blob: c72767a5327ad63d5de84d5e3787ad0b24f6b7e0 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/sched.h>
26#include <linux/init.h>
27#include <linux/list.h>
28#include <linux/pci.h>
29#include <linux/iommu.h>
30#include <linux/proc_fs.h>
31#include <linux/rbtree.h>
32#include <linux/reboot.h>
33#include <linux/seq_file.h>
34#include <linux/spinlock.h>
35#include <linux/export.h>
36#include <linux/of.h>
37
38#include <linux/atomic.h>
39#include <asm/debugfs.h>
40#include <asm/eeh.h>
41#include <asm/eeh_event.h>
42#include <asm/io.h>
43#include <asm/iommu.h>
44#include <asm/machdep.h>
45#include <asm/ppc-pci.h>
46#include <asm/rtas.h>
47#include <asm/pte-walk.h>
48
49
50/** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84/* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89#define EEH_MAX_FAILS 2100000
90
91/* Time to wait for a PCI slot to report status, in milliseconds */
92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94/*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104int eeh_subsystem_flags;
105EXPORT_SYMBOL(eeh_subsystem_flags);
106
107/*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112int eeh_max_freezes = 5;
113
114/* Platform dependent EEH operations */
115struct eeh_ops *eeh_ops = NULL;
116
117/* Lock to avoid races due to multiple reports of an error */
118DEFINE_RAW_SPINLOCK(confirm_error_lock);
119EXPORT_SYMBOL_GPL(confirm_error_lock);
120
121/* Lock to protect passed flags */
122static DEFINE_MUTEX(eeh_dev_mutex);
123
124/* Buffer for reporting pci register dumps. Its here in BSS, and
125 * not dynamically alloced, so that it ends up in RMO where RTAS
126 * can access it.
127 */
128#define EEH_PCI_REGS_LOG_LEN 8192
129static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
130
131/*
132 * The struct is used to maintain the EEH global statistic
133 * information. Besides, the EEH global statistics will be
134 * exported to user space through procfs
135 */
136struct eeh_stats {
137 u64 no_device; /* PCI device not found */
138 u64 no_dn; /* OF node not found */
139 u64 no_cfg_addr; /* Config address not found */
140 u64 ignored_check; /* EEH check skipped */
141 u64 total_mmio_ffs; /* Total EEH checks */
142 u64 false_positives; /* Unnecessary EEH checks */
143 u64 slot_resets; /* PE reset */
144};
145
146static struct eeh_stats eeh_stats;
147
148static int __init eeh_setup(char *str)
149{
150 if (!strcmp(str, "off"))
151 eeh_add_flag(EEH_FORCE_DISABLED);
152 else if (!strcmp(str, "early_log"))
153 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154
155 return 1;
156}
157__setup("eeh=", eeh_setup);
158
159/*
160 * This routine captures assorted PCI configuration space data
161 * for the indicated PCI device, and puts them into a buffer
162 * for RTAS error logging.
163 */
164static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165{
166 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167 u32 cfg;
168 int cap, i;
169 int n = 0, l = 0;
170 char buffer[128];
171
172 if (!pdn) {
173 pr_warn("EEH: Note: No error log for absent device.\n");
174 return 0;
175 }
176
177 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
178 pdn->phb->global_number, pdn->busno,
179 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
180 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
181 pdn->phb->global_number, pdn->busno,
182 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
183
184 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
185 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
186 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
187
188 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
189 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
190 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
191
192 /* Gather bridge-specific registers */
193 if (edev->mode & EEH_DEV_BRIDGE) {
194 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
195 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
196 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
197
198 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
199 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
200 pr_warn("EEH: Bridge control: %04x\n", cfg);
201 }
202
203 /* Dump out the PCI-X command and status regs */
204 cap = edev->pcix_cap;
205 if (cap) {
206 eeh_ops->read_config(pdn, cap, 4, &cfg);
207 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
208 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
209
210 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
211 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
212 pr_warn("EEH: PCI-X status: %08x\n", cfg);
213 }
214
215 /* If PCI-E capable, dump PCI-E cap 10 */
216 cap = edev->pcie_cap;
217 if (cap) {
218 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
219 pr_warn("EEH: PCI-E capabilities and status follow:\n");
220
221 for (i=0; i<=8; i++) {
222 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
223 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
224
225 if ((i % 4) == 0) {
226 if (i != 0)
227 pr_warn("%s\n", buffer);
228
229 l = scnprintf(buffer, sizeof(buffer),
230 "EEH: PCI-E %02x: %08x ",
231 4*i, cfg);
232 } else {
233 l += scnprintf(buffer+l, sizeof(buffer)-l,
234 "%08x ", cfg);
235 }
236
237 }
238
239 pr_warn("%s\n", buffer);
240 }
241
242 /* If AER capable, dump it */
243 cap = edev->aer_cap;
244 if (cap) {
245 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
246 pr_warn("EEH: PCI-E AER capability register set follows:\n");
247
248 for (i=0; i<=13; i++) {
249 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
250 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
251
252 if ((i % 4) == 0) {
253 if (i != 0)
254 pr_warn("%s\n", buffer);
255
256 l = scnprintf(buffer, sizeof(buffer),
257 "EEH: PCI-E AER %02x: %08x ",
258 4*i, cfg);
259 } else {
260 l += scnprintf(buffer+l, sizeof(buffer)-l,
261 "%08x ", cfg);
262 }
263 }
264
265 pr_warn("%s\n", buffer);
266 }
267
268 return n;
269}
270
271static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
272{
273 struct eeh_dev *edev, *tmp;
274 size_t *plen = flag;
275
276 eeh_pe_for_each_dev(pe, edev, tmp)
277 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
278 EEH_PCI_REGS_LOG_LEN - *plen);
279
280 return NULL;
281}
282
283/**
284 * eeh_slot_error_detail - Generate combined log including driver log and error log
285 * @pe: EEH PE
286 * @severity: temporary or permanent error log
287 *
288 * This routine should be called to generate the combined log, which
289 * is comprised of driver log and error log. The driver log is figured
290 * out from the config space of the corresponding PCI device, while
291 * the error log is fetched through platform dependent function call.
292 */
293void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
294{
295 size_t loglen = 0;
296
297 /*
298 * When the PHB is fenced or dead, it's pointless to collect
299 * the data from PCI config space because it should return
300 * 0xFF's. For ER, we still retrieve the data from the PCI
301 * config space.
302 *
303 * For pHyp, we have to enable IO for log retrieval. Otherwise,
304 * 0xFF's is always returned from PCI config space.
