Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright IBM Corporation 2001, 2005, 2006 |
| 3 | * Copyright Dave Engebretsen & Todd Inglett 2001 |
| 4 | * Copyright Linas Vepstas 2005, 2006 |
| 5 | * Copyright 2001-2012 IBM Corporation. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | * |
| 21 | * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com> |
| 22 | */ |
| 23 | |
| 24 | #include <linux/delay.h> |
| 25 | #include <linux/sched.h> |
| 26 | #include <linux/init.h> |
| 27 | #include <linux/list.h> |
| 28 | #include <linux/pci.h> |
| 29 | #include <linux/iommu.h> |
| 30 | #include <linux/proc_fs.h> |
| 31 | #include <linux/rbtree.h> |
| 32 | #include <linux/reboot.h> |
| 33 | #include <linux/seq_file.h> |
| 34 | #include <linux/spinlock.h> |
| 35 | #include <linux/export.h> |
| 36 | #include <linux/of.h> |
| 37 | |
| 38 | #include <linux/atomic.h> |
| 39 | #include <asm/debugfs.h> |
| 40 | #include <asm/eeh.h> |
| 41 | #include <asm/eeh_event.h> |
| 42 | #include <asm/io.h> |
| 43 | #include <asm/iommu.h> |
| 44 | #include <asm/machdep.h> |
| 45 | #include <asm/ppc-pci.h> |
| 46 | #include <asm/rtas.h> |
| 47 | #include <asm/pte-walk.h> |
| 48 | |
| 49 | |
| 50 | /** Overview: |
| 51 | * EEH, or "Enhanced Error Handling" is a PCI bridge technology for |
| 52 | * dealing with PCI bus errors that can't be dealt with within the |
| 53 | * usual PCI framework, except by check-stopping the CPU. Systems |
| 54 | * that are designed for high-availability/reliability cannot afford |
| 55 | * to crash due to a "mere" PCI error, thus the need for EEH. |
| 56 | * An EEH-capable bridge operates by converting a detected error |
| 57 | * into a "slot freeze", taking the PCI adapter off-line, making |
| 58 | * the slot behave, from the OS'es point of view, as if the slot |
| 59 | * were "empty": all reads return 0xff's and all writes are silently |
| 60 | * ignored. EEH slot isolation events can be triggered by parity |
| 61 | * errors on the address or data busses (e.g. during posted writes), |
| 62 | * which in turn might be caused by low voltage on the bus, dust, |
| 63 | * vibration, humidity, radioactivity or plain-old failed hardware. |
| 64 | * |
| 65 | * Note, however, that one of the leading causes of EEH slot |
| 66 | * freeze events are buggy device drivers, buggy device microcode, |
| 67 | * or buggy device hardware. This is because any attempt by the |
| 68 | * device to bus-master data to a memory address that is not |
| 69 | * assigned to the device will trigger a slot freeze. (The idea |
| 70 | * is to prevent devices-gone-wild from corrupting system memory). |
| 71 | * Buggy hardware/drivers will have a miserable time co-existing |
| 72 | * with EEH. |
| 73 | * |
| 74 | * Ideally, a PCI device driver, when suspecting that an isolation |
| 75 | * event has occurred (e.g. by reading 0xff's), will then ask EEH |
| 76 | * whether this is the case, and then take appropriate steps to |
| 77 | * reset the PCI slot, the PCI device, and then resume operations. |
| 78 | * However, until that day, the checking is done here, with the |
| 79 | * eeh_check_failure() routine embedded in the MMIO macros. If |
| 80 | * the slot is found to be isolated, an "EEH Event" is synthesized |
| 81 | * and sent out for processing. |
| 82 | */ |
| 83 | |
| 84 | /* If a device driver keeps reading an MMIO register in an interrupt |
| 85 | * handler after a slot isolation event, it might be broken. |
| 86 | * This sets the threshold for how many read attempts we allow |
| 87 | * before printing an error message. |
| 88 | */ |
| 89 | #define EEH_MAX_FAILS 2100000 |
| 90 | |
| 91 | /* Time to wait for a PCI slot to report status, in milliseconds */ |
| 92 | #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000) |
| 93 | |
| 94 | /* |
| 95 | * EEH probe mode support, which is part of the flags, |
| 96 | * is to support multiple platforms for EEH. Some platforms |
| 97 | * like pSeries do PCI emunation based on device tree. |
| 98 | * However, other platforms like powernv probe PCI devices |
| 99 | * from hardware. The flag is used to distinguish that. |
| 100 | * In addition, struct eeh_ops::probe would be invoked for |
| 101 | * particular OF node or PCI device so that the corresponding |
| 102 | * PE would be created there. |
| 103 | */ |
| 104 | int eeh_subsystem_flags; |
| 105 | EXPORT_SYMBOL(eeh_subsystem_flags); |
| 106 | |
| 107 | /* |
| 108 | * EEH allowed maximal frozen times. If one particular PE's |
| 109 | * frozen count in last hour exceeds this limit, the PE will |
| 110 | * be forced to be offline permanently. |
| 111 | */ |
| 112 | int eeh_max_freezes = 5; |
| 113 | |
| 114 | /* Platform dependent EEH operations */ |
| 115 | struct eeh_ops *eeh_ops = NULL; |
| 116 | |
| 117 | /* Lock to avoid races due to multiple reports of an error */ |
| 118 | DEFINE_RAW_SPINLOCK(confirm_error_lock); |
| 119 | EXPORT_SYMBOL_GPL(confirm_error_lock); |
| 120 | |
| 121 | /* Lock to protect passed flags */ |
| 122 | static DEFINE_MUTEX(eeh_dev_mutex); |
| 123 | |
| 124 | /* Buffer for reporting pci register dumps. Its here in BSS, and |
| 125 | * not dynamically alloced, so that it ends up in RMO where RTAS |
| 126 | * can access it. |
| 127 | */ |
| 128 | #define EEH_PCI_REGS_LOG_LEN 8192 |
| 129 | static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; |
| 130 | |
| 131 | /* |
| 132 | * The struct is used to maintain the EEH global statistic |
| 133 | * information. Besides, the EEH global statistics will be |
| 134 | * exported to user space through procfs |
| 135 | */ |
| 136 | struct eeh_stats { |
| 137 | u64 no_device; /* PCI device not found */ |
| 138 | u64 no_dn; /* OF node not found */ |
| 139 | u64 no_cfg_addr; /* Config address not found */ |
| 140 | u64 ignored_check; /* EEH check skipped */ |
| 141 | u64 total_mmio_ffs; /* Total EEH checks */ |
| 142 | u64 false_positives; /* Unnecessary EEH checks */ |
| 143 | u64 slot_resets; /* PE reset */ |
| 144 | }; |
| 145 | |
| 146 | static struct eeh_stats eeh_stats; |
| 147 | |
| 148 | static int __init eeh_setup(char *str) |
| 149 | { |
| 150 | if (!strcmp(str, "off")) |
| 151 | eeh_add_flag(EEH_FORCE_DISABLED); |
| 152 | else if (!strcmp(str, "early_log")) |
| 153 | eeh_add_flag(EEH_EARLY_DUMP_LOG); |
| 154 | |
| 155 | return 1; |
| 156 | } |
| 157 | __setup("eeh=", eeh_setup); |
| 158 | |
| 159 | /* |
| 160 | * This routine captures assorted PCI configuration space data |
| 161 | * for the indicated PCI device, and puts them into a buffer |
| 162 | * for RTAS error logging. |
| 163 | */ |
| 164 | static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len) |
| 165 | { |
| 166 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 167 | u32 cfg; |
| 168 | int cap, i; |
| 169 | int n = 0, l = 0; |
| 170 | char buffer[128]; |
| 171 | |
| 172 | if (!pdn) { |
| 173 | pr_warn("EEH: Note: No error log for absent device.\n"); |
| 174 | return 0; |
| 175 | } |
| 176 | |
| 177 | n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n", |
| 178 | pdn->phb->global_number, pdn->busno, |
| 179 | PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); |
| 180 | pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n", |
| 181 | pdn->phb->global_number, pdn->busno, |
| 182 | PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); |
| 183 | |
| 184 | eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg); |
| 185 | n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); |
| 186 | pr_warn("EEH: PCI device/vendor: %08x\n", cfg); |
| 187 | |
| 188 | eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg); |
| 189 | n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); |
| 190 | pr_warn("EEH: PCI cmd/status register: %08x\n", cfg); |
| 191 | |
| 192 | /* Gather bridge-specific registers */ |
| 193 | if (edev->mode & EEH_DEV_BRIDGE) { |
| 194 | eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg); |
| 195 | n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); |
| 196 | pr_warn("EEH: Bridge secondary status: %04x\n", cfg); |
| 197 | |
| 198 | eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg); |
