blob: 0c720a2982ae47c2174cc75b470b45cf6fe6b734 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-or-later */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Scatterlist Cryptographic API.
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 * and Nettle, by Niels Möller.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011 */
12#ifndef _LINUX_CRYPTO_H
13#define _LINUX_CRYPTO_H
14
15#include <linux/atomic.h>
16#include <linux/kernel.h>
17#include <linux/list.h>
18#include <linux/bug.h>
19#include <linux/slab.h>
20#include <linux/string.h>
21#include <linux/uaccess.h>
22#include <linux/completion.h>
23
24/*
25 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
26 * arbitrary modules to be loaded. Loading from userspace may still need the
27 * unprefixed names, so retains those aliases as well.
28 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
29 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
30 * expands twice on the same line. Instead, use a separate base name for the
31 * alias.
32 */
33#define MODULE_ALIAS_CRYPTO(name) \
34 __MODULE_INFO(alias, alias_userspace, name); \
35 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
36
37/*
38 * Algorithm masks and types.
39 */
40#define CRYPTO_ALG_TYPE_MASK 0x0000000f
41#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
42#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
43#define CRYPTO_ALG_TYPE_AEAD 0x00000003
44#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
45#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
46#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000047#define CRYPTO_ALG_TYPE_KPP 0x00000008
48#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
49#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
50#define CRYPTO_ALG_TYPE_RNG 0x0000000c
51#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000052#define CRYPTO_ALG_TYPE_HASH 0x0000000e
53#define CRYPTO_ALG_TYPE_SHASH 0x0000000e
54#define CRYPTO_ALG_TYPE_AHASH 0x0000000f
55
56#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
57#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
58#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
59#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
60
61#define CRYPTO_ALG_LARVAL 0x00000010
62#define CRYPTO_ALG_DEAD 0x00000020
63#define CRYPTO_ALG_DYING 0x00000040
64#define CRYPTO_ALG_ASYNC 0x00000080
65
66/*
67 * Set this bit if and only if the algorithm requires another algorithm of
68 * the same type to handle corner cases.
69 */
70#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
71
72/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000073 * Set if the algorithm has passed automated run-time testing. Note that
74 * if there is no run-time testing for a given algorithm it is considered
75 * to have passed.
76 */
77
78#define CRYPTO_ALG_TESTED 0x00000400
79
80/*
81 * Set if the algorithm is an instance that is built from templates.
82 */
83#define CRYPTO_ALG_INSTANCE 0x00000800
84
85/* Set this bit if the algorithm provided is hardware accelerated but
86 * not available to userspace via instruction set or so.
87 */
88#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
89
90/*
91 * Mark a cipher as a service implementation only usable by another
92 * cipher and never by a normal user of the kernel crypto API
93 */
94#define CRYPTO_ALG_INTERNAL 0x00002000
95
96/*
97 * Set if the algorithm has a ->setkey() method but can be used without
98 * calling it first, i.e. there is a default key.
99 */
100#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
101
102/*
103 * Don't trigger module loading
104 */
105#define CRYPTO_NOLOAD 0x00008000
106
107/*
108 * Transform masks and values (for crt_flags).
109 */
110#define CRYPTO_TFM_NEED_KEY 0x00000001
111
112#define CRYPTO_TFM_REQ_MASK 0x000fff00
113#define CRYPTO_TFM_RES_MASK 0xfff00000
114
David Brazdil0f672f62019-12-10 10:32:29 +0000115#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000116#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
117#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
118#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
119#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
120#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
121#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
122#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
123
124/*
125 * Miscellaneous stuff.
126 */
127#define CRYPTO_MAX_ALG_NAME 128
128
129/*
130 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
131 * declaration) is used to ensure that the crypto_tfm context structure is
132 * aligned correctly for the given architecture so that there are no alignment
Olivier Deprez0e641232021-09-23 10:07:05 +0200133 * faults for C data types. On architectures that support non-cache coherent
134 * DMA, such as ARM or arm64, it also takes into account the minimal alignment
135 * that is required to ensure that the context struct member does not share any
136 * cachelines with the rest of the struct. This is needed to ensure that cache
137 * maintenance for non-coherent DMA (cache invalidation in particular) does not
138 * affect data that may be accessed by the CPU concurrently.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000139 */
140#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
141
142#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
143
144struct scatterlist;
145struct crypto_ablkcipher;
146struct crypto_async_request;
147struct crypto_blkcipher;
148struct crypto_tfm;
149struct crypto_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000150
151typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
152
153/**
154 * DOC: Block Cipher Context Data Structures
155 *
156 * These data structures define the operating context for each block cipher
157 * type.
158 */
159
160struct crypto_async_request {
161 struct list_head list;
162 crypto_completion_t complete;
163 void *data;
164 struct crypto_tfm *tfm;
165
166 u32 flags;
167};
168
169struct ablkcipher_request {
170 struct crypto_async_request base;
171
172 unsigned int nbytes;
173
174 void *info;
175
176 struct scatterlist *src;
177 struct scatterlist *dst;
178
179 void *__ctx[] CRYPTO_MINALIGN_ATTR;
180};
181
182struct blkcipher_desc {
183 struct crypto_blkcipher *tfm;
184 void *info;
185 u32 flags;
186};
187
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000188/**
189 * DOC: Block Cipher Algorithm Definitions
190 *
191 * These data structures define modular crypto algorithm implementations,
192 * managed via crypto_register_alg() and crypto_unregister_alg().
193 */
194
195/**
196 * struct ablkcipher_alg - asynchronous block cipher definition
197 * @min_keysize: Minimum key size supported by the transformation. This is the
198 * smallest key length supported by this transformation algorithm.
199 * This must be set to one of the pre-defined values as this is
200 * not hardware specific. Possible values for this field can be
201 * found via git grep "_MIN_KEY_SIZE" include/crypto/
202 * @max_keysize: Maximum key size supported by the transformation. This is the
203 * largest key length supported by this transformation algorithm.
204 * This must be set to one of the pre-defined values as this is
205 * not hardware specific. Possible values for this field can be
206 * found via git grep "_MAX_KEY_SIZE" include/crypto/
207 * @setkey: Set key for the transformation. This function is used to either
208 * program a supplied key into the hardware or store the key in the
209 * transformation context for programming it later. Note that this
210 * function does modify the transformation context. This function can
211 * be called multiple times during the existence of the transformation
212 * object, so one must make sure the key is properly reprogrammed into
213 * the hardware. This function is also responsible for checking the key
214 * length for validity. In case a software fallback was put in place in
215 * the @cra_init call, this function might need to use the fallback if
216 * the algorithm doesn't support all of the key sizes.
217 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
218 * the supplied scatterlist containing the blocks of data. The crypto
219 * API consumer is responsible for aligning the entries of the
220 * scatterlist properly and making sure the chunks are correctly
221 * sized. In case a software fallback was put in place in the
222 * @cra_init call, this function might need to use the fallback if
223 * the algorithm doesn't support all of the key sizes. In case the
224 * key was stored in transformation context, the key might need to be
225 * re-programmed into the hardware in this function. This function
226 * shall not modify the transformation context, as this function may
227 * be called in parallel with the same transformation object.
