Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Linux performance counter support for ARC700 series |
| 3 | * |
| 4 | * Copyright (C) 2013-2015 Synopsys, Inc. (www.synopsys.com) |
| 5 | * |
| 6 | * This code is inspired by the perf support of various other architectures. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | * |
| 12 | */ |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/of.h> |
| 17 | #include <linux/perf_event.h> |
| 18 | #include <linux/platform_device.h> |
| 19 | #include <asm/arcregs.h> |
| 20 | #include <asm/stacktrace.h> |
| 21 | |
| 22 | struct arc_pmu { |
| 23 | struct pmu pmu; |
| 24 | unsigned int irq; |
| 25 | int n_counters; |
| 26 | u64 max_period; |
| 27 | int ev_hw_idx[PERF_COUNT_ARC_HW_MAX]; |
| 28 | }; |
| 29 | |
| 30 | struct arc_pmu_cpu { |
| 31 | /* |
| 32 | * A 1 bit for an index indicates that the counter is being used for |
| 33 | * an event. A 0 means that the counter can be used. |
| 34 | */ |
| 35 | unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)]; |
| 36 | |
| 37 | /* |
| 38 | * The events that are active on the PMU for the given index. |
| 39 | */ |
| 40 | struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS]; |
| 41 | }; |
| 42 | |
| 43 | struct arc_callchain_trace { |
| 44 | int depth; |
| 45 | void *perf_stuff; |
| 46 | }; |
| 47 | |
| 48 | static int callchain_trace(unsigned int addr, void *data) |
| 49 | { |
| 50 | struct arc_callchain_trace *ctrl = data; |
| 51 | struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff; |
| 52 | perf_callchain_store(entry, addr); |
| 53 | |
| 54 | if (ctrl->depth++ < 3) |
| 55 | return 0; |
| 56 | |
| 57 | return -1; |
| 58 | } |
| 59 | |
| 60 | void |
| 61 | perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) |
| 62 | { |
| 63 | struct arc_callchain_trace ctrl = { |
| 64 | .depth = 0, |
| 65 | .perf_stuff = entry, |
| 66 | }; |
| 67 | |
| 68 | arc_unwind_core(NULL, regs, callchain_trace, &ctrl); |
| 69 | } |
| 70 | |
| 71 | void |
| 72 | perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) |
| 73 | { |
| 74 | /* |
| 75 | * User stack can't be unwound trivially with kernel dwarf unwinder |
| 76 | * So for now just record the user PC |
| 77 | */ |
| 78 | perf_callchain_store(entry, instruction_pointer(regs)); |
| 79 | } |
| 80 | |
| 81 | static struct arc_pmu *arc_pmu; |
| 82 | static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu); |
| 83 | |
| 84 | /* read counter #idx; note that counter# != event# on ARC! */ |
| 85 | static uint64_t arc_pmu_read_counter(int idx) |
| 86 | { |
| 87 | uint32_t tmp; |
| 88 | uint64_t result; |
| 89 | |
| 90 | /* |
| 91 | * ARC supports making 'snapshots' of the counters, so we don't |
| 92 | * need to care about counters wrapping to 0 underneath our feet |
| 93 | */ |
| 94 | write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| 95 | tmp = read_aux_reg(ARC_REG_PCT_CONTROL); |
| 96 | write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN); |
| 97 | result = (uint64_t) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32; |
| 98 | result |= read_aux_reg(ARC_REG_PCT_SNAPL); |
| 99 | |
| 100 | return result; |
| 101 | } |
| 102 | |
| 103 | static void arc_perf_event_update(struct perf_event *event, |