| 199 | n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); |
| 200 | pr_warn("EEH: Bridge control: %04x\n", cfg); |
| 201 | } |
| 202 | |
| 203 | /* Dump out the PCI-X command and status regs */ |
| 204 | cap = edev->pcix_cap; |
| 205 | if (cap) { |
| 206 | eeh_ops->read_config(pdn, cap, 4, &cfg); |
| 207 | n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); |
| 208 | pr_warn("EEH: PCI-X cmd: %08x\n", cfg); |
| 209 | |
| 210 | eeh_ops->read_config(pdn, cap+4, 4, &cfg); |
| 211 | n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); |
| 212 | pr_warn("EEH: PCI-X status: %08x\n", cfg); |
| 213 | } |
| 214 | |
| 215 | /* If PCI-E capable, dump PCI-E cap 10 */ |
| 216 | cap = edev->pcie_cap; |
| 217 | if (cap) { |
| 218 | n += scnprintf(buf+n, len-n, "pci-e cap10:\n"); |
| 219 | pr_warn("EEH: PCI-E capabilities and status follow:\n"); |
| 220 | |
| 221 | for (i=0; i<=8; i++) { |
| 222 | eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); |
| 223 | n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| 224 | |
| 225 | if ((i % 4) == 0) { |
| 226 | if (i != 0) |
| 227 | pr_warn("%s\n", buffer); |
| 228 | |
| 229 | l = scnprintf(buffer, sizeof(buffer), |
| 230 | "EEH: PCI-E %02x: %08x ", |
| 231 | 4*i, cfg); |
| 232 | } else { |
| 233 | l += scnprintf(buffer+l, sizeof(buffer)-l, |
| 234 | "%08x ", cfg); |
| 235 | } |
| 236 | |
| 237 | } |
| 238 | |
| 239 | pr_warn("%s\n", buffer); |
| 240 | } |
| 241 | |
| 242 | /* If AER capable, dump it */ |
| 243 | cap = edev->aer_cap; |
| 244 | if (cap) { |
| 245 | n += scnprintf(buf+n, len-n, "pci-e AER:\n"); |
| 246 | pr_warn("EEH: PCI-E AER capability register set follows:\n"); |
| 247 | |
| 248 | for (i=0; i<=13; i++) { |
| 249 | eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); |
| 250 | n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| 251 | |
| 252 | if ((i % 4) == 0) { |
| 253 | if (i != 0) |
| 254 | pr_warn("%s\n", buffer); |
| 255 | |
| 256 | l = scnprintf(buffer, sizeof(buffer), |
| 257 | "EEH: PCI-E AER %02x: %08x ", |
| 258 | 4*i, cfg); |
| 259 | } else { |
| 260 | l += scnprintf(buffer+l, sizeof(buffer)-l, |
| 261 | "%08x ", cfg); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | pr_warn("%s\n", buffer); |
| 266 | } |
| 267 | |
| 268 | return n; |
| 269 | } |
| 270 | |
| 271 | static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag) |
| 272 | { |
| 273 | struct eeh_dev *edev, *tmp; |
| 274 | size_t *plen = flag; |
| 275 | |
| 276 | eeh_pe_for_each_dev(pe, edev, tmp) |
| 277 | *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen, |
| 278 | EEH_PCI_REGS_LOG_LEN - *plen); |
| 279 | |
| 280 | return NULL; |
| 281 | } |
| 282 | |
| 283 | /** |
| 284 | * eeh_slot_error_detail - Generate combined log including driver log and error log |
| 285 | * @pe: EEH PE |
| 286 | * @severity: temporary or permanent error log |
| 287 | * |
| 288 | * This routine should be called to generate the combined log, which |
| 289 | * is comprised of driver log and error log. The driver log is figured |
| 290 | * out from the config space of the corresponding PCI device, while |
| 291 | * the error log is fetched through platform dependent function call. |
| 292 | */ |
| 293 | void eeh_slot_error_detail(struct eeh_pe *pe, int severity) |
| 294 | { |
| 295 | size_t loglen = 0; |
| 296 | |
| 297 | /* |
| 298 | * When the PHB is fenced or dead, it's pointless to collect |
| 299 | * the data from PCI config space because it should return |
| 300 | * 0xFF's. For ER, we still retrieve the data from the PCI |
| 301 | * config space. |
| 302 | * |
| 303 | * For pHyp, we have to enable IO for log retrieval. Otherwise, |
| 304 | * 0xFF's is always returned from PCI config space. |
| 305 | * |
| 306 | * When the @severity is EEH_LOG_PERM, the PE is going to be |
| 307 | * removed. Prior to that, the drivers for devices included in |
| 308 | * the PE will be closed. The drivers rely on working IO path |
| 309 | * to bring the devices to quiet state. Otherwise, PCI traffic |
| 310 | * from those devices after they are removed is like to cause |
| 311 | * another unexpected EEH error. |
| 312 | */ |
| 313 | if (!(pe->type & EEH_PE_PHB)) { |
| 314 | if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) || |
| 315 | severity == EEH_LOG_PERM) |
| 316 | eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); |
| 317 | |
| 318 | /* |
| 319 | * The config space of some PCI devices can't be accessed |
| 320 | * when their PEs are in frozen state. Otherwise, fenced |
| 321 | * PHB might be seen. Those PEs are identified with flag |
| 322 | * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED |
| 323 | * is set automatically when the PE is put to EEH_PE_ISOLATED. |
| 324 | * |
| 325 | * Restoring BARs possibly triggers PCI config access in |
| 326 | * (OPAL) firmware and then causes fenced PHB. If the |
| 327 | * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's |
| 328 | * pointless to restore BARs and dump config space. |
| 329 | */ |
| 330 | eeh_ops->configure_bridge(pe); |
| 331 | if (!(pe->state & EEH_PE_CFG_BLOCKED)) { |
| 332 | eeh_pe_restore_bars(pe); |
| 333 | |
| 334 | pci_regs_buf[0] = 0; |
| 335 | eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | eeh_ops->get_log(pe, severity, pci_regs_buf, loglen); |
| 340 | } |
| 341 | |
| 342 | /** |
| 343 | * eeh_token_to_phys - Convert EEH address token to phys address |
| 344 | * @token: I/O token, should be address in the form 0xA.... |
| 345 | * |
| 346 | * This routine should be called to convert virtual I/O address |
| 347 | * to physical one. |
| 348 | */ |
| 349 | static inline unsigned long eeh_token_to_phys(unsigned long token) |
| 350 | { |
| 351 | pte_t *ptep; |
| 352 | unsigned long pa; |
| 353 | int hugepage_shift; |
| 354 | |
| 355 | /* |
| 356 | * We won't find hugepages here(this is iomem). Hence we are not |
| 357 | * worried about _PAGE_SPLITTING/collapse. Also we will not hit |
| 358 | * page table free, because of init_mm. |
| 359 | */ |
| 360 | ptep = find_init_mm_pte(token, &hugepage_shift); |
| 361 | if (!ptep) |
| 362 | return token; |
| 363 | WARN_ON(hugepage_shift); |
| 364 | pa = pte_pfn(*ptep) << PAGE_SHIFT; |
| 365 | |
| 366 | return pa | (token & (PAGE_SIZE-1)); |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * On PowerNV platform, we might already have fenced PHB there. |
| 371 | * For that case, it's meaningless to recover frozen PE. Intead, |
| 372 | * We have to handle fenced PHB firstly. |
| 373 | */ |
| 374 | static int eeh_phb_check_failure(struct eeh_pe *pe) |
| 375 | { |
| 376 | struct eeh_pe *phb_pe; |
| 377 | unsigned long flags; |
| 378 | int ret; |
| 379 | |
| 380 | if (!eeh_has_flag(EEH_PROBE_MODE_DEV)) |
| 381 | return -EPERM; |
| 382 | |
| 383 | /* Find the PHB PE */ |
| 384 | phb_pe = eeh_phb_pe_get(pe->phb); |
| 385 | if (!phb_pe) { |
| 386 | pr_warn("%s Can't find PE for PHB#%x\n", |
| 387 | __func__, pe->phb->global_number); |
| 388 | return -EEXIST; |
| 389 | } |
| 390 | |
| 391 | /* If the PHB has been in problematic state */ |
| 392 | eeh_serialize_lock(&flags); |
| 393 | if (phb_pe->state & EEH_PE_ISOLATED) { |
| 394 | ret = 0; |
| 395 | goto out; |
| 396 | } |
| 397 | |
| 398 | /* Check PHB state */ |
| 399 | ret = eeh_ops->get_state(phb_pe, NULL); |
| 400 | if ((ret < 0) || |
| 401 | (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { |
| 402 | ret = 0; |
| 403 | goto out; |
| 404 | } |
| 405 | |
| 406 | /* Isolate the PHB and send event */ |
| 407 | eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED); |
| 408 | eeh_serialize_unlock(flags); |
| 409 | |
| 410 | pr_err("EEH: PHB#%x failure detected, location: %s\n", |
| 411 | phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe)); |
| 412 | dump_stack(); |
| 413 | eeh_send_failure_event(phb_pe); |
| 414 | |
| 415 | return 1; |
| 416 | out: |
| 417 | eeh_serialize_unlock(flags); |
| 418 | return ret; |
| 419 | } |
| 420 | |
| 421 | /** |
| 422 | * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze |
| 423 | * @edev: eeh device |
| 424 | * |
| 425 | * Check for an EEH failure for the given device node. Call this |