228 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
229 * and the conditions are exactly the same.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000230 * @ivsize: IV size applicable for transformation. The consumer must provide an
231 * IV of exactly that size to perform the encrypt or decrypt operation.
232 *
David Brazdil0f672f62019-12-10 10:32:29 +0000233 * All fields except @ivsize are mandatory and must be filled.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000234 */
235struct ablkcipher_alg {
236 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
237 unsigned int keylen);
238 int (*encrypt)(struct ablkcipher_request *req);
239 int (*decrypt)(struct ablkcipher_request *req);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000240
241 unsigned int min_keysize;
242 unsigned int max_keysize;
243 unsigned int ivsize;
244};
245
246/**
247 * struct blkcipher_alg - synchronous block cipher definition
248 * @min_keysize: see struct ablkcipher_alg
249 * @max_keysize: see struct ablkcipher_alg
250 * @setkey: see struct ablkcipher_alg
251 * @encrypt: see struct ablkcipher_alg
252 * @decrypt: see struct ablkcipher_alg
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000253 * @ivsize: see struct ablkcipher_alg
254 *
David Brazdil0f672f62019-12-10 10:32:29 +0000255 * All fields except @ivsize are mandatory and must be filled.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000256 */
257struct blkcipher_alg {
258 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
259 unsigned int keylen);
260 int (*encrypt)(struct blkcipher_desc *desc,
261 struct scatterlist *dst, struct scatterlist *src,
262 unsigned int nbytes);
263 int (*decrypt)(struct blkcipher_desc *desc,
264 struct scatterlist *dst, struct scatterlist *src,
265 unsigned int nbytes);
266
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000267 unsigned int min_keysize;
268 unsigned int max_keysize;
269 unsigned int ivsize;
270};
271
272/**
273 * struct cipher_alg - single-block symmetric ciphers definition
274 * @cia_min_keysize: Minimum key size supported by the transformation. This is
275 * the smallest key length supported by this transformation
276 * algorithm. This must be set to one of the pre-defined
277 * values as this is not hardware specific. Possible values
278 * for this field can be found via git grep "_MIN_KEY_SIZE"
279 * include/crypto/
280 * @cia_max_keysize: Maximum key size supported by the transformation. This is
281 * the largest key length supported by this transformation
282 * algorithm. This must be set to one of the pre-defined values
283 * as this is not hardware specific. Possible values for this
284 * field can be found via git grep "_MAX_KEY_SIZE"
285 * include/crypto/
286 * @cia_setkey: Set key for the transformation. This function is used to either
287 * program a supplied key into the hardware or store the key in the
288 * transformation context for programming it later. Note that this
289 * function does modify the transformation context. This function
290 * can be called multiple times during the existence of the
291 * transformation object, so one must make sure the key is properly
292 * reprogrammed into the hardware. This function is also
293 * responsible for checking the key length for validity.
294 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
295 * single block of data, which must be @cra_blocksize big. This
296 * always operates on a full @cra_blocksize and it is not possible
297 * to encrypt a block of smaller size. The supplied buffers must
298 * therefore also be at least of @cra_blocksize size. Both the
299 * input and output buffers are always aligned to @cra_alignmask.
300 * In case either of the input or output buffer supplied by user
301 * of the crypto API is not aligned to @cra_alignmask, the crypto
302 * API will re-align the buffers. The re-alignment means that a
303 * new buffer will be allocated, the data will be copied into the
304 * new buffer, then the processing will happen on the new buffer,
305 * then the data will be copied back into the original buffer and
306 * finally the new buffer will be freed. In case a software
307 * fallback was put in place in the @cra_init call, this function
308 * might need to use the fallback if the algorithm doesn't support
309 * all of the key sizes. In case the key was stored in
310 * transformation context, the key might need to be re-programmed
311 * into the hardware in this function. This function shall not
312 * modify the transformation context, as this function may be
313 * called in parallel with the same transformation object.
314 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
315 * @cia_encrypt, and the conditions are exactly the same.
316 *
317 * All fields are mandatory and must be filled.
318 */
319struct cipher_alg {
320 unsigned int cia_min_keysize;
321 unsigned int cia_max_keysize;
322 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
323 unsigned int keylen);
324 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
325 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
326};
327
David Brazdil0f672f62019-12-10 10:32:29 +0000328/**
329 * struct compress_alg - compression/decompression algorithm
330 * @coa_compress: Compress a buffer of specified length, storing the resulting
331 * data in the specified buffer. Return the length of the
332 * compressed data in dlen.
333 * @coa_decompress: Decompress the source buffer, storing the uncompressed
334 * data in the specified buffer. The length of the data is
335 * returned in dlen.
336 *
337 * All fields are mandatory.
338 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000339struct compress_alg {
340 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
341 unsigned int slen, u8 *dst, unsigned int *dlen);
342 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
343 unsigned int slen, u8 *dst, unsigned int *dlen);
344};
345
David Brazdil0f672f62019-12-10 10:32:29 +0000346#ifdef CONFIG_CRYPTO_STATS
347/*
348 * struct crypto_istat_aead - statistics for AEAD algorithm
349 * @encrypt_cnt: number of encrypt requests
350 * @encrypt_tlen: total data size handled by encrypt requests
351 * @decrypt_cnt: number of decrypt requests
352 * @decrypt_tlen: total data size handled by decrypt requests
353 * @err_cnt: number of error for AEAD requests
354 */
355struct crypto_istat_aead {
356 atomic64_t encrypt_cnt;
357 atomic64_t encrypt_tlen;
358 atomic64_t decrypt_cnt;
359 atomic64_t decrypt_tlen;
360 atomic64_t err_cnt;
361};
362
363/*
364 * struct crypto_istat_akcipher - statistics for akcipher algorithm
365 * @encrypt_cnt: number of encrypt requests
366 * @encrypt_tlen: total data size handled by encrypt requests
367 * @decrypt_cnt: number of decrypt requests
368 * @decrypt_tlen: total data size handled by decrypt requests
369 * @verify_cnt: number of verify operation
370 * @sign_cnt: number of sign requests
371 * @err_cnt: number of error for akcipher requests
372 */
373struct crypto_istat_akcipher {
374 atomic64_t encrypt_cnt;
375 atomic64_t encrypt_tlen;
376 atomic64_t decrypt_cnt;
377 atomic64_t decrypt_tlen;
378 atomic64_t verify_cnt;
379 atomic64_t sign_cnt;
380 atomic64_t err_cnt;
381};
382
383/*
384 * struct crypto_istat_cipher - statistics for cipher algorithm
385 * @encrypt_cnt: number of encrypt requests
386 * @encrypt_tlen: total data size handled by encrypt requests
387 * @decrypt_cnt: number of decrypt requests
388 * @decrypt_tlen: total data size handled by decrypt requests
389 * @err_cnt: number of error for cipher requests
390 */
391struct crypto_istat_cipher {
