blob: 035e59eef05bb8b4a7352a0f6b6da78c7854be92 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2#ifndef _BTRFS_CTREE_H_
3#define _BTRFS_CTREE_H_
4
5#include <linux/btrfs.h>
6#include <linux/types.h>
Olivier Deprez0e641232021-09-23 10:07:05 +02007#ifdef __KERNEL__
8#include <linux/stddef.h>
9#else
10#include <stddef.h>
11#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012
13/*
14 * This header contains the structure definitions and constants used
15 * by file system objects that can be retrieved using
16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
17 * is needed to describe a leaf node's key or item contents.
18 */
19
20/* holds pointers to all of the tree roots */
21#define BTRFS_ROOT_TREE_OBJECTID 1ULL
22
23/* stores information about which extents are in use, and reference counts */
24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25
26/*
27 * chunk tree stores translations from logical -> physical block numbering
28 * the super block points to the chunk tree
29 */
30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31
32/*
33 * stores information about which areas of a given device are in use.
34 * one per device. The tree of tree roots points to the device tree
35 */
36#define BTRFS_DEV_TREE_OBJECTID 4ULL
37
38/* one per subvolume, storing files and directories */
39#define BTRFS_FS_TREE_OBJECTID 5ULL
40
41/* directory objectid inside the root tree */
42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43
44/* holds checksums of all the data extents */
45#define BTRFS_CSUM_TREE_OBJECTID 7ULL
46
47/* holds quota configuration and tracking */
48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49
50/* for storing items that use the BTRFS_UUID_KEY* types */
51#define BTRFS_UUID_TREE_OBJECTID 9ULL
52
53/* tracks free space in block groups. */
54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55
56/* device stats in the device tree */
57#define BTRFS_DEV_STATS_OBJECTID 0ULL
58
59/* for storing balance parameters in the root tree */
60#define BTRFS_BALANCE_OBJECTID -4ULL
61
62/* orhpan objectid for tracking unlinked/truncated files */
63#define BTRFS_ORPHAN_OBJECTID -5ULL
64
65/* does write ahead logging to speed up fsyncs */
66#define BTRFS_TREE_LOG_OBJECTID -6ULL
67#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
68
69/* for space balancing */
70#define BTRFS_TREE_RELOC_OBJECTID -8ULL
71#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
72
73/*
74 * extent checksums all have this objectid
75 * this allows them to share the logging tree
76 * for fsyncs
77 */
78#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
79
80/* For storing free space cache */
81#define BTRFS_FREE_SPACE_OBJECTID -11ULL
82
83/*
84 * The inode number assigned to the special inode for storing
85 * free ino cache
86 */
87#define BTRFS_FREE_INO_OBJECTID -12ULL
88
89/* dummy objectid represents multiple objectids */
90#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
91
92/*
93 * All files have objectids in this range.
94 */
95#define BTRFS_FIRST_FREE_OBJECTID 256ULL
96#define BTRFS_LAST_FREE_OBJECTID -256ULL
97#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
98
99
100/*
101 * the device items go into the chunk tree. The key is in the form
102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
103 */
104#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
105
106#define BTRFS_BTREE_INODE_OBJECTID 1
107
108#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
109
110#define BTRFS_DEV_REPLACE_DEVID 0ULL
111
112/*
113 * inode items have the data typically returned from stat and store other
114 * info about object characteristics. There is one for every file and dir in
115 * the FS
116 */
117#define BTRFS_INODE_ITEM_KEY 1
118#define BTRFS_INODE_REF_KEY 12
119#define BTRFS_INODE_EXTREF_KEY 13
120#define BTRFS_XATTR_ITEM_KEY 24
121#define BTRFS_ORPHAN_ITEM_KEY 48
122/* reserve 2-15 close to the inode for later flexibility */
123
124/*
125 * dir items are the name -> inode pointers in a directory. There is one
126 * for every name in a directory.