| 426 | * routine if the result of a read was all 0xff's and you want to |
| 427 | * find out if this is due to an EEH slot freeze. This routine |
| 428 | * will query firmware for the EEH status. |
| 429 | * |
| 430 | * Returns 0 if there has not been an EEH error; otherwise returns |
| 431 | * a non-zero value and queues up a slot isolation event notification. |
| 432 | * |
| 433 | * It is safe to call this routine in an interrupt context. |
| 434 | */ |
| 435 | int eeh_dev_check_failure(struct eeh_dev *edev) |
| 436 | { |
| 437 | int ret; |
| 438 | unsigned long flags; |
| 439 | struct device_node *dn; |
| 440 | struct pci_dev *dev; |
| 441 | struct eeh_pe *pe, *parent_pe, *phb_pe; |
| 442 | int rc = 0; |
| 443 | const char *location = NULL; |
| 444 | |
| 445 | eeh_stats.total_mmio_ffs++; |
| 446 | |
| 447 | if (!eeh_enabled()) |
| 448 | return 0; |
| 449 | |
| 450 | if (!edev) { |
| 451 | eeh_stats.no_dn++; |
| 452 | return 0; |
| 453 | } |
| 454 | dev = eeh_dev_to_pci_dev(edev); |
| 455 | pe = eeh_dev_to_pe(edev); |
| 456 | |
| 457 | /* Access to IO BARs might get this far and still not want checking. */ |
| 458 | if (!pe) { |
| 459 | eeh_stats.ignored_check++; |
| 460 | pr_debug("EEH: Ignored check for %s\n", |
| 461 | eeh_pci_name(dev)); |
| 462 | return 0; |
| 463 | } |
| 464 | |
| 465 | if (!pe->addr && !pe->config_addr) { |
| 466 | eeh_stats.no_cfg_addr++; |
| 467 | return 0; |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * On PowerNV platform, we might already have fenced PHB |
| 472 | * there and we need take care of that firstly. |
| 473 | */ |
| 474 | ret = eeh_phb_check_failure(pe); |
| 475 | if (ret > 0) |
| 476 | return ret; |
| 477 | |
| 478 | /* |
| 479 | * If the PE isn't owned by us, we shouldn't check the |
| 480 | * state. Instead, let the owner handle it if the PE has |
| 481 | * been frozen. |
| 482 | */ |
| 483 | if (eeh_pe_passed(pe)) |
| 484 | return 0; |
| 485 | |
| 486 | /* If we already have a pending isolation event for this |
| 487 | * slot, we know it's bad already, we don't need to check. |
| 488 | * Do this checking under a lock; as multiple PCI devices |
| 489 | * in one slot might report errors simultaneously, and we |
| 490 | * only want one error recovery routine running. |
| 491 | */ |
| 492 | eeh_serialize_lock(&flags); |
| 493 | rc = 1; |
| 494 | if (pe->state & EEH_PE_ISOLATED) { |
| 495 | pe->check_count++; |
| 496 | if (pe->check_count % EEH_MAX_FAILS == 0) { |
| 497 | dn = pci_device_to_OF_node(dev); |
| 498 | if (dn) |
| 499 | location = of_get_property(dn, "ibm,loc-code", |
| 500 | NULL); |
| 501 | printk(KERN_ERR "EEH: %d reads ignored for recovering device at " |
| 502 | "location=%s driver=%s pci addr=%s\n", |
| 503 | pe->check_count, |
| 504 | location ? location : "unknown", |
| 505 | eeh_driver_name(dev), eeh_pci_name(dev)); |
| 506 | printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n", |
| 507 | eeh_driver_name(dev)); |
| 508 | dump_stack(); |
| 509 | } |
| 510 | goto dn_unlock; |
| 511 | } |
| 512 | |
| 513 | /* |
| 514 | * Now test for an EEH failure. This is VERY expensive. |
| 515 | * Note that the eeh_config_addr may be a parent device |
| 516 | * in the case of a device behind a bridge, or it may be |
| 517 | * function zero of a multi-function device. |
| 518 | * In any case they must share a common PHB. |
| 519 | */ |
| 520 | ret = eeh_ops->get_state(pe, NULL); |
| 521 | |
| 522 | /* Note that config-io to empty slots may fail; |
| 523 | * they are empty when they don't have children. |
| 524 | * We will punt with the following conditions: Failure to get |
| 525 | * PE's state, EEH not support and Permanently unavailable |
| 526 | * state, PE is in good state. |
| 527 | */ |
| 528 | if ((ret < 0) || |
| 529 | (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { |
| 530 | eeh_stats.false_positives++; |
| 531 | pe->false_positives++; |
| 532 | rc = 0; |
| 533 | goto dn_unlock; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * It should be corner case that the parent PE has been |
| 538 | * put into frozen state as well. We should take care |
| 539 | * that at first. |
| 540 | */ |
| 541 | parent_pe = pe->parent; |
| 542 | while (parent_pe) { |
| 543 | /* Hit the ceiling ? */ |
| 544 | if (parent_pe->type & EEH_PE_PHB) |
| 545 | break; |
| 546 | |
| 547 | /* Frozen parent PE ? */ |
| 548 | ret = eeh_ops->get_state(parent_pe, NULL); |
| 549 | if (ret > 0 && !eeh_state_active(ret)) { |
| 550 | pe = parent_pe; |
| 551 | pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n", |
| 552 | pe->phb->global_number, pe->addr, |
| 553 | pe->phb->global_number, parent_pe->addr); |
| 554 | } |
| 555 | |
| 556 | /* Next parent level */ |
| 557 | parent_pe = parent_pe->parent; |
| 558 | } |
| 559 | |
| 560 | eeh_stats.slot_resets++; |
| 561 | |
| 562 | /* Avoid repeated reports of this failure, including problems |
| 563 | * with other functions on this device, and functions under |
| 564 | * bridges. |
| 565 | */ |
| 566 | eeh_pe_state_mark(pe, EEH_PE_ISOLATED); |
| 567 | eeh_serialize_unlock(flags); |
| 568 | |
| 569 | /* Most EEH events are due to device driver bugs. Having |
| 570 | * a stack trace will help the device-driver authors figure |
| 571 | * out what happened. So print that out. |
| 572 | */ |
| 573 | phb_pe = eeh_phb_pe_get(pe->phb); |
| 574 | pr_err("EEH: Frozen PHB#%x-PE#%x detected\n", |
| 575 | pe->phb->global_number, pe->addr); |
| 576 | pr_err("EEH: PE location: %s, PHB location: %s\n", |
| 577 | eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe)); |
| 578 | dump_stack(); |
| 579 | |
| 580 | eeh_send_failure_event(pe); |
| 581 | |
| 582 | return 1; |
| 583 | |
| 584 | dn_unlock: |
| 585 | eeh_serialize_unlock(flags); |
| 586 | return rc; |
| 587 | } |
| 588 | |
| 589 | EXPORT_SYMBOL_GPL(eeh_dev_check_failure); |
| 590 | |
| 591 | /** |
| 592 | * eeh_check_failure - Check if all 1's data is due to EEH slot freeze |
| 593 | * @token: I/O address |
| 594 | * |
| 595 | * Check for an EEH failure at the given I/O address. Call this |
| 596 | * routine if the result of a read was all 0xff's and you want to |
| 597 | * find out if this is due to an EEH slot freeze event. This routine |
| 598 | * will query firmware for the EEH status. |
| 599 | * |
| 600 | * Note this routine is safe to call in an interrupt context. |
| 601 | */ |
| 602 | int eeh_check_failure(const volatile void __iomem *token) |
| 603 | { |
| 604 | unsigned long addr; |
| 605 | struct eeh_dev *edev; |
| 606 | |
| 607 | /* Finding the phys addr + pci device; this is pretty quick. */ |
| 608 | addr = eeh_token_to_phys((unsigned long __force) token); |
| 609 | edev = eeh_addr_cache_get_dev(addr); |
| 610 | if (!edev) { |
| 611 | eeh_stats.no_device++; |
| 612 | return 0; |
| 613 | } |
| 614 | |
| 615 | return eeh_dev_check_failure(edev); |
| 616 | } |
| 617 | EXPORT_SYMBOL(eeh_check_failure); |
| 618 | |
| 619 | |
| 620 | /** |
| 621 | * eeh_pci_enable - Enable MMIO or DMA transfers for this slot |
| 622 | * @pe: EEH PE |
| 623 | * |
| 624 | * This routine should be called to reenable frozen MMIO or DMA |
| 625 | * so that it would work correctly again. It's useful while doing |
| 626 | * recovery or log collection on the indicated device. |
| 627 | */ |
| 628 | int eeh_pci_enable(struct eeh_pe *pe, int function) |
| 629 | { |
| 630 | int active_flag, rc; |
| 631 | |
| 632 | /* |
| 633 | * pHyp doesn't allow to enable IO or DMA on unfrozen PE. |
| 634 | * Also, it's pointless to enable them on unfrozen PE. So |
| 635 | * we have to check before enabling IO or DMA. |
| 636 | */ |
| 637 | switch (function) { |
| 638 | case EEH_OPT_THAW_MMIO: |
| 639 | active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED; |
| 640 | break; |
| 641 | case EEH_OPT_THAW_DMA: |
| 642 | active_flag = EEH_STATE_DMA_ACTIVE; |
| 643 | break; |
| 644 | case EEH_OPT_DISABLE: |
| 645 | case EEH_OPT_ENABLE: |
| 646 | case EEH_OPT_FREEZE_PE: |
| 647 | active_flag = 0; |
| 648 | break; |
| 649 | default: |
| 650 | pr_warn("%s: Invalid function %d\n", |
| 651 | __func__, function); |
| 652 | return -EINVAL; |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * Check if IO or DMA has been enabled before |