392 atomic64_t encrypt_cnt;
393 atomic64_t encrypt_tlen;
394 atomic64_t decrypt_cnt;
395 atomic64_t decrypt_tlen;
396 atomic64_t err_cnt;
397};
398
399/*
400 * struct crypto_istat_compress - statistics for compress algorithm
401 * @compress_cnt: number of compress requests
402 * @compress_tlen: total data size handled by compress requests
403 * @decompress_cnt: number of decompress requests
404 * @decompress_tlen: total data size handled by decompress requests
405 * @err_cnt: number of error for compress requests
406 */
407struct crypto_istat_compress {
408 atomic64_t compress_cnt;
409 atomic64_t compress_tlen;
410 atomic64_t decompress_cnt;
411 atomic64_t decompress_tlen;
412 atomic64_t err_cnt;
413};
414
415/*
416 * struct crypto_istat_hash - statistics for has algorithm
417 * @hash_cnt: number of hash requests
418 * @hash_tlen: total data size hashed
419 * @err_cnt: number of error for hash requests
420 */
421struct crypto_istat_hash {
422 atomic64_t hash_cnt;
423 atomic64_t hash_tlen;
424 atomic64_t err_cnt;
425};
426
427/*
428 * struct crypto_istat_kpp - statistics for KPP algorithm
429 * @setsecret_cnt: number of setsecrey operation
430 * @generate_public_key_cnt: number of generate_public_key operation
431 * @compute_shared_secret_cnt: number of compute_shared_secret operation
432 * @err_cnt: number of error for KPP requests
433 */
434struct crypto_istat_kpp {
435 atomic64_t setsecret_cnt;
436 atomic64_t generate_public_key_cnt;
437 atomic64_t compute_shared_secret_cnt;
438 atomic64_t err_cnt;
439};
440
441/*
442 * struct crypto_istat_rng: statistics for RNG algorithm
443 * @generate_cnt: number of RNG generate requests
444 * @generate_tlen: total data size of generated data by the RNG
445 * @seed_cnt: number of times the RNG was seeded
446 * @err_cnt: number of error for RNG requests
447 */
448struct crypto_istat_rng {
449 atomic64_t generate_cnt;
450 atomic64_t generate_tlen;
451 atomic64_t seed_cnt;
452 atomic64_t err_cnt;
453};
454#endif /* CONFIG_CRYPTO_STATS */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000455
456#define cra_ablkcipher cra_u.ablkcipher
457#define cra_blkcipher cra_u.blkcipher
458#define cra_cipher cra_u.cipher
459#define cra_compress cra_u.compress
460
461/**
462 * struct crypto_alg - definition of a cryptograpic cipher algorithm
463 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
464 * CRYPTO_ALG_* flags for the flags which go in here. Those are
465 * used for fine-tuning the description of the transformation
466 * algorithm.
467 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
468 * of the smallest possible unit which can be transformed with
469 * this algorithm. The users must respect this value.
470 * In case of HASH transformation, it is possible for a smaller
471 * block than @cra_blocksize to be passed to the crypto API for
472 * transformation, in case of any other transformation type, an
473 * error will be returned upon any attempt to transform smaller
474 * than @cra_blocksize chunks.
475 * @cra_ctxsize: Size of the operational context of the transformation. This
476 * value informs the kernel crypto API about the memory size
477 * needed to be allocated for the transformation context.
478 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
479 * buffer containing the input data for the algorithm must be
480 * aligned to this alignment mask. The data buffer for the
481 * output data must be aligned to this alignment mask. Note that
482 * the Crypto API will do the re-alignment in software, but
483 * only under special conditions and there is a performance hit.
484 * The re-alignment happens at these occasions for different
485 * @cra_u types: cipher -- For both input data and output data
486 * buffer; ahash -- For output hash destination buf; shash --
487 * For output hash destination buf.
488 * This is needed on hardware which is flawed by design and
489 * cannot pick data from arbitrary addresses.
490 * @cra_priority: Priority of this transformation implementation. In case
491 * multiple transformations with same @cra_name are available to
492 * the Crypto API, the kernel will use the one with highest
493 * @cra_priority.
494 * @cra_name: Generic name (usable by multiple implementations) of the
495 * transformation algorithm. This is the name of the transformation
496 * itself. This field is used by the kernel when looking up the
497 * providers of particular transformation.
498 * @cra_driver_name: Unique name of the transformation provider. This is the
499 * name of the provider of the transformation. This can be any
500 * arbitrary value, but in the usual case, this contains the
501 * name of the chip or provider and the name of the
502 * transformation algorithm.
503 * @cra_type: Type of the cryptographic transformation. This is a pointer to
504 * struct crypto_type, which implements callbacks common for all
505 * transformation types. There are multiple options:
506 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
507 * &crypto_ahash_type, &crypto_rng_type.
508 * This field might be empty. In that case, there are no common
509 * callbacks. This is the case for: cipher, compress, shash.
510 * @cra_u: Callbacks implementing the transformation. This is a union of
511 * multiple structures. Depending on the type of transformation selected
512 * by @cra_type and @cra_flags above, the associated structure must be
513 * filled with callbacks. This field might be empty. This is the case
514 * for ahash, shash.
515 * @cra_init: Initialize the cryptographic transformation object. This function
516 * is used to initialize the cryptographic transformation object.
517 * This function is called only once at the instantiation time, right
518 * after the transformation context was allocated. In case the
519 * cryptographic hardware has some special requirements which need to
520 * be handled by software, this function shall check for the precise
521 * requirement of the transformation and put any software fallbacks
522 * in place.
523 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
524 * counterpart to @cra_init, used to remove various changes set in
525 * @cra_init.
526 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
527 * definition. See @struct @ablkcipher_alg.
528 * @cra_u.blkcipher: Union member which contains a synchronous block cipher
529 * definition See @struct @blkcipher_alg.
530 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
531 * definition. See @struct @cipher_alg.
532 * @cra_u.compress: Union member which contains a (de)compression algorithm.
533 * See @struct @compress_alg.
534 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
535 * @cra_list: internally used
536 * @cra_users: internally used
537 * @cra_refcnt: internally used
538 * @cra_destroy: internally used
539 *
David Brazdil0f672f62019-12-10 10:32:29 +0000540 * @stats: union of all possible crypto_istat_xxx structures
541 * @stats.aead: statistics for AEAD algorithm
542 * @stats.akcipher: statistics for akcipher algorithm
543 * @stats.cipher: statistics for cipher algorithm
544 * @stats.compress: statistics for compress algorithm
545 * @stats.hash: statistics for hash algorithm
546 * @stats.rng: statistics for rng algorithm
547 * @stats.kpp: statistics for KPP algorithm
548 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000549 * The struct crypto_alg describes a generic Crypto API algorithm and is common
550 * for all of the transformations. Any variable not documented here shall not
551 * be used by a cipher implementation as it is internal to the Crypto API.