| 104 | struct hw_perf_event *hwc, int idx) |
| 105 | { |
| 106 | uint64_t prev_raw_count = local64_read(&hwc->prev_count); |
| 107 | uint64_t new_raw_count = arc_pmu_read_counter(idx); |
| 108 | int64_t delta = new_raw_count - prev_raw_count; |
| 109 | |
| 110 | /* |
| 111 | * We aren't afraid of hwc->prev_count changing beneath our feet |
| 112 | * because there's no way for us to re-enter this function anytime. |
| 113 | */ |
| 114 | local64_set(&hwc->prev_count, new_raw_count); |
| 115 | local64_add(delta, &event->count); |
| 116 | local64_sub(delta, &hwc->period_left); |
| 117 | } |
| 118 | |
| 119 | static void arc_pmu_read(struct perf_event *event) |
| 120 | { |
| 121 | arc_perf_event_update(event, &event->hw, event->hw.idx); |
| 122 | } |
| 123 | |
| 124 | static int arc_pmu_cache_event(u64 config) |
| 125 | { |
| 126 | unsigned int cache_type, cache_op, cache_result; |
| 127 | int ret; |
| 128 | |
| 129 | cache_type = (config >> 0) & 0xff; |
| 130 | cache_op = (config >> 8) & 0xff; |
| 131 | cache_result = (config >> 16) & 0xff; |
| 132 | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| 133 | return -EINVAL; |
| 134 | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| 135 | return -EINVAL; |
| 136 | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| 137 | return -EINVAL; |
| 138 | |
| 139 | ret = arc_pmu_cache_map[cache_type][cache_op][cache_result]; |
| 140 | |
| 141 | if (ret == CACHE_OP_UNSUPPORTED) |
| 142 | return -ENOENT; |
| 143 | |
| 144 | pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n", |
| 145 | cache_type, cache_op, cache_result, ret, |
| 146 | arc_pmu_ev_hw_map[ret]); |
| 147 | |
| 148 | return ret; |
| 149 | } |
| 150 | |
| 151 | /* initializes hw_perf_event structure if event is supported */ |
| 152 | static int arc_pmu_event_init(struct perf_event *event) |
| 153 | { |
| 154 | struct hw_perf_event *hwc = &event->hw; |
| 155 | int ret; |
| 156 | |
| 157 | if (!is_sampling_event(event)) { |
| 158 | hwc->sample_period = arc_pmu->max_period; |
| 159 | hwc->last_period = hwc->sample_period; |
| 160 | local64_set(&hwc->period_left, hwc->sample_period); |
| 161 | } |
| 162 | |
| 163 | hwc->config = 0; |
| 164 | |
| 165 | if (is_isa_arcv2()) { |
| 166 | /* "exclude user" means "count only kernel" */ |
| 167 | if (event->attr.exclude_user) |
| 168 | hwc->config |= ARC_REG_PCT_CONFIG_KERN; |
| 169 | |
| 170 | /* "exclude kernel" means "count only user" */ |
| 171 | if (event->attr.exclude_kernel) |
| 172 | hwc->config |= ARC_REG_PCT_CONFIG_USER; |
| 173 | } |
| 174 | |
| 175 | switch (event->attr.type) { |
| 176 | case PERF_TYPE_HARDWARE: |
| 177 | if (event->attr.config >= PERF_COUNT_HW_MAX) |
| 178 | return -ENOENT; |
| 179 | if (arc_pmu->ev_hw_idx[event->attr.config] < 0) |
| 180 | return -ENOENT; |
| 181 | hwc->config |= arc_pmu->ev_hw_idx[event->attr.config]; |
| 182 | pr_debug("init event %d with h/w %08x \'%s\'\n", |
| 183 | (int)event->attr.config, (int)hwc->config, |
| 184 | arc_pmu_ev_hw_map[event->attr.config]); |
| 185 | return 0; |
| 186 | |
| 187 | case PERF_TYPE_HW_CACHE: |
| 188 | ret = arc_pmu_cache_event(event->attr.config); |
| 189 | if (ret < 0) |
| 190 | return ret; |
