Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * PCI address cache; allows the lookup of PCI devices based on I/O address |
| 3 | * |
| 4 | * Copyright IBM Corporation 2004 |
| 5 | * Copyright Linas Vepstas <linas@austin.ibm.com> 2004 |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | */ |
| 21 | |
| 22 | #include <linux/list.h> |
| 23 | #include <linux/pci.h> |
| 24 | #include <linux/rbtree.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/spinlock.h> |
| 27 | #include <linux/atomic.h> |
| 28 | #include <asm/pci-bridge.h> |
| 29 | #include <asm/ppc-pci.h> |
| 30 | |
| 31 | |
| 32 | /** |
| 33 | * The pci address cache subsystem. This subsystem places |
| 34 | * PCI device address resources into a red-black tree, sorted |
| 35 | * according to the address range, so that given only an i/o |
| 36 | * address, the corresponding PCI device can be **quickly** |
| 37 | * found. It is safe to perform an address lookup in an interrupt |
| 38 | * context; this ability is an important feature. |
| 39 | * |
| 40 | * Currently, the only customer of this code is the EEH subsystem; |
| 41 | * thus, this code has been somewhat tailored to suit EEH better. |
| 42 | * In particular, the cache does *not* hold the addresses of devices |
| 43 | * for which EEH is not enabled. |
| 44 | * |
| 45 | * (Implementation Note: The RB tree seems to be better/faster |
| 46 | * than any hash algo I could think of for this problem, even |
| 47 | * with the penalty of slow pointer chases for d-cache misses). |
| 48 | */ |
| 49 | struct pci_io_addr_range { |
| 50 | struct rb_node rb_node; |
| 51 | resource_size_t addr_lo; |
| 52 | resource_size_t addr_hi; |
| 53 | struct eeh_dev *edev; |
| 54 | struct pci_dev *pcidev; |
| 55 | unsigned long flags; |
| 56 | }; |
| 57 | |
| 58 | static struct pci_io_addr_cache { |
| 59 | struct rb_root rb_root; |
| 60 | spinlock_t piar_lock; |
| 61 | } pci_io_addr_cache_root; |
| 62 | |
| 63 | static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr) |
| 64 | { |
| 65 | struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; |
| 66 | |
| 67 | while (n) { |
| 68 | struct pci_io_addr_range *piar; |
| 69 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| 70 | |
| 71 | if (addr < piar->addr_lo) |
| 72 | n = n->rb_left; |
| 73 | else if (addr > piar->addr_hi) |
| 74 | n = n->rb_right; |
| 75 | else |
| 76 | return piar->edev; |
| 77 | } |
| 78 | |
| 79 | return NULL; |
| 80 | } |
| 81 | |
| 82 | /** |
| 83 | * eeh_addr_cache_get_dev - Get device, given only address |
| 84 | * @addr: mmio (PIO) phys address or i/o port number |
| 85 | * |
| 86 | * Given an mmio phys address, or a port number, find a pci device |
| 87 | * that implements this address. I/O port numbers are assumed to be offset |
| 88 | * from zero (that is, they do *not* have pci_io_addr added in). |
| 89 | * It is safe to call this function within an interrupt. |
| 90 | */ |
| 91 | struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr) |
| 92 | { |
| 93 | struct eeh_dev *edev; |
| 94 | unsigned long flags; |
| 95 | |
| 96 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| 97 | edev = __eeh_addr_cache_get_device(addr); |
| 98 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| 99 | return edev; |
| 100 | } |
| 101 | |
| 102 | #ifdef DEBUG |
| 103 | /* |
| 104 | * Handy-dandy debug print routine, does nothing more |
| 105 | * than print out the contents of our addr cache. |
| 106 | */ |