| 657 | * enabling them. |
| 658 | */ |
| 659 | if (active_flag) { |
| 660 | rc = eeh_ops->get_state(pe, NULL); |
| 661 | if (rc < 0) |
| 662 | return rc; |
| 663 | |
| 664 | /* Needn't enable it at all */ |
| 665 | if (rc == EEH_STATE_NOT_SUPPORT) |
| 666 | return 0; |
| 667 | |
| 668 | /* It's already enabled */ |
| 669 | if (rc & active_flag) |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | |
| 674 | /* Issue the request */ |
| 675 | rc = eeh_ops->set_option(pe, function); |
| 676 | if (rc) |
| 677 | pr_warn("%s: Unexpected state change %d on " |
| 678 | "PHB#%x-PE#%x, err=%d\n", |
| 679 | __func__, function, pe->phb->global_number, |
| 680 | pe->addr, rc); |
| 681 | |
| 682 | /* Check if the request is finished successfully */ |
| 683 | if (active_flag) { |
| 684 | rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); |
| 685 | if (rc < 0) |
| 686 | return rc; |
| 687 | |
| 688 | if (rc & active_flag) |
| 689 | return 0; |
| 690 | |
| 691 | return -EIO; |
| 692 | } |
| 693 | |
| 694 | return rc; |
| 695 | } |
| 696 | |
| 697 | static void *eeh_disable_and_save_dev_state(struct eeh_dev *edev, |
| 698 | void *userdata) |
| 699 | { |
| 700 | struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); |
| 701 | struct pci_dev *dev = userdata; |
| 702 | |
| 703 | /* |
| 704 | * The caller should have disabled and saved the |
| 705 | * state for the specified device |
| 706 | */ |
| 707 | if (!pdev || pdev == dev) |
| 708 | return NULL; |
| 709 | |
| 710 | /* Ensure we have D0 power state */ |
| 711 | pci_set_power_state(pdev, PCI_D0); |
| 712 | |
| 713 | /* Save device state */ |
| 714 | pci_save_state(pdev); |
| 715 | |
| 716 | /* |
| 717 | * Disable device to avoid any DMA traffic and |
| 718 | * interrupt from the device |
| 719 | */ |
| 720 | pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); |
| 721 | |
| 722 | return NULL; |
| 723 | } |
| 724 | |
| 725 | static void *eeh_restore_dev_state(struct eeh_dev *edev, void *userdata) |
| 726 | { |
| 727 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 728 | struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); |
| 729 | struct pci_dev *dev = userdata; |
| 730 | |
| 731 | if (!pdev) |
| 732 | return NULL; |
| 733 | |
| 734 | /* Apply customization from firmware */ |
| 735 | if (pdn && eeh_ops->restore_config) |
| 736 | eeh_ops->restore_config(pdn); |
| 737 | |
| 738 | /* The caller should restore state for the specified device */ |
| 739 | if (pdev != dev) |
| 740 | pci_restore_state(pdev); |
| 741 | |
| 742 | return NULL; |
| 743 | } |
| 744 | |
| 745 | int eeh_restore_vf_config(struct pci_dn *pdn) |
| 746 | { |
| 747 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 748 | u32 devctl, cmd, cap2, aer_capctl; |
| 749 | int old_mps; |
| 750 | |
| 751 | if (edev->pcie_cap) { |
| 752 | /* Restore MPS */ |
| 753 | old_mps = (ffs(pdn->mps) - 8) << 5; |
| 754 | eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 755 | 2, &devctl); |
| 756 | devctl &= ~PCI_EXP_DEVCTL_PAYLOAD; |
| 757 | devctl |= old_mps; |
| 758 | eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 759 | 2, devctl); |
| 760 | |
| 761 | /* Disable Completion Timeout if possible */ |
| 762 | eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2, |
| 763 | 4, &cap2); |
| 764 | if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) { |
| 765 | eeh_ops->read_config(pdn, |
| 766 | edev->pcie_cap + PCI_EXP_DEVCTL2, |
| 767 | 4, &cap2); |
| 768 | cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS; |
| 769 | eeh_ops->write_config(pdn, |
| 770 | edev->pcie_cap + PCI_EXP_DEVCTL2, |
| 771 | 4, cap2); |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | /* Enable SERR and parity checking */ |
| 776 | eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd); |
| 777 | cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); |
| 778 | eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd); |
| 779 | |
| 780 | /* Enable report various errors */ |
| 781 | if (edev->pcie_cap) { |
| 782 | eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 783 | 2, &devctl); |
| 784 | devctl &= ~PCI_EXP_DEVCTL_CERE; |
| 785 | devctl |= (PCI_EXP_DEVCTL_NFERE | |
| 786 | PCI_EXP_DEVCTL_FERE | |
| 787 | PCI_EXP_DEVCTL_URRE); |
| 788 | eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 789 | 2, devctl); |
| 790 | } |
| 791 | |
| 792 | /* Enable ECRC generation and check */ |
| 793 | if (edev->pcie_cap && edev->aer_cap) { |
| 794 | eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP, |
| 795 | 4, &aer_capctl); |
| 796 | aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE); |
| 797 | eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP, |
| 798 | 4, aer_capctl); |
| 799 | } |
| 800 | |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | /** |
| 805 | * pcibios_set_pcie_reset_state - Set PCI-E reset state |
| 806 | * @dev: pci device struct |
| 807 | * @state: reset state to enter |
| 808 | * |
| 809 | * Return value: |
| 810 | * 0 if success |
| 811 | */ |
| 812 | int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) |
| 813 | { |
| 814 | struct eeh_dev *edev = pci_dev_to_eeh_dev(dev); |
| 815 | struct eeh_pe *pe = eeh_dev_to_pe(edev); |
| 816 | |
| 817 | if (!pe) { |
| 818 | pr_err("%s: No PE found on PCI device %s\n", |
| 819 | __func__, pci_name(dev)); |
| 820 | return -EINVAL; |
| 821 | } |
| 822 | |
| 823 | switch (state) { |
| 824 | case pcie_deassert_reset: |
| 825 | eeh_ops->reset(pe, EEH_RESET_DEACTIVATE); |
| 826 | eeh_unfreeze_pe(pe, false); |
| 827 | if (!(pe->type & EEH_PE_VF)) |
| 828 | eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED); |
| 829 | eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev); |
| 830 | eeh_pe_state_clear(pe, EEH_PE_ISOLATED); |
| 831 | break; |
| 832 | case pcie_hot_reset: |
| 833 | eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED); |
| 834 | eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| 835 | eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); |
| 836 | if (!(pe->type & EEH_PE_VF)) |
| 837 | eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| 838 | eeh_ops->reset(pe, EEH_RESET_HOT); |
| 839 | break; |
| 840 | case pcie_warm_reset: |
| 841 | eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED); |
| 842 | eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| 843 | eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); |
| 844 | if (!(pe->type & EEH_PE_VF)) |
| 845 | eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| 846 | eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL); |
| 847 | break; |
| 848 | default: |
| 849 | eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED); |
| 850 | return -EINVAL; |
| 851 | }; |
| 852 | |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | /** |
| 857 | * eeh_set_pe_freset - Check the required reset for the indicated device |
| 858 | * @data: EEH device |
| 859 | * @flag: return value |
| 860 | * |
| 861 | * Each device might have its preferred reset type: fundamental or |
| 862 | * hot reset. The routine is used to collected the information for |
| 863 | * the indicated device and its children so that the bunch of the |
| 864 | * devices could be reset properly. |
| 865 | */ |
| 866 | static void *eeh_set_dev_freset(struct eeh_dev *edev, void *flag) |
| 867 | { |
| 868 | struct pci_dev *dev; |
| 869 | unsigned int *freset = (unsigned int *)flag; |
| 870 | |
| 871 | dev = eeh_dev_to_pci_dev(edev); |
| 872 | if (dev) |
| 873 | *freset |= dev->needs_freset; |
| 874 | |
| 875 | return NULL; |
| 876 | } |
| 877 | |
| 878 | /** |
| 879 | * eeh_pe_reset_full - Complete a full reset process on the indicated PE |
| 880 | * @pe: EEH PE |
| 881 | * |
| 882 | * This function executes a full reset procedure on a PE, including setting |
| 883 | * the appropriate flags, performing a fundamental or hot reset, and then |
| 884 | * deactivating the reset status. It is designed to be used within the EEH |
| 885 | * subsystem, as opposed to eeh_pe_reset which is exported to drivers and |
| 886 | * only performs a single operation at a time. |