| 191 | hwc->config |= arc_pmu->ev_hw_idx[ret]; |
| 192 | pr_debug("init cache event with h/w %08x \'%s\'\n", |
| 193 | (int)hwc->config, arc_pmu_ev_hw_map[ret]); |
| 194 | return 0; |
| 195 | default: |
| 196 | return -ENOENT; |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | /* starts all counters */ |
| 201 | static void arc_pmu_enable(struct pmu *pmu) |
| 202 | { |
| 203 | uint32_t tmp; |
| 204 | tmp = read_aux_reg(ARC_REG_PCT_CONTROL); |
| 205 | write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1); |
| 206 | } |
| 207 | |
| 208 | /* stops all counters */ |
| 209 | static void arc_pmu_disable(struct pmu *pmu) |
| 210 | { |
| 211 | uint32_t tmp; |
| 212 | tmp = read_aux_reg(ARC_REG_PCT_CONTROL); |
| 213 | write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0); |
| 214 | } |
| 215 | |
| 216 | static int arc_pmu_event_set_period(struct perf_event *event) |
| 217 | { |
| 218 | struct hw_perf_event *hwc = &event->hw; |
| 219 | s64 left = local64_read(&hwc->period_left); |
| 220 | s64 period = hwc->sample_period; |
| 221 | int idx = hwc->idx; |
| 222 | int overflow = 0; |
| 223 | u64 value; |
| 224 | |
| 225 | if (unlikely(left <= -period)) { |
| 226 | /* left underflowed by more than period. */ |
| 227 | left = period; |
| 228 | local64_set(&hwc->period_left, left); |
| 229 | hwc->last_period = period; |
| 230 | overflow = 1; |
| 231 | } else if (unlikely(left <= 0)) { |
| 232 | /* left underflowed by less than period. */ |
| 233 | left += period; |
| 234 | local64_set(&hwc->period_left, left); |
| 235 | hwc->last_period = period; |
| 236 | overflow = 1; |
| 237 | } |
| 238 | |
| 239 | if (left > arc_pmu->max_period) |
| 240 | left = arc_pmu->max_period; |
| 241 | |
| 242 | value = arc_pmu->max_period - left; |
| 243 | local64_set(&hwc->prev_count, value); |
| 244 | |
| 245 | /* Select counter */ |
| 246 | write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| 247 | |
| 248 | /* Write value */ |
| 249 | write_aux_reg(ARC_REG_PCT_COUNTL, (u32)value); |
| 250 | write_aux_reg(ARC_REG_PCT_COUNTH, (value >> 32)); |
| 251 | |
| 252 | perf_event_update_userpage(event); |
| 253 | |
| 254 | return overflow; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Assigns hardware counter to hardware condition. |
| 259 | * Note that there is no separate start/stop mechanism; |
| 260 | * stopping is achieved by assigning the 'never' condition |
| 261 | */ |
| 262 | static void arc_pmu_start(struct perf_event *event, int flags) |
| 263 | { |
| 264 | struct hw_perf_event *hwc = &event->hw; |
| 265 | int idx = hwc->idx; |
| 266 | |
| 267 | if (WARN_ON_ONCE(idx == -1)) |
| 268 | return; |
| 269 | |
| 270 | if (flags & PERF_EF_RELOAD) |
| 271 | WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| 272 | |
| 273 | hwc->state = 0; |
| 274 | |
| 275 | arc_pmu_event_set_period(event); |
| 276 | |
| 277 | /* Enable interrupt for this counter */ |
| 278 | if (is_sampling_event(event)) |
| 279 | write_aux_reg(ARC_REG_PCT_INT_CTRL, |
| 280 | read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx)); |
| 281 | |
| 282 | /* enable ARC pmu here */ |
| 283 | write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */ |
