Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Based on arch/arm/kernel/process.c |
| 3 | * |
| 4 | * Original Copyright (C) 1995 Linus Torvalds |
| 5 | * Copyright (C) 1996-2000 Russell King - Converted to ARM. |
| 6 | * Copyright (C) 2012 ARM Ltd. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 | */ |
| 20 | |
| 21 | #include <stdarg.h> |
| 22 | |
| 23 | #include <linux/compat.h> |
| 24 | #include <linux/efi.h> |
| 25 | #include <linux/export.h> |
| 26 | #include <linux/sched.h> |
| 27 | #include <linux/sched/debug.h> |
| 28 | #include <linux/sched/task.h> |
| 29 | #include <linux/sched/task_stack.h> |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/mm.h> |
| 32 | #include <linux/stddef.h> |
| 33 | #include <linux/unistd.h> |
| 34 | #include <linux/user.h> |
| 35 | #include <linux/delay.h> |
| 36 | #include <linux/reboot.h> |
| 37 | #include <linux/interrupt.h> |
| 38 | #include <linux/init.h> |
| 39 | #include <linux/cpu.h> |
| 40 | #include <linux/elfcore.h> |
| 41 | #include <linux/pm.h> |
| 42 | #include <linux/tick.h> |
| 43 | #include <linux/utsname.h> |
| 44 | #include <linux/uaccess.h> |
| 45 | #include <linux/random.h> |
| 46 | #include <linux/hw_breakpoint.h> |
| 47 | #include <linux/personality.h> |
| 48 | #include <linux/notifier.h> |
| 49 | #include <trace/events/power.h> |
| 50 | #include <linux/percpu.h> |
| 51 | #include <linux/thread_info.h> |
| 52 | |
| 53 | #include <asm/alternative.h> |
| 54 | #include <asm/compat.h> |
| 55 | #include <asm/cacheflush.h> |
| 56 | #include <asm/exec.h> |
| 57 | #include <asm/fpsimd.h> |
| 58 | #include <asm/mmu_context.h> |
| 59 | #include <asm/processor.h> |
| 60 | #include <asm/stacktrace.h> |
| 61 | |
| 62 | #ifdef CONFIG_STACKPROTECTOR |
| 63 | #include <linux/stackprotector.h> |
| 64 | unsigned long __stack_chk_guard __read_mostly; |
| 65 | EXPORT_SYMBOL(__stack_chk_guard); |
| 66 | #endif |
| 67 | |
| 68 | /* |
| 69 | * Function pointers to optional machine specific functions |
| 70 | */ |
| 71 | void (*pm_power_off)(void); |
| 72 | EXPORT_SYMBOL_GPL(pm_power_off); |
| 73 | |
| 74 | void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); |
| 75 | |
| 76 | /* |
| 77 | * This is our default idle handler. |
| 78 | */ |
| 79 | void arch_cpu_idle(void) |
| 80 | { |
| 81 | /* |
| 82 | * This should do all the clock switching and wait for interrupt |
| 83 | * tricks |
| 84 | */ |
| 85 | trace_cpu_idle_rcuidle(1, smp_processor_id()); |
| 86 | cpu_do_idle(); |
| 87 | local_irq_enable(); |
| 88 | trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
| 89 | } |
| 90 | |
| 91 | #ifdef CONFIG_HOTPLUG_CPU |
| 92 | void arch_cpu_idle_dead(void) |
| 93 | { |
| 94 | cpu_die(); |
| 95 | } |
| 96 | #endif |
| 97 | |
| 98 | /* |
| 99 | * Called by kexec, immediately prior to machine_kexec(). |
| 100 | * |
| 101 | * This must completely disable all secondary CPUs; simply causing those CPUs |
| 102 | * to execute e.g. a RAM-based pin loop is not sufficient. This allows the |
| 103 | * kexec'd kernel to use any and all RAM as it sees fit, without having to |
| 104 | * avoid any code or data used by any SW CPU pin loop. The CPU hotplug |
| 105 | * functionality embodied in disable_nonboot_cpus() to achieve this. |
| 106 | */ |
| 107 | void machine_shutdown(void) |
| 108 | { |
| 109 | disable_nonboot_cpus(); |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * Halting simply requires that the secondary CPUs stop performing any |