| 887 | * |
| 888 | * This function will attempt to reset a PE three times before failing. |
| 889 | */ |
| 890 | int eeh_pe_reset_full(struct eeh_pe *pe) |
| 891 | { |
| 892 | int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED); |
| 893 | int type = EEH_RESET_HOT; |
| 894 | unsigned int freset = 0; |
| 895 | int i, state, ret; |
| 896 | |
| 897 | /* |
| 898 | * Determine the type of reset to perform - hot or fundamental. |
| 899 | * Hot reset is the default operation, unless any device under the |
| 900 | * PE requires a fundamental reset. |
| 901 | */ |
| 902 | eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset); |
| 903 | |
| 904 | if (freset) |
| 905 | type = EEH_RESET_FUNDAMENTAL; |
| 906 | |
| 907 | /* Mark the PE as in reset state and block config space accesses */ |
| 908 | eeh_pe_state_mark(pe, reset_state); |
| 909 | |
| 910 | /* Make three attempts at resetting the bus */ |
| 911 | for (i = 0; i < 3; i++) { |
| 912 | ret = eeh_pe_reset(pe, type); |
| 913 | if (ret) |
| 914 | break; |
| 915 | |
| 916 | ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE); |
| 917 | if (ret) |
| 918 | break; |
| 919 | |
| 920 | /* Wait until the PE is in a functioning state */ |
| 921 | state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); |
| 922 | if (eeh_state_active(state)) |
| 923 | break; |
| 924 | |
| 925 | if (state < 0) { |
| 926 | pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x", |
| 927 | __func__, pe->phb->global_number, pe->addr); |
| 928 | ret = -ENOTRECOVERABLE; |
| 929 | break; |
| 930 | } |
| 931 | |
| 932 | /* Set error in case this is our last attempt */ |
| 933 | ret = -EIO; |
| 934 | pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n", |
| 935 | __func__, state, pe->phb->global_number, pe->addr, (i + 1)); |
| 936 | } |
| 937 | |
| 938 | eeh_pe_state_clear(pe, reset_state); |
| 939 | return ret; |
| 940 | } |
| 941 | |
| 942 | /** |
| 943 | * eeh_save_bars - Save device bars |
| 944 | * @edev: PCI device associated EEH device |
| 945 | * |
| 946 | * Save the values of the device bars. Unlike the restore |
| 947 | * routine, this routine is *not* recursive. This is because |
| 948 | * PCI devices are added individually; but, for the restore, |
| 949 | * an entire slot is reset at a time. |
| 950 | */ |
| 951 | void eeh_save_bars(struct eeh_dev *edev) |
| 952 | { |
| 953 | struct pci_dn *pdn; |
| 954 | int i; |
| 955 | |
| 956 | pdn = eeh_dev_to_pdn(edev); |
| 957 | if (!pdn) |
| 958 | return; |
| 959 | |
| 960 | for (i = 0; i < 16; i++) |
| 961 | eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]); |
| 962 | |
| 963 | /* |
| 964 | * For PCI bridges including root port, we need enable bus |
| 965 | * master explicitly. Otherwise, it can't fetch IODA table |
| 966 | * entries correctly. So we cache the bit in advance so that |
| 967 | * we can restore it after reset, either PHB range or PE range. |
| 968 | */ |
| 969 | if (edev->mode & EEH_DEV_BRIDGE) |
| 970 | edev->config_space[1] |= PCI_COMMAND_MASTER; |
| 971 | } |
| 972 | |
| 973 | /** |
| 974 | * eeh_ops_register - Register platform dependent EEH operations |
| 975 | * @ops: platform dependent EEH operations |
| 976 | * |
| 977 | * Register the platform dependent EEH operation callback |
| 978 | * functions. The platform should call this function before |
| 979 | * any other EEH operations. |
| 980 | */ |
| 981 | int __init eeh_ops_register(struct eeh_ops *ops) |
| 982 | { |
| 983 | if (!ops->name) { |
| 984 | pr_warn("%s: Invalid EEH ops name for %p\n", |
| 985 | __func__, ops); |
| 986 | return -EINVAL; |
| 987 | } |
| 988 | |
| 989 | if (eeh_ops && eeh_ops != ops) { |
| 990 | pr_warn("%s: EEH ops of platform %s already existing (%s)\n", |
| 991 | __func__, eeh_ops->name, ops->name); |
| 992 | return -EEXIST; |
| 993 | } |
| 994 | |
| 995 | eeh_ops = ops; |
| 996 | |
| 997 | return 0; |
| 998 | } |
| 999 | |
| 1000 | /** |
| 1001 | * eeh_ops_unregister - Unreigster platform dependent EEH operations |
| 1002 | * @name: name of EEH platform operations |
| 1003 | * |
| 1004 | * Unregister the platform dependent EEH operation callback |
| 1005 | * functions. |
| 1006 | */ |
| 1007 | int __exit eeh_ops_unregister(const char *name) |
| 1008 | { |
| 1009 | if (!name || !strlen(name)) { |
| 1010 | pr_warn("%s: Invalid EEH ops name\n", |
| 1011 | __func__); |
| 1012 | return -EINVAL; |
| 1013 | } |
| 1014 | |
| 1015 | if (eeh_ops && !strcmp(eeh_ops->name, name)) { |
| 1016 | eeh_ops = NULL; |
| 1017 | return 0; |
| 1018 | } |
| 1019 | |
| 1020 | return -EEXIST; |
| 1021 | } |
| 1022 | |
| 1023 | static int eeh_reboot_notifier(struct notifier_block *nb, |
| 1024 | unsigned long action, void *unused) |
| 1025 | { |
| 1026 | eeh_clear_flag(EEH_ENABLED); |
| 1027 | return NOTIFY_DONE; |
| 1028 | } |
| 1029 | |
| 1030 | static struct notifier_block eeh_reboot_nb = { |
| 1031 | .notifier_call = eeh_reboot_notifier, |
| 1032 | }; |
| 1033 | |
| 1034 | void eeh_probe_devices(void) |
| 1035 | { |
| 1036 | struct pci_controller *hose, *tmp; |
| 1037 | struct pci_dn *pdn; |
| 1038 | |
| 1039 | /* Enable EEH for all adapters */ |
| 1040 | list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { |
| 1041 | pdn = hose->pci_data; |
| 1042 | traverse_pci_dn(pdn, eeh_ops->probe, NULL); |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | /** |
| 1047 | * eeh_init - EEH initialization |
| 1048 | * |
| 1049 | * Initialize EEH by trying to enable it for all of the adapters in the system. |
| 1050 | * As a side effect we can determine here if eeh is supported at all. |
| 1051 | * Note that we leave EEH on so failed config cycles won't cause a machine |
| 1052 | * check. If a user turns off EEH for a particular adapter they are really |
| 1053 | * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't |
| 1054 | * grant access to a slot if EEH isn't enabled, and so we always enable |
| 1055 | * EEH for all slots/all devices. |
| 1056 | * |
| 1057 | * The eeh-force-off option disables EEH checking globally, for all slots. |
| 1058 | * Even if force-off is set, the EEH hardware is still enabled, so that |
| 1059 | * newer systems can boot. |
| 1060 | */ |
| 1061 | static int eeh_init(void) |
| 1062 | { |
| 1063 | struct pci_controller *hose, *tmp; |
| 1064 | int ret = 0; |
| 1065 | |
| 1066 | /* Register reboot notifier */ |
| 1067 | ret = register_reboot_notifier(&eeh_reboot_nb); |
| 1068 | if (ret) { |
| 1069 | pr_warn("%s: Failed to register notifier (%d)\n", |
| 1070 | __func__, ret); |
| 1071 | return ret; |
| 1072 | } |
| 1073 | |
| 1074 | /* call platform initialization function */ |
| 1075 | if (!eeh_ops) { |
| 1076 | pr_warn("%s: Platform EEH operation not found\n", |
| 1077 | __func__); |
| 1078 | return -EEXIST; |
| 1079 | } else if ((ret = eeh_ops->init())) |
| 1080 | return ret; |
| 1081 | |
| 1082 | /* Initialize PHB PEs */ |
| 1083 | list_for_each_entry_safe(hose, tmp, &hose_list, list_node) |
| 1084 | eeh_dev_phb_init_dynamic(hose); |
| 1085 | |
| 1086 | /* Initialize EEH event */ |
| 1087 | ret = eeh_event_init(); |
| 1088 | if (ret) |
| 1089 | return ret; |
| 1090 | |
| 1091 | eeh_probe_devices(); |
| 1092 | |
| 1093 | if (eeh_enabled()) |
| 1094 | pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n"); |
| 1095 | else if (!eeh_has_flag(EEH_POSTPONED_PROBE)) |
| 1096 | pr_info("EEH: No capable adapters found\n"); |
| 1097 | |
| 1098 | return ret; |
| 1099 | } |
| 1100 | |
| 1101 | core_initcall_sync(eeh_init); |
| 1102 | |
| 1103 | /** |
| 1104 | * eeh_add_device_early - Enable EEH for the indicated device node |
| 1105 | * @pdn: PCI device node for which to set up EEH |
| 1106 | * |
| 1107 | * This routine must be used to perform EEH initialization for PCI |
| 1108 | * devices that were added after system boot (e.g. hotplug, dlpar). |
| 1109 | * This routine must be called before any i/o is performed to the |
| 1110 | * adapter (inluding any config-space i/o). |
| 1111 | * Whether this actually enables EEH or not for this device depends |
| 1112 | * on the CEC architecture, type of the device, on earlier boot |
| 1113 | * command-line arguments & etc. |
