Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * AArch64 loadable module support. |
| 3 | * |
| 4 | * Copyright (C) 2012 ARM Limited |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 17 | * |
| 18 | * Author: Will Deacon <will.deacon@arm.com> |
| 19 | */ |
| 20 | |
| 21 | #include <linux/bitops.h> |
| 22 | #include <linux/elf.h> |
| 23 | #include <linux/gfp.h> |
| 24 | #include <linux/kasan.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/moduleloader.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | #include <asm/alternative.h> |
| 30 | #include <asm/insn.h> |
| 31 | #include <asm/sections.h> |
| 32 | |
| 33 | void *module_alloc(unsigned long size) |
| 34 | { |
| 35 | gfp_t gfp_mask = GFP_KERNEL; |
| 36 | void *p; |
| 37 | |
| 38 | /* Silence the initial allocation */ |
| 39 | if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) |
| 40 | gfp_mask |= __GFP_NOWARN; |
| 41 | |
| 42 | p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, |
| 43 | module_alloc_base + MODULES_VSIZE, |
| 44 | gfp_mask, PAGE_KERNEL_EXEC, 0, |
| 45 | NUMA_NO_NODE, __builtin_return_address(0)); |
| 46 | |
| 47 | if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && |
| 48 | !IS_ENABLED(CONFIG_KASAN)) |
| 49 | /* |
| 50 | * KASAN can only deal with module allocations being served |
| 51 | * from the reserved module region, since the remainder of |
| 52 | * the vmalloc region is already backed by zero shadow pages, |
| 53 | * and punching holes into it is non-trivial. Since the module |
| 54 | * region is not randomized when KASAN is enabled, it is even |
| 55 | * less likely that the module region gets exhausted, so we |
| 56 | * can simply omit this fallback in that case. |
| 57 | */ |
| 58 | p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, |
| 59 | module_alloc_base + SZ_4G, GFP_KERNEL, |
| 60 | PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE, |
| 61 | __builtin_return_address(0)); |
| 62 | |
| 63 | if (p && (kasan_module_alloc(p, size) < 0)) { |
| 64 | vfree(p); |
| 65 | return NULL; |
| 66 | } |
| 67 | |
| 68 | return p; |
| 69 | } |
| 70 | |
| 71 | enum aarch64_reloc_op { |
| 72 | RELOC_OP_NONE, |
| 73 | RELOC_OP_ABS, |
| 74 | RELOC_OP_PREL, |
| 75 | RELOC_OP_PAGE, |
| 76 | }; |
| 77 | |
| 78 | static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) |
| 79 | { |
| 80 | switch (reloc_op) { |
| 81 | case RELOC_OP_ABS: |
| 82 | return val; |
| 83 | case RELOC_OP_PREL: |
| 84 | return val - (u64)place; |
| 85 | case RELOC_OP_PAGE: |
| 86 | return (val & ~0xfff) - ((u64)place & ~0xfff); |
| 87 | case RELOC_OP_NONE: |
| 88 | return 0; |
| 89 | } |
| 90 | |
| 91 | pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) |
| 96 | { |
| 97 | s64 sval = do_reloc(op, place, val); |
| 98 | |
| 99 | switch (len) { |
| 100 | case 16: |
| 101 | *(s16 *)place = sval; |
| 102 | if (sval < S16_MIN || sval > U16_MAX) |
| 103 | return -ERANGE; |
| 104 | break; |
| 105 | case 32: |
| 106 | *(s32 *)place = sval; |
| 107 | if (sval < S32_MIN || sval > U32_MAX) |
| 108 | return -ERANGE; |
| 109 | break; |
| 110 | case 64: |
| 111 | *(s64 *)place = sval; |
| 112 | break; |
| 113 | default: |
| 114 | pr_err("Invalid length (%d) for data relocation\n", len); |
| 115 | return 0; |
| 116 | } |
| 117 | return 0; |
| 118 | } |
| 119 | |
| 120 | enum aarch64_insn_movw_imm_type { |
| 121 | AARCH64_INSN_IMM_MOVNZ, |
| 122 | AARCH64_INSN_IMM_MOVKZ, |
| 123 | }; |
| 124 | |
| 125 | static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, |
| 126 | int lsb, enum aarch64_insn_movw_imm_type imm_type) |
| 127 | { |
| 128 | u64 imm; |
| 129 | s64 sval; |
| 130 | u32 insn = le32_to_cpu(*place); |
| 131 | |
| 132 | sval = do_reloc(op, place, val); |
| 133 | imm = sval >> lsb; |
| 134 | |
| 135 | if (imm_type == AARCH64_INSN_IMM_MOVNZ) { |
| 136 | /* |
| 137 | * For signed MOVW relocations, we have to manipulate the |