| 114 | * activity (executing tasks, handling interrupts). smp_send_stop() |
| 115 | * achieves this. |
| 116 | */ |
| 117 | void machine_halt(void) |
| 118 | { |
| 119 | local_irq_disable(); |
| 120 | smp_send_stop(); |
| 121 | while (1); |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * Power-off simply requires that the secondary CPUs stop performing any |
| 126 | * activity (executing tasks, handling interrupts). smp_send_stop() |
| 127 | * achieves this. When the system power is turned off, it will take all CPUs |
| 128 | * with it. |
| 129 | */ |
| 130 | void machine_power_off(void) |
| 131 | { |
| 132 | local_irq_disable(); |
| 133 | smp_send_stop(); |
| 134 | if (pm_power_off) |
| 135 | pm_power_off(); |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * Restart requires that the secondary CPUs stop performing any activity |
| 140 | * while the primary CPU resets the system. Systems with multiple CPUs must |
| 141 | * provide a HW restart implementation, to ensure that all CPUs reset at once. |
| 142 | * This is required so that any code running after reset on the primary CPU |
| 143 | * doesn't have to co-ordinate with other CPUs to ensure they aren't still |
| 144 | * executing pre-reset code, and using RAM that the primary CPU's code wishes |
| 145 | * to use. Implementing such co-ordination would be essentially impossible. |
| 146 | */ |
| 147 | void machine_restart(char *cmd) |
| 148 | { |
| 149 | /* Disable interrupts first */ |
| 150 | local_irq_disable(); |
| 151 | smp_send_stop(); |
| 152 | |
| 153 | /* |
| 154 | * UpdateCapsule() depends on the system being reset via |
| 155 | * ResetSystem(). |
| 156 | */ |
| 157 | if (efi_enabled(EFI_RUNTIME_SERVICES)) |
| 158 | efi_reboot(reboot_mode, NULL); |
| 159 | |
| 160 | /* Now call the architecture specific reboot code. */ |
| 161 | if (arm_pm_restart) |
| 162 | arm_pm_restart(reboot_mode, cmd); |
| 163 | else |
| 164 | do_kernel_restart(cmd); |
| 165 | |
| 166 | /* |
| 167 | * Whoops - the architecture was unable to reboot. |
| 168 | */ |
| 169 | printk("Reboot failed -- System halted\n"); |
| 170 | while (1); |
| 171 | } |
| 172 | |
| 173 | static void print_pstate(struct pt_regs *regs) |
| 174 | { |
| 175 | u64 pstate = regs->pstate; |
| 176 | |
| 177 | if (compat_user_mode(regs)) { |
| 178 | printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", |
| 179 | pstate, |
| 180 | pstate & PSR_AA32_N_BIT ? 'N' : 'n', |
| 181 | pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', |
| 182 | pstate & PSR_AA32_C_BIT ? 'C' : 'c', |
| 183 | pstate & PSR_AA32_V_BIT ? 'V' : 'v', |
| 184 | pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', |
| 185 | pstate & PSR_AA32_T_BIT ? "T32" : "A32", |
| 186 | pstate & PSR_AA32_E_BIT ? "BE" : "LE", |
| 187 | pstate & PSR_AA32_A_BIT ? 'A' : 'a', |
| 188 | pstate & PSR_AA32_I_BIT ? 'I' : 'i', |
| 189 | pstate & PSR_AA32_F_BIT ? 'F' : 'f'); |
| 190 | } else { |
| 191 | printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", |
| 192 | pstate, |
| 193 | pstate & PSR_N_BIT ? 'N' : 'n', |
| 194 | pstate & PSR_Z_BIT ? 'Z' : 'z', |
| 195 | pstate & PSR_C_BIT ? 'C' : 'c', |
| 196 | pstate & PSR_V_BIT ? 'V' : 'v', |
| 197 | pstate & PSR_D_BIT ? 'D' : 'd', |
| 198 | pstate & PSR_A_BIT ? 'A' : 'a', |
| 199 | pstate & PSR_I_BIT ? 'I' : 'i', |