305 *
306 * When the @severity is EEH_LOG_PERM, the PE is going to be
307 * removed. Prior to that, the drivers for devices included in
308 * the PE will be closed. The drivers rely on working IO path
309 * to bring the devices to quiet state. Otherwise, PCI traffic
310 * from those devices after they are removed is like to cause
311 * another unexpected EEH error.
312 */
313 if (!(pe->type & EEH_PE_PHB)) {
314 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
315 severity == EEH_LOG_PERM)
316 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
317
318 /*
319 * The config space of some PCI devices can't be accessed
320 * when their PEs are in frozen state. Otherwise, fenced
321 * PHB might be seen. Those PEs are identified with flag
322 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
323 * is set automatically when the PE is put to EEH_PE_ISOLATED.
324 *
325 * Restoring BARs possibly triggers PCI config access in
326 * (OPAL) firmware and then causes fenced PHB. If the
327 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
328 * pointless to restore BARs and dump config space.
329 */
330 eeh_ops->configure_bridge(pe);
331 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
332 eeh_pe_restore_bars(pe);
333
334 pci_regs_buf[0] = 0;
335 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
336 }
337 }
338
339 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
340}
341
342/**
343 * eeh_token_to_phys - Convert EEH address token to phys address
344 * @token: I/O token, should be address in the form 0xA....
345 *
346 * This routine should be called to convert virtual I/O address
347 * to physical one.
348 */
349static inline unsigned long eeh_token_to_phys(unsigned long token)
350{
351 pte_t *ptep;
352 unsigned long pa;
353 int hugepage_shift;
354
355 /*
356 * We won't find hugepages here(this is iomem). Hence we are not
357 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
358 * page table free, because of init_mm.
359 */
360 ptep = find_init_mm_pte(token, &hugepage_shift);
361 if (!ptep)
362 return token;
363 WARN_ON(hugepage_shift);
364 pa = pte_pfn(*ptep) << PAGE_SHIFT;
365
366 return pa | (token & (PAGE_SIZE-1));
367}
368
369/*
370 * On PowerNV platform, we might already have fenced PHB there.
371 * For that case, it's meaningless to recover frozen PE. Intead,
372 * We have to handle fenced PHB firstly.
373 */
374static int eeh_phb_check_failure(struct eeh_pe *pe)
375{
376 struct eeh_pe *phb_pe;
377 unsigned long flags;
378 int ret;
379
380 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
381 return -EPERM;
382
383 /* Find the PHB PE */
384 phb_pe = eeh_phb_pe_get(pe->phb);
385 if (!phb_pe) {
386 pr_warn("%s Can't find PE for PHB#%x\n",
387 __func__, pe->phb->global_number);
388 return -EEXIST;
389 }
390
391 /* If the PHB has been in problematic state */
392 eeh_serialize_lock(&flags);
393 if (phb_pe->state & EEH_PE_ISOLATED) {
394 ret = 0;
395 goto out;
396 }
397
398 /* Check PHB state */
399 ret = eeh_ops->get_state(phb_pe, NULL);
400 if ((ret < 0) ||
401 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
402 ret = 0;
403 goto out;
404 }
405
406 /* Isolate the PHB and send event */
407 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
408 eeh_serialize_unlock(flags);
409
410 pr_err("EEH: PHB#%x failure detected, location: %s\n",
411 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
412 dump_stack();
413 eeh_send_failure_event(phb_pe);
414
415 return 1;
416out:
417 eeh_serialize_unlock(flags);
418 return ret;
419}
420
421/**
422 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
423 * @edev: eeh device
424 *
425 * Check for an EEH failure for the given device node. Call this
426 * routine if the result of a read was all 0xff's and you want to
427 * find out if this is due to an EEH slot freeze. This routine
428 * will query firmware for the EEH status.
429 *
430 * Returns 0 if there has not been an EEH error; otherwise returns
431 * a non-zero value and queues up a slot isolation event notification.
432 *
433 * It is safe to call this routine in an interrupt context.
434 */
435int eeh_dev_check_failure(struct eeh_dev *edev)
436{
437 int ret;
438 unsigned long flags;
439 struct device_node *dn;
440 struct pci_dev *dev;
441 struct eeh_pe *pe, *parent_pe, *phb_pe;
442 int rc = 0;
443 const char *location = NULL;
444
445 eeh_stats.total_mmio_ffs++;
446
447 if (!eeh_enabled())
448 return 0;
449
450 if (!edev) {
451 eeh_stats.no_dn++;
452 return 0;
453 }
454 dev = eeh_dev_to_pci_dev(edev);
455 pe = eeh_dev_to_pe(edev);
456
457 /* Access to IO BARs might get this far and still not want checking. */
458 if (!pe) {
459 eeh_stats.ignored_check++;
460 pr_debug("EEH: Ignored check for %s\n",
461 eeh_pci_name(dev));
462 return 0;
463 }
464
465 if (!pe->addr && !pe->config_addr) {
466 eeh_stats.no_cfg_addr++;
467 return 0;
468 }
469
470 /*
471 * On PowerNV platform, we might already have fenced PHB
472 * there and we need take care of that firstly.
473 */
474 ret = eeh_phb_check_failure(pe);
475 if (ret > 0)
476 return ret;
477
478 /*
479 * If the PE isn't owned by us, we shouldn't check the
480 * state. Instead, let the owner handle it if the PE has
481 * been frozen.
482 */
483 if (eeh_pe_passed(pe))
484 return 0;
485
486 /* If we already have a pending isolation event for this
487 * slot, we know it's bad already, we don't need to check.
488 * Do this checking under a lock; as multiple PCI devices
489 * in one slot might report errors simultaneously, and we
490 * only want one error recovery routine running.
491 */
492 eeh_serialize_lock(&flags);
493 rc = 1;
494 if (pe->state & EEH_PE_ISOLATED) {
495 pe->check_count++;
496 if (pe->check_count % EEH_MAX_FAILS == 0) {
497 dn = pci_device_to_OF_node(dev);
498 if (dn)
499 location = of_get_property(dn, "ibm,loc-code",
500 NULL);
501 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
502 "location=%s driver=%s pci addr=%s\n",
503 pe->check_count,
504 location ? location : "unknown",
505 eeh_driver_name(dev), eeh_pci_name(dev));
506 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
507 eeh_driver_name(dev));
508 dump_stack();
509 }
510 goto dn_unlock;
511 }
512
513 /*
514 * Now test for an EEH failure. This is VERY expensive.