| 1114 | */ |
| 1115 | void eeh_add_device_early(struct pci_dn *pdn) |
| 1116 | { |
| 1117 | struct pci_controller *phb = pdn ? pdn->phb : NULL; |
| 1118 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 1119 | |
| 1120 | if (!edev) |
| 1121 | return; |
| 1122 | |
| 1123 | if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)) |
| 1124 | return; |
| 1125 | |
| 1126 | /* USB Bus children of PCI devices will not have BUID's */ |
| 1127 | if (NULL == phb || |
| 1128 | (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid)) |
| 1129 | return; |
| 1130 | |
| 1131 | eeh_ops->probe(pdn, NULL); |
| 1132 | } |
| 1133 | |
| 1134 | /** |
| 1135 | * eeh_add_device_tree_early - Enable EEH for the indicated device |
| 1136 | * @pdn: PCI device node |
| 1137 | * |
| 1138 | * This routine must be used to perform EEH initialization for the |
| 1139 | * indicated PCI device that was added after system boot (e.g. |
| 1140 | * hotplug, dlpar). |
| 1141 | */ |
| 1142 | void eeh_add_device_tree_early(struct pci_dn *pdn) |
| 1143 | { |
| 1144 | struct pci_dn *n; |
| 1145 | |
| 1146 | if (!pdn) |
| 1147 | return; |
| 1148 | |
| 1149 | list_for_each_entry(n, &pdn->child_list, list) |
| 1150 | eeh_add_device_tree_early(n); |
| 1151 | eeh_add_device_early(pdn); |
| 1152 | } |
| 1153 | EXPORT_SYMBOL_GPL(eeh_add_device_tree_early); |
| 1154 | |
| 1155 | /** |
| 1156 | * eeh_add_device_late - Perform EEH initialization for the indicated pci device |
| 1157 | * @dev: pci device for which to set up EEH |
| 1158 | * |
| 1159 | * This routine must be used to complete EEH initialization for PCI |
| 1160 | * devices that were added after system boot (e.g. hotplug, dlpar). |
| 1161 | */ |
| 1162 | void eeh_add_device_late(struct pci_dev *dev) |
| 1163 | { |
| 1164 | struct pci_dn *pdn; |
| 1165 | struct eeh_dev *edev; |
| 1166 | |
| 1167 | if (!dev || !eeh_enabled()) |
| 1168 | return; |
| 1169 | |
| 1170 | pr_debug("EEH: Adding device %s\n", pci_name(dev)); |
| 1171 | |
| 1172 | pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); |
| 1173 | edev = pdn_to_eeh_dev(pdn); |
| 1174 | if (edev->pdev == dev) { |
| 1175 | pr_debug("EEH: Already referenced !\n"); |
| 1176 | return; |
| 1177 | } |
| 1178 | |
| 1179 | /* |
| 1180 | * The EEH cache might not be removed correctly because of |
| 1181 | * unbalanced kref to the device during unplug time, which |
| 1182 | * relies on pcibios_release_device(). So we have to remove |
| 1183 | * that here explicitly. |
| 1184 | */ |
| 1185 | if (edev->pdev) { |
| 1186 | eeh_rmv_from_parent_pe(edev); |
| 1187 | eeh_addr_cache_rmv_dev(edev->pdev); |
| 1188 | eeh_sysfs_remove_device(edev->pdev); |
| 1189 | edev->mode &= ~EEH_DEV_SYSFS; |
| 1190 | |
| 1191 | /* |
| 1192 | * We definitely should have the PCI device removed |
| 1193 | * though it wasn't correctly. So we needn't call |
| 1194 | * into error handler afterwards. |
| 1195 | */ |
| 1196 | edev->mode |= EEH_DEV_NO_HANDLER; |
| 1197 | |
| 1198 | edev->pdev = NULL; |
| 1199 | dev->dev.archdata.edev = NULL; |
| 1200 | } |
| 1201 | |
| 1202 | if (eeh_has_flag(EEH_PROBE_MODE_DEV)) |
| 1203 | eeh_ops->probe(pdn, NULL); |
| 1204 | |
| 1205 | edev->pdev = dev; |
| 1206 | dev->dev.archdata.edev = edev; |
| 1207 | |
| 1208 | eeh_addr_cache_insert_dev(dev); |
| 1209 | } |
| 1210 | |
| 1211 | /** |
| 1212 | * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus |
| 1213 | * @bus: PCI bus |
| 1214 | * |
| 1215 | * This routine must be used to perform EEH initialization for PCI |
| 1216 | * devices which are attached to the indicated PCI bus. The PCI bus |
| 1217 | * is added after system boot through hotplug or dlpar. |
| 1218 | */ |
| 1219 | void eeh_add_device_tree_late(struct pci_bus *bus) |
| 1220 | { |
| 1221 | struct pci_dev *dev; |
| 1222 | |
| 1223 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 1224 | eeh_add_device_late(dev); |
| 1225 | if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| 1226 | struct pci_bus *subbus = dev->subordinate; |
| 1227 | if (subbus) |
| 1228 | eeh_add_device_tree_late(subbus); |
| 1229 | } |
| 1230 | } |
| 1231 | } |
| 1232 | EXPORT_SYMBOL_GPL(eeh_add_device_tree_late); |
| 1233 | |
| 1234 | /** |
| 1235 | * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus |
| 1236 | * @bus: PCI bus |
| 1237 | * |
| 1238 | * This routine must be used to add EEH sysfs files for PCI |
| 1239 | * devices which are attached to the indicated PCI bus. The PCI bus |
| 1240 | * is added after system boot through hotplug or dlpar. |
| 1241 | */ |
| 1242 | void eeh_add_sysfs_files(struct pci_bus *bus) |
| 1243 | { |
| 1244 | struct pci_dev *dev; |
| 1245 | |
| 1246 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 1247 | eeh_sysfs_add_device(dev); |
| 1248 | if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| 1249 | struct pci_bus *subbus = dev->subordinate; |
| 1250 | if (subbus) |
| 1251 | eeh_add_sysfs_files(subbus); |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | EXPORT_SYMBOL_GPL(eeh_add_sysfs_files); |
| 1256 | |
| 1257 | /** |
| 1258 | * eeh_remove_device - Undo EEH setup for the indicated pci device |
| 1259 | * @dev: pci device to be removed |
| 1260 | * |
| 1261 | * This routine should be called when a device is removed from |
| 1262 | * a running system (e.g. by hotplug or dlpar). It unregisters |
| 1263 | * the PCI device from the EEH subsystem. I/O errors affecting |
| 1264 | * this device will no longer be detected after this call; thus, |
| 1265 | * i/o errors affecting this slot may leave this device unusable. |
| 1266 | */ |
| 1267 | void eeh_remove_device(struct pci_dev *dev) |
| 1268 | { |
| 1269 | struct eeh_dev *edev; |
| 1270 | |
| 1271 | if (!dev || !eeh_enabled()) |
| 1272 | return; |
| 1273 | edev = pci_dev_to_eeh_dev(dev); |
| 1274 | |
| 1275 | /* Unregister the device with the EEH/PCI address search system */ |
| 1276 | pr_debug("EEH: Removing device %s\n", pci_name(dev)); |
| 1277 | |
| 1278 | if (!edev || !edev->pdev || !edev->pe) { |
| 1279 | pr_debug("EEH: Not referenced !\n"); |
| 1280 | return; |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * During the hotplug for EEH error recovery, we need the EEH |
| 1285 | * device attached to the parent PE in order for BAR restore |
| 1286 | * a bit later. So we keep it for BAR restore and remove it |
| 1287 | * from the parent PE during the BAR resotre. |
| 1288 | */ |
| 1289 | edev->pdev = NULL; |
| 1290 | |
| 1291 | /* |
| 1292 | * The flag "in_error" is used to trace EEH devices for VFs |
| 1293 | * in error state or not. It's set in eeh_report_error(). If |
| 1294 | * it's not set, eeh_report_{reset,resume}() won't be called |
| 1295 | * for the VF EEH device. |
| 1296 | */ |
| 1297 | edev->in_error = false; |
| 1298 | dev->dev.archdata.edev = NULL; |
| 1299 | if (!(edev->pe->state & EEH_PE_KEEP)) |
| 1300 | eeh_rmv_from_parent_pe(edev); |
| 1301 | else |
| 1302 | edev->mode |= EEH_DEV_DISCONNECTED; |
| 1303 | |
| 1304 | /* |
| 1305 | * We're removing from the PCI subsystem, that means |
| 1306 | * the PCI device driver can't support EEH or not |
| 1307 | * well. So we rely on hotplug completely to do recovery |
| 1308 | * for the specific PCI device. |
| 1309 | */ |
| 1310 | edev->mode |= EEH_DEV_NO_HANDLER; |
| 1311 | |
| 1312 | eeh_addr_cache_rmv_dev(dev); |
| 1313 | eeh_sysfs_remove_device(dev); |
| 1314 | edev->mode &= ~EEH_DEV_SYSFS; |
| 1315 | } |
| 1316 | |
| 1317 | int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state) |
| 1318 | { |
| 1319 | int ret; |
| 1320 | |
| 1321 | ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); |
| 1322 | if (ret) { |
| 1323 | pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n", |
| 1324 | __func__, ret, pe->phb->global_number, pe->addr); |
| 1325 | return ret; |
| 1326 | } |
| 1327 | |
| 1328 | ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA); |
| 1329 | if (ret) { |
| 1330 | pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n", |
| 1331 | __func__, ret, pe->phb->global_number, pe->addr); |
| 1332 | return ret; |
| 1333 | } |
| 1334 | |
| 1335 | /* Clear software isolated state */ |
| 1336 | if (sw_state && (pe->state & EEH_PE_ISOLATED)) |
