Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Code to handle x86 style IRQs plus some generic interrupt stuff. |
| 3 | * |
| 4 | * Copyright (C) 1992 Linus Torvalds |
| 5 | * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle |
| 6 | * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) |
| 7 | * Copyright (C) 1999-2000 Grant Grundler |
| 8 | * Copyright (c) 2005 Matthew Wilcox |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation; either version 2, or (at your option) |
| 13 | * any later version. |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with this program; if not, write to the Free Software |
| 22 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 23 | */ |
| 24 | #include <linux/bitops.h> |
| 25 | #include <linux/errno.h> |
| 26 | #include <linux/init.h> |
| 27 | #include <linux/interrupt.h> |
| 28 | #include <linux/kernel_stat.h> |
| 29 | #include <linux/seq_file.h> |
| 30 | #include <linux/types.h> |
| 31 | #include <asm/io.h> |
| 32 | |
| 33 | #include <asm/smp.h> |
| 34 | #include <asm/ldcw.h> |
| 35 | |
| 36 | #undef PARISC_IRQ_CR16_COUNTS |
| 37 | |
| 38 | extern irqreturn_t timer_interrupt(int, void *); |
| 39 | extern irqreturn_t ipi_interrupt(int, void *); |
| 40 | |
| 41 | #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq)) |
| 42 | |
| 43 | /* Bits in EIEM correlate with cpu_irq_action[]. |
| 44 | ** Numbered *Big Endian*! (ie bit 0 is MSB) |
| 45 | */ |
| 46 | static volatile unsigned long cpu_eiem = 0; |
| 47 | |
| 48 | /* |
| 49 | ** local ACK bitmap ... habitually set to 1, but reset to zero |
| 50 | ** between ->ack() and ->end() of the interrupt to prevent |
| 51 | ** re-interruption of a processing interrupt. |
| 52 | */ |
| 53 | static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL; |
| 54 | |
| 55 | static void cpu_mask_irq(struct irq_data *d) |
| 56 | { |
| 57 | unsigned long eirr_bit = EIEM_MASK(d->irq); |
| 58 | |
| 59 | cpu_eiem &= ~eirr_bit; |
| 60 | /* Do nothing on the other CPUs. If they get this interrupt, |
| 61 | * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't |
| 62 | * handle it, and the set_eiem() at the bottom will ensure it |
| 63 | * then gets disabled */ |
| 64 | } |
| 65 | |
| 66 | static void __cpu_unmask_irq(unsigned int irq) |
| 67 | { |
| 68 | unsigned long eirr_bit = EIEM_MASK(irq); |
| 69 | |
| 70 | cpu_eiem |= eirr_bit; |
| 71 | |
| 72 | /* This is just a simple NOP IPI. But what it does is cause |
| 73 | * all the other CPUs to do a set_eiem(cpu_eiem) at the end |
| 74 | * of the interrupt handler */ |
| 75 | smp_send_all_nop(); |
| 76 | } |
| 77 | |
| 78 | static void cpu_unmask_irq(struct irq_data *d) |
| 79 | { |
| 80 | __cpu_unmask_irq(d->irq); |
| 81 | } |
| 82 | |
| 83 | void cpu_ack_irq(struct irq_data *d) |
| 84 | { |
| 85 | unsigned long mask = EIEM_MASK(d->irq); |
| 86 | int cpu = smp_processor_id(); |
| 87 | |
| 88 | /* Clear in EIEM so we can no longer process */ |
| 89 | per_cpu(local_ack_eiem, cpu) &= ~mask; |
| 90 | |
| 91 | /* disable the interrupt */ |
| 92 | set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); |
| 93 | |
| 94 | /* and now ack it */ |
| 95 | mtctl(mask, 23); |
| 96 | } |
| 97 | |
| 98 | void cpu_eoi_irq(struct irq_data *d) |
| 99 | { |
| 100 | unsigned long mask = EIEM_MASK(d->irq); |
| 101 | int cpu = smp_processor_id(); |
| 102 | |
| 103 | /* set it in the eiems---it's no longer in process */ |