515 * Note that the eeh_config_addr may be a parent device
516 * in the case of a device behind a bridge, or it may be
517 * function zero of a multi-function device.
518 * In any case they must share a common PHB.
519 */
520 ret = eeh_ops->get_state(pe, NULL);
521
522 /* Note that config-io to empty slots may fail;
523 * they are empty when they don't have children.
524 * We will punt with the following conditions: Failure to get
525 * PE's state, EEH not support and Permanently unavailable
526 * state, PE is in good state.
527 */
528 if ((ret < 0) ||
529 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
530 eeh_stats.false_positives++;
531 pe->false_positives++;
532 rc = 0;
533 goto dn_unlock;
534 }
535
536 /*
537 * It should be corner case that the parent PE has been
538 * put into frozen state as well. We should take care
539 * that at first.
540 */
541 parent_pe = pe->parent;
542 while (parent_pe) {
543 /* Hit the ceiling ? */
544 if (parent_pe->type & EEH_PE_PHB)
545 break;
546
547 /* Frozen parent PE ? */
548 ret = eeh_ops->get_state(parent_pe, NULL);
549 if (ret > 0 && !eeh_state_active(ret)) {
550 pe = parent_pe;
551 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
552 pe->phb->global_number, pe->addr,
553 pe->phb->global_number, parent_pe->addr);
554 }
555
556 /* Next parent level */
557 parent_pe = parent_pe->parent;
558 }
559
560 eeh_stats.slot_resets++;
561
562 /* Avoid repeated reports of this failure, including problems
563 * with other functions on this device, and functions under
564 * bridges.
565 */
566 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
567 eeh_serialize_unlock(flags);
568
569 /* Most EEH events are due to device driver bugs. Having
570 * a stack trace will help the device-driver authors figure
571 * out what happened. So print that out.
572 */
573 phb_pe = eeh_phb_pe_get(pe->phb);
574 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
575 pe->phb->global_number, pe->addr);
576 pr_err("EEH: PE location: %s, PHB location: %s\n",
577 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
578 dump_stack();
579
580 eeh_send_failure_event(pe);
581
582 return 1;
583
584dn_unlock:
585 eeh_serialize_unlock(flags);
586 return rc;
587}
588
589EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
590
591/**
592 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
593 * @token: I/O address
594 *
595 * Check for an EEH failure at the given I/O address. Call this
596 * routine if the result of a read was all 0xff's and you want to
597 * find out if this is due to an EEH slot freeze event. This routine
598 * will query firmware for the EEH status.
599 *
600 * Note this routine is safe to call in an interrupt context.
601 */
602int eeh_check_failure(const volatile void __iomem *token)
603{
604 unsigned long addr;
605 struct eeh_dev *edev;
606
607 /* Finding the phys addr + pci device; this is pretty quick. */
608 addr = eeh_token_to_phys((unsigned long __force) token);
609 edev = eeh_addr_cache_get_dev(addr);
610 if (!edev) {
611 eeh_stats.no_device++;
612 return 0;
613 }
614
615 return eeh_dev_check_failure(edev);
616}
617EXPORT_SYMBOL(eeh_check_failure);
618
619
620/**
621 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
622 * @pe: EEH PE
623 *
624 * This routine should be called to reenable frozen MMIO or DMA
625 * so that it would work correctly again. It's useful while doing
626 * recovery or log collection on the indicated device.
627 */
628int eeh_pci_enable(struct eeh_pe *pe, int function)
629{
630 int active_flag, rc;
631
632 /*
633 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
634 * Also, it's pointless to enable them on unfrozen PE. So
635 * we have to check before enabling IO or DMA.
636 */
637 switch (function) {
638 case EEH_OPT_THAW_MMIO:
639 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
640 break;
641 case EEH_OPT_THAW_DMA:
642 active_flag = EEH_STATE_DMA_ACTIVE;
643 break;
644 case EEH_OPT_DISABLE:
645 case EEH_OPT_ENABLE:
646 case EEH_OPT_FREEZE_PE:
647 active_flag = 0;
648 break;
649 default:
650 pr_warn("%s: Invalid function %d\n",
651 __func__, function);
652 return -EINVAL;
653 }
654
655 /*
656 * Check if IO or DMA has been enabled before
657 * enabling them.
658 */
659 if (active_flag) {
660 rc = eeh_ops->get_state(pe, NULL);
661 if (rc < 0)
662 return rc;
663
664 /* Needn't enable it at all */
665 if (rc == EEH_STATE_NOT_SUPPORT)
666 return 0;
667
668 /* It's already enabled */
669 if (rc & active_flag)
670 return 0;
671 }
672
673
674 /* Issue the request */
675 rc = eeh_ops->set_option(pe, function);
676 if (rc)
677 pr_warn("%s: Unexpected state change %d on "
678 "PHB#%x-PE#%x, err=%d\n",
679 __func__, function, pe->phb->global_number,
680 pe->addr, rc);
681
682 /* Check if the request is finished successfully */
683 if (active_flag) {
684 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
685 if (rc < 0)
686 return rc;
687
688 if (rc & active_flag)
689 return 0;
690
691 return -EIO;
692 }
693
694 return rc;
695}
696
697static void *eeh_disable_and_save_dev_state(struct eeh_dev *edev,
698 void *userdata)
699{
700 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
701 struct pci_dev *dev = userdata;
702
703 /*
704 * The caller should have disabled and saved the
705 * state for the specified device
706 */
707 if (!pdev || pdev == dev)
708 return NULL;
709
710 /* Ensure we have D0 power state */
711 pci_set_power_state(pdev, PCI_D0);
712
713 /* Save device state */
714 pci_save_state(pdev);
715
716 /*
717 * Disable device to avoid any DMA traffic and
718 * interrupt from the device
719 */
720 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
721
722 return NULL;
723}
724
725static void *eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
726{
727 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
728 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
729 struct pci_dev *dev = userdata;
730
731 if (!pdev)
732 return NULL;
733
734 /* Apply customization from firmware */
735 if (pdn && eeh_ops->restore_config)
736 eeh_ops->restore_config(pdn);
737
738 /* The caller should restore state for the specified device */
739 if (pdev != dev)
740 pci_restore_state(pdev);
741
742 return NULL;
743}
744
745int eeh_restore_vf_config(struct pci_dn *pdn)
746{
747 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
748 u32 devctl, cmd, cap2, aer_capctl;
749 int old_mps;
750
751 if (edev->pcie_cap) {
752 /* Restore MPS */
753 old_mps = (ffs(pdn->mps) - 8) << 5;
754 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
755 2, &devctl);
756 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
757 devctl |= old_mps;
758 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
759 2, devctl);
760
761 /* Disable Completion Timeout if possible */
762 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
763 4, &cap2);
764 if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
765 eeh_ops->read_config(pdn,
766 edev->pcie_cap + PCI_EXP_DEVCTL2,
767 4, &cap2);
768 cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
769 eeh_ops->write_config(pdn,
770 edev->pcie_cap + PCI_EXP_DEVCTL2,