| 138 | * instruction encoding depending on whether or not the |
| 139 | * immediate is less than zero. |
| 140 | */ |
| 141 | insn &= ~(3 << 29); |
| 142 | if (sval >= 0) { |
| 143 | /* >=0: Set the instruction to MOVZ (opcode 10b). */ |
| 144 | insn |= 2 << 29; |
| 145 | } else { |
| 146 | /* |
| 147 | * <0: Set the instruction to MOVN (opcode 00b). |
| 148 | * Since we've masked the opcode already, we |
| 149 | * don't need to do anything other than |
| 150 | * inverting the new immediate field. |
| 151 | */ |
| 152 | imm = ~imm; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | /* Update the instruction with the new encoding. */ |
| 157 | insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); |
| 158 | *place = cpu_to_le32(insn); |
| 159 | |
| 160 | if (imm > U16_MAX) |
| 161 | return -ERANGE; |
| 162 | |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, |
| 167 | int lsb, int len, enum aarch64_insn_imm_type imm_type) |
| 168 | { |
| 169 | u64 imm, imm_mask; |
| 170 | s64 sval; |
| 171 | u32 insn = le32_to_cpu(*place); |
| 172 | |
| 173 | /* Calculate the relocation value. */ |
| 174 | sval = do_reloc(op, place, val); |
| 175 | sval >>= lsb; |
| 176 | |
| 177 | /* Extract the value bits and shift them to bit 0. */ |
| 178 | imm_mask = (BIT(lsb + len) - 1) >> lsb; |
| 179 | imm = sval & imm_mask; |
| 180 | |
| 181 | /* Update the instruction's immediate field. */ |
| 182 | insn = aarch64_insn_encode_immediate(imm_type, insn, imm); |
| 183 | *place = cpu_to_le32(insn); |
| 184 | |
| 185 | /* |
| 186 | * Extract the upper value bits (including the sign bit) and |
| 187 | * shift them to bit 0. |
| 188 | */ |
| 189 | sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); |
| 190 | |
| 191 | /* |
| 192 | * Overflow has occurred if the upper bits are not all equal to |
| 193 | * the sign bit of the value. |
| 194 | */ |
| 195 | if ((u64)(sval + 1) >= 2) |
| 196 | return -ERANGE; |
| 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | static int reloc_insn_adrp(struct module *mod, __le32 *place, u64 val) |
| 202 | { |
| 203 | u32 insn; |
| 204 | |
| 205 | if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) || |
| 206 | !cpus_have_const_cap(ARM64_WORKAROUND_843419) || |
| 207 | ((u64)place & 0xfff) < 0xff8) |
| 208 | return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, |
| 209 | AARCH64_INSN_IMM_ADR); |
| 210 | |
| 211 | /* patch ADRP to ADR if it is in range */ |
| 212 | if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, |
| 213 | AARCH64_INSN_IMM_ADR)) { |
| 214 | insn = le32_to_cpu(*place); |
| 215 | insn &= ~BIT(31); |
| 216 | } else { |
| 217 | /* out of range for ADR -> emit a veneer */ |
| 218 | val = module_emit_veneer_for_adrp(mod, place, val & ~0xfff); |
| 219 | if (!val) |
| 220 | return -ENOEXEC; |
| 221 | insn = aarch64_insn_gen_branch_imm((u64)place, val, |
| 222 | AARCH64_INSN_BRANCH_NOLINK); |
| 223 | } |
| 224 | |
| 225 | *place = cpu_to_le32(insn); |
| 226 | return 0; |
| 227 | } |
| 228 | |
| 229 | int apply_relocate_add(Elf64_Shdr *sechdrs, |
| 230 | const char *strtab, |
| 231 | unsigned int symindex, |
| 232 | unsigned int relsec, |
| 233 | struct module *me) |
| 234 | { |
| 235 | unsigned int i; |
| 236 | int ovf; |
| 237 | bool overflow_check; |
| 238 | Elf64_Sym *sym; |
| 239 | void *loc; |
| 240 | u64 val; |
| 241 | Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; |
| 242 | |
| 243 | for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { |
| 244 | /* loc corresponds to P in the AArch64 ELF document. */ |
| 245 | loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr |
| 246 | + rel[i].r_offset; |
| 247 | |
| 248 | /* sym is the ELF symbol we're referring to. */ |
| 249 | sym = (Elf64_Sym *)sechdrs[symindex].sh_addr |
| 250 | + ELF64_R_SYM(rel[i].r_info); |
| 251 | |