127 */
128#define BTRFS_DIR_LOG_ITEM_KEY 60
129#define BTRFS_DIR_LOG_INDEX_KEY 72
130#define BTRFS_DIR_ITEM_KEY 84
131#define BTRFS_DIR_INDEX_KEY 96
132/*
133 * extent data is for file data
134 */
135#define BTRFS_EXTENT_DATA_KEY 108
136
137/*
138 * extent csums are stored in a separate tree and hold csums for
139 * an entire extent on disk.
140 */
141#define BTRFS_EXTENT_CSUM_KEY 128
142
143/*
144 * root items point to tree roots. They are typically in the root
145 * tree used by the super block to find all the other trees
146 */
147#define BTRFS_ROOT_ITEM_KEY 132
148
149/*
150 * root backrefs tie subvols and snapshots to the directory entries that
151 * reference them
152 */
153#define BTRFS_ROOT_BACKREF_KEY 144
154
155/*
156 * root refs make a fast index for listing all of the snapshots and
157 * subvolumes referenced by a given root. They point directly to the
158 * directory item in the root that references the subvol
159 */
160#define BTRFS_ROOT_REF_KEY 156
161
162/*
163 * extent items are in the extent map tree. These record which blocks
164 * are used, and how many references there are to each block
165 */
166#define BTRFS_EXTENT_ITEM_KEY 168
167
168/*
169 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
170 * the length, so we save the level in key->offset instead of the length.
171 */
172#define BTRFS_METADATA_ITEM_KEY 169
173
174#define BTRFS_TREE_BLOCK_REF_KEY 176
175
176#define BTRFS_EXTENT_DATA_REF_KEY 178
177
178#define BTRFS_EXTENT_REF_V0_KEY 180
179
180#define BTRFS_SHARED_BLOCK_REF_KEY 182
181
182#define BTRFS_SHARED_DATA_REF_KEY 184
183
184/*
185 * block groups give us hints into the extent allocation trees. Which
186 * blocks are free etc etc
187 */
188#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
189
190/*
191 * Every block group is represented in the free space tree by a free space info
192 * item, which stores some accounting information. It is keyed on
193 * (block_group_start, FREE_SPACE_INFO, block_group_length).
194 */
195#define BTRFS_FREE_SPACE_INFO_KEY 198
196
197/*
198 * A free space extent tracks an extent of space that is free in a block group.
199 * It is keyed on (start, FREE_SPACE_EXTENT, length).
200 */
201#define BTRFS_FREE_SPACE_EXTENT_KEY 199
202
203/*
204 * When a block group becomes very fragmented, we convert it to use bitmaps
205 * instead of extents. A free space bitmap is keyed on
206 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
207 * (length / sectorsize) bits.
208 */
209#define BTRFS_FREE_SPACE_BITMAP_KEY 200
210
211#define BTRFS_DEV_EXTENT_KEY 204
212#define BTRFS_DEV_ITEM_KEY 216
213#define BTRFS_CHUNK_ITEM_KEY 228
214
215/*
216 * Records the overall state of the qgroups.
217 * There's only one instance of this key present,
218 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
219 */
220#define BTRFS_QGROUP_STATUS_KEY 240
221/*
222 * Records the currently used space of the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
224 */
225#define BTRFS_QGROUP_INFO_KEY 242
226/*
227 * Contains the user configured limits for the qgroup.
228 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
229 */
230#define BTRFS_QGROUP_LIMIT_KEY 244
231/*
232 * Records the child-parent relationship of qgroups. For
233 * each relation, 2 keys are present:
234 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
235 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
236 */
237#define BTRFS_QGROUP_RELATION_KEY 246
238
239/*
240 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
241 */
242#define BTRFS_BALANCE_ITEM_KEY 248
243
244/*
245 * The key type for tree items that are stored persistently, but do not need to
246 * exist for extended period of time. The items can exist in any tree.
247 *
248 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
249 *
250 * Existing items:
251 *
252 * - balance status item
253 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
254 */
255#define BTRFS_TEMPORARY_ITEM_KEY 248
256
257/*
258 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
259 */
260#define BTRFS_DEV_STATS_KEY 249
261
262/*
263 * The key type for tree items that are stored persistently and usually exist
264 * for a long period, eg. filesystem lifetime. The item kinds can be status
265 * information, stats or preference values. The item can exist in any tree.