| 1337 | eeh_pe_state_clear(pe, EEH_PE_ISOLATED); |
| 1338 | |
| 1339 | return ret; |
| 1340 | } |
| 1341 | |
| 1342 | |
| 1343 | static struct pci_device_id eeh_reset_ids[] = { |
| 1344 | { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */ |
| 1345 | { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */ |
| 1346 | { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */ |
| 1347 | { 0 } |
| 1348 | }; |
| 1349 | |
| 1350 | static int eeh_pe_change_owner(struct eeh_pe *pe) |
| 1351 | { |
| 1352 | struct eeh_dev *edev, *tmp; |
| 1353 | struct pci_dev *pdev; |
| 1354 | struct pci_device_id *id; |
| 1355 | int ret; |
| 1356 | |
| 1357 | /* Check PE state */ |
| 1358 | ret = eeh_ops->get_state(pe, NULL); |
| 1359 | if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT) |
| 1360 | return 0; |
| 1361 | |
| 1362 | /* Unfrozen PE, nothing to do */ |
| 1363 | if (eeh_state_active(ret)) |
| 1364 | return 0; |
| 1365 | |
| 1366 | /* Frozen PE, check if it needs PE level reset */ |
| 1367 | eeh_pe_for_each_dev(pe, edev, tmp) { |
| 1368 | pdev = eeh_dev_to_pci_dev(edev); |
| 1369 | if (!pdev) |
| 1370 | continue; |
| 1371 | |
| 1372 | for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) { |
| 1373 | if (id->vendor != PCI_ANY_ID && |
| 1374 | id->vendor != pdev->vendor) |
| 1375 | continue; |
| 1376 | if (id->device != PCI_ANY_ID && |
| 1377 | id->device != pdev->device) |
| 1378 | continue; |
| 1379 | if (id->subvendor != PCI_ANY_ID && |
| 1380 | id->subvendor != pdev->subsystem_vendor) |
| 1381 | continue; |
| 1382 | if (id->subdevice != PCI_ANY_ID && |
| 1383 | id->subdevice != pdev->subsystem_device) |
| 1384 | continue; |
| 1385 | |
| 1386 | return eeh_pe_reset_and_recover(pe); |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | return eeh_unfreeze_pe(pe, true); |
| 1391 | } |
| 1392 | |
| 1393 | /** |
| 1394 | * eeh_dev_open - Increase count of pass through devices for PE |
| 1395 | * @pdev: PCI device |
| 1396 | * |
| 1397 | * Increase count of passed through devices for the indicated |
| 1398 | * PE. In the result, the EEH errors detected on the PE won't be |
| 1399 | * reported. The PE owner will be responsible for detection |
| 1400 | * and recovery. |
| 1401 | */ |
| 1402 | int eeh_dev_open(struct pci_dev *pdev) |
| 1403 | { |
| 1404 | struct eeh_dev *edev; |
| 1405 | int ret = -ENODEV; |
| 1406 | |
| 1407 | mutex_lock(&eeh_dev_mutex); |
| 1408 | |
| 1409 | /* No PCI device ? */ |
| 1410 | if (!pdev) |
| 1411 | goto out; |
| 1412 | |
| 1413 | /* No EEH device or PE ? */ |
| 1414 | edev = pci_dev_to_eeh_dev(pdev); |
| 1415 | if (!edev || !edev->pe) |
| 1416 | goto out; |
| 1417 | |
| 1418 | /* |
| 1419 | * The PE might have been put into frozen state, but we |
| 1420 | * didn't detect that yet. The passed through PCI devices |
| 1421 | * in frozen PE won't work properly. Clear the frozen state |
| 1422 | * in advance. |
| 1423 | */ |
| 1424 | ret = eeh_pe_change_owner(edev->pe); |
| 1425 | if (ret) |
| 1426 | goto out; |
| 1427 | |
| 1428 | /* Increase PE's pass through count */ |
| 1429 | atomic_inc(&edev->pe->pass_dev_cnt); |
| 1430 | mutex_unlock(&eeh_dev_mutex); |
| 1431 | |
| 1432 | return 0; |
| 1433 | out: |
| 1434 | mutex_unlock(&eeh_dev_mutex); |
| 1435 | return ret; |
| 1436 | } |
| 1437 | EXPORT_SYMBOL_GPL(eeh_dev_open); |
| 1438 | |
| 1439 | /** |
| 1440 | * eeh_dev_release - Decrease count of pass through devices for PE |
| 1441 | * @pdev: PCI device |
| 1442 | * |
| 1443 | * Decrease count of pass through devices for the indicated PE. If |
| 1444 | * there is no passed through device in PE, the EEH errors detected |
| 1445 | * on the PE will be reported and handled as usual. |
| 1446 | */ |
| 1447 | void eeh_dev_release(struct pci_dev *pdev) |
| 1448 | { |
| 1449 | struct eeh_dev *edev; |
| 1450 | |
| 1451 | mutex_lock(&eeh_dev_mutex); |
| 1452 | |
| 1453 | /* No PCI device ? */ |
| 1454 | if (!pdev) |
| 1455 | goto out; |
| 1456 | |
| 1457 | /* No EEH device ? */ |
| 1458 | edev = pci_dev_to_eeh_dev(pdev); |
| 1459 | if (!edev || !edev->pe || !eeh_pe_passed(edev->pe)) |
| 1460 | goto out; |
| 1461 | |
| 1462 | /* Decrease PE's pass through count */ |
| 1463 | WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0); |
| 1464 | eeh_pe_change_owner(edev->pe); |
| 1465 | out: |
| 1466 | mutex_unlock(&eeh_dev_mutex); |
| 1467 | } |
| 1468 | EXPORT_SYMBOL(eeh_dev_release); |
| 1469 | |
| 1470 | #ifdef CONFIG_IOMMU_API |
| 1471 | |
| 1472 | static int dev_has_iommu_table(struct device *dev, void *data) |
| 1473 | { |
| 1474 | struct pci_dev *pdev = to_pci_dev(dev); |
| 1475 | struct pci_dev **ppdev = data; |
| 1476 | |
| 1477 | if (!dev) |
| 1478 | return 0; |
| 1479 | |
| 1480 | if (dev->iommu_group) { |
| 1481 | *ppdev = pdev; |
| 1482 | return 1; |
| 1483 | } |
| 1484 | |
| 1485 | return 0; |
| 1486 | } |
| 1487 | |
| 1488 | /** |
| 1489 | * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE |
| 1490 | * @group: IOMMU group |
| 1491 | * |
| 1492 | * The routine is called to convert IOMMU group to EEH PE. |
| 1493 | */ |
| 1494 | struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group) |
| 1495 | { |
| 1496 | struct pci_dev *pdev = NULL; |
| 1497 | struct eeh_dev *edev; |
| 1498 | int ret; |
| 1499 | |
| 1500 | /* No IOMMU group ? */ |
| 1501 | if (!group) |
| 1502 | return NULL; |
| 1503 | |
| 1504 | ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table); |
| 1505 | if (!ret || !pdev) |
| 1506 | return NULL; |
| 1507 | |
| 1508 | /* No EEH device or PE ? */ |
| 1509 | edev = pci_dev_to_eeh_dev(pdev); |
| 1510 | if (!edev || !edev->pe) |
| 1511 | return NULL; |
| 1512 | |
| 1513 | return edev->pe; |
| 1514 | } |
| 1515 | EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe); |
| 1516 | |
| 1517 | #endif /* CONFIG_IOMMU_API */ |
| 1518 | |
| 1519 | /** |
| 1520 | * eeh_pe_set_option - Set options for the indicated PE |
| 1521 | * @pe: EEH PE |
| 1522 | * @option: requested option |
| 1523 | * |
| 1524 | * The routine is called to enable or disable EEH functionality |
| 1525 | * on the indicated PE, to enable IO or DMA for the frozen PE. |
| 1526 | */ |
| 1527 | int eeh_pe_set_option(struct eeh_pe *pe, int option) |
| 1528 | { |
| 1529 | int ret = 0; |
| 1530 | |
| 1531 | /* Invalid PE ? */ |
| 1532 | if (!pe) |
| 1533 | return -ENODEV; |
| 1534 | |
| 1535 | /* |
| 1536 | * EEH functionality could possibly be disabled, just |
| 1537 | * return error for the case. And the EEH functinality |
| 1538 | * isn't expected to be disabled on one specific PE. |
| 1539 | */ |
| 1540 | switch (option) { |
| 1541 | case EEH_OPT_ENABLE: |
| 1542 | if (eeh_enabled()) { |
| 1543 | ret = eeh_pe_change_owner(pe); |
| 1544 | break; |
| 1545 | } |
| 1546 | ret = -EIO; |
| 1547 | break; |
| 1548 | case EEH_OPT_DISABLE: |
| 1549 | break; |
| 1550 | case EEH_OPT_THAW_MMIO: |
| 1551 | case EEH_OPT_THAW_DMA: |
| 1552 | case EEH_OPT_FREEZE_PE: |
| 1553 | if (!eeh_ops || !eeh_ops->set_option) { |
| 1554 | ret = -ENOENT; |
| 1555 | break; |
| 1556 | } |
| 1557 | |
| 1558 | ret = eeh_pci_enable(pe, option); |
| 1559 | break; |
| 1560 | default: |
| 1561 | pr_debug("%s: Option %d out of range (%d, %d)\n", |
| 1562 | __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA); |
| 1563 | ret = -EINVAL; |
| 1564 | } |
| 1565 | |
| 1566 | return ret; |
| 1567 | } |
| 1568 | EXPORT_SYMBOL_GPL(eeh_pe_set_option); |
| 1569 | |
| 1570 | /** |
| 1571 | * eeh_pe_get_state - Retrieve PE's state |
| 1572 | * @pe: EEH PE |
| 1573 | * |
| 1574 | * Retrieve the PE's state, which includes 3 aspects: enabled |
| 1575 | * DMA, enabled IO and asserted reset. |
| 1576 | */ |
| 1577 | int eeh_pe_get_state(struct eeh_pe *pe) |
| 1578 | { |
| 1579 | int result, ret = 0; |
| 1580 | bool rst_active, dma_en, mmio_en; |
| 1581 | |
| 1582 | /* Existing PE ? */ |
| 1583 | if (!pe) |
| 1584 | return -ENODEV; |
| 1585 | |
| 1586 | if (!eeh_ops || !eeh_ops->get_state) |
| 1587 | return -ENOENT; |
| 1588 | |
| 1589 | /* |
| 1590 | * If the parent PE is owned by the host kernel and is undergoing |
| 1591 | * error recovery, we should return the PE state as temporarily |
