inc(irq_stat.pmu_irqs);
1815
1816 perf_irq(regs);
1817}
1818
1819#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1820static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1821{
1822 int changed = 0;
1823 /*
1824 * Determine the cause of the debug event, clear the
1825 * event flags and send a trap to the handler. Torez
1826 */
1827 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1828 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1829#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1830 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1831#endif
1832 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1833 5);
1834 changed |= 0x01;
1835 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1836 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1837 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1838 6);
1839 changed |= 0x01;
1840 } else if (debug_status & DBSR_IAC1) {
1841 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1842 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1843 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1844 1);
1845 changed |= 0x01;
1846 } else if (debug_status & DBSR_IAC2) {
1847 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1848 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1849 2);
1850 changed |= 0x01;
1851 } else if (debug_status & DBSR_IAC3) {
1852 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1853 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1854 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1855 3);
1856 changed |= 0x01;
1857 } else if (debug_status & DBSR_IAC4) {
1858 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1859 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1860 4);
1861 changed |= 0x01;
1862 }
1863 /*
1864 * At the point this routine was called, the MSR(DE) was turned off.
1865 * Check all other debug flags and see if that bit needs to be turned
1866 * back on or not.
1867 */
1868 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1869 current->thread.debug.dbcr1))
1870 regs->msr |= MSR_DE;
1871 else
1872 /* Make sure the IDM flag is off */
1873 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1874
1875 if (changed & 0x01)
1876 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1877}
1878
1879void DebugException(struct pt_regs *regs, unsigned long debug_status)
1880{
1881 current->thread.debug.dbsr = debug_status;
1882
1883 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1884 * on server, it stops on the target of the branch. In order to simulate
1885 * the server behaviour, we thus restart right away with a single step
1886 * instead of stopping here when hitting a BT
1887 */
1888 if (debug_status & DBSR_BT) {
1889 regs->msr &= ~MSR_DE;
1890
1891 /* Disable BT */
1892 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1893 /* Clear the BT event */
1894 mtspr(SPRN_DBSR, DBSR_BT);
1895
1896 /* Do the single step trick only when coming from userspace */
1897 if (user_mode(regs)) {
1898 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1899 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1900 regs->msr |= MSR_DE;
1901 return;
1902 }
1903
1904 if (kprobe_post_handler(regs))
1905 return;
1906
1907 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1908 5, SIGTRAP) == NOTIFY_STOP) {
1909 return;
1910 }
1911 if (debugger_sstep(regs))
1912 return;
1913 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1914 regs->msr &= ~MSR_DE;
1915
1916 /* Disable instruction completion */
1917 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1918 /* Clear the instruction completion event */
1919 mtspr(SPRN_DBSR, DBSR_IC);
1920
1921 if (kprobe_post_handler(regs))
1922 return;
1923
1924 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1925 5, SIGTRAP) == NOTIFY_STOP) {
1926 return;
1927 }
1928
1929 if (debugger_sstep(regs))
1930 return;
1931
1932 if (user_mode(regs)) {
1933 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1934 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1935 current->thread.debug.dbcr1))
1936 regs->msr |= MSR_DE;
1937 else
1938 /* Make sure the IDM bit is off */
1939 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1940 }
1941
1942 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1943 } else
1944 handle_debug(regs, debug_status);