| 104 | per_cpu(local_ack_eiem, cpu) |= mask; |
| 105 | |
| 106 | /* enable the interrupt */ |
| 107 | set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); |
| 108 | } |
| 109 | |
| 110 | #ifdef CONFIG_SMP |
| 111 | int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest) |
| 112 | { |
| 113 | int cpu_dest; |
| 114 | |
| 115 | /* timer and ipi have to always be received on all CPUs */ |
| 116 | if (irqd_is_per_cpu(d)) |
| 117 | return -EINVAL; |
| 118 | |
| 119 | /* whatever mask they set, we just allow one CPU */ |
| 120 | cpu_dest = cpumask_first_and(dest, cpu_online_mask); |
| 121 | |
| 122 | return cpu_dest; |
| 123 | } |
| 124 | |
| 125 | static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest, |
| 126 | bool force) |
| 127 | { |
| 128 | int cpu_dest; |
| 129 | |
| 130 | cpu_dest = cpu_check_affinity(d, dest); |
| 131 | if (cpu_dest < 0) |
| 132 | return -1; |
| 133 | |
| 134 | cpumask_copy(irq_data_get_affinity_mask(d), dest); |
| 135 | |
| 136 | return 0; |
| 137 | } |
| 138 | #endif |
| 139 | |
| 140 | static struct irq_chip cpu_interrupt_type = { |
| 141 | .name = "CPU", |
| 142 | .irq_mask = cpu_mask_irq, |
| 143 | .irq_unmask = cpu_unmask_irq, |
| 144 | .irq_ack = cpu_ack_irq, |
| 145 | .irq_eoi = cpu_eoi_irq, |
| 146 | #ifdef CONFIG_SMP |
| 147 | .irq_set_affinity = cpu_set_affinity_irq, |
| 148 | #endif |
| 149 | /* XXX: Needs to be written. We managed without it so far, but |
| 150 | * we really ought to write it. |
| 151 | */ |
| 152 | .irq_retrigger = NULL, |
| 153 | }; |
| 154 | |
| 155 | DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); |
| 156 | #define irq_stats(x) (&per_cpu(irq_stat, x)) |
| 157 | |
| 158 | /* |
| 159 | * /proc/interrupts printing for arch specific interrupts |
| 160 | */ |
| 161 | int arch_show_interrupts(struct seq_file *p, int prec) |
| 162 | { |
| 163 | int j; |
| 164 | |
| 165 | #ifdef CONFIG_DEBUG_STACKOVERFLOW |
| 166 | seq_printf(p, "%*s: ", prec, "STK"); |
| 167 | for_each_online_cpu(j) |
| 168 | seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage); |
| 169 | seq_puts(p, " Kernel stack usage\n"); |
| 170 | # ifdef CONFIG_IRQSTACKS |
| 171 | seq_printf(p, "%*s: ", prec, "IST"); |
| 172 | for_each_online_cpu(j) |
| 173 | seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage); |
| 174 | seq_puts(p, " Interrupt stack usage\n"); |
| 175 | # endif |
| 176 | #endif |
| 177 | #ifdef CONFIG_SMP |
| 178 | seq_printf(p, "%*s: ", prec, "RES"); |
| 179 | for_each_online_cpu(j) |
| 180 | seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); |
| 181 | seq_puts(p, " Rescheduling interrupts\n"); |
| 182 | #endif |
| 183 | seq_printf(p, "%*s: ", prec, "UAH"); |
| 184 | for_each_online_cpu(j) |
| 185 | seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count); |
| 186 | seq_puts(p, " Unaligned access handler traps\n"); |
| 187 | seq_printf(p, "%*s: ", prec, "FPA"); |
| 188 | for_each_online_cpu(j) |
| 189 | seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count); |
| 190 | seq_puts(p, " Floating point assist traps\n"); |
| 191 | seq_printf(p, "%*s: ", prec, "TLB"); |
| 192 | for_each_online_cpu(j) |
| 193 | seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); |
| 194 | seq_puts(p, " TLB shootdowns\n"); |
| 195 | return 0; |
| 196 | } |
| 197 | |
| 198 | int show_interrupts(struct seq_file *p, void *v) |
| 199 | { |
| 200 | int i = *(loff_t *) v, j; |
| 201 | unsigned long flags; |