771 4, cap2);
772 }
773 }
774
775 /* Enable SERR and parity checking */
776 eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
777 cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
778 eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
779
780 /* Enable report various errors */
781 if (edev->pcie_cap) {
782 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
783 2, &devctl);
784 devctl &= ~PCI_EXP_DEVCTL_CERE;
785 devctl |= (PCI_EXP_DEVCTL_NFERE |
786 PCI_EXP_DEVCTL_FERE |
787 PCI_EXP_DEVCTL_URRE);
788 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
789 2, devctl);
790 }
791
792 /* Enable ECRC generation and check */
793 if (edev->pcie_cap && edev->aer_cap) {
794 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
795 4, &aer_capctl);
796 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
797 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
798 4, aer_capctl);
799 }
800
801 return 0;
802}
803
804/**
805 * pcibios_set_pcie_reset_state - Set PCI-E reset state
806 * @dev: pci device struct
807 * @state: reset state to enter
808 *
809 * Return value:
810 * 0 if success
811 */
812int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
813{
814 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
815 struct eeh_pe *pe = eeh_dev_to_pe(edev);
816
817 if (!pe) {
818 pr_err("%s: No PE found on PCI device %s\n",
819 __func__, pci_name(dev));
820 return -EINVAL;
821 }
822
823 switch (state) {
824 case pcie_deassert_reset:
825 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
826 eeh_unfreeze_pe(pe, false);
827 if (!(pe->type & EEH_PE_VF))
828 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
829 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
830 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
831 break;
832 case pcie_hot_reset:
833 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
834 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
835 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
836 if (!(pe->type & EEH_PE_VF))
837 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
838 eeh_ops->reset(pe, EEH_RESET_HOT);
839 break;
840 case pcie_warm_reset:
841 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
842 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
843 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
844 if (!(pe->type & EEH_PE_VF))
845 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
846 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
847 break;
848 default:
849 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
850 return -EINVAL;
851 };
852
853 return 0;
854}
855
856/**
857 * eeh_set_pe_freset - Check the required reset for the indicated device
858 * @data: EEH device
859 * @flag: return value
860 *
861 * Each device might have its preferred reset type: fundamental or
862 * hot reset. The routine is used to collected the information for
863 * the indicated device and its children so that the bunch of the
864 * devices could be reset properly.
865 */
866static void *eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
867{
868 struct pci_dev *dev;
869 unsigned int *freset = (unsigned int *)flag;
870
871 dev = eeh_dev_to_pci_dev(edev);
872 if (dev)
873 *freset |= dev->needs_freset;
874
875 return NULL;
876}
877
878/**
879 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
880 * @pe: EEH PE
881 *
882 * This function executes a full reset procedure on a PE, including setting
883 * the appropriate flags, performing a fundamental or hot reset, and then
884 * deactivating the reset status. It is designed to be used within the EEH
885 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
886 * only performs a single operation at a time.
887 *
888 * This function will attempt to reset a PE three times before failing.
889 */
890int eeh_pe_reset_full(struct eeh_pe *pe)
891{
892 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
893 int type = EEH_RESET_HOT;
894 unsigned int freset = 0;
895 int i, state, ret;
896
897 /*
898 * Determine the type of reset to perform - hot or fundamental.
899 * Hot reset is the default operation, unless any device under the
900 * PE requires a fundamental reset.
901 */
902 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
903
904 if (freset)
905 type = EEH_RESET_FUNDAMENTAL;
906
907 /* Mark the PE as in reset state and block config space accesses */
908 eeh_pe_state_mark(pe, reset_state);
909
910 /* Make three attempts at resetting the bus */
911 for (i = 0; i < 3; i++) {
912 ret = eeh_pe_reset(pe, type);
913 if (ret)
914 break;
915
916 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
917 if (ret)
918 break;
919
920 /* Wait until the PE is in a functioning state */
921 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
922 if (eeh_state_active(state))
923 break;
924
925 if (state < 0) {
926 pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
927 __func__, pe->phb->global_number, pe->addr);
928 ret = -ENOTRECOVERABLE;
929 break;
930 }
931
932 /* Set error in case this is our last attempt */
933 ret = -EIO;
934 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
935 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
936 }
937
938 eeh_pe_state_clear(pe, reset_state);
939 return ret;
940}
941
942/**
943 * eeh_save_bars - Save device bars
944 * @edev: PCI device associated EEH device
945 *
946 * Save the values of the device bars. Unlike the restore
947 * routine, this routine is *not* recursive. This is because
948 * PCI devices are added individually; but, for the restore,
949 * an entire slot is reset at a time.
950 */
951void eeh_save_bars(struct eeh_dev *edev)
952{
953 struct pci_dn *pdn;
954 int i;
955
956 pdn = eeh_dev_to_pdn(edev);
957 if (!pdn)
958 return;
959
960 for (i = 0; i < 16; i++)
961 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
962
963 /*
964 * For PCI bridges including root port, we need enable bus
965 * master explicitly. Otherwise, it can't fetch IODA table
966 * entries correctly. So we cache the bit in advance so that
967 * we can restore it after reset, either PHB range or PE range.
968 */
969 if (edev->mode & EEH_DEV_BRIDGE)
970 edev->config_space[1] |= PCI_COMMAND_MASTER;
971}
972
973/**
974 * eeh_ops_register - Register platform dependent EEH operations
975 * @ops: platform dependent EEH operations
976 *
977 * Register the platform dependent EEH operation callback
978 * functions. The platform should call this function before
979 * any other EEH operations.
980 */
981int __init eeh_ops_register(struct eeh_ops *ops)
982{
983 if (!ops->name) {
984 pr_warn("%s: Invalid EEH ops name for %p\n",
985 __func__, ops);
986 return -EINVAL;
987 }
988
989 if (eeh_ops && eeh_ops != ops) {
990 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
991 __func__, eeh_ops->name, ops->name);
992 return -EEXIST;
993 }
994
995 eeh_ops = ops;
996
997 return 0;
998}
999
1000/**
1001 * eeh_ops_unregister - Unreigster platform dependent EEH operations
1002 * @name: name of EEH platform operations
1003 *
1004 * Unregister the platform dependent EEH operation callback
1005 * functions.