| 200 | pstate & PSR_F_BIT ? 'F' : 'f', |
| 201 | pstate & PSR_PAN_BIT ? '+' : '-', |
| 202 | pstate & PSR_UAO_BIT ? '+' : '-'); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | void __show_regs(struct pt_regs *regs) |
| 207 | { |
| 208 | int i, top_reg; |
| 209 | u64 lr, sp; |
| 210 | |
| 211 | if (compat_user_mode(regs)) { |
| 212 | lr = regs->compat_lr; |
| 213 | sp = regs->compat_sp; |
| 214 | top_reg = 12; |
| 215 | } else { |
| 216 | lr = regs->regs[30]; |
| 217 | sp = regs->sp; |
| 218 | top_reg = 29; |
| 219 | } |
| 220 | |
| 221 | show_regs_print_info(KERN_DEFAULT); |
| 222 | print_pstate(regs); |
| 223 | |
| 224 | if (!user_mode(regs)) { |
| 225 | printk("pc : %pS\n", (void *)regs->pc); |
| 226 | printk("lr : %pS\n", (void *)lr); |
| 227 | } else { |
| 228 | printk("pc : %016llx\n", regs->pc); |
| 229 | printk("lr : %016llx\n", lr); |
| 230 | } |
| 231 | |
| 232 | printk("sp : %016llx\n", sp); |
| 233 | |
| 234 | i = top_reg; |
| 235 | |
| 236 | while (i >= 0) { |
| 237 | printk("x%-2d: %016llx ", i, regs->regs[i]); |
| 238 | i--; |
| 239 | |
| 240 | if (i % 2 == 0) { |
| 241 | pr_cont("x%-2d: %016llx ", i, regs->regs[i]); |
| 242 | i--; |
| 243 | } |
| 244 | |
| 245 | pr_cont("\n"); |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | void show_regs(struct pt_regs * regs) |
| 250 | { |
| 251 | __show_regs(regs); |
| 252 | dump_backtrace(regs, NULL); |
| 253 | } |
| 254 | |
| 255 | static void tls_thread_flush(void) |
| 256 | { |
| 257 | write_sysreg(0, tpidr_el0); |
| 258 | |
| 259 | if (is_compat_task()) { |
| 260 | current->thread.uw.tp_value = 0; |
| 261 | |
| 262 | /* |
| 263 | * We need to ensure ordering between the shadow state and the |
| 264 | * hardware state, so that we don't corrupt the hardware state |
| 265 | * with a stale shadow state during context switch. |
| 266 | */ |
| 267 | barrier(); |
| 268 | write_sysreg(0, tpidrro_el0); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | void flush_thread(void) |
| 273 | { |
| 274 | fpsimd_flush_thread(); |
| 275 | tls_thread_flush(); |
| 276 | flush_ptrace_hw_breakpoint(current); |
| 277 | } |
| 278 | |
| 279 | void release_thread(struct task_struct *dead_task) |
| 280 | { |
| 281 | } |
| 282 | |
| 283 | void arch_release_task_struct(struct task_struct *tsk) |
| 284 | { |
| 285 | fpsimd_release_task(tsk); |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * src and dst may temporarily have aliased sve_state after task_struct |
| 290 | * is copied. We cannot fix this properly here, because src may have |
| 291 | * live SVE state and dst's thread_info may not exist yet, so tweaking |
| 292 | * either src's or dst's TIF_SVE is not safe. |
| 293 | * |
| 294 | * The unaliasing is done in copy_thread() instead. This works because |
| 295 | * dst is not schedulable or traceable until both of these functions |
| 296 | * have been called. |
| 297 | */ |
| 298 | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| 299 | { |
| 300 | if (current->mm) |
| 301 | fpsimd_preserve_current_state(); |
| 302 | *dst = *src; |
| 303 | |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | asmlinkage void ret_from_fork(void) asm("ret_from_fork"); |
| 308 | |
| 309 | int copy_thread(unsigned long clone_flags, unsigned long stack_start, |
| 310 | unsigned long stk_sz, struct task_struct *p) |
| 311 | { |
| 312 | struct pt_regs *childregs = task_pt_regs(p); |
| 313 | |