| 202 | |
| 203 | if (i == 0) { |
| 204 | seq_puts(p, " "); |
| 205 | for_each_online_cpu(j) |
| 206 | seq_printf(p, " CPU%d", j); |
| 207 | |
| 208 | #ifdef PARISC_IRQ_CR16_COUNTS |
| 209 | seq_printf(p, " [min/avg/max] (CPU cycle counts)"); |
| 210 | #endif |
| 211 | seq_putc(p, '\n'); |
| 212 | } |
| 213 | |
| 214 | if (i < NR_IRQS) { |
| 215 | struct irq_desc *desc = irq_to_desc(i); |
| 216 | struct irqaction *action; |
| 217 | |
| 218 | raw_spin_lock_irqsave(&desc->lock, flags); |
| 219 | action = desc->action; |
| 220 | if (!action) |
| 221 | goto skip; |
| 222 | seq_printf(p, "%3d: ", i); |
| 223 | #ifdef CONFIG_SMP |
| 224 | for_each_online_cpu(j) |
| 225 | seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); |
| 226 | #else |
| 227 | seq_printf(p, "%10u ", kstat_irqs(i)); |
| 228 | #endif |
| 229 | |
| 230 | seq_printf(p, " %14s", irq_desc_get_chip(desc)->name); |
| 231 | #ifndef PARISC_IRQ_CR16_COUNTS |
| 232 | seq_printf(p, " %s", action->name); |
| 233 | |
| 234 | while ((action = action->next)) |
| 235 | seq_printf(p, ", %s", action->name); |
| 236 | #else |
| 237 | for ( ;action; action = action->next) { |
| 238 | unsigned int k, avg, min, max; |
| 239 | |
| 240 | min = max = action->cr16_hist[0]; |
| 241 | |
| 242 | for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) { |
| 243 | int hist = action->cr16_hist[k]; |
| 244 | |
| 245 | if (hist) { |
| 246 | avg += hist; |
| 247 | } else |
| 248 | break; |
| 249 | |
| 250 | if (hist > max) max = hist; |
| 251 | if (hist < min) min = hist; |
| 252 | } |
| 253 | |
| 254 | avg /= k; |
| 255 | seq_printf(p, " %s[%d/%d/%d]", action->name, |
| 256 | min,avg,max); |
| 257 | } |
| 258 | #endif |
| 259 | |
| 260 | seq_putc(p, '\n'); |
| 261 | skip: |
| 262 | raw_spin_unlock_irqrestore(&desc->lock, flags); |
| 263 | } |
| 264 | |
| 265 | if (i == NR_IRQS) |
| 266 | arch_show_interrupts(p, 3); |
| 267 | |
| 268 | return 0; |
| 269 | } |
| 270 | |
| 271 | |
| 272 | |
| 273 | /* |
| 274 | ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data. |
| 275 | ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit. |
| 276 | ** |
| 277 | ** To use txn_XXX() interfaces, get a Virtual IRQ first. |
| 278 | ** Then use that to get the Transaction address and data. |
| 279 | */ |
| 280 | |
| 281 | int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data) |
| 282 | { |
| 283 | if (irq_has_action(irq)) |
| 284 | return -EBUSY; |
| 285 | if (irq_get_chip(irq) != &cpu_interrupt_type) |
| 286 | return -EBUSY; |
| 287 | |
| 288 | /* for iosapic interrupts */ |
| 289 | if (type) { |
| 290 | irq_set_chip_and_handler(irq, type, handle_percpu_irq); |
| 291 | irq_set_chip_data(irq, data); |
| 292 | __cpu_unmask_irq(irq); |
| 293 | } |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | int txn_claim_irq(int irq) |
| 298 | { |
| 299 | return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq; |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * The bits_wide parameter accommodates the limitations of the HW/SW which |
| 304 | * use these bits: |
| 305 | * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register) |
| 306 | * V-class (EPIC): 6 bits |
| 307 | * N/L/A-class (iosapic): 8 bits |
| 308 | * PCI 2.2 MSI: 16 bits |
| 309 | * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric) |
| 310 | * |
| 311 | * On the service provider side: |
| 312 | * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register) |