| 284 | write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */ |
| 285 | } |
| 286 | |
| 287 | static void arc_pmu_stop(struct perf_event *event, int flags) |
| 288 | { |
| 289 | struct hw_perf_event *hwc = &event->hw; |
| 290 | int idx = hwc->idx; |
| 291 | |
| 292 | /* Disable interrupt for this counter */ |
| 293 | if (is_sampling_event(event)) { |
| 294 | /* |
| 295 | * Reset interrupt flag by writing of 1. This is required |
| 296 | * to make sure pending interrupt was not left. |
| 297 | */ |
| 298 | write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx); |
| 299 | write_aux_reg(ARC_REG_PCT_INT_CTRL, |
| 300 | read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~(1 << idx)); |
| 301 | } |
| 302 | |
| 303 | if (!(event->hw.state & PERF_HES_STOPPED)) { |
| 304 | /* stop ARC pmu here */ |
| 305 | write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| 306 | |
| 307 | /* condition code #0 is always "never" */ |
| 308 | write_aux_reg(ARC_REG_PCT_CONFIG, 0); |
| 309 | |
| 310 | event->hw.state |= PERF_HES_STOPPED; |
| 311 | } |
| 312 | |
| 313 | if ((flags & PERF_EF_UPDATE) && |
| 314 | !(event->hw.state & PERF_HES_UPTODATE)) { |
| 315 | arc_perf_event_update(event, &event->hw, idx); |
| 316 | event->hw.state |= PERF_HES_UPTODATE; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | static void arc_pmu_del(struct perf_event *event, int flags) |
| 321 | { |
| 322 | struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); |
| 323 | |
| 324 | arc_pmu_stop(event, PERF_EF_UPDATE); |
| 325 | __clear_bit(event->hw.idx, pmu_cpu->used_mask); |
| 326 | |
| 327 | pmu_cpu->act_counter[event->hw.idx] = 0; |
| 328 | |
| 329 | perf_event_update_userpage(event); |
| 330 | } |
| 331 | |
| 332 | /* allocate hardware counter and optionally start counting */ |
| 333 | static int arc_pmu_add(struct perf_event *event, int flags) |
| 334 | { |
| 335 | struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); |
| 336 | struct hw_perf_event *hwc = &event->hw; |
| 337 | int idx = hwc->idx; |
| 338 | |
| 339 | idx = ffz(pmu_cpu->used_mask[0]); |
| 340 | if (idx == arc_pmu->n_counters) |
| 341 | return -EAGAIN; |
| 342 | |
| 343 | __set_bit(idx, pmu_cpu->used_mask); |
| 344 | hwc->idx = idx; |
| 345 | |
| 346 | write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| 347 | |
| 348 | pmu_cpu->act_counter[idx] = event; |
| 349 | |
| 350 | if (is_sampling_event(event)) { |
| 351 | /* Mimic full counter overflow as other arches do */ |
| 352 | write_aux_reg(ARC_REG_PCT_INT_CNTL, (u32)arc_pmu->max_period); |
| 353 | write_aux_reg(ARC_REG_PCT_INT_CNTH, |
| 354 | (arc_pmu->max_period >> 32)); |
| 355 | } |
| 356 | |
| 357 | write_aux_reg(ARC_REG_PCT_CONFIG, 0); |
| 358 | write_aux_reg(ARC_REG_PCT_COUNTL, 0); |
| 359 | write_aux_reg(ARC_REG_PCT_COUNTH, 0); |
| 360 | local64_set(&hwc->prev_count, 0); |
| 361 | |
| 362 | hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| 363 | if (flags & PERF_EF_START) |
| 364 | arc_pmu_start(event, PERF_EF_RELOAD); |
| 365 | |
| 366 | perf_event_update_userpage(event); |
| 367 | |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | #ifdef CONFIG_ISA_ARCV2 |
| 372 | static irqreturn_t arc_pmu_intr(int irq, void *dev) |
| 373 | { |