| 1592 | * unavailable so that the error recovery on the guest is suspended |
| 1593 | * until the recovery completes on the host. |
| 1594 | */ |
| 1595 | if (pe->parent && |
| 1596 | !(pe->state & EEH_PE_REMOVED) && |
| 1597 | (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING))) |
| 1598 | return EEH_PE_STATE_UNAVAIL; |
| 1599 | |
| 1600 | result = eeh_ops->get_state(pe, NULL); |
| 1601 | rst_active = !!(result & EEH_STATE_RESET_ACTIVE); |
| 1602 | dma_en = !!(result & EEH_STATE_DMA_ENABLED); |
| 1603 | mmio_en = !!(result & EEH_STATE_MMIO_ENABLED); |
| 1604 | |
| 1605 | if (rst_active) |
| 1606 | ret = EEH_PE_STATE_RESET; |
| 1607 | else if (dma_en && mmio_en) |
| 1608 | ret = EEH_PE_STATE_NORMAL; |
| 1609 | else if (!dma_en && !mmio_en) |
| 1610 | ret = EEH_PE_STATE_STOPPED_IO_DMA; |
| 1611 | else if (!dma_en && mmio_en) |
| 1612 | ret = EEH_PE_STATE_STOPPED_DMA; |
| 1613 | else |
| 1614 | ret = EEH_PE_STATE_UNAVAIL; |
| 1615 | |
| 1616 | return ret; |
| 1617 | } |
| 1618 | EXPORT_SYMBOL_GPL(eeh_pe_get_state); |
| 1619 | |
| 1620 | static int eeh_pe_reenable_devices(struct eeh_pe *pe) |
| 1621 | { |
| 1622 | struct eeh_dev *edev, *tmp; |
| 1623 | struct pci_dev *pdev; |
| 1624 | int ret = 0; |
| 1625 | |
| 1626 | /* Restore config space */ |
| 1627 | eeh_pe_restore_bars(pe); |
| 1628 | |
| 1629 | /* |
| 1630 | * Reenable PCI devices as the devices passed |
| 1631 | * through are always enabled before the reset. |
| 1632 | */ |
| 1633 | eeh_pe_for_each_dev(pe, edev, tmp) { |
| 1634 | pdev = eeh_dev_to_pci_dev(edev); |
| 1635 | if (!pdev) |
| 1636 | continue; |
| 1637 | |
| 1638 | ret = pci_reenable_device(pdev); |
| 1639 | if (ret) { |
| 1640 | pr_warn("%s: Failure %d reenabling %s\n", |
| 1641 | __func__, ret, pci_name(pdev)); |
| 1642 | return ret; |
| 1643 | } |
| 1644 | } |
| 1645 | |
| 1646 | /* The PE is still in frozen state */ |
| 1647 | return eeh_unfreeze_pe(pe, true); |
| 1648 | } |
| 1649 | |
| 1650 | |
| 1651 | /** |
| 1652 | * eeh_pe_reset - Issue PE reset according to specified type |
| 1653 | * @pe: EEH PE |
| 1654 | * @option: reset type |
| 1655 | * |
| 1656 | * The routine is called to reset the specified PE with the |
| 1657 | * indicated type, either fundamental reset or hot reset. |
| 1658 | * PE reset is the most important part for error recovery. |
| 1659 | */ |
| 1660 | int eeh_pe_reset(struct eeh_pe *pe, int option) |
| 1661 | { |
| 1662 | int ret = 0; |
| 1663 | |
| 1664 | /* Invalid PE ? */ |
| 1665 | if (!pe) |
| 1666 | return -ENODEV; |
| 1667 | |
| 1668 | if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset) |
| 1669 | return -ENOENT; |
| 1670 | |
| 1671 | switch (option) { |
| 1672 | case EEH_RESET_DEACTIVATE: |
| 1673 | ret = eeh_ops->reset(pe, option); |
| 1674 | eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED); |
| 1675 | if (ret) |
| 1676 | break; |
| 1677 | |
| 1678 | ret = eeh_pe_reenable_devices(pe); |
| 1679 | break; |
| 1680 | case EEH_RESET_HOT: |
| 1681 | case EEH_RESET_FUNDAMENTAL: |
| 1682 | /* |
| 1683 | * Proactively freeze the PE to drop all MMIO access |
| 1684 | * during reset, which should be banned as it's always |
| 1685 | * cause recursive EEH error. |
| 1686 | */ |
| 1687 | eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| 1688 | |
| 1689 | eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| 1690 | ret = eeh_ops->reset(pe, option); |
| 1691 | break; |
| 1692 | default: |
| 1693 | pr_debug("%s: Unsupported option %d\n", |
| 1694 | __func__, option); |
| 1695 | ret = -EINVAL; |
| 1696 | } |
| 1697 | |
| 1698 | return ret; |
| 1699 | } |
| 1700 | EXPORT_SYMBOL_GPL(eeh_pe_reset); |
| 1701 | |
| 1702 | /** |
| 1703 | * eeh_pe_configure - Configure PCI bridges after PE reset |
| 1704 | * @pe: EEH PE |
| 1705 | * |
| 1706 | * The routine is called to restore the PCI config space for |
| 1707 | * those PCI devices, especially PCI bridges affected by PE |
| 1708 | * reset issued previously. |
| 1709 | */ |
| 1710 | int eeh_pe_configure(struct eeh_pe *pe) |
| 1711 | { |
| 1712 | int ret = 0; |
| 1713 | |
| 1714 | /* Invalid PE ? */ |
| 1715 | if (!pe) |
| 1716 | return -ENODEV; |
| 1717 | |
| 1718 | return ret; |
| 1719 | } |
| 1720 | EXPORT_SYMBOL_GPL(eeh_pe_configure); |
| 1721 | |
| 1722 | /** |
| 1723 | * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE |
| 1724 | * @pe: the indicated PE |
| 1725 | * @type: error type |
| 1726 | * @function: error function |
| 1727 | * @addr: address |
| 1728 | * @mask: address mask |
| 1729 | * |
| 1730 | * The routine is called to inject the specified PCI error, which |
| 1731 | * is determined by @type and @function, to the indicated PE for |
| 1732 | * testing purpose. |
| 1733 | */ |
| 1734 | int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func, |
| 1735 | unsigned long addr, unsigned long mask) |
| 1736 | { |
| 1737 | /* Invalid PE ? */ |
| 1738 | if (!pe) |
| 1739 | return -ENODEV; |
| 1740 | |
| 1741 | /* Unsupported operation ? */ |
| 1742 | if (!eeh_ops || !eeh_ops->err_inject) |
| 1743 | return -ENOENT; |
| 1744 | |
| 1745 | /* Check on PCI error type */ |
| 1746 | if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64) |
| 1747 | return -EINVAL; |
| 1748 | |
| 1749 | /* Check on PCI error function */ |
| 1750 | if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX) |
| 1751 | return -EINVAL; |
| 1752 | |
| 1753 | return eeh_ops->err_inject(pe, type, func, addr, mask); |
| 1754 | } |
| 1755 | EXPORT_SYMBOL_GPL(eeh_pe_inject_err); |
| 1756 | |
| 1757 | static int proc_eeh_show(struct seq_file *m, void *v) |
| 1758 | { |
| 1759 | if (!eeh_enabled()) { |
| 1760 | seq_printf(m, "EEH Subsystem is globally disabled\n"); |
| 1761 | seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs); |
| 1762 | } else { |
| 1763 | seq_printf(m, "EEH Subsystem is enabled\n"); |
| 1764 | seq_printf(m, |
| 1765 | "no device=%llu\n" |
| 1766 | "no device node=%llu\n" |
| 1767 | "no config address=%llu\n" |
| 1768 | "check not wanted=%llu\n" |
| 1769 | "eeh_total_mmio_ffs=%llu\n" |
| 1770 | "eeh_false_positives=%llu\n" |
| 1771 | "eeh_slot_resets=%llu\n", |
| 1772 | eeh_stats.no_device, |
| 1773 | eeh_stats.no_dn, |
| 1774 | eeh_stats.no_cfg_addr, |
| 1775 | eeh_stats.ignored_check, |
| 1776 | eeh_stats.total_mmio_ffs, |
| 1777 | eeh_stats.false_positives, |
| 1778 | eeh_stats.slot_resets); |
| 1779 | } |
| 1780 | |
| 1781 | return 0; |
| 1782 | } |
| 1783 | |
| 1784 | #ifdef CONFIG_DEBUG_FS |
| 1785 | static int eeh_enable_dbgfs_set(void *data, u64 val) |
| 1786 | { |
| 1787 | if (val) |
| 1788 | eeh_clear_flag(EEH_FORCE_DISABLED); |
| 1789 | else |
| 1790 | eeh_add_flag(EEH_FORCE_DISABLED); |
| 1791 | |
| 1792 | return 0; |
| 1793 | } |
| 1794 | |
| 1795 | static int eeh_enable_dbgfs_get(void *data, u64 *val) |
| 1796 | { |
| 1797 | if (eeh_enabled()) |
| 1798 | *val = 0x1ul; |
| 1799 | else |
| 1800 | *val = 0x0ul; |
| 1801 | return 0; |
| 1802 | } |
| 1803 | |
| 1804 | static int eeh_freeze_dbgfs_set(void *data, u64 val) |
| 1805 | { |
| 1806 | eeh_max_freezes = val; |
| 1807 | return 0; |
| 1808 | } |
| 1809 | |
| 1810 | static int eeh_freeze_dbgfs_get(void *data, u64 *val) |
| 1811 | { |
| 1812 | *val = eeh_max_freezes; |
| 1813 | return 0; |
| 1814 | } |
| 1815 | |
| 1816 | DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get, |
| 1817 | eeh_enable_dbgfs_set, "0x%llx\n"); |
| 1818 | DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get, |
| 1819 | eeh_freeze_dbgfs_set, "0x%llx\n"); |
| 1820 | #endif |
| 1821 | |
| 1822 | static int __init eeh_init_proc(void) |
| 1823 | { |
| 1824 | if (machine_is(pseries) || machine_is(powernv)) { |
| 1825 | proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show); |
| 1826 | #ifdef CONFIG_DEBUG_FS |
| 1827 | debugfs_create_file("eeh_enable", 0600, |
| 1828 | powerpc_debugfs_root, NULL, |
| 1829 | &eeh_enable_dbgfs_ops); |
| 1830 | debugfs_create_file("eeh_max_freezes", 0600, |
| 1831 | powerpc_debugfs_root, NULL, |
| 1832 | &eeh_freeze_dbgfs_ops); |
| 1833 | #endif |
| 1834 | } |
| 1835 | |
| 1836 | return 0; |
| 1837 | } |
| 1838 | __initcall(eeh_init_proc); |