| 313 | * o PA 2.0 wide mode 6-bits (per processor) |
| 314 | * o IA64 8-bits (0-256 total) |
| 315 | * |
| 316 | * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported |
| 317 | * by the processor...and the N/L-class I/O subsystem supports more bits than |
| 318 | * PA2.0 has. The first case is the problem. |
| 319 | */ |
| 320 | int txn_alloc_irq(unsigned int bits_wide) |
| 321 | { |
| 322 | int irq; |
| 323 | |
| 324 | /* never return irq 0 cause that's the interval timer */ |
| 325 | for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) { |
| 326 | if (cpu_claim_irq(irq, NULL, NULL) < 0) |
| 327 | continue; |
| 328 | if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide)) |
| 329 | continue; |
| 330 | return irq; |
| 331 | } |
| 332 | |
| 333 | /* unlikely, but be prepared */ |
| 334 | return -1; |
| 335 | } |
| 336 | |
| 337 | |
| 338 | unsigned long txn_affinity_addr(unsigned int irq, int cpu) |
| 339 | { |
| 340 | #ifdef CONFIG_SMP |
| 341 | struct irq_data *d = irq_get_irq_data(irq); |
| 342 | cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu)); |
| 343 | #endif |
| 344 | |
| 345 | return per_cpu(cpu_data, cpu).txn_addr; |
| 346 | } |
| 347 | |
| 348 | |
| 349 | unsigned long txn_alloc_addr(unsigned int virt_irq) |
| 350 | { |
| 351 | static int next_cpu = -1; |
| 352 | |
| 353 | next_cpu++; /* assign to "next" CPU we want this bugger on */ |
| 354 | |
| 355 | /* validate entry */ |
| 356 | while ((next_cpu < nr_cpu_ids) && |
| 357 | (!per_cpu(cpu_data, next_cpu).txn_addr || |
| 358 | !cpu_online(next_cpu))) |
| 359 | next_cpu++; |
| 360 | |
| 361 | if (next_cpu >= nr_cpu_ids) |
| 362 | next_cpu = 0; /* nothing else, assign monarch */ |
| 363 | |
| 364 | return txn_affinity_addr(virt_irq, next_cpu); |
| 365 | } |
| 366 | |
| 367 | |
| 368 | unsigned int txn_alloc_data(unsigned int virt_irq) |
| 369 | { |
| 370 | return virt_irq - CPU_IRQ_BASE; |
| 371 | } |
| 372 | |
| 373 | static inline int eirr_to_irq(unsigned long eirr) |
| 374 | { |
| 375 | int bit = fls_long(eirr); |
| 376 | return (BITS_PER_LONG - bit) + TIMER_IRQ; |
| 377 | } |
| 378 | |
| 379 | #ifdef CONFIG_IRQSTACKS |
| 380 | /* |
| 381 | * IRQ STACK - used for irq handler |
| 382 | */ |
| 383 | #define IRQ_STACK_SIZE (4096 << 3) /* 32k irq stack size */ |
| 384 | |
| 385 | union irq_stack_union { |
| 386 | unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)]; |
| 387 | volatile unsigned int slock[4]; |
| 388 | volatile unsigned int lock[1]; |
| 389 | }; |
| 390 | |
| 391 | DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = { |
| 392 | .slock = { 1,1,1,1 }, |
| 393 | }; |
| 394 | #endif |
| 395 | |
| 396 | |
| 397 | int sysctl_panic_on_stackoverflow = 1; |
| 398 | |
| 399 | static inline void stack_overflow_check(struct pt_regs *regs) |
| 400 | { |
| 401 | #ifdef CONFIG_DEBUG_STACKOVERFLOW |
| 402 | #define STACK_MARGIN (256*6) |
| 403 | |
| 404 | /* Our stack starts directly behind the thread_info struct. */ |
| 405 | unsigned long stack_start = (unsigned long) current_thread_info(); |
| 406 | unsigned long sp = regs->gr[30]; |
| 407 | unsigned long stack_usage; |
| 408 | unsigned int *last_usage; |
| 409 | int cpu = smp_processor_id(); |
| 410 | |
| 411 | /* if sr7 != 0, we interrupted a userspace process which we do not want |
| 412 | * to check for stack overflow. We will only check the kernel stack. */ |
| 413 | if (regs->sr[7]) |