266 *
267 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
268 *
269 * Existing items:
270 *
271 * - device statistics, store IO stats in the device tree, one key for all
272 * stats
273 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
274 */
275#define BTRFS_PERSISTENT_ITEM_KEY 249
276
277/*
278 * Persistantly stores the device replace state in the device tree.
279 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
280 */
281#define BTRFS_DEV_REPLACE_KEY 250
282
283/*
284 * Stores items that allow to quickly map UUIDs to something else.
285 * These items are part of the filesystem UUID tree.
286 * The key is built like this:
287 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
288 */
289#if BTRFS_UUID_SIZE != 16
290#error "UUID items require BTRFS_UUID_SIZE == 16!"
291#endif
292#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
293#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
294 * received subvols */
295
296/*
297 * string items are for debugging. They just store a short string of
298 * data in the FS
299 */
300#define BTRFS_STRING_ITEM_KEY 253
301
302
303
304/* 32 bytes in various csum fields */
305#define BTRFS_CSUM_SIZE 32
306
307/* csum types */
David Brazdil0f672f62019-12-10 10:32:29 +0000308enum btrfs_csum_type {
309 BTRFS_CSUM_TYPE_CRC32 = 0,
310};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000311
312/*
313 * flags definitions for directory entry item type
314 *
315 * Used by:
316 * struct btrfs_dir_item.type
David Brazdil0f672f62019-12-10 10:32:29 +0000317 *
318 * Values 0..7 must match common file type values in fs_types.h.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000319 */
320#define BTRFS_FT_UNKNOWN 0
321#define BTRFS_FT_REG_FILE 1
322#define BTRFS_FT_DIR 2
323#define BTRFS_FT_CHRDEV 3
324#define BTRFS_FT_BLKDEV 4
325#define BTRFS_FT_FIFO 5
326#define BTRFS_FT_SOCK 6
327#define BTRFS_FT_SYMLINK 7
328#define BTRFS_FT_XATTR 8
329#define BTRFS_FT_MAX 9
330
331/*
332 * The key defines the order in the tree, and so it also defines (optimal)
333 * block layout.
334 *
335 * objectid corresponds to the inode number.
336 *
337 * type tells us things about the object, and is a kind of stream selector.
338 * so for a given inode, keys with type of 1 might refer to the inode data,
339 * type of 2 may point to file data in the btree and type == 3 may point to
340 * extents.
341 *
342 * offset is the starting byte offset for this key in the stream.
343 *
344 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
345 * in cpu native order. Otherwise they are identical and their sizes
346 * should be the same (ie both packed)
347 */
348struct btrfs_disk_key {
349 __le64 objectid;
350 __u8 type;
351 __le64 offset;
352} __attribute__ ((__packed__));
353
354struct btrfs_key {
355 __u64 objectid;
356 __u8 type;
357 __u64 offset;
358} __attribute__ ((__packed__));
359
360struct btrfs_dev_item {
361 /* the internal btrfs device id */
362 __le64 devid;
363
364 /* size of the device */
365 __le64 total_bytes;
366
367 /* bytes used */
368 __le64 bytes_used;
369
370 /* optimal io alignment for this device */
371 __le32 io_align;
372
373 /* optimal io width for this device */
374 __le32 io_width;
375
376 /* minimal io size for this device */
377 __le32 sector_size;
378
379 /* type and info about this device */
380 __le64 type;
381
382 /* expected generation for this device */
383 __le64 generation;
384
385 /*
386 * starting byte of this partition on the device,
387 * to allow for stripe alignment in the future
388 */
389 __le64 start_offset;
390
391 /* grouping information for allocation decisions */
392 __le32 dev_group;
393
394 /* seek speed 0-100 where 100 is fastest */
395 __u8 seek_speed;
396