| 374 | struct perf_sample_data data; |
| 375 | struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); |
| 376 | struct pt_regs *regs; |
| 377 | unsigned int active_ints; |
| 378 | int idx; |
| 379 | |
| 380 | arc_pmu_disable(&arc_pmu->pmu); |
| 381 | |
| 382 | active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT); |
| 383 | if (!active_ints) |
| 384 | goto done; |
| 385 | |
| 386 | regs = get_irq_regs(); |
| 387 | |
| 388 | do { |
| 389 | struct perf_event *event; |
| 390 | struct hw_perf_event *hwc; |
| 391 | |
| 392 | idx = __ffs(active_ints); |
| 393 | |
| 394 | /* Reset interrupt flag by writing of 1 */ |
| 395 | write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx); |
| 396 | |
| 397 | /* |
| 398 | * On reset of "interrupt active" bit corresponding |
| 399 | * "interrupt enable" bit gets automatically reset as well. |
| 400 | * Now we need to re-enable interrupt for the counter. |
| 401 | */ |
| 402 | write_aux_reg(ARC_REG_PCT_INT_CTRL, |
| 403 | read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx)); |
| 404 | |
| 405 | event = pmu_cpu->act_counter[idx]; |
| 406 | hwc = &event->hw; |
| 407 | |
| 408 | WARN_ON_ONCE(hwc->idx != idx); |
| 409 | |
| 410 | arc_perf_event_update(event, &event->hw, event->hw.idx); |
| 411 | perf_sample_data_init(&data, 0, hwc->last_period); |
| 412 | if (arc_pmu_event_set_period(event)) { |
| 413 | if (perf_event_overflow(event, &data, regs)) |
| 414 | arc_pmu_stop(event, 0); |
| 415 | } |
| 416 | |
| 417 | active_ints &= ~(1U << idx); |
| 418 | } while (active_ints); |
| 419 | |
| 420 | done: |
| 421 | arc_pmu_enable(&arc_pmu->pmu); |
| 422 | |
| 423 | return IRQ_HANDLED; |
| 424 | } |
| 425 | #else |
| 426 | |
| 427 | static irqreturn_t arc_pmu_intr(int irq, void *dev) |
| 428 | { |
| 429 | return IRQ_NONE; |
| 430 | } |
| 431 | |
| 432 | #endif /* CONFIG_ISA_ARCV2 */ |
| 433 | |
| 434 | static void arc_cpu_pmu_irq_init(void *data) |
| 435 | { |
| 436 | int irq = *(int *)data; |
| 437 | |
| 438 | enable_percpu_irq(irq, IRQ_TYPE_NONE); |
| 439 | |
| 440 | /* Clear all pending interrupt flags */ |
| 441 | write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff); |
| 442 | } |
| 443 | |
| 444 | static int arc_pmu_device_probe(struct platform_device *pdev) |
| 445 | { |
| 446 | struct arc_reg_pct_build pct_bcr; |
| 447 | struct arc_reg_cc_build cc_bcr; |
| 448 | int i, j, has_interrupts; |
| 449 | int counter_size; /* in bits */ |
| 450 | |
| 451 | union cc_name { |
| 452 | struct { |
| 453 | uint32_t word0, word1; |
| 454 | char sentinel; |
| 455 | } indiv; |
| 456 | char str[9]; |
| 457 | } cc_name; |
| 458 | |
| 459 | |
| 460 | READ_BCR(ARC_REG_PCT_BUILD, pct_bcr); |
| 461 | if (!pct_bcr.v) { |
| 462 | pr_err("This core does not have performance counters!\n"); |
| 463 | return -ENODEV; |
| 464 | } |
| 465 | BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32); |
| 466 | BUG_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS); |
| 467 | |
| 468 | READ_BCR(ARC_REG_CC_BUILD, cc_bcr); |
| 469 | BUG_ON(!cc_bcr.v); /* Counters exist but No countable conditions ? */ |
| 470 | |
| 471 | arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL); |
| 472 | if (!arc_pmu) |