| 414 | return; |
| 415 | |
| 416 | /* exit if already in panic */ |
| 417 | if (sysctl_panic_on_stackoverflow < 0) |
| 418 | return; |
| 419 | |
| 420 | /* calculate kernel stack usage */ |
| 421 | stack_usage = sp - stack_start; |
| 422 | #ifdef CONFIG_IRQSTACKS |
| 423 | if (likely(stack_usage <= THREAD_SIZE)) |
| 424 | goto check_kernel_stack; /* found kernel stack */ |
| 425 | |
| 426 | /* check irq stack usage */ |
| 427 | stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack; |
| 428 | stack_usage = sp - stack_start; |
| 429 | |
| 430 | last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu); |
| 431 | if (unlikely(stack_usage > *last_usage)) |
| 432 | *last_usage = stack_usage; |
| 433 | |
| 434 | if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN))) |
| 435 | return; |
| 436 | |
| 437 | pr_emerg("stackcheck: %s will most likely overflow irq stack " |
| 438 | "(sp:%lx, stk bottom-top:%lx-%lx)\n", |
| 439 | current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE); |
| 440 | goto panic_check; |
| 441 | |
| 442 | check_kernel_stack: |
| 443 | #endif |
| 444 | |
| 445 | /* check kernel stack usage */ |
| 446 | last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu); |
| 447 | |
| 448 | if (unlikely(stack_usage > *last_usage)) |
| 449 | *last_usage = stack_usage; |
| 450 | |
| 451 | if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN))) |
| 452 | return; |
| 453 | |
| 454 | pr_emerg("stackcheck: %s will most likely overflow kernel stack " |
| 455 | "(sp:%lx, stk bottom-top:%lx-%lx)\n", |
| 456 | current->comm, sp, stack_start, stack_start + THREAD_SIZE); |
| 457 | |
| 458 | #ifdef CONFIG_IRQSTACKS |
| 459 | panic_check: |
| 460 | #endif |
| 461 | if (sysctl_panic_on_stackoverflow) { |
| 462 | sysctl_panic_on_stackoverflow = -1; /* disable further checks */ |
| 463 | panic("low stack detected by irq handler - check messages\n"); |
| 464 | } |
| 465 | #endif |
| 466 | } |
| 467 | |
| 468 | #ifdef CONFIG_IRQSTACKS |
| 469 | /* in entry.S: */ |
| 470 | void call_on_stack(unsigned long p1, void *func, unsigned long new_stack); |
| 471 | |
| 472 | static void execute_on_irq_stack(void *func, unsigned long param1) |
| 473 | { |
| 474 | union irq_stack_union *union_ptr; |
| 475 | unsigned long irq_stack; |
| 476 | volatile unsigned int *irq_stack_in_use; |
| 477 | |
| 478 | union_ptr = &per_cpu(irq_stack_union, smp_processor_id()); |
| 479 | irq_stack = (unsigned long) &union_ptr->stack; |
| 480 | irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock), |
| 481 | 64); /* align for stack frame usage */ |
| 482 | |
| 483 | /* We may be called recursive. If we are already using the irq stack, |
| 484 | * just continue to use it. Use spinlocks to serialize |
| 485 | * the irq stack usage. |
| 486 | */ |
| 487 | irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr); |
| 488 | if (!__ldcw(irq_stack_in_use)) { |
| 489 | void (*direct_call)(unsigned long p1) = func; |
| 490 | |
| 491 | /* We are using the IRQ stack already. |
| 492 | * Do direct call on current stack. */ |
| 493 | direct_call(param1); |
| 494 | return; |
| 495 | } |
| 496 | |
| 497 | /* This is where we switch to the IRQ stack. */ |
| 498 | call_on_stack(param1, func, irq_stack); |
| 499 | |
| 500 | /* free up irq stack usage. */ |
| 501 | *irq_stack_in_use = 1; |
| 502 | } |
| 503 | |
| 504 | void do_softirq_own_stack(void) |
| 505 | { |