| 107 | static void eeh_addr_cache_print(struct pci_io_addr_cache *cache) |
| 108 | { |
| 109 | struct rb_node *n; |
| 110 | int cnt = 0; |
| 111 | |
| 112 | n = rb_first(&cache->rb_root); |
| 113 | while (n) { |
| 114 | struct pci_io_addr_range *piar; |
| 115 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| 116 | pr_debug("PCI: %s addr range %d [%pap-%pap]: %s\n", |
| 117 | (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, |
| 118 | &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev)); |
| 119 | cnt++; |
| 120 | n = rb_next(n); |
| 121 | } |
| 122 | } |
| 123 | #endif |
| 124 | |
| 125 | /* Insert address range into the rb tree. */ |
| 126 | static struct pci_io_addr_range * |
| 127 | eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo, |
| 128 | resource_size_t ahi, unsigned long flags) |
| 129 | { |
| 130 | struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; |
| 131 | struct rb_node *parent = NULL; |
| 132 | struct pci_io_addr_range *piar; |
| 133 | |
| 134 | /* Walk tree, find a place to insert into tree */ |
| 135 | while (*p) { |
| 136 | parent = *p; |
| 137 | piar = rb_entry(parent, struct pci_io_addr_range, rb_node); |
| 138 | if (ahi < piar->addr_lo) { |
| 139 | p = &parent->rb_left; |
| 140 | } else if (alo > piar->addr_hi) { |
| 141 | p = &parent->rb_right; |
| 142 | } else { |
| 143 | if (dev != piar->pcidev || |
| 144 | alo != piar->addr_lo || ahi != piar->addr_hi) { |
| 145 | pr_warn("PIAR: overlapping address range\n"); |
| 146 | } |
| 147 | return piar; |
| 148 | } |
| 149 | } |
| 150 | piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); |
| 151 | if (!piar) |
| 152 | return NULL; |
| 153 | |
| 154 | piar->addr_lo = alo; |
| 155 | piar->addr_hi = ahi; |
| 156 | piar->edev = pci_dev_to_eeh_dev(dev); |
| 157 | piar->pcidev = dev; |
| 158 | piar->flags = flags; |
| 159 | |
| 160 | #ifdef DEBUG |
| 161 | pr_debug("PIAR: insert range=[%pap:%pap] dev=%s\n", |
| 162 | &alo, &ahi, pci_name(dev)); |
| 163 | #endif |
| 164 | |
| 165 | rb_link_node(&piar->rb_node, parent, p); |
| 166 | rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); |
| 167 | |
| 168 | return piar; |
| 169 | } |
| 170 | |
| 171 | static void __eeh_addr_cache_insert_dev(struct pci_dev *dev) |
| 172 | { |
| 173 | struct pci_dn *pdn; |
| 174 | struct eeh_dev *edev; |
| 175 | int i; |
| 176 | |
| 177 | pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); |
| 178 | if (!pdn) { |
| 179 | pr_warn("PCI: no pci dn found for dev=%s\n", |
| 180 | pci_name(dev)); |
| 181 | return; |
| 182 | } |
| 183 | |
| 184 | edev = pdn_to_eeh_dev(pdn); |
| 185 | if (!edev) { |
| 186 | pr_warn("PCI: no EEH dev found for %s\n", |
| 187 | pci_name(dev)); |
| 188 | return; |
| 189 | } |
| 190 | |
| 191 | /* Skip any devices for which EEH is not enabled. */ |
| 192 | if (!edev->pe) { |
| 193 | dev_dbg(&dev->dev, "EEH: Skip building address cache\n"); |
| 194 | return; |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * Walk resources on this device, poke the first 7 (6 normal BAR and 1 |
| 199 | * ROM BAR) into the tree. |
| 200 | */ |
| 201 | for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| 202 | resource_size_t start = pci_resource_start(dev,i); |
| 203 | resource_size_t end = pci_resource_end(dev,i); |
| 204 | unsigned long flags = pci_resource_flags(dev,i); |
| 205 | |
| 206 | /* We are interested only bus addresses, not dma or other stuff */ |
| 207 | if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) |