1945}
1946NOKPROBE_SYMBOL(DebugException);
1947#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1948
1949#if !defined(CONFIG_TAU_INT)
1950void TAUException(struct pt_regs *regs)
1951{
1952 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1953 regs->nip, regs->msr, regs->trap, print_tainted());
1954}
1955#endif /* CONFIG_INT_TAU */
1956
1957#ifdef CONFIG_ALTIVEC
1958void altivec_assist_exception(struct pt_regs *regs)
1959{
1960 int err;
1961
1962 if (!user_mode(regs)) {
1963 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1964 " at %lx\n", regs->nip);
1965 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1966 }
1967
1968 flush_altivec_to_thread(current);
1969
1970 PPC_WARN_EMULATED(altivec, regs);
1971 err = emulate_altivec(regs);
1972 if (err == 0) {
1973 regs->nip += 4; /* skip emulated instruction */
1974 emulate_single_step(regs);
1975 return;
1976 }
1977
1978 if (err == -EFAULT) {
1979 /* got an error reading the instruction */
1980 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1981 } else {
1982 /* didn't recognize the instruction */
1983 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1984 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1985 "in %s at %lx\n", current->comm, regs->nip);
1986 current->thread.vr_state.vscr.u[3] |= 0x10000;
1987 }
1988}
1989#endif /* CONFIG_ALTIVEC */
1990
1991#ifdef CONFIG_FSL_BOOKE
1992void CacheLockingException(struct pt_regs *regs, unsigned long address,
1993 unsigned long error_code)
1994{
1995 /* We treat cache locking instructions from the user
1996 * as priv ops, in the future we could try to do
1997 * something smarter
1998 */
1999 if (error_code & (ESR_DLK|ESR_ILK))
2000 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2001 return;
2002}
2003#endif /* CONFIG_FSL_BOOKE */
2004
2005#ifdef CONFIG_SPE
2006void SPEFloatingPointException(struct pt_regs *regs)
2007{
2008 extern int do_spe_mathemu(struct pt_regs *regs);
2009 unsigned long spefscr;
2010 int fpexc_mode;
2011 int code = FPE_FLTUNK;
2012 int err;
2013
2014 flush_spe_to_thread(current);
2015
2016 spefscr = current->thread.spefscr;
2017 fpexc_mode = current->thread.fpexc_mode;
2018
2019 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2020 code = FPE_FLTOVF;
2021 }
2022 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2023 code = FPE_FLTUND;
2024 }
2025 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2026 code = FPE_FLTDIV;
2027 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2028 code = FPE_FLTINV;
2029 }
2030 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2031 code = FPE_FLTRES;
2032
2033 err = do_spe_mathemu(regs);
2034 if (err == 0) {
2035 regs->nip += 4; /* skip emulated instruction */
2036 emulate_single_step(regs);
2037 return;
2038 }
2039
2040 if (err == -EFAULT) {
2041 /* got an error reading the instruction */
2042 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2043 } else if (err == -EINVAL) {
2044 /* didn't recognize the instruction */
2045 printk(KERN_ERR "unrecognized spe instruction "
2046 "in %s at %lx\n", current->comm, regs->nip);
2047 } else {
2048 _exception(SIGFPE, regs, code, regs->nip);
2049 }
2050
2051 return;
2052}
2053
2054void SPEFloatingPointRoundException(struct pt_regs *regs)
2055{
2056 extern int speround_handler(struct pt_regs *regs);
2057 int err;
2058
2059 preempt_disable();
2060 if (regs->msr & MSR_SPE)
2061 giveup_spe(current);
2062 preempt_enable();
2063
2064 regs->nip -= 4;
2065 err = speround_handler(regs);
2066 if (err == 0) {
2067 regs->nip += 4; /* skip emulated instruction */
2068 emulate_single_step(regs);
2069 return;
2070 }
2071
2072 if (err == -EFAULT) {
2073 /* got an error reading the instruction */
2074 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2075 } else if (err == -EINVAL) {
2076 /* didn't recognize the instruction */
2077 printk(KERN_ERR "unrecognized spe instruction "
2078 "in %s at %lx\n", current->comm, regs->nip);
2079 } else {
2080 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2081 return;
2082 }
2083}
2084#endif
2085
2086/*
2087 * We enter here if we get an unrecoverable exception, that is, one
2088 * that happened at a point where the RI (recoverable interrupt) bit
2089 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2090 * we therefore lost state by taking this exception.