| 506 | execute_on_irq_stack(__do_softirq, 0); |
| 507 | } |
| 508 | #endif /* CONFIG_IRQSTACKS */ |
| 509 | |
| 510 | /* ONLY called from entry.S:intr_extint() */ |
| 511 | void do_cpu_irq_mask(struct pt_regs *regs) |
| 512 | { |
| 513 | struct pt_regs *old_regs; |
| 514 | unsigned long eirr_val; |
| 515 | int irq, cpu = smp_processor_id(); |
| 516 | struct irq_data *irq_data; |
| 517 | #ifdef CONFIG_SMP |
| 518 | cpumask_t dest; |
| 519 | #endif |
| 520 | |
| 521 | old_regs = set_irq_regs(regs); |
| 522 | local_irq_disable(); |
| 523 | irq_enter(); |
| 524 | |
| 525 | eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu); |
| 526 | if (!eirr_val) |
| 527 | goto set_out; |
| 528 | irq = eirr_to_irq(eirr_val); |
| 529 | |
| 530 | irq_data = irq_get_irq_data(irq); |
| 531 | |
| 532 | /* Filter out spurious interrupts, mostly from serial port at bootup */ |
| 533 | if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data)))) |
| 534 | goto set_out; |
| 535 | |
| 536 | #ifdef CONFIG_SMP |
| 537 | cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data)); |
| 538 | if (irqd_is_per_cpu(irq_data) && |
| 539 | !cpumask_test_cpu(smp_processor_id(), &dest)) { |
| 540 | int cpu = cpumask_first(&dest); |
| 541 | |
| 542 | printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n", |
| 543 | irq, smp_processor_id(), cpu); |
| 544 | gsc_writel(irq + CPU_IRQ_BASE, |
| 545 | per_cpu(cpu_data, cpu).hpa); |
| 546 | goto set_out; |
| 547 | } |
| 548 | #endif |
| 549 | stack_overflow_check(regs); |
| 550 | |
| 551 | #ifdef CONFIG_IRQSTACKS |
| 552 | execute_on_irq_stack(&generic_handle_irq, irq); |
| 553 | #else |
| 554 | generic_handle_irq(irq); |
| 555 | #endif /* CONFIG_IRQSTACKS */ |
| 556 | |
| 557 | out: |
| 558 | irq_exit(); |
| 559 | set_irq_regs(old_regs); |
| 560 | return; |
| 561 | |
| 562 | set_out: |
| 563 | set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); |
| 564 | goto out; |
| 565 | } |
| 566 | |
| 567 | static struct irqaction timer_action = { |
| 568 | .handler = timer_interrupt, |
| 569 | .name = "timer", |
| 570 | .flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL, |
| 571 | }; |
| 572 | |
| 573 | #ifdef CONFIG_SMP |
| 574 | static struct irqaction ipi_action = { |
| 575 | .handler = ipi_interrupt, |
| 576 | .name = "IPI", |
| 577 | .flags = IRQF_PERCPU, |
| 578 | }; |
| 579 | #endif |
| 580 | |
| 581 | static void claim_cpu_irqs(void) |
| 582 | { |
| 583 | int i; |
| 584 | for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) { |
| 585 | irq_set_chip_and_handler(i, &cpu_interrupt_type, |
| 586 | handle_percpu_irq); |
| 587 | } |
| 588 | |
| 589 | irq_set_handler(TIMER_IRQ, handle_percpu_irq); |
| 590 | setup_irq(TIMER_IRQ, &timer_action); |
| 591 | #ifdef CONFIG_SMP |
| 592 | irq_set_handler(IPI_IRQ, handle_percpu_irq); |
| 593 | setup_irq(IPI_IRQ, &ipi_action); |
| 594 | #endif |
| 595 | } |
| 596 | |
| 597 | void __init init_IRQ(void) |
| 598 | { |
| 599 | local_irq_disable(); /* PARANOID - should already be disabled */ |
| 600 | mtctl(~0UL, 23); /* EIRR : clear all pending external intr */ |
| 601 | #ifdef CONFIG_SMP |
| 602 | if (!cpu_eiem) { |
| 603 | claim_cpu_irqs(); |
| 604 | cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ); |
| 605 | } |
| 606 | #else |
| 607 | claim_cpu_irqs(); |
| 608 | cpu_eiem = EIEM_MASK(TIMER_IRQ); |
| 609 | #endif |
| 610 | set_eiem(cpu_eiem); /* EIEM : enable all external intr */ |
| 611 | } |