397 /* bandwidth 0-100 where 100 is fastest */
398 __u8 bandwidth;
399
400 /* btrfs generated uuid for this device */
401 __u8 uuid[BTRFS_UUID_SIZE];
402
403 /* uuid of FS who owns this device */
404 __u8 fsid[BTRFS_UUID_SIZE];
405} __attribute__ ((__packed__));
406
407struct btrfs_stripe {
408 __le64 devid;
409 __le64 offset;
410 __u8 dev_uuid[BTRFS_UUID_SIZE];
411} __attribute__ ((__packed__));
412
413struct btrfs_chunk {
414 /* size of this chunk in bytes */
415 __le64 length;
416
417 /* objectid of the root referencing this chunk */
418 __le64 owner;
419
420 __le64 stripe_len;
421 __le64 type;
422
423 /* optimal io alignment for this chunk */
424 __le32 io_align;
425
426 /* optimal io width for this chunk */
427 __le32 io_width;
428
429 /* minimal io size for this chunk */
430 __le32 sector_size;
431
432 /* 2^16 stripes is quite a lot, a second limit is the size of a single
433 * item in the btree
434 */
435 __le16 num_stripes;
436
437 /* sub stripes only matter for raid10 */
438 __le16 sub_stripes;
439 struct btrfs_stripe stripe;
440 /* additional stripes go here */
441} __attribute__ ((__packed__));
442
443#define BTRFS_FREE_SPACE_EXTENT 1
444#define BTRFS_FREE_SPACE_BITMAP 2
445
446struct btrfs_free_space_entry {
447 __le64 offset;
448 __le64 bytes;
449 __u8 type;
450} __attribute__ ((__packed__));
451
452struct btrfs_free_space_header {
453 struct btrfs_disk_key location;
454 __le64 generation;
455 __le64 num_entries;
456 __le64 num_bitmaps;
457} __attribute__ ((__packed__));
458
459#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
460#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
461
462/* Super block flags */
463/* Errors detected */
464#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
465
466#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
467#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
468#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
469#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
David Brazdil0f672f62019-12-10 10:32:29 +0000470#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000471
472
473/*
474 * items in the extent btree are used to record the objectid of the
475 * owner of the block and the number of references
476 */
477
478struct btrfs_extent_item {
479 __le64 refs;
480 __le64 generation;
481 __le64 flags;
482} __attribute__ ((__packed__));
483
484struct btrfs_extent_item_v0 {
485 __le32 refs;
486} __attribute__ ((__packed__));
487
488
489#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
490#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
491
492/* following flags only apply to tree blocks */
493
494/* use full backrefs for extent pointers in the block */
495#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
496
497/*
498 * this flag is only used internally by scrub and may be changed at any time
499 * it is only declared here to avoid collisions
500 */
501#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
502
503struct btrfs_tree_block_info {
504 struct btrfs_disk_key key;
505 __u8 level;
506} __attribute__ ((__packed__));
507
508struct btrfs_extent_data_ref {
509 __le64 root;
510 __le64 objectid;
511 __le64 offset;
512 __le32 count;
513} __attribute__ ((__packed__));
514
515struct btrfs_shared_data_ref {
516 __le32 count;
517} __attribute__ ((__packed__));
518
519struct btrfs_extent_inline_ref {
520 __u8 type;
521 __le64 offset;
522} __attribute__ ((__packed__));
523
524/* old style backrefs item */
525struct btrfs_extent_ref_v0 {
526 __le64 root;
527 __le64 generation;
528 __le64 objectid;
529 __le32 count;
530} __attribute__ ((__packed__));
531
532
533/* dev extents record free space on individual devices. The owner
534 * field points back to the chunk allocation mapping tree that allocated