1006 */
1007int __exit eeh_ops_unregister(const char *name)
1008{
1009 if (!name || !strlen(name)) {
1010 pr_warn("%s: Invalid EEH ops name\n",
1011 __func__);
1012 return -EINVAL;
1013 }
1014
1015 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1016 eeh_ops = NULL;
1017 return 0;
1018 }
1019
1020 return -EEXIST;
1021}
1022
1023static int eeh_reboot_notifier(struct notifier_block *nb,
1024 unsigned long action, void *unused)
1025{
1026 eeh_clear_flag(EEH_ENABLED);
1027 return NOTIFY_DONE;
1028}
1029
1030static struct notifier_block eeh_reboot_nb = {
1031 .notifier_call = eeh_reboot_notifier,
1032};
1033
1034void eeh_probe_devices(void)
1035{
1036 struct pci_controller *hose, *tmp;
1037 struct pci_dn *pdn;
1038
1039 /* Enable EEH for all adapters */
1040 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1041 pdn = hose->pci_data;
1042 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1043 }
1044}
1045
1046/**
1047 * eeh_init - EEH initialization
1048 *
1049 * Initialize EEH by trying to enable it for all of the adapters in the system.
1050 * As a side effect we can determine here if eeh is supported at all.
1051 * Note that we leave EEH on so failed config cycles won't cause a machine
1052 * check. If a user turns off EEH for a particular adapter they are really
1053 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1054 * grant access to a slot if EEH isn't enabled, and so we always enable
1055 * EEH for all slots/all devices.
1056 *
1057 * The eeh-force-off option disables EEH checking globally, for all slots.
1058 * Even if force-off is set, the EEH hardware is still enabled, so that
1059 * newer systems can boot.
1060 */
1061static int eeh_init(void)
1062{
1063 struct pci_controller *hose, *tmp;
1064 int ret = 0;
1065
1066 /* Register reboot notifier */
1067 ret = register_reboot_notifier(&eeh_reboot_nb);
1068 if (ret) {
1069 pr_warn("%s: Failed to register notifier (%d)\n",
1070 __func__, ret);
1071 return ret;
1072 }
1073
1074 /* call platform initialization function */
1075 if (!eeh_ops) {
1076 pr_warn("%s: Platform EEH operation not found\n",
1077 __func__);
1078 return -EEXIST;
1079 } else if ((ret = eeh_ops->init()))
1080 return ret;
1081
1082 /* Initialize PHB PEs */
1083 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1084 eeh_dev_phb_init_dynamic(hose);
1085
1086 /* Initialize EEH event */
1087 ret = eeh_event_init();
1088 if (ret)
1089 return ret;
1090
1091 eeh_probe_devices();
1092
1093 if (eeh_enabled())
1094 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1095 else if (!eeh_has_flag(EEH_POSTPONED_PROBE))
1096 pr_info("EEH: No capable adapters found\n");
1097
1098 return ret;
1099}
1100
1101core_initcall_sync(eeh_init);
1102
1103/**
1104 * eeh_add_device_early - Enable EEH for the indicated device node
1105 * @pdn: PCI device node for which to set up EEH
1106 *
1107 * This routine must be used to perform EEH initialization for PCI
1108 * devices that were added after system boot (e.g. hotplug, dlpar).
1109 * This routine must be called before any i/o is performed to the
1110 * adapter (inluding any config-space i/o).
1111 * Whether this actually enables EEH or not for this device depends
1112 * on the CEC architecture, type of the device, on earlier boot
1113 * command-line arguments & etc.
1114 */
1115void eeh_add_device_early(struct pci_dn *pdn)
1116{
1117 struct pci_controller *phb = pdn ? pdn->phb : NULL;
1118 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1119
1120 if (!edev)
1121 return;
1122
1123 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1124 return;
1125
1126 /* USB Bus children of PCI devices will not have BUID's */
1127 if (NULL == phb ||
1128 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1129 return;
1130
1131 eeh_ops->probe(pdn, NULL);
1132}
1133
1134/**
1135 * eeh_add_device_tree_early - Enable EEH for the indicated device
1136 * @pdn: PCI device node
1137 *
1138 * This routine must be used to perform EEH initialization for the
1139 * indicated PCI device that was added after system boot (e.g.
1140 * hotplug, dlpar).
1141 */
1142void eeh_add_device_tree_early(struct pci_dn *pdn)
1143{
1144 struct pci_dn *n;
1145
1146 if (!pdn)
1147 return;
1148
1149 list_for_each_entry(n, &pdn->child_list, list)
1150 eeh_add_device_tree_early(n);
1151 eeh_add_device_early(pdn);
1152}
1153EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1154
1155/**
1156 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1157 * @dev: pci device for which to set up EEH
1158 *
1159 * This routine must be used to complete EEH initialization for PCI
1160 * devices that were added after system boot (e.g. hotplug, dlpar).
1161 */
1162void eeh_add_device_late(struct pci_dev *dev)
1163{
1164 struct pci_dn *pdn;
1165 struct eeh_dev *edev;
1166
1167 if (!dev || !eeh_enabled())
1168 return;
1169
1170 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1171
1172 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1173 edev = pdn_to_eeh_dev(pdn);
1174 if (edev->pdev == dev) {
1175 pr_debug("EEH: Already referenced !\n");
1176 return;
1177 }
1178
1179 /*
1180 * The EEH cache might not be removed correctly because of
1181 * unbalanced kref to the device during unplug time, which
1182 * relies on pcibios_release_device(). So we have to remove
1183 * that here explicitly.
1184 */
1185 if (edev->pdev) {
1186 eeh_rmv_from_parent_pe(edev);
1187 eeh_addr_cache_rmv_dev(edev->pdev);
1188 eeh_sysfs_remove_device(edev->pdev);
1189 edev->mode &= ~EEH_DEV_SYSFS;
1190
1191 /*
1192 * We definitely should have the PCI device removed
1193 * though it wasn't correctly. So we needn't call
1194 * into error handler afterwards.