| 252 | /* val corresponds to (S + A) in the AArch64 ELF document. */ |
| 253 | val = sym->st_value + rel[i].r_addend; |
| 254 | |
| 255 | /* Check for overflow by default. */ |
| 256 | overflow_check = true; |
| 257 | |
| 258 | /* Perform the static relocation. */ |
| 259 | switch (ELF64_R_TYPE(rel[i].r_info)) { |
| 260 | /* Null relocations. */ |
| 261 | case R_ARM_NONE: |
| 262 | case R_AARCH64_NONE: |
| 263 | ovf = 0; |
| 264 | break; |
| 265 | |
| 266 | /* Data relocations. */ |
| 267 | case R_AARCH64_ABS64: |
| 268 | overflow_check = false; |
| 269 | ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); |
| 270 | break; |
| 271 | case R_AARCH64_ABS32: |
| 272 | ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); |
| 273 | break; |
| 274 | case R_AARCH64_ABS16: |
| 275 | ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); |
| 276 | break; |
| 277 | case R_AARCH64_PREL64: |
| 278 | overflow_check = false; |
| 279 | ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); |
| 280 | break; |
| 281 | case R_AARCH64_PREL32: |
| 282 | ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); |
| 283 | break; |
| 284 | case R_AARCH64_PREL16: |
| 285 | ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); |
| 286 | break; |
| 287 | |
| 288 | /* MOVW instruction relocations. */ |
| 289 | case R_AARCH64_MOVW_UABS_G0_NC: |
| 290 | overflow_check = false; |
| 291 | case R_AARCH64_MOVW_UABS_G0: |
| 292 | ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, |
| 293 | AARCH64_INSN_IMM_MOVKZ); |
| 294 | break; |
| 295 | case R_AARCH64_MOVW_UABS_G1_NC: |
| 296 | overflow_check = false; |
| 297 | case R_AARCH64_MOVW_UABS_G1: |
| 298 | ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, |
| 299 | AARCH64_INSN_IMM_MOVKZ); |
| 300 | break; |
| 301 | case R_AARCH64_MOVW_UABS_G2_NC: |
| 302 | overflow_check = false; |
| 303 | case R_AARCH64_MOVW_UABS_G2: |
| 304 | ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, |
| 305 | AARCH64_INSN_IMM_MOVKZ); |
| 306 | break; |
| 307 | case R_AARCH64_MOVW_UABS_G3: |
| 308 | /* We're using the top bits so we can't overflow. */ |
| 309 | overflow_check = false; |
| 310 | ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, |
| 311 | AARCH64_INSN_IMM_MOVKZ); |
| 312 | break; |
| 313 | case R_AARCH64_MOVW_SABS_G0: |
| 314 | ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, |
| 315 | AARCH64_INSN_IMM_MOVNZ); |
| 316 | break; |
| 317 | case R_AARCH64_MOVW_SABS_G1: |
| 318 | ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, |
| 319 | AARCH64_INSN_IMM_MOVNZ); |
| 320 | break; |
| 321 | case R_AARCH64_MOVW_SABS_G2: |
| 322 | ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, |
| 323 | AARCH64_INSN_IMM_MOVNZ); |
| 324 | break; |
| 325 | case R_AARCH64_MOVW_PREL_G0_NC: |
| 326 | overflow_check = false; |
| 327 | ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, |
| 328 | AARCH64_INSN_IMM_MOVKZ); |
| 329 | break; |
| 330 | case R_AARCH64_MOVW_PREL_G0: |
| 331 | ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, |
| 332 | AARCH64_INSN_IMM_MOVNZ); |
| 333 | break; |
| 334 | case R_AARCH64_MOVW_PREL_G1_NC: |
| 335 | overflow_check = false; |
| 336 | ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, |
| 337 | AARCH64_INSN_IMM_MOVKZ); |
| 338 | break; |
| 339 | case R_AARCH64_MOVW_PREL_G1: |
| 340 | ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, |
| 341 | AARCH64_INSN_IMM_MOVNZ); |
| 342 | break; |
| 343 | case R_AARCH64_MOVW_PREL_G2_NC: |
| 344 | overflow_check = false; |
| 345 | ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, |
| 346 | AARCH64_INSN_IMM_MOVKZ); |
| 347 | break; |
| 348 | case R_AARCH64_MOVW_PREL_G2: |
| 349 | ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, |
| 350 | AARCH64_INSN_IMM_MOVNZ); |
| 351 | break; |
| 352 | case R_AARCH64_MOVW_PREL_G3: |
| 353 | /* We're using the top bits so we can't overflow. */ |
| 354 | overflow_check = false; |