535 * the extent. The chunk tree uuid field is a way to double check the owner
536 */
537struct btrfs_dev_extent {
538 __le64 chunk_tree;
539 __le64 chunk_objectid;
540 __le64 chunk_offset;
541 __le64 length;
542 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
543} __attribute__ ((__packed__));
544
545struct btrfs_inode_ref {
546 __le64 index;
547 __le16 name_len;
548 /* name goes here */
549} __attribute__ ((__packed__));
550
551struct btrfs_inode_extref {
552 __le64 parent_objectid;
553 __le64 index;
554 __le16 name_len;
555 __u8 name[0];
556 /* name goes here */
557} __attribute__ ((__packed__));
558
559struct btrfs_timespec {
560 __le64 sec;
561 __le32 nsec;
562} __attribute__ ((__packed__));
563
564struct btrfs_inode_item {
565 /* nfs style generation number */
566 __le64 generation;
567 /* transid that last touched this inode */
568 __le64 transid;
569 __le64 size;
570 __le64 nbytes;
571 __le64 block_group;
572 __le32 nlink;
573 __le32 uid;
574 __le32 gid;
575 __le32 mode;
576 __le64 rdev;
577 __le64 flags;
578
579 /* modification sequence number for NFS */
580 __le64 sequence;
581
582 /*
583 * a little future expansion, for more than this we can
584 * just grow the inode item and version it
585 */
586 __le64 reserved[4];
587 struct btrfs_timespec atime;
588 struct btrfs_timespec ctime;
589 struct btrfs_timespec mtime;
590 struct btrfs_timespec otime;
591} __attribute__ ((__packed__));
592
593struct btrfs_dir_log_item {
594 __le64 end;
595} __attribute__ ((__packed__));
596
597struct btrfs_dir_item {
598 struct btrfs_disk_key location;
599 __le64 transid;
600 __le16 data_len;
601 __le16 name_len;
602 __u8 type;
603} __attribute__ ((__packed__));
604
605#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
606
607/*
608 * Internal in-memory flag that a subvolume has been marked for deletion but
609 * still visible as a directory
610 */
611#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
612
613struct btrfs_root_item {
614 struct btrfs_inode_item inode;
615 __le64 generation;
616 __le64 root_dirid;
617 __le64 bytenr;
618 __le64 byte_limit;
619 __le64 bytes_used;
620 __le64 last_snapshot;
621 __le64 flags;
622 __le32 refs;
623 struct btrfs_disk_key drop_progress;
624 __u8 drop_level;
625 __u8 level;
626
627 /*
628 * The following fields appear after subvol_uuids+subvol_times
629 * were introduced.
630 */
631
632 /*
633 * This generation number is used to test if the new fields are valid
634 * and up to date while reading the root item. Every time the root item
635 * is written out, the "generation" field is copied into this field. If
636 * anyone ever mounted the fs with an older kernel, we will have
637 * mismatching generation values here and thus must invalidate the
638 * new fields. See btrfs_update_root and btrfs_find_last_root for
639 * details.
640 * the offset of generation_v2 is also used as the start for the memset
641 * when invalidating the fields.
642 */
643 __le64 generation_v2;
644 __u8 uuid[BTRFS_UUID_SIZE];
645 __u8 parent_uuid[BTRFS_UUID_SIZE];
646 __u8 received_uuid[BTRFS_UUID_SIZE];
647 __le64 ctransid; /* updated when an inode changes */
648 __le64 otransid; /* trans when created */
649 __le64 stransid; /* trans when sent. non-zero for received subvol */
650 __le64 rtransid; /* trans when received. non-zero for received subvol */
651 struct btrfs_timespec ctime;
652 struct btrfs_timespec otime;
653 struct btrfs_timespec stime;
654 struct btrfs_timespec rtime;
655 __le64 reserved[8]; /* for future */
656} __attribute__ ((__packed__));
657
658/*
Olivier Deprez0e641232021-09-23 10:07:05 +0200659 * Btrfs root item used to be smaller than current size. The old format ends
660 * at where member generation_v2 is.