1195 */
1196 edev->mode |= EEH_DEV_NO_HANDLER;
1197
1198 edev->pdev = NULL;
1199 dev->dev.archdata.edev = NULL;
1200 }
1201
1202 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1203 eeh_ops->probe(pdn, NULL);
1204
1205 edev->pdev = dev;
1206 dev->dev.archdata.edev = edev;
1207
1208 eeh_addr_cache_insert_dev(dev);
1209}
1210
1211/**
1212 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1213 * @bus: PCI bus
1214 *
1215 * This routine must be used to perform EEH initialization for PCI
1216 * devices which are attached to the indicated PCI bus. The PCI bus
1217 * is added after system boot through hotplug or dlpar.
1218 */
1219void eeh_add_device_tree_late(struct pci_bus *bus)
1220{
1221 struct pci_dev *dev;
1222
1223 list_for_each_entry(dev, &bus->devices, bus_list) {
1224 eeh_add_device_late(dev);
1225 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1226 struct pci_bus *subbus = dev->subordinate;
1227 if (subbus)
1228 eeh_add_device_tree_late(subbus);
1229 }
1230 }
1231}
1232EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1233
1234/**
1235 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1236 * @bus: PCI bus
1237 *
1238 * This routine must be used to add EEH sysfs files for PCI
1239 * devices which are attached to the indicated PCI bus. The PCI bus
1240 * is added after system boot through hotplug or dlpar.
1241 */
1242void eeh_add_sysfs_files(struct pci_bus *bus)
1243{
1244 struct pci_dev *dev;
1245
1246 list_for_each_entry(dev, &bus->devices, bus_list) {
1247 eeh_sysfs_add_device(dev);
1248 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1249 struct pci_bus *subbus = dev->subordinate;
1250 if (subbus)
1251 eeh_add_sysfs_files(subbus);
1252 }
1253 }
1254}
1255EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1256
1257/**
1258 * eeh_remove_device - Undo EEH setup for the indicated pci device
1259 * @dev: pci device to be removed
1260 *
1261 * This routine should be called when a device is removed from
1262 * a running system (e.g. by hotplug or dlpar). It unregisters
1263 * the PCI device from the EEH subsystem. I/O errors affecting
1264 * this device will no longer be detected after this call; thus,
1265 * i/o errors affecting this slot may leave this device unusable.
1266 */
1267void eeh_remove_device(struct pci_dev *dev)
1268{
1269 struct eeh_dev *edev;
1270
1271 if (!dev || !eeh_enabled())
1272 return;
1273 edev = pci_dev_to_eeh_dev(dev);
1274
1275 /* Unregister the device with the EEH/PCI address search system */
1276 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1277
1278 if (!edev || !edev->pdev || !edev->pe) {
1279 pr_debug("EEH: Not referenced !\n");
1280 return;
1281 }
1282
1283 /*
1284 * During the hotplug for EEH error recovery, we need the EEH
1285 * device attached to the parent PE in order for BAR restore
1286 * a bit later. So we keep it for BAR restore and remove it
1287 * from the parent PE during the BAR resotre.
1288 */
1289 edev->pdev = NULL;
1290
1291 /*
1292 * The flag "in_error" is used to trace EEH devices for VFs
1293 * in error state or not. It's set in eeh_report_error(). If
1294 * it's not set, eeh_report_{reset,resume}() won't be called
1295 * for the VF EEH device.
1296 */
1297 edev->in_error = false;
1298 dev->dev.archdata.edev = NULL;
1299 if (!(edev->pe->state & EEH_PE_KEEP))
1300 eeh_rmv_from_parent_pe(edev);
1301 else
1302 edev->mode |= EEH_DEV_DISCONNECTED;
1303
1304 /*
1305 * We're removing from the PCI subsystem, that means
1306 * the PCI device driver can't support EEH or not
1307 * well. So we rely on hotplug completely to do recovery
1308 * for the specific PCI device.
1309 */
1310 edev->mode |= EEH_DEV_NO_HANDLER;
1311
1312 eeh_addr_cache_rmv_dev(dev);
1313 eeh_sysfs_remove_device(dev);
1314 edev->mode &= ~EEH_DEV_SYSFS;
1315}
1316
1317int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1318{
1319 int ret;
1320
1321 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1322 if (ret) {
1323 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1324 __func__, ret, pe->phb->global_number, pe->addr);
1325 return ret;
1326 }
1327
1328 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1329 if (ret) {
1330 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1331 __func__, ret, pe->phb->global_number, pe->addr);
1332 return ret;
1333 }
1334
1335 /* Clear software isolated state */
1336 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1337 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1338
1339 return ret;
1340}
1341
1342
1343static struct pci_device_id eeh_reset_ids[] = {
1344 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1345 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1346 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1347 { 0 }
1348};
1349
1350static int eeh_pe_change_owner(struct eeh_pe *pe)
1351{
1352 struct eeh_dev *edev, *tmp;
1353 struct pci_dev *pdev;
1354 struct pci_device_id *id;
1355 int ret;
1356
1357 /* Check PE state */
1358 ret = eeh_ops->get_state(pe, NULL);
1359 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1360 return 0;
1361
1362 /* Unfrozen PE, nothing to do */
1363 if (eeh_state_active(ret))
1364 return 0;
1365
1366 /* Frozen PE, check if it needs PE level reset */
1367 eeh_pe_for_each_dev(pe, edev, tmp) {
1368 pdev = eeh_dev_to_pci_dev(edev);
1369 if (!pdev)
1370 continue;
1371
1372 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1373 if (id->vendor != PCI_ANY_ID &&
1374 id->vendor != pdev->vendor)
1375 continue;
1376 if (id->device != PCI_ANY_ID &&
1377 id->device != pdev->device)
1378 continue;
1379 if (id->subvendor != PCI_ANY_ID &&
1380 id->subvendor != pdev->subsystem_vendor)
1381 continue;
1382 if (id->subdevice != PCI_ANY_ID &&
1383 id->subdevice != pdev->subsystem_device)
1384 continue;
1385
1386 return eeh_pe_reset_and_recover(pe);
1387 }
1388 }
1389
1390 return eeh_unfreeze_pe(pe, true);
1391}
1392
1393/**
1394 * eeh_dev_open - Increase count of pass through devices for PE
1395 * @pdev: PCI device
1396 *
1397 * Increase count of passed through devices for the indicated
1398 * PE. In the result, the EEH errors detected on the PE won't be
1399 * reported. The PE owner will be responsible for detection
1400 * and recovery.