552 */
553struct crypto_alg {
554 struct list_head cra_list;
555 struct list_head cra_users;
556
557 u32 cra_flags;
558 unsigned int cra_blocksize;
559 unsigned int cra_ctxsize;
560 unsigned int cra_alignmask;
561
562 int cra_priority;
563 refcount_t cra_refcnt;
564
565 char cra_name[CRYPTO_MAX_ALG_NAME];
566 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
567
568 const struct crypto_type *cra_type;
569
570 union {
571 struct ablkcipher_alg ablkcipher;
572 struct blkcipher_alg blkcipher;
573 struct cipher_alg cipher;
574 struct compress_alg compress;
575 } cra_u;
576
577 int (*cra_init)(struct crypto_tfm *tfm);
578 void (*cra_exit)(struct crypto_tfm *tfm);
579 void (*cra_destroy)(struct crypto_alg *alg);
580
581 struct module *cra_module;
David Brazdil0f672f62019-12-10 10:32:29 +0000582
583#ifdef CONFIG_CRYPTO_STATS
584 union {
585 struct crypto_istat_aead aead;
586 struct crypto_istat_akcipher akcipher;
587 struct crypto_istat_cipher cipher;
588 struct crypto_istat_compress compress;
589 struct crypto_istat_hash hash;
590 struct crypto_istat_rng rng;
591 struct crypto_istat_kpp kpp;
592 } stats;
593#endif /* CONFIG_CRYPTO_STATS */
594
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000595} CRYPTO_MINALIGN_ATTR;
596
David Brazdil0f672f62019-12-10 10:32:29 +0000597#ifdef CONFIG_CRYPTO_STATS
598void crypto_stats_init(struct crypto_alg *alg);
599void crypto_stats_get(struct crypto_alg *alg);
600void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
601void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
602void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
603void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
604void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
605void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
606void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
607void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
608void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
609void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
610void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
611void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
612void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
613void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
614void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
615void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
616void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
617void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
618void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
619#else
620static inline void crypto_stats_init(struct crypto_alg *alg)
621{}
622static inline void crypto_stats_get(struct crypto_alg *alg)
623{}
624static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
625{}
626static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
627{}
628static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
629{}
630static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
631{}
632static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
633{}
634static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
635{}
636static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
637{}
638static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
639{}
640static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
641{}
642static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
643{}
644static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
645{}
646static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
647{}
648static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
649{}
650static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
651{}
652static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
653{}
654static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
655{}
656static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
657{}
658static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
659{}
660static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
661{}
662#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000663/*
664 * A helper struct for waiting for completion of async crypto ops
665 */
666struct crypto_wait {
667 struct completion completion;
668 int err;
669};
670
671/*
672 * Macro for declaring a crypto op async wait object on stack
673 */
674#define DECLARE_CRYPTO_WAIT(_wait) \
675 struct crypto_wait _wait = { \
676 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
677
678/*
679 * Async ops completion helper functioons
680 */
681void crypto_req_done(struct crypto_async_request *req, int err);
682
683static inline int crypto_wait_req(int err, struct crypto_wait *wait)
684{
685 switch (err) {
686 case -EINPROGRESS:
687 case -EBUSY:
688 wait_for_completion(&wait->completion);
689 reinit_completion(&wait->completion);
690 err = wait->err;
691 break;
692 };
693
694 return err;
695}
696
697static inline void crypto_init_wait(struct crypto_wait *wait)
698{
699 init_completion(&wait->completion);
700}
701
702/*
703 * Algorithm registration interface.
704 */
705int crypto_register_alg(struct crypto_alg *alg);
706int crypto_unregister_alg(struct crypto_alg *alg);
707int crypto_register_algs(struct crypto_alg *algs, int count);
708int crypto_unregister_algs(struct crypto_alg *algs, int count);
709
710/*
711 * Algorithm query interface.
712 */
713int crypto_has_alg(const char *name, u32 type, u32 mask);
714
715/*
716 * Transforms: user-instantiated objects which encapsulate algorithms
717 * and core processing logic. Managed via crypto_alloc_*() and
718 * crypto_free_*(), as well as the various helpers below.
719 */
720
721struct ablkcipher_tfm {
722 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
723 unsigned int keylen);
724 int (*encrypt)(struct ablkcipher_request *req);
725 int (*decrypt)(struct ablkcipher_request *req);
726
727 struct crypto_ablkcipher *base;
728
729 unsigned int ivsize;
730 unsigned int reqsize;
731};
732
733struct blkcipher_tfm {
734 void *iv;
735 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
736 unsigned int keylen);
737 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
738 struct scatterlist *src, unsigned int nbytes);
739 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
740 struct scatterlist *src, unsigned int nbytes);
741};
742
743struct cipher_tfm {
744 int (*cit_setkey)(struct crypto_tfm *tfm,
745 const u8 *key, unsigned int keylen);
746 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
747 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
748};
749
750struct compress_tfm {
751 int (*cot_compress)(struct crypto_tfm *tfm,
752 const u8 *src, unsigned int slen,
753 u8 *dst, unsigned int *dlen);
754 int (*cot_decompress)(struct crypto_tfm *tfm,
755 const u8 *src, unsigned int slen,
756 u8 *dst, unsigned int *dlen);
757};
758
759#define crt_ablkcipher crt_u.ablkcipher
760#define crt_blkcipher crt_u.blkcipher
761#define crt_cipher crt_u.cipher
762#define crt_compress crt_u.compress
763
764struct crypto_tfm {
765
766 u32 crt_flags;
767
768 union {
769 struct ablkcipher_tfm ablkcipher;
770 struct blkcipher_tfm blkcipher;
771 struct cipher_tfm cipher;
772 struct compress_tfm compress;
773 } crt_u;
774
775 void (*exit)(struct crypto_tfm *tfm);
776
777 struct crypto_alg *__crt_alg;
778
779 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
780};
781
782struct crypto_ablkcipher {
783 struct crypto_tfm base;
784};
785
786struct crypto_blkcipher {
787 struct crypto_tfm base;
788};
789
790struct crypto_cipher {
791 struct crypto_tfm base;
792};
793
794struct crypto_comp {
795 struct crypto_tfm base;
796};
797
798enum {
799 CRYPTOA_UNSPEC,
800 CRYPTOA_ALG,
801 CRYPTOA_TYPE,
802 CRYPTOA_U32,
803 __CRYPTOA_MAX,
804};
805
806#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
807
808/* Maximum number of (rtattr) parameters for each template. */
809#define CRYPTO_MAX_ATTRS 32
810
811struct crypto_attr_alg {
812 char name[CRYPTO_MAX_ALG_NAME];
813};
814
815struct crypto_attr_type {
816 u32 type;
817 u32 mask;
818};
819
820struct crypto_attr_u32 {
821 u32 num;
822};
823
824/*
825 * Transform user interface.
826 */
827
828struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
829void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
830
831static inline void crypto_free_tfm(struct crypto_tfm *tfm)
832{
833 return crypto_destroy_tfm(tfm, tfm);
834}
835
836int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
837
838/*
839 * Transform helpers which query the underlying algorithm.