| 314 | memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); |
| 315 | |
| 316 | /* |
| 317 | * Unalias p->thread.sve_state (if any) from the parent task |
| 318 | * and disable discard SVE state for p: |
| 319 | */ |
| 320 | clear_tsk_thread_flag(p, TIF_SVE); |
| 321 | p->thread.sve_state = NULL; |
| 322 | |
| 323 | /* |
| 324 | * In case p was allocated the same task_struct pointer as some |
| 325 | * other recently-exited task, make sure p is disassociated from |
| 326 | * any cpu that may have run that now-exited task recently. |
| 327 | * Otherwise we could erroneously skip reloading the FPSIMD |
| 328 | * registers for p. |
| 329 | */ |
| 330 | fpsimd_flush_task_state(p); |
| 331 | |
| 332 | if (likely(!(p->flags & PF_KTHREAD))) { |
| 333 | *childregs = *current_pt_regs(); |
| 334 | childregs->regs[0] = 0; |
| 335 | |
| 336 | /* |
| 337 | * Read the current TLS pointer from tpidr_el0 as it may be |
| 338 | * out-of-sync with the saved value. |
| 339 | */ |
| 340 | *task_user_tls(p) = read_sysreg(tpidr_el0); |
| 341 | |
| 342 | if (stack_start) { |
| 343 | if (is_compat_thread(task_thread_info(p))) |
| 344 | childregs->compat_sp = stack_start; |
| 345 | else |
| 346 | childregs->sp = stack_start; |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * If a TLS pointer was passed to clone (4th argument), use it |
| 351 | * for the new thread. |
| 352 | */ |
| 353 | if (clone_flags & CLONE_SETTLS) |
| 354 | p->thread.uw.tp_value = childregs->regs[3]; |
| 355 | } else { |
| 356 | memset(childregs, 0, sizeof(struct pt_regs)); |
| 357 | childregs->pstate = PSR_MODE_EL1h; |
| 358 | if (IS_ENABLED(CONFIG_ARM64_UAO) && |
| 359 | cpus_have_const_cap(ARM64_HAS_UAO)) |
| 360 | childregs->pstate |= PSR_UAO_BIT; |
| 361 | p->thread.cpu_context.x19 = stack_start; |
| 362 | p->thread.cpu_context.x20 = stk_sz; |
| 363 | } |
| 364 | p->thread.cpu_context.pc = (unsigned long)ret_from_fork; |
| 365 | p->thread.cpu_context.sp = (unsigned long)childregs; |
| 366 | |
| 367 | ptrace_hw_copy_thread(p); |
| 368 | |
| 369 | return 0; |
| 370 | } |
| 371 | |
| 372 | void tls_preserve_current_state(void) |
| 373 | { |
| 374 | *task_user_tls(current) = read_sysreg(tpidr_el0); |
| 375 | } |
| 376 | |
| 377 | static void tls_thread_switch(struct task_struct *next) |
| 378 | { |
| 379 | tls_preserve_current_state(); |
| 380 | |
| 381 | if (is_compat_thread(task_thread_info(next))) |
| 382 | write_sysreg(next->thread.uw.tp_value, tpidrro_el0); |
| 383 | else if (!arm64_kernel_unmapped_at_el0()) |
| 384 | write_sysreg(0, tpidrro_el0); |
| 385 | |
| 386 | write_sysreg(*task_user_tls(next), tpidr_el0); |
| 387 | } |
| 388 | |
| 389 | /* Restore the UAO state depending on next's addr_limit */ |
| 390 | void uao_thread_switch(struct task_struct *next) |
| 391 | { |
| 392 | if (IS_ENABLED(CONFIG_ARM64_UAO)) { |
| 393 | if (task_thread_info(next)->addr_limit == KERNEL_DS) |
| 394 | asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); |
| 395 | else |
| 396 | asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * We store our current task in sp_el0, which is clobbered by userspace. Keep a |
| 402 | * shadow copy so that we can restore this upon entry from userspace. |
| 403 | * |
| 404 | * This is *only* for exception entry from EL0, and is not valid until we |
| 405 | * __switch_to() a user task. |
| 406 | */ |
| 407 | DEFINE_PER_CPU(struct task_struct *, __entry_task); |