| 208 | continue; |
| 209 | if (start == 0 || ~start == 0 || end == 0 || ~end == 0) |
| 210 | continue; |
| 211 | eeh_addr_cache_insert(dev, start, end, flags); |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | /** |
| 216 | * eeh_addr_cache_insert_dev - Add a device to the address cache |
| 217 | * @dev: PCI device whose I/O addresses we are interested in. |
| 218 | * |
| 219 | * In order to support the fast lookup of devices based on addresses, |
| 220 | * we maintain a cache of devices that can be quickly searched. |
| 221 | * This routine adds a device to that cache. |
| 222 | */ |
| 223 | void eeh_addr_cache_insert_dev(struct pci_dev *dev) |
| 224 | { |
| 225 | unsigned long flags; |
| 226 | |
| 227 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| 228 | __eeh_addr_cache_insert_dev(dev); |
| 229 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| 230 | } |
| 231 | |
| 232 | static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev) |
| 233 | { |
| 234 | struct rb_node *n; |
| 235 | |
| 236 | restart: |
| 237 | n = rb_first(&pci_io_addr_cache_root.rb_root); |
| 238 | while (n) { |
| 239 | struct pci_io_addr_range *piar; |
| 240 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| 241 | |
| 242 | if (piar->pcidev == dev) { |
| 243 | rb_erase(n, &pci_io_addr_cache_root.rb_root); |
| 244 | kfree(piar); |
| 245 | goto restart; |
| 246 | } |
| 247 | n = rb_next(n); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | * eeh_addr_cache_rmv_dev - remove pci device from addr cache |
| 253 | * @dev: device to remove |
| 254 | * |
| 255 | * Remove a device from the addr-cache tree. |
| 256 | * This is potentially expensive, since it will walk |
| 257 | * the tree multiple times (once per resource). |
| 258 | * But so what; device removal doesn't need to be that fast. |
| 259 | */ |
| 260 | void eeh_addr_cache_rmv_dev(struct pci_dev *dev) |
| 261 | { |
| 262 | unsigned long flags; |
| 263 | |
| 264 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| 265 | __eeh_addr_cache_rmv_dev(dev); |
| 266 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| 267 | } |
| 268 | |
| 269 | /** |
| 270 | * eeh_addr_cache_build - Build a cache of I/O addresses |
| 271 | * |
| 272 | * Build a cache of pci i/o addresses. This cache will be used to |
| 273 | * find the pci device that corresponds to a given address. |
| 274 | * This routine scans all pci busses to build the cache. |
| 275 | * Must be run late in boot process, after the pci controllers |
| 276 | * have been scanned for devices (after all device resources are known). |
| 277 | */ |
| 278 | void eeh_addr_cache_build(void) |
| 279 | { |
| 280 | struct pci_dn *pdn; |
| 281 | struct eeh_dev *edev; |
| 282 | struct pci_dev *dev = NULL; |
| 283 | |
| 284 | spin_lock_init(&pci_io_addr_cache_root.piar_lock); |
| 285 | |
| 286 | for_each_pci_dev(dev) { |
| 287 | pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); |
| 288 | if (!pdn) |
| 289 | continue; |
| 290 | |
| 291 | edev = pdn_to_eeh_dev(pdn); |
| 292 | if (!edev) |
| 293 | continue; |
| 294 | |
| 295 | dev->dev.archdata.edev = edev; |
| 296 | edev->pdev = dev; |
| 297 | |
| 298 | eeh_addr_cache_insert_dev(dev); |
| 299 | eeh_sysfs_add_device(dev); |
| 300 | } |
| 301 | |
| 302 | #ifdef DEBUG |
| 303 | /* Verify tree built up above, echo back the list of addrs. */ |
| 304 | eeh_addr_cache_print(&pci_io_addr_cache_root); |
| 305 | #endif |
| 306 | } |