| 355 | ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, |
| 356 | AARCH64_INSN_IMM_MOVNZ); |
| 357 | break; |
| 358 | |
| 359 | /* Immediate instruction relocations. */ |
| 360 | case R_AARCH64_LD_PREL_LO19: |
| 361 | ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, |
| 362 | AARCH64_INSN_IMM_19); |
| 363 | break; |
| 364 | case R_AARCH64_ADR_PREL_LO21: |
| 365 | ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, |
| 366 | AARCH64_INSN_IMM_ADR); |
| 367 | break; |
| 368 | case R_AARCH64_ADR_PREL_PG_HI21_NC: |
| 369 | overflow_check = false; |
| 370 | case R_AARCH64_ADR_PREL_PG_HI21: |
| 371 | ovf = reloc_insn_adrp(me, loc, val); |
| 372 | if (ovf && ovf != -ERANGE) |
| 373 | return ovf; |
| 374 | break; |
| 375 | case R_AARCH64_ADD_ABS_LO12_NC: |
| 376 | case R_AARCH64_LDST8_ABS_LO12_NC: |
| 377 | overflow_check = false; |
| 378 | ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, |
| 379 | AARCH64_INSN_IMM_12); |
| 380 | break; |
| 381 | case R_AARCH64_LDST16_ABS_LO12_NC: |
| 382 | overflow_check = false; |
| 383 | ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, |
| 384 | AARCH64_INSN_IMM_12); |
| 385 | break; |
| 386 | case R_AARCH64_LDST32_ABS_LO12_NC: |
| 387 | overflow_check = false; |
| 388 | ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, |
| 389 | AARCH64_INSN_IMM_12); |
| 390 | break; |
| 391 | case R_AARCH64_LDST64_ABS_LO12_NC: |
| 392 | overflow_check = false; |
| 393 | ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, |
| 394 | AARCH64_INSN_IMM_12); |
| 395 | break; |
| 396 | case R_AARCH64_LDST128_ABS_LO12_NC: |
| 397 | overflow_check = false; |
| 398 | ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, |
| 399 | AARCH64_INSN_IMM_12); |
| 400 | break; |
| 401 | case R_AARCH64_TSTBR14: |
| 402 | ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, |
| 403 | AARCH64_INSN_IMM_14); |
| 404 | break; |
| 405 | case R_AARCH64_CONDBR19: |
| 406 | ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, |
| 407 | AARCH64_INSN_IMM_19); |
| 408 | break; |
| 409 | case R_AARCH64_JUMP26: |
| 410 | case R_AARCH64_CALL26: |
| 411 | ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, |
| 412 | AARCH64_INSN_IMM_26); |
| 413 | |
| 414 | if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && |
| 415 | ovf == -ERANGE) { |
| 416 | val = module_emit_plt_entry(me, loc, &rel[i], sym); |
| 417 | if (!val) |
| 418 | return -ENOEXEC; |
| 419 | ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, |
| 420 | 26, AARCH64_INSN_IMM_26); |
| 421 | } |
| 422 | break; |
| 423 | |
| 424 | default: |
| 425 | pr_err("module %s: unsupported RELA relocation: %llu\n", |
| 426 | me->name, ELF64_R_TYPE(rel[i].r_info)); |
| 427 | return -ENOEXEC; |
| 428 | } |
| 429 | |
| 430 | if (overflow_check && ovf == -ERANGE) |
| 431 | goto overflow; |
| 432 | |
| 433 | } |
| 434 | |
| 435 | return 0; |
| 436 | |
| 437 | overflow: |
| 438 | pr_err("module %s: overflow in relocation type %d val %Lx\n", |
| 439 | me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); |
| 440 | return -ENOEXEC; |
| 441 | } |
| 442 | |
| 443 | int module_finalize(const Elf_Ehdr *hdr, |
| 444 | const Elf_Shdr *sechdrs, |
| 445 | struct module *me) |
| 446 | { |
| 447 | const Elf_Shdr *s, *se; |
| 448 | const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; |
| 449 | |
| 450 | for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) { |
| 451 | if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) |
| 452 | apply_alternatives_module((void *)s->sh_addr, s->sh_size); |
| 453 | #ifdef CONFIG_ARM64_MODULE_PLTS |
| 454 | if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) && |
| 455 | !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name)) |
| 456 | me->arch.ftrace_trampoline = (void *)s->sh_addr; |
| 457 | #endif |
| 458 | } |
| 459 | |
| 460 | return 0; |
| 461 | } |