2091 */
2092void unrecoverable_exception(struct pt_regs *regs)
2093{
2094 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
2095 regs->trap, regs->nip);
2096 die("Unrecoverable exception", regs, SIGABRT);
2097}
2098NOKPROBE_SYMBOL(unrecoverable_exception);
2099
2100#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2101/*
2102 * Default handler for a Watchdog exception,
2103 * spins until a reboot occurs
2104 */
2105void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2106{
2107 /* Generic WatchdogHandler, implement your own */
2108 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2109 return;
2110}
2111
2112void WatchdogException(struct pt_regs *regs)
2113{
2114 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2115 WatchdogHandler(regs);
2116}
2117#endif
2118
2119/*
2120 * We enter here if we discover during exception entry that we are
2121 * running in supervisor mode with a userspace value in the stack pointer.
2122 */
2123void kernel_bad_stack(struct pt_regs *regs)
2124{
2125 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2126 regs->gpr[1], regs->nip);
2127 die("Bad kernel stack pointer", regs, SIGABRT);
2128}
2129NOKPROBE_SYMBOL(kernel_bad_stack);
2130
2131void __init trap_init(void)
2132{
2133}
2134
2135
2136#ifdef CONFIG_PPC_EMULATED_STATS
2137
2138#define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2139
2140struct ppc_emulated ppc_emulated = {
2141#ifdef CONFIG_ALTIVEC
2142 WARN_EMULATED_SETUP(altivec),
2143#endif
2144 WARN_EMULATED_SETUP(dcba),
2145 WARN_EMULATED_SETUP(dcbz),
2146 WARN_EMULATED_SETUP(fp_pair),
2147 WARN_EMULATED_SETUP(isel),
2148 WARN_EMULATED_SETUP(mcrxr),
2149 WARN_EMULATED_SETUP(mfpvr),
2150 WARN_EMULATED_SETUP(multiple),
2151 WARN_EMULATED_SETUP(popcntb),
2152 WARN_EMULATED_SETUP(spe),
2153 WARN_EMULATED_SETUP(string),
2154 WARN_EMULATED_SETUP(sync),
2155 WARN_EMULATED_SETUP(unaligned),
2156#ifdef CONFIG_MATH_EMULATION
2157 WARN_EMULATED_SETUP(math),
2158#endif
2159#ifdef CONFIG_VSX
2160 WARN_EMULATED_SETUP(vsx),
2161#endif
2162#ifdef CONFIG_PPC64
2163 WARN_EMULATED_SETUP(mfdscr),
2164 WARN_EMULATED_SETUP(mtdscr),
2165 WARN_EMULATED_SETUP(lq_stq),
2166 WARN_EMULATED_SETUP(lxvw4x),
2167 WARN_EMULATED_SETUP(lxvh8x),
2168 WARN_EMULATED_SETUP(lxvd2x),
2169 WARN_EMULATED_SETUP(lxvb16x),
2170#endif
2171};
2172
2173u32 ppc_warn_emulated;
2174
2175void ppc_warn_emulated_print(const char *type)
2176{
2177 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2178 type);
2179}
2180
2181static int __init ppc_warn_emulated_init(void)
2182{
2183 struct dentry *dir, *d;
2184 unsigned int i;
2185 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2186
2187 if (!powerpc_debugfs_root)
2188 return -ENODEV;
2189
2190 dir = debugfs_create_dir("emulated_instructions",
2191 powerpc_debugfs_root);
2192 if (!dir)
2193 return -ENOMEM;
2194
2195 d = debugfs_create_u32("do_warn", 0644, dir,
2196 &ppc_warn_emulated);
2197 if (!d)
2198 goto fail;
2199
2200 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2201 d = debugfs_create_u32(entries[i].name, 0644, dir,
2202 (u32 *)&entries[i].val.counter);
2203 if (!d)
2204 goto fail;
2205 }
2206
2207 return 0;
2208
2209fail:
2210 debugfs_remove_recursive(dir);
2211 return -ENOMEM;
2212}
2213
2214device_initcall(ppc_warn_emulated_init);
2215
2216#endif /* CONFIG_PPC_EMULATED_STATS */