1401 */
1402int eeh_dev_open(struct pci_dev *pdev)
1403{
1404 struct eeh_dev *edev;
1405 int ret = -ENODEV;
1406
1407 mutex_lock(&eeh_dev_mutex);
1408
1409 /* No PCI device ? */
1410 if (!pdev)
1411 goto out;
1412
1413 /* No EEH device or PE ? */
1414 edev = pci_dev_to_eeh_dev(pdev);
1415 if (!edev || !edev->pe)
1416 goto out;
1417
1418 /*
1419 * The PE might have been put into frozen state, but we
1420 * didn't detect that yet. The passed through PCI devices
1421 * in frozen PE won't work properly. Clear the frozen state
1422 * in advance.
1423 */
1424 ret = eeh_pe_change_owner(edev->pe);
1425 if (ret)
1426 goto out;
1427
1428 /* Increase PE's pass through count */
1429 atomic_inc(&edev->pe->pass_dev_cnt);
1430 mutex_unlock(&eeh_dev_mutex);
1431
1432 return 0;
1433out:
1434 mutex_unlock(&eeh_dev_mutex);
1435 return ret;
1436}
1437EXPORT_SYMBOL_GPL(eeh_dev_open);
1438
1439/**
1440 * eeh_dev_release - Decrease count of pass through devices for PE
1441 * @pdev: PCI device
1442 *
1443 * Decrease count of pass through devices for the indicated PE. If
1444 * there is no passed through device in PE, the EEH errors detected
1445 * on the PE will be reported and handled as usual.
1446 */
1447void eeh_dev_release(struct pci_dev *pdev)
1448{
1449 struct eeh_dev *edev;
1450
1451 mutex_lock(&eeh_dev_mutex);
1452
1453 /* No PCI device ? */
1454 if (!pdev)
1455 goto out;
1456
1457 /* No EEH device ? */
1458 edev = pci_dev_to_eeh_dev(pdev);
1459 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1460 goto out;
1461
1462 /* Decrease PE's pass through count */
1463 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1464 eeh_pe_change_owner(edev->pe);
1465out:
1466 mutex_unlock(&eeh_dev_mutex);
1467}
1468EXPORT_SYMBOL(eeh_dev_release);
1469
1470#ifdef CONFIG_IOMMU_API
1471
1472static int dev_has_iommu_table(struct device *dev, void *data)
1473{
1474 struct pci_dev *pdev = to_pci_dev(dev);
1475 struct pci_dev **ppdev = data;
1476
1477 if (!dev)
1478 return 0;
1479
1480 if (dev->iommu_group) {
1481 *ppdev = pdev;
1482 return 1;
1483 }
1484
1485 return 0;
1486}
1487
1488/**
1489 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1490 * @group: IOMMU group
1491 *
1492 * The routine is called to convert IOMMU group to EEH PE.
1493 */
1494struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1495{
1496 struct pci_dev *pdev = NULL;
1497 struct eeh_dev *edev;
1498 int ret;
1499
1500 /* No IOMMU group ? */
1501 if (!group)
1502 return NULL;
1503
1504 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1505 if (!ret || !pdev)
1506 return NULL;
1507
1508 /* No EEH device or PE ? */
1509 edev = pci_dev_to_eeh_dev(pdev);
1510 if (!edev || !edev->pe)
1511 return NULL;
1512
1513 return edev->pe;
1514}
1515EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1516
1517#endif /* CONFIG_IOMMU_API */
1518
1519/**
1520 * eeh_pe_set_option - Set options for the indicated PE
1521 * @pe: EEH PE
1522 * @option: requested option
1523 *
1524 * The routine is called to enable or disable EEH functionality
1525 * on the indicated PE, to enable IO or DMA for the frozen PE.
1526 */
1527int eeh_pe_set_option(struct eeh_pe *pe, int option)
1528{
1529 int ret = 0;
1530
1531 /* Invalid PE ? */
1532 if (!pe)
1533 return -ENODEV;
1534
1535 /*
1536 * EEH functionality could possibly be disabled, just
1537 * return error for the case. And the EEH functinality
1538 * isn't expected to be disabled on one specific PE.
1539 */
1540 switch (option) {
1541 case EEH_OPT_ENABLE:
1542 if (eeh_enabled()) {
1543 ret = eeh_pe_change_owner(pe);
1544 break;
1545 }
1546 ret = -EIO;
1547 break;
1548 case EEH_OPT_DISABLE:
1549 break;
1550 case EEH_OPT_THAW_MMIO:
1551 case EEH_OPT_THAW_DMA:
1552 case EEH_OPT_FREEZE_PE:
1553 if (!eeh_ops || !eeh_ops->set_option) {
1554 ret = -ENOENT;
1555 break;
1556 }
1557
1558 ret = eeh_pci_enable(pe, option);
1559 break;
1560 default:
1561 pr_debug("%s: Option %d out of range (%d, %d)\n",
1562 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1563 ret = -EINVAL;
1564 }
1565
1566 return ret;
1567}
1568EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1569
1570/**
1571 * eeh_pe_get_state - Retrieve PE's state
1572 * @pe: EEH PE
1573 *
1574 * Retrieve the PE's state, which includes 3 aspects: enabled
1575 * DMA, enabled IO and asserted reset.
1576 */
1577int eeh_pe_get_state(struct eeh_pe *pe)
1578{
1579 int result, ret = 0;
1580 bool rst_active, dma_en, mmio_en;
1581
1582 /* Existing PE ? */
1583 if (!pe)
1584 return -ENODEV;
1585
1586 if (!eeh_ops || !eeh_ops->get_state)
1587 return -ENOENT;
1588
1589 /*
1590 * If the parent PE is owned by the host kernel and is undergoing
1591 * error recovery, we should return the PE state as temporarily
1592 * unavailable so that the error recovery on the guest is suspended
1593 * until the recovery completes on the host.
1594 */
1595 if (pe->parent &&
1596 !(pe->state & EEH_PE_REMOVED) &&
1597 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1598 return EEH_PE_STATE_UNAVAIL;
1599
1600 result = eeh_ops->get_state(pe, NULL);
1601 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1602 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1603 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1604
1605 if (rst_active)
1606 ret = EEH_PE_STATE_RESET;
1607 else if (dma_en && mmio_en)
1608 ret = EEH_PE_STATE_NORMAL;
1609 else if (!dma_en && !mmio_en)
1610 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1611 else if (!dma_en && mmio_en)
1612 ret = EEH_PE_STATE_STOPPED_DMA;
1613 else
1614 ret = EEH_PE_STATE_UNAVAIL;
1615
1616 return ret;
1617}
1618EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1619
1620static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1621{
1622 struct eeh_dev *edev, *tmp;
1623 struct pci_dev *pdev;
1624 int ret = 0;
1625
1626 /* Restore config space */
1627 eeh_pe_restore_bars(pe);
1628
1629 /*
1630 * Reenable PCI devices as the devices passed
1631 * through are always enabled before the reset.