| 473 | return -ENOMEM; |
| 474 | |
| 475 | has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0; |
| 476 | |
| 477 | arc_pmu->n_counters = pct_bcr.c; |
| 478 | counter_size = 32 + (pct_bcr.s << 4); |
| 479 | |
| 480 | arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL; |
| 481 | |
| 482 | pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n", |
| 483 | arc_pmu->n_counters, counter_size, cc_bcr.c, |
| 484 | has_interrupts ? ", [overflow IRQ support]":""); |
| 485 | |
| 486 | cc_name.str[8] = 0; |
| 487 | for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++) |
| 488 | arc_pmu->ev_hw_idx[i] = -1; |
| 489 | |
| 490 | /* loop thru all available h/w condition indexes */ |
| 491 | for (j = 0; j < cc_bcr.c; j++) { |
| 492 | write_aux_reg(ARC_REG_CC_INDEX, j); |
| 493 | cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0); |
| 494 | cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1); |
| 495 | |
| 496 | /* See if it has been mapped to a perf event_id */ |
| 497 | for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) { |
| 498 | if (arc_pmu_ev_hw_map[i] && |
| 499 | !strcmp(arc_pmu_ev_hw_map[i], cc_name.str) && |
| 500 | strlen(arc_pmu_ev_hw_map[i])) { |
| 501 | pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n", |
| 502 | i, cc_name.str, j); |
| 503 | arc_pmu->ev_hw_idx[i] = j; |
| 504 | } |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | arc_pmu->pmu = (struct pmu) { |
| 509 | .pmu_enable = arc_pmu_enable, |
| 510 | .pmu_disable = arc_pmu_disable, |
| 511 | .event_init = arc_pmu_event_init, |
| 512 | .add = arc_pmu_add, |
| 513 | .del = arc_pmu_del, |
| 514 | .start = arc_pmu_start, |
| 515 | .stop = arc_pmu_stop, |
| 516 | .read = arc_pmu_read, |
| 517 | }; |
| 518 | |
| 519 | if (has_interrupts) { |
| 520 | int irq = platform_get_irq(pdev, 0); |
| 521 | |
| 522 | if (irq < 0) { |
| 523 | pr_err("Cannot get IRQ number for the platform\n"); |
| 524 | return -ENODEV; |
| 525 | } |
| 526 | |
| 527 | arc_pmu->irq = irq; |
| 528 | |
| 529 | /* intc map function ensures irq_set_percpu_devid() called */ |
| 530 | request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters", |
| 531 | this_cpu_ptr(&arc_pmu_cpu)); |
| 532 | |
| 533 | on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1); |
| 534 | |
| 535 | } else |
| 536 | arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; |
| 537 | |
| 538 | return perf_pmu_register(&arc_pmu->pmu, pdev->name, PERF_TYPE_RAW); |
| 539 | } |
| 540 | |
| 541 | #ifdef CONFIG_OF |
| 542 | static const struct of_device_id arc_pmu_match[] = { |
| 543 | { .compatible = "snps,arc700-pct" }, |
| 544 | { .compatible = "snps,archs-pct" }, |
| 545 | {}, |
| 546 | }; |
| 547 | MODULE_DEVICE_TABLE(of, arc_pmu_match); |
| 548 | #endif |
| 549 | |
| 550 | static struct platform_driver arc_pmu_driver = { |
| 551 | .driver = { |
| 552 | .name = "arc-pct", |
| 553 | .of_match_table = of_match_ptr(arc_pmu_match), |
| 554 | }, |
| 555 | .probe = arc_pmu_device_probe, |
| 556 | }; |
| 557 | |
| 558 | module_platform_driver(arc_pmu_driver); |
| 559 | |
| 560 | MODULE_LICENSE("GPL"); |
| 561 | MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>"); |
| 562 | MODULE_DESCRIPTION("ARC PMU driver"); |