| 408 | |
| 409 | static void entry_task_switch(struct task_struct *next) |
| 410 | { |
| 411 | __this_cpu_write(__entry_task, next); |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * Thread switching. |
| 416 | */ |
| 417 | __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, |
| 418 | struct task_struct *next) |
| 419 | { |
| 420 | struct task_struct *last; |
| 421 | |
| 422 | fpsimd_thread_switch(next); |
| 423 | tls_thread_switch(next); |
| 424 | hw_breakpoint_thread_switch(next); |
| 425 | contextidr_thread_switch(next); |
| 426 | entry_task_switch(next); |
| 427 | uao_thread_switch(next); |
| 428 | |
| 429 | /* |
| 430 | * Complete any pending TLB or cache maintenance on this CPU in case |
| 431 | * the thread migrates to a different CPU. |
| 432 | * This full barrier is also required by the membarrier system |
| 433 | * call. |
| 434 | */ |
| 435 | dsb(ish); |
| 436 | |
| 437 | /* the actual thread switch */ |
| 438 | last = cpu_switch_to(prev, next); |
| 439 | |
| 440 | return last; |
| 441 | } |
| 442 | |
| 443 | unsigned long get_wchan(struct task_struct *p) |
| 444 | { |
| 445 | struct stackframe frame; |
| 446 | unsigned long stack_page, ret = 0; |
| 447 | int count = 0; |
| 448 | if (!p || p == current || p->state == TASK_RUNNING) |
| 449 | return 0; |
| 450 | |
| 451 | stack_page = (unsigned long)try_get_task_stack(p); |
| 452 | if (!stack_page) |
| 453 | return 0; |
| 454 | |
| 455 | frame.fp = thread_saved_fp(p); |
| 456 | frame.pc = thread_saved_pc(p); |
| 457 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| 458 | frame.graph = p->curr_ret_stack; |
| 459 | #endif |
| 460 | do { |
| 461 | if (unwind_frame(p, &frame)) |
| 462 | goto out; |
| 463 | if (!in_sched_functions(frame.pc)) { |
| 464 | ret = frame.pc; |
| 465 | goto out; |
| 466 | } |
| 467 | } while (count ++ < 16); |
| 468 | |
| 469 | out: |
| 470 | put_task_stack(p); |
| 471 | return ret; |
| 472 | } |
| 473 | |
| 474 | unsigned long arch_align_stack(unsigned long sp) |
| 475 | { |
| 476 | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| 477 | sp -= get_random_int() & ~PAGE_MASK; |
| 478 | return sp & ~0xf; |
| 479 | } |
| 480 | |
| 481 | unsigned long arch_randomize_brk(struct mm_struct *mm) |
| 482 | { |
| 483 | if (is_compat_task()) |
| 484 | return randomize_page(mm->brk, SZ_32M); |
| 485 | else |
| 486 | return randomize_page(mm->brk, SZ_1G); |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. |
| 491 | */ |
| 492 | void arch_setup_new_exec(void) |
| 493 | { |
| 494 | current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; |
| 495 | } |
| 496 | |
| 497 | #ifdef CONFIG_GCC_PLUGIN_STACKLEAK |
| 498 | void __used stackleak_check_alloca(unsigned long size) |
| 499 | { |
| 500 | unsigned long stack_left; |
| 501 | unsigned long current_sp = current_stack_pointer; |
| 502 | struct stack_info info; |
| 503 | |
| 504 | BUG_ON(!on_accessible_stack(current, current_sp, &info)); |
| 505 | |
| 506 | stack_left = current_sp - info.low; |
| 507 | |
| 508 | /* |
| 509 | * There's a good chance we're almost out of stack space if this |
| 510 | * is true. Using panic() over BUG() is more likely to give |
| 511 | * reliable debugging output. |
| 512 | */ |
| 513 | if (size >= stack_left) |
| 514 | panic("alloca() over the kernel stack boundary\n"); |
| 515 | } |
| 516 | EXPORT_SYMBOL(stackleak_check_alloca); |
| 517 | #endif |