840 */
841static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
842{
843 return tfm->__crt_alg->cra_name;
844}
845
846static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
847{
848 return tfm->__crt_alg->cra_driver_name;
849}
850
851static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
852{
853 return tfm->__crt_alg->cra_priority;
854}
855
856static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
857{
858 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
859}
860
861static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
862{
863 return tfm->__crt_alg->cra_blocksize;
864}
865
866static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
867{
868 return tfm->__crt_alg->cra_alignmask;
869}
870
871static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
872{
873 return tfm->crt_flags;
874}
875
876static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
877{
878 tfm->crt_flags |= flags;
879}
880
881static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
882{
883 tfm->crt_flags &= ~flags;
884}
885
886static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
887{
888 return tfm->__crt_ctx;
889}
890
891static inline unsigned int crypto_tfm_ctx_alignment(void)
892{
893 struct crypto_tfm *tfm;
894 return __alignof__(tfm->__crt_ctx);
895}
896
897/*
898 * API wrappers.
899 */
900static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
901 struct crypto_tfm *tfm)
902{
903 return (struct crypto_ablkcipher *)tfm;
904}
905
906static inline u32 crypto_skcipher_type(u32 type)
907{
David Brazdil0f672f62019-12-10 10:32:29 +0000908 type &= ~CRYPTO_ALG_TYPE_MASK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000909 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
910 return type;
911}
912
913static inline u32 crypto_skcipher_mask(u32 mask)
914{
David Brazdil0f672f62019-12-10 10:32:29 +0000915 mask &= ~CRYPTO_ALG_TYPE_MASK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000916 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
917 return mask;
918}
919
920/**
921 * DOC: Asynchronous Block Cipher API
922 *
923 * Asynchronous block cipher API is used with the ciphers of type
924 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
925 *
926 * Asynchronous cipher operations imply that the function invocation for a
927 * cipher request returns immediately before the completion of the operation.
928 * The cipher request is scheduled as a separate kernel thread and therefore
929 * load-balanced on the different CPUs via the process scheduler. To allow
930 * the kernel crypto API to inform the caller about the completion of a cipher
931 * request, the caller must provide a callback function. That function is
932 * invoked with the cipher handle when the request completes.
933 *
934 * To support the asynchronous operation, additional information than just the
935 * cipher handle must be supplied to the kernel crypto API. That additional
936 * information is given by filling in the ablkcipher_request data structure.
937 *
938 * For the asynchronous block cipher API, the state is maintained with the tfm
939 * cipher handle. A single tfm can be used across multiple calls and in
940 * parallel. For asynchronous block cipher calls, context data supplied and
941 * only used by the caller can be referenced the request data structure in
942 * addition to the IV used for the cipher request. The maintenance of such
943 * state information would be important for a crypto driver implementer to
944 * have, because when calling the callback function upon completion of the
945 * cipher operation, that callback function may need some information about
946 * which operation just finished if it invoked multiple in parallel. This
947 * state information is unused by the kernel crypto API.
948 */
949
950static inline struct crypto_tfm *crypto_ablkcipher_tfm(
951 struct crypto_ablkcipher *tfm)
952{
953 return &tfm->base;
954}
955
956/**
957 * crypto_free_ablkcipher() - zeroize and free cipher handle
958 * @tfm: cipher handle to be freed
959 */
960static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
961{
962 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
963}
964
965/**
966 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
967 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
968 * ablkcipher
969 * @type: specifies the type of the cipher
970 * @mask: specifies the mask for the cipher
971 *
972 * Return: true when the ablkcipher is known to the kernel crypto API; false
973 * otherwise
974 */
975static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
976 u32 mask)
977{
978 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
979 crypto_skcipher_mask(mask));
980}
981
982static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
983 struct crypto_ablkcipher *tfm)
984{
985 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
986}
987
988/**
989 * crypto_ablkcipher_ivsize() - obtain IV size
990 * @tfm: cipher handle
991 *
992 * The size of the IV for the ablkcipher referenced by the cipher handle is
993 * returned. This IV size may be zero if the cipher does not need an IV.
994 *
995 * Return: IV size in bytes
996 */
997static inline unsigned int crypto_ablkcipher_ivsize(
998 struct crypto_ablkcipher *tfm)
999{
1000 return crypto_ablkcipher_crt(tfm)->ivsize;
1001}
1002
1003/**
1004 * crypto_ablkcipher_blocksize() - obtain block size of cipher
1005 * @tfm: cipher handle
1006 *
1007 * The block size for the ablkcipher referenced with the cipher handle is
1008 * returned. The caller may use that information to allocate appropriate
1009 * memory for the data returned by the encryption or decryption operation
1010 *
1011 * Return: block size of cipher
1012 */
1013static inline unsigned int crypto_ablkcipher_blocksize(
1014 struct crypto_ablkcipher *tfm)
1015{
1016 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1017}
1018
1019static inline unsigned int crypto_ablkcipher_alignmask(
1020 struct crypto_ablkcipher *tfm)
1021{
1022 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1023}
1024
1025static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1026{
1027 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1028}
1029
1030static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1031 u32 flags)
1032{
1033 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1034}
1035
1036static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1037 u32 flags)
1038{
1039 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1040}
1041
1042/**
1043 * crypto_ablkcipher_setkey() - set key for cipher
1044 * @tfm: cipher handle
1045 * @key: buffer holding the key
1046 * @keylen: length of the key in bytes
1047 *
1048 * The caller provided key is set for the ablkcipher referenced by the cipher
1049 * handle.
1050 *
1051 * Note, the key length determines the cipher type. Many block ciphers implement
1052 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1053 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1054 * is performed.
1055 *
1056 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1057 */
1058static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1059 const u8 *key, unsigned int keylen)
1060{
1061 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1062
1063 return crt->setkey(crt->base, key, keylen);
1064}
1065
1066/**
1067 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1068 * @req: ablkcipher_request out of which the cipher handle is to be obtained
1069 *
1070 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1071 * data structure.
1072 *
1073 * Return: crypto_ablkcipher handle
1074 */
1075static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1076 struct ablkcipher_request *req)
1077{
1078 return __crypto_ablkcipher_cast(req->base.tfm);
1079}
1080
1081/**
1082 * crypto_ablkcipher_encrypt() - encrypt plaintext
1083 * @req: reference to the ablkcipher_request handle that holds all information
1084 * needed to perform the cipher operation
1085 *
1086 * Encrypt plaintext data using the ablkcipher_request handle. That data
1087 * structure and how it is filled with data is discussed with the
1088 * ablkcipher_request_* functions.
1089 *
1090 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1091 */
1092static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1093{
1094 struct ablkcipher_tfm *crt =
1095 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
David Brazdil0f672f62019-12-10 10:32:29 +00001096 struct crypto_alg *alg = crt->base->base.__crt_alg;
1097 unsigned int nbytes = req->nbytes;
1098 int ret;
1099
1100 crypto_stats_get(alg);
1101 ret = crt->encrypt(req);
1102 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
1103 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001104}
1105
1106/**
1107 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1108 * @req: reference to the ablkcipher_request handle that holds all information
1109 * needed to perform the cipher operation
1110 *
1111 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1112 * structure and how it is filled with data is discussed with the
1113 * ablkcipher_request_* functions.