661 */
662static inline __u32 btrfs_legacy_root_item_size(void)
663{
664 return offsetof(struct btrfs_root_item, generation_v2);
665}
666
667/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000668 * this is used for both forward and backward root refs
669 */
670struct btrfs_root_ref {
671 __le64 dirid;
672 __le64 sequence;
673 __le16 name_len;
674} __attribute__ ((__packed__));
675
676struct btrfs_disk_balance_args {
677 /*
678 * profiles to operate on, single is denoted by
679 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
680 */
681 __le64 profiles;
682
683 /*
684 * usage filter
685 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
686 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
687 */
688 union {
689 __le64 usage;
690 struct {
691 __le32 usage_min;
692 __le32 usage_max;
693 };
694 };
695
696 /* devid filter */
697 __le64 devid;
698
699 /* devid subset filter [pstart..pend) */
700 __le64 pstart;
701 __le64 pend;
702
703 /* btrfs virtual address space subset filter [vstart..vend) */
704 __le64 vstart;
705 __le64 vend;
706
707 /*
708 * profile to convert to, single is denoted by
709 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
710 */
711 __le64 target;
712
713 /* BTRFS_BALANCE_ARGS_* */
714 __le64 flags;
715
716 /*
717 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
718 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
719 * and maximum
720 */
721 union {
722 __le64 limit;
723 struct {
724 __le32 limit_min;
725 __le32 limit_max;
726 };
727 };
728
729 /*
730 * Process chunks that cross stripes_min..stripes_max devices,
731 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
732 */
733 __le32 stripes_min;
734 __le32 stripes_max;
735
736 __le64 unused[6];
737} __attribute__ ((__packed__));
738
739/*
740 * store balance parameters to disk so that balance can be properly
741 * resumed after crash or unmount
742 */
743struct btrfs_balance_item {
744 /* BTRFS_BALANCE_* */
745 __le64 flags;
746
747 struct btrfs_disk_balance_args data;
748 struct btrfs_disk_balance_args meta;
749 struct btrfs_disk_balance_args sys;
750
751 __le64 unused[4];
752} __attribute__ ((__packed__));
753
754#define BTRFS_FILE_EXTENT_INLINE 0
755#define BTRFS_FILE_EXTENT_REG 1
756#define BTRFS_FILE_EXTENT_PREALLOC 2
757#define BTRFS_FILE_EXTENT_TYPES 2
758
759struct btrfs_file_extent_item {
760 /*
761 * transaction id that created this extent
762 */
763 __le64 generation;
764 /*
765 * max number of bytes to hold this extent in ram
766 * when we split a compressed extent we can't know how big
767 * each of the resulting pieces will be. So, this is
768 * an upper limit on the size of the extent in ram instead of
769 * an exact limit.
770 */
771 __le64 ram_bytes;
772
773 /*
774 * 32 bits for the various ways we might encode the data,
775 * including compression and encryption. If any of these
776 * are set to something a given disk format doesn't understand
777 * it is treated like an incompat flag for reading and writing,
778 * but not for stat.
779 */
780 __u8 compression;
781 __u8 encryption;
782 __le16 other_encoding; /* spare for later use */
783
784 /* are we inline data or a real extent? */
785 __u8 type;
786
787 /*
788 * disk space consumed by the extent, checksum blocks are included
789 * in these numbers
790 *
791 * At this offset in the structure, the inline extent data start.
792 */
793 __le64 disk_bytenr;
794 __le64 disk_num_bytes;
795 /*
796 * the logical offset in file blocks (no csums)
797 * this extent record is for. This allows a file extent to point
798 * into the middle of an existing extent on disk, sharing it
799 * between two snapshots (useful if some bytes in the middle of the
800 * extent have changed
801 */
802 __le64 offset;
803 /*
804 * the logical number of file blocks (no csums included). This
805 * always reflects the size uncompressed and without encoding.