1632 */
1633 eeh_pe_for_each_dev(pe, edev, tmp) {
1634 pdev = eeh_dev_to_pci_dev(edev);
1635 if (!pdev)
1636 continue;
1637
1638 ret = pci_reenable_device(pdev);
1639 if (ret) {
1640 pr_warn("%s: Failure %d reenabling %s\n",
1641 __func__, ret, pci_name(pdev));
1642 return ret;
1643 }
1644 }
1645
1646 /* The PE is still in frozen state */
1647 return eeh_unfreeze_pe(pe, true);
1648}
1649
1650
1651/**
1652 * eeh_pe_reset - Issue PE reset according to specified type
1653 * @pe: EEH PE
1654 * @option: reset type
1655 *
1656 * The routine is called to reset the specified PE with the
1657 * indicated type, either fundamental reset or hot reset.
1658 * PE reset is the most important part for error recovery.
1659 */
1660int eeh_pe_reset(struct eeh_pe *pe, int option)
1661{
1662 int ret = 0;
1663
1664 /* Invalid PE ? */
1665 if (!pe)
1666 return -ENODEV;
1667
1668 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1669 return -ENOENT;
1670
1671 switch (option) {
1672 case EEH_RESET_DEACTIVATE:
1673 ret = eeh_ops->reset(pe, option);
1674 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1675 if (ret)
1676 break;
1677
1678 ret = eeh_pe_reenable_devices(pe);
1679 break;
1680 case EEH_RESET_HOT:
1681 case EEH_RESET_FUNDAMENTAL:
1682 /*
1683 * Proactively freeze the PE to drop all MMIO access
1684 * during reset, which should be banned as it's always
1685 * cause recursive EEH error.
1686 */
1687 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1688
1689 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1690 ret = eeh_ops->reset(pe, option);
1691 break;
1692 default:
1693 pr_debug("%s: Unsupported option %d\n",
1694 __func__, option);
1695 ret = -EINVAL;
1696 }
1697
1698 return ret;
1699}
1700EXPORT_SYMBOL_GPL(eeh_pe_reset);
1701
1702/**
1703 * eeh_pe_configure - Configure PCI bridges after PE reset
1704 * @pe: EEH PE
1705 *
1706 * The routine is called to restore the PCI config space for
1707 * those PCI devices, especially PCI bridges affected by PE
1708 * reset issued previously.
1709 */
1710int eeh_pe_configure(struct eeh_pe *pe)
1711{
1712 int ret = 0;
1713
1714 /* Invalid PE ? */
1715 if (!pe)
1716 return -ENODEV;
1717
1718 return ret;
1719}
1720EXPORT_SYMBOL_GPL(eeh_pe_configure);
1721
1722/**
1723 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1724 * @pe: the indicated PE
1725 * @type: error type
1726 * @function: error function
1727 * @addr: address
1728 * @mask: address mask
1729 *
1730 * The routine is called to inject the specified PCI error, which
1731 * is determined by @type and @function, to the indicated PE for
1732 * testing purpose.
1733 */
1734int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1735 unsigned long addr, unsigned long mask)
1736{
1737 /* Invalid PE ? */
1738 if (!pe)
1739 return -ENODEV;
1740
1741 /* Unsupported operation ? */
1742 if (!eeh_ops || !eeh_ops->err_inject)
1743 return -ENOENT;
1744
1745 /* Check on PCI error type */
1746 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1747 return -EINVAL;
1748
1749 /* Check on PCI error function */
1750 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1751 return -EINVAL;
1752
1753 return eeh_ops->err_inject(pe, type, func, addr, mask);
1754}
1755EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1756
1757static int proc_eeh_show(struct seq_file *m, void *v)
1758{
1759 if (!eeh_enabled()) {
1760 seq_printf(m, "EEH Subsystem is globally disabled\n");
1761 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1762 } else {
1763 seq_printf(m, "EEH Subsystem is enabled\n");
1764 seq_printf(m,
1765 "no device=%llu\n"
1766 "no device node=%llu\n"
1767 "no config address=%llu\n"
1768 "check not wanted=%llu\n"
1769 "eeh_total_mmio_ffs=%llu\n"
1770 "eeh_false_positives=%llu\n"
1771 "eeh_slot_resets=%llu\n",
1772 eeh_stats.no_device,
1773 eeh_stats.no_dn,
1774 eeh_stats.no_cfg_addr,
1775 eeh_stats.ignored_check,
1776 eeh_stats.total_mmio_ffs,
1777 eeh_stats.false_positives,
1778 eeh_stats.slot_resets);
1779 }
1780
1781 return 0;
1782}
1783
1784#ifdef CONFIG_DEBUG_FS
1785static int eeh_enable_dbgfs_set(void *data, u64 val)
1786{
1787 if (val)
1788 eeh_clear_flag(EEH_FORCE_DISABLED);
1789 else
1790 eeh_add_flag(EEH_FORCE_DISABLED);
1791
1792 return 0;
1793}
1794
1795static int eeh_enable_dbgfs_get(void *data, u64 *val)
1796{
1797 if (eeh_enabled())
1798 *val = 0x1ul;
1799 else
1800 *val = 0x0ul;
1801 return 0;
1802}
1803
1804static int eeh_freeze_dbgfs_set(void *data, u64 val)
1805{
1806 eeh_max_freezes = val;
1807 return 0;
1808}
1809
1810static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1811{
1812 *val = eeh_max_freezes;
1813 return 0;
1814}
1815
1816DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1817 eeh_enable_dbgfs_set, "0x%llx\n");
1818DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1819 eeh_freeze_dbgfs_set, "0x%llx\n");
1820#endif
1821
1822static int __init eeh_init_proc(void)
1823{
1824 if (machine_is(pseries) || machine_is(powernv)) {
1825 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1826#ifdef CONFIG_DEBUG_FS
1827 debugfs_create_file("eeh_enable", 0600,
1828 powerpc_debugfs_root, NULL,
1829 &eeh_enable_dbgfs_ops);
1830 debugfs_create_file("eeh_max_freezes", 0600,
1831 powerpc_debugfs_root, NULL,
1832 &eeh_freeze_dbgfs_ops);
1833#endif
1834 }
1835
1836 return 0;
1837}
1838__initcall(eeh_init_proc);