1114 *
1115 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1116 */
1117static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1118{
1119 struct ablkcipher_tfm *crt =
1120 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
David Brazdil0f672f62019-12-10 10:32:29 +00001121 struct crypto_alg *alg = crt->base->base.__crt_alg;
1122 unsigned int nbytes = req->nbytes;
1123 int ret;
1124
1125 crypto_stats_get(alg);
1126 ret = crt->decrypt(req);
1127 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
1128 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001129}
1130
1131/**
1132 * DOC: Asynchronous Cipher Request Handle
1133 *
1134 * The ablkcipher_request data structure contains all pointers to data
1135 * required for the asynchronous cipher operation. This includes the cipher
1136 * handle (which can be used by multiple ablkcipher_request instances), pointer
1137 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1138 * as a handle to the ablkcipher_request_* API calls in a similar way as
1139 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1140 */
1141
1142/**
1143 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1144 * @tfm: cipher handle
1145 *
1146 * Return: number of bytes
1147 */
1148static inline unsigned int crypto_ablkcipher_reqsize(
1149 struct crypto_ablkcipher *tfm)
1150{
1151 return crypto_ablkcipher_crt(tfm)->reqsize;
1152}
1153
1154/**
1155 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1156 * @req: request handle to be modified
1157 * @tfm: cipher handle that shall be added to the request handle
1158 *
1159 * Allow the caller to replace the existing ablkcipher handle in the request
1160 * data structure with a different one.
1161 */
1162static inline void ablkcipher_request_set_tfm(
1163 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1164{
1165 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1166}
1167
1168static inline struct ablkcipher_request *ablkcipher_request_cast(
1169 struct crypto_async_request *req)
1170{
1171 return container_of(req, struct ablkcipher_request, base);
1172}
1173
1174/**
1175 * ablkcipher_request_alloc() - allocate request data structure
1176 * @tfm: cipher handle to be registered with the request
1177 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1178 *
1179 * Allocate the request data structure that must be used with the ablkcipher
1180 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1181 * handle is registered in the request data structure.
1182 *
1183 * Return: allocated request handle in case of success, or NULL if out of memory
1184 */
1185static inline struct ablkcipher_request *ablkcipher_request_alloc(
1186 struct crypto_ablkcipher *tfm, gfp_t gfp)
1187{
1188 struct ablkcipher_request *req;
1189
1190 req = kmalloc(sizeof(struct ablkcipher_request) +
1191 crypto_ablkcipher_reqsize(tfm), gfp);
1192
1193 if (likely(req))
1194 ablkcipher_request_set_tfm(req, tfm);
1195
1196 return req;
1197}
1198
1199/**
1200 * ablkcipher_request_free() - zeroize and free request data structure
1201 * @req: request data structure cipher handle to be freed
1202 */
1203static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1204{
1205 kzfree(req);
1206}
1207
1208/**
1209 * ablkcipher_request_set_callback() - set asynchronous callback function
1210 * @req: request handle
1211 * @flags: specify zero or an ORing of the flags
1212 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1213 * increase the wait queue beyond the initial maximum size;
1214 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1215 * @compl: callback function pointer to be registered with the request handle
1216 * @data: The data pointer refers to memory that is not used by the kernel
1217 * crypto API, but provided to the callback function for it to use. Here,
1218 * the caller can provide a reference to memory the callback function can
1219 * operate on. As the callback function is invoked asynchronously to the
1220 * related functionality, it may need to access data structures of the
1221 * related functionality which can be referenced using this pointer. The
1222 * callback function can access the memory via the "data" field in the
1223 * crypto_async_request data structure provided to the callback function.
1224 *
1225 * This function allows setting the callback function that is triggered once the
1226 * cipher operation completes.
1227 *
1228 * The callback function is registered with the ablkcipher_request handle and
1229 * must comply with the following template::
1230 *
1231 * void callback_function(struct crypto_async_request *req, int error)
1232 */
1233static inline void ablkcipher_request_set_callback(
1234 struct ablkcipher_request *req,
1235 u32 flags, crypto_completion_t compl, void *data)
1236{
1237 req->base.complete = compl;
1238 req->base.data = data;
1239 req->base.flags = flags;
1240}
1241
1242/**
1243 * ablkcipher_request_set_crypt() - set data buffers
1244 * @req: request handle
1245 * @src: source scatter / gather list
1246 * @dst: destination scatter / gather list
1247 * @nbytes: number of bytes to process from @src
1248 * @iv: IV for the cipher operation which must comply with the IV size defined
1249 * by crypto_ablkcipher_ivsize
1250 *
1251 * This function allows setting of the source data and destination data
1252 * scatter / gather lists.
1253 *
1254 * For encryption, the source is treated as the plaintext and the
1255 * destination is the ciphertext. For a decryption operation, the use is
1256 * reversed - the source is the ciphertext and the destination is the plaintext.
1257 */
1258static inline void ablkcipher_request_set_crypt(
1259 struct ablkcipher_request *req,
1260 struct scatterlist *src, struct scatterlist *dst,
1261 unsigned int nbytes, void *iv)
1262{
1263 req->src = src;
1264 req->dst = dst;
1265 req->nbytes = nbytes;
1266 req->info = iv;
1267}
1268
1269/**
1270 * DOC: Synchronous Block Cipher API
1271 *
1272 * The synchronous block cipher API is used with the ciphers of type
1273 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1274 *
1275 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1276 * used in multiple calls and in parallel, this info should not be changeable
1277 * (unless a lock is used). This applies, for example, to the symmetric key.
1278 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1279 * structure for synchronous blkcipher api. So, its the only state info that can
1280 * be kept for synchronous calls without using a big lock across a tfm.
1281 *
1282 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1283 * consisting of a template (a block chaining mode) and a single block cipher
1284 * primitive (e.g. AES).
1285 *
1286 * The plaintext data buffer and the ciphertext data buffer are pointed to
1287 * by using scatter/gather lists. The cipher operation is performed
1288 * on all segments of the provided scatter/gather lists.
1289 *
1290 * The kernel crypto API supports a cipher operation "in-place" which means that
1291 * the caller may provide the same scatter/gather list for the plaintext and
1292 * cipher text. After the completion of the cipher operation, the plaintext
1293 * data is replaced with the ciphertext data in case of an encryption and vice
1294 * versa for a decryption. The caller must ensure that the scatter/gather lists
1295 * for the output data point to sufficiently large buffers, i.e. multiples of
1296 * the block size of the cipher.
1297 */
1298
1299static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1300 struct crypto_tfm *tfm)
1301{
1302 return (struct crypto_blkcipher *)tfm;
1303}
1304
1305static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1306 struct crypto_tfm *tfm)
1307{
1308 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1309 return __crypto_blkcipher_cast(tfm);
1310}
1311
1312/**
1313 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1314 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1315 * blkcipher cipher
1316 * @type: specifies the type of the cipher
1317 * @mask: specifies the mask for the cipher
1318 *
1319 * Allocate a cipher handle for a block cipher. The returned struct
1320 * crypto_blkcipher is the cipher handle that is required for any subsequent
1321 * API invocation for that block cipher.
1322 *
1323 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1324 * of an error, PTR_ERR() returns the error code.