806 */
807 __le64 num_bytes;
808
809} __attribute__ ((__packed__));
810
811struct btrfs_csum_item {
812 __u8 csum;
813} __attribute__ ((__packed__));
814
815struct btrfs_dev_stats_item {
816 /*
817 * grow this item struct at the end for future enhancements and keep
818 * the existing values unchanged
819 */
820 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
821} __attribute__ ((__packed__));
822
823#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
824#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000825
826struct btrfs_dev_replace_item {
827 /*
828 * grow this item struct at the end for future enhancements and keep
829 * the existing values unchanged
830 */
831 __le64 src_devid;
832 __le64 cursor_left;
833 __le64 cursor_right;
834 __le64 cont_reading_from_srcdev_mode;
835
836 __le64 replace_state;
837 __le64 time_started;
838 __le64 time_stopped;
839 __le64 num_write_errors;
840 __le64 num_uncorrectable_read_errors;
841} __attribute__ ((__packed__));
842
843/* different types of block groups (and chunks) */
844#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
845#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
846#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
847#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
848#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
849#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
850#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
851#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
852#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
853#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
854 BTRFS_SPACE_INFO_GLOBAL_RSV)
855
856enum btrfs_raid_types {
857 BTRFS_RAID_RAID10,
858 BTRFS_RAID_RAID1,
859 BTRFS_RAID_DUP,
860 BTRFS_RAID_RAID0,
861 BTRFS_RAID_SINGLE,
862 BTRFS_RAID_RAID5,
863 BTRFS_RAID_RAID6,
864 BTRFS_NR_RAID_TYPES
865};
866
867#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
868 BTRFS_BLOCK_GROUP_SYSTEM | \
869 BTRFS_BLOCK_GROUP_METADATA)
870
871#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
872 BTRFS_BLOCK_GROUP_RAID1 | \
873 BTRFS_BLOCK_GROUP_RAID5 | \
874 BTRFS_BLOCK_GROUP_RAID6 | \
875 BTRFS_BLOCK_GROUP_DUP | \
876 BTRFS_BLOCK_GROUP_RAID10)
877#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
878 BTRFS_BLOCK_GROUP_RAID6)
879
David Brazdil0f672f62019-12-10 10:32:29 +0000880#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1)
881
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000882/*
883 * We need a bit for restriper to be able to tell when chunks of type
884 * SINGLE are available. This "extended" profile format is used in
885 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
886 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
887 * to avoid remappings between two formats in future.
888 */
889#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
890
891/*
892 * A fake block group type that is used to communicate global block reserve
893 * size to userspace via the SPACE_INFO ioctl.
894 */
895#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
896
897#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
898 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
899
900static inline __u64 chunk_to_extended(__u64 flags)
901{
902 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
903 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
904
905 return flags;
906}
907static inline __u64 extended_to_chunk(__u64 flags)
908{
909 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
910}
911
912struct btrfs_block_group_item {
913 __le64 used;
914 __le64 chunk_objectid;
915 __le64 flags;
916} __attribute__ ((__packed__));
917
918struct btrfs_free_space_info {
919 __le32 extent_count;
920 __le32 flags;
921} __attribute__ ((__packed__));
922
923#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
924
925#define BTRFS_QGROUP_LEVEL_SHIFT 48
926static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
927{
928 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
929}
930
931/*
932 * is subvolume quota turned on?
933 */
934#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
935/*
936 * RESCAN is set during the initialization phase
937 */
938#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
939/*
940 * Some qgroup entries are known to be out of date,
941 * either because the configuration has changed in a way that
942 * makes a rescan necessary, or because the fs has been mounted
943 * with a non-qgroup-aware version.
944 * Turning qouta off and on again makes it inconsistent, too.
945 */
946#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
947
948#define BTRFS_QGROUP_STATUS_VERSION 1
949
950struct btrfs_qgroup_status_item {
951 __le64 version;
952 /*
953 * the generation is updated during every commit. As older
954 * versions of btrfs are not aware of qgroups, it will be
955 * possible to detect inconsistencies by checking the
956 * generation on mount time
957 */
958 __le64 generation;
959
960 /* flag definitions see above */
961 __le64 flags;
962
963 /*
964 * only used during scanning to record the progress
965 * of the scan. It contains a logical address
966 */
967 __le64 rescan;
968} __attribute__ ((__packed__));
969
970struct btrfs_qgroup_info_item {
971 __le64 generation;
972 __le64 rfer;
973 __le64 rfer_cmpr;
974 __le64 excl;
975 __le64 excl_cmpr;
976} __attribute__ ((__packed__));
977
978struct btrfs_qgroup_limit_item {
979 /*
980 * only updated when any of the other values change
981 */
982 __le64 flags;
983 __le64 max_rfer;
984 __le64 max_excl;
985 __le64 rsv_rfer;
986 __le64 rsv_excl;
987} __attribute__ ((__packed__));
988
989#endif /* _BTRFS_CTREE_H_ */