1325 */
1326static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1327 const char *alg_name, u32 type, u32 mask)
1328{
1329 type &= ~CRYPTO_ALG_TYPE_MASK;
1330 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1331 mask |= CRYPTO_ALG_TYPE_MASK;
1332
1333 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1334}
1335
1336static inline struct crypto_tfm *crypto_blkcipher_tfm(
1337 struct crypto_blkcipher *tfm)
1338{
1339 return &tfm->base;
1340}
1341
1342/**
1343 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1344 * @tfm: cipher handle to be freed
1345 */
1346static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1347{
1348 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1349}
1350
1351/**
1352 * crypto_has_blkcipher() - Search for the availability of a block cipher
1353 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1354 * block cipher
1355 * @type: specifies the type of the cipher
1356 * @mask: specifies the mask for the cipher
1357 *
1358 * Return: true when the block cipher is known to the kernel crypto API; false
1359 * otherwise
1360 */
1361static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1362{
1363 type &= ~CRYPTO_ALG_TYPE_MASK;
1364 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1365 mask |= CRYPTO_ALG_TYPE_MASK;
1366
1367 return crypto_has_alg(alg_name, type, mask);
1368}
1369
1370/**
1371 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1372 * @tfm: cipher handle
1373 *
1374 * Return: The character string holding the name of the cipher
1375 */
1376static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1377{
1378 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1379}
1380
1381static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1382 struct crypto_blkcipher *tfm)
1383{
1384 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1385}
1386
1387static inline struct blkcipher_alg *crypto_blkcipher_alg(
1388 struct crypto_blkcipher *tfm)
1389{
1390 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1391}
1392
1393/**
1394 * crypto_blkcipher_ivsize() - obtain IV size
1395 * @tfm: cipher handle
1396 *
1397 * The size of the IV for the block cipher referenced by the cipher handle is
1398 * returned. This IV size may be zero if the cipher does not need an IV.
1399 *
1400 * Return: IV size in bytes
1401 */
1402static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1403{
1404 return crypto_blkcipher_alg(tfm)->ivsize;
1405}
1406
1407/**
1408 * crypto_blkcipher_blocksize() - obtain block size of cipher
1409 * @tfm: cipher handle
1410 *
1411 * The block size for the block cipher referenced with the cipher handle is
1412 * returned. The caller may use that information to allocate appropriate
1413 * memory for the data returned by the encryption or decryption operation.
1414 *
1415 * Return: block size of cipher
1416 */
1417static inline unsigned int crypto_blkcipher_blocksize(
1418 struct crypto_blkcipher *tfm)
1419{
1420 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1421}
1422
1423static inline unsigned int crypto_blkcipher_alignmask(
1424 struct crypto_blkcipher *tfm)
1425{
1426 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1427}
1428
1429static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1430{
1431 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1432}
1433
1434static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1435 u32 flags)
1436{
1437 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1438}
1439
1440static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1441 u32 flags)
1442{
1443 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1444}
1445
1446/**
1447 * crypto_blkcipher_setkey() - set key for cipher
1448 * @tfm: cipher handle
1449 * @key: buffer holding the key
1450 * @keylen: length of the key in bytes
1451 *
1452 * The caller provided key is set for the block cipher referenced by the cipher
1453 * handle.
1454 *
1455 * Note, the key length determines the cipher type. Many block ciphers implement
1456 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1457 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1458 * is performed.
1459 *
1460 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1461 */
1462static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1463 const u8 *key, unsigned int keylen)
1464{
1465 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1466 key, keylen);
1467}
1468
1469/**
1470 * crypto_blkcipher_encrypt() - encrypt plaintext
1471 * @desc: reference to the block cipher handle with meta data
1472 * @dst: scatter/gather list that is filled by the cipher operation with the
1473 * ciphertext
1474 * @src: scatter/gather list that holds the plaintext
1475 * @nbytes: number of bytes of the plaintext to encrypt.
1476 *
1477 * Encrypt plaintext data using the IV set by the caller with a preceding
1478 * call of crypto_blkcipher_set_iv.
1479 *
1480 * The blkcipher_desc data structure must be filled by the caller and can
1481 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1482 * with the block cipher handle; desc.flags is filled with either
1483 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1484 *
1485 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1486 */
1487static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1488 struct scatterlist *dst,
1489 struct scatterlist *src,
1490 unsigned int nbytes)
1491{
1492 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1493 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1494}
1495
1496/**
1497 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1498 * @desc: reference to the block cipher handle with meta data
1499 * @dst: scatter/gather list that is filled by the cipher operation with the
1500 * ciphertext
1501 * @src: scatter/gather list that holds the plaintext
1502 * @nbytes: number of bytes of the plaintext to encrypt.
1503 *
1504 * Encrypt plaintext data with the use of an IV that is solely used for this
1505 * cipher operation. Any previously set IV is not used.
1506 *
1507 * The blkcipher_desc data structure must be filled by the caller and can
1508 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1509 * with the block cipher handle; desc.info is filled with the IV to be used for
1510 * the current operation; desc.flags is filled with either
1511 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1512 *
1513 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1514 */
1515static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1516 struct scatterlist *dst,
1517 struct scatterlist *src,
1518 unsigned int nbytes)
1519{
1520 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1521}
1522
1523/**
1524 * crypto_blkcipher_decrypt() - decrypt ciphertext
1525 * @desc: reference to the block cipher handle with meta data
1526 * @dst: scatter/gather list that is filled by the cipher operation with the
1527 * plaintext
1528 * @src: scatter/gather list that holds the ciphertext
1529 * @nbytes: number of bytes of the ciphertext to decrypt.
1530 *
1531 * Decrypt ciphertext data using the IV set by the caller with a preceding
1532 * call of crypto_blkcipher_set_iv.
1533 *
1534 * The blkcipher_desc data structure must be filled by the caller as documented
1535 * for the crypto_blkcipher_encrypt call above.
1536 *
1537 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1538 *
1539 */
1540static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1541 struct scatterlist *dst,
1542 struct scatterlist *src,
1543 unsigned int nbytes)
1544{
1545 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1546 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1547}
1548
1549/**
1550 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1551 * @desc: reference to the block cipher handle with meta data
1552 * @dst: scatter/gather list that is filled by the cipher operation with the
1553 * plaintext
1554 * @src: scatter/gather list that holds the ciphertext
1555 * @nbytes: number of bytes of the ciphertext to decrypt.
1556 *
1557 * Decrypt ciphertext data with the use of an IV that is solely used for this
1558 * cipher operation. Any previously set IV is not used.
1559 *
1560 * The blkcipher_desc data structure must be filled by the caller as documented
1561 * for the crypto_blkcipher_encrypt_iv call above.
1562 *
1563 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1564 */
1565static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1566 struct scatterlist *dst,
1567 struct scatterlist *src,
1568 unsigned int nbytes)
1569{
1570 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1571}
1572
1573/**
1574 * crypto_blkcipher_set_iv() - set IV for cipher
1575 * @tfm: cipher handle
1576 * @src: buffer holding the IV
1577 * @len: length of the IV in bytes
1578 *
1579 * The caller provided IV is set for the block cipher referenced by the cipher
1580 * handle.
1581 */
1582static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1583 const u8 *src, unsigned int len)
1584{
1585 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1586}
1587
1588/**
1589 * crypto_blkcipher_get_iv() - obtain IV from cipher
1590 * @tfm: cipher handle
1591 * @dst: buffer filled with the IV
1592 * @len: length of the buffer dst
1593 *
1594 * The caller can obtain the IV set for the block cipher referenced by the
1595 * cipher handle and store it into the user-provided buffer. If the buffer
1596 * has an insufficient space, the IV is truncated to fit the buffer.
1597 */
1598static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1599 u8 *dst, unsigned int len)
1600{
1601 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1602}
1603
1604/**
1605 * DOC: Single Block Cipher API
1606 *
1607 * The single block cipher API is used with the ciphers of type
1608 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1609 *
1610 * Using the single block cipher API calls, operations with the basic cipher
1611 * primitive can be implemented. These cipher primitives exclude any block
1612 * chaining operations including IV handling.
1613 *
1614 * The purpose of this single block cipher API is to support the implementation
1615 * of templates or other concepts that only need to perform the cipher operation
1616 * on one block at a time. Templates invoke the underlying cipher primitive
1617 * block-wise and process either the input or the output data of these cipher
1618 * operations.
1619 */
1620
1621static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1622{
1623 return (struct crypto_cipher *)tfm;
1624}
1625
1626static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1627{
1628 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1629 return __crypto_cipher_cast(tfm);
1630}
1631
1632/**
1633 * crypto_alloc_cipher() - allocate single block cipher handle
1634 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1635 * single block cipher
1636 * @type: specifies the type of the cipher
1637 * @mask: specifies the mask for the cipher
1638 *
1639 * Allocate a cipher handle for a single block cipher. The returned struct
1640 * crypto_cipher is the cipher handle that is required for any subsequent API
1641 * invocation for that single block cipher.
1642 *
1643 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1644 * of an error, PTR_ERR() returns the error code.
1645 */
1646static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1647 u32 type, u32 mask)
1648{
1649 type &= ~CRYPTO_ALG_TYPE_MASK;
1650 type |= CRYPTO_ALG_TYPE_CIPHER;
1651 mask |= CRYPTO_ALG_TYPE_MASK;
1652
1653 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1654}
1655
1656static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1657{
1658 return &tfm->base;
1659}
1660
1661/**
1662 * crypto_free_cipher() - zeroize and free the single block cipher handle
1663 * @tfm: cipher handle to be freed
1664 */
1665static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1666{
1667 crypto_free_tfm(crypto_cipher_tfm(tfm));
1668}
1669
1670/**
1671 * crypto_has_cipher() - Search for the availability of a single block cipher
1672 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1673 * single block cipher
1674 * @type: specifies the type of the cipher
1675 * @mask: specifies the mask for the cipher
1676 *
1677 * Return: true when the single block cipher is known to the kernel crypto API;
1678 * false otherwise
1679 */
1680static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1681{
1682 type &= ~CRYPTO_ALG_TYPE_MASK;
1683 type |= CRYPTO_ALG_TYPE_CIPHER;
1684 mask |= CRYPTO_ALG_TYPE_MASK;
1685
1686 return crypto_has_alg(alg_name, type, mask);
1687}
1688
1689static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1690{
1691 return &crypto_cipher_tfm(tfm)->crt_cipher;
1692}
1693
1694/**
1695 * crypto_cipher_blocksize() - obtain block size for cipher
1696 * @tfm: cipher handle
1697 *
1698 * The block size for the single block cipher referenced with the cipher handle
1699 * tfm is returned. The caller may use that information to allocate appropriate
1700 * memory for the data returned by the encryption or decryption operation
1701 *
1702 * Return: block size of cipher
1703 */
1704static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1705{
1706 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1707}
1708
1709static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1710{
1711 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1712}
1713
1714static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1715{
1716 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1717}
1718
1719static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1720 u32 flags)
1721{
1722 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1723}
1724
1725static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1726 u32 flags)
1727{
1728 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1729}
1730
1731/**
1732 * crypto_cipher_setkey() - set key for cipher
1733 * @tfm: cipher handle
1734 * @key: buffer holding the key
1735 * @keylen: length of the key in bytes
1736 *
1737 * The caller provided key is set for the single block cipher referenced by the
1738 * cipher handle.
1739 *
1740 * Note, the key length determines the cipher type. Many block ciphers implement
1741 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1742 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1743 * is performed.
1744 *
1745 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1746 */
1747static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1748 const u8 *key, unsigned int keylen)
1749{
1750 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1751 key, keylen);
1752}
1753
1754/**
1755 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1756 * @tfm: cipher handle
1757 * @dst: points to the buffer that will be filled with the ciphertext
1758 * @src: buffer holding the plaintext to be encrypted
1759 *
1760 * Invoke the encryption operation of one block. The caller must ensure that
1761 * the plaintext and ciphertext buffers are at least one block in size.
1762 */
1763static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1764 u8 *dst, const u8 *src)
1765{
1766 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1767 dst, src);
1768}
1769
1770/**
1771 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1772 * @tfm: cipher handle
1773 * @dst: points to the buffer that will be filled with the plaintext
1774 * @src: buffer holding the ciphertext to be decrypted
1775 *
1776 * Invoke the decryption operation of one block. The caller must ensure that
1777 * the plaintext and ciphertext buffers are at least one block in size.
1778 */
1779static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1780 u8 *dst, const u8 *src)
1781{
1782 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1783 dst, src);
1784}
1785
1786static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1787{
1788 return (struct crypto_comp *)tfm;
1789}
1790
1791static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1792{
1793 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1794 CRYPTO_ALG_TYPE_MASK);
1795 return __crypto_comp_cast(tfm);
1796}
1797
1798static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1799 u32 type, u32 mask)
1800{
1801 type &= ~CRYPTO_ALG_TYPE_MASK;
1802 type |= CRYPTO_ALG_TYPE_COMPRESS;
1803 mask |= CRYPTO_ALG_TYPE_MASK;
1804
1805 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1806}
1807
1808static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1809{
1810 return &tfm->base;
1811}
1812
1813static inline void crypto_free_comp(struct crypto_comp *tfm)
1814{
1815 crypto_free_tfm(crypto_comp_tfm(tfm));
1816}
1817
1818static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1819{
1820 type &= ~CRYPTO_ALG_TYPE_MASK;
1821 type |= CRYPTO_ALG_TYPE_COMPRESS;
1822 mask |= CRYPTO_ALG_TYPE_MASK;
1823
1824 return crypto_has_alg(alg_name, type, mask);
1825}
1826
1827static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1828{
1829 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1830}
1831
1832static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1833{
1834 return &crypto_comp_tfm(tfm)->crt_compress;
1835}
1836
1837static inline int crypto_comp_compress(struct crypto_comp *tfm,
1838 const u8 *src, unsigned int slen,
1839 u8 *dst, unsigned int *dlen)
1840{
1841 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1842 src, slen, dst, dlen);
1843}
1844
1845static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1846 const u8 *src, unsigned int slen,
1847 u8 *dst, unsigned int *dlen)
1848{
1849 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1850 src, slen, dst, dlen);
1851}
1852
1853#endif /* _LINUX_CRYPTO_H */
1854