David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* |
| 4 | * Copyright 2016-2019 HabanaLabs, Ltd. |
| 5 | * All Rights Reserved. |
| 6 | */ |
| 7 | |
| 8 | #include <uapi/misc/habanalabs.h> |
| 9 | #include "habanalabs.h" |
| 10 | #include "include/hw_ip/mmu/mmu_general.h" |
| 11 | |
| 12 | #include <linux/uaccess.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/genalloc.h> |
| 15 | |
| 16 | #define PGS_IN_2MB_PAGE (PAGE_SIZE_2MB >> PAGE_SHIFT) |
| 17 | #define HL_MMU_DEBUG 0 |
| 18 | |
| 19 | /* |
| 20 | * The va ranges in context object contain a list with the available chunks of |
| 21 | * device virtual memory. |
| 22 | * There is one range for host allocations and one for DRAM allocations. |
| 23 | * |
| 24 | * On initialization each range contains one chunk of all of its available |
| 25 | * virtual range which is a half of the total device virtual range. |
| 26 | * |
| 27 | * On each mapping of physical pages, a suitable virtual range chunk (with a |
| 28 | * minimum size) is selected from the list. If the chunk size equals the |
| 29 | * requested size, the chunk is returned. Otherwise, the chunk is split into |
| 30 | * two chunks - one to return as result and a remainder to stay in the list. |
| 31 | * |
| 32 | * On each Unmapping of a virtual address, the relevant virtual chunk is |
| 33 | * returned to the list. The chunk is added to the list and if its edges match |
| 34 | * the edges of the adjacent chunks (means a contiguous chunk can be created), |
| 35 | * the chunks are merged. |
| 36 | * |
| 37 | * On finish, the list is checked to have only one chunk of all the relevant |
| 38 | * virtual range (which is a half of the device total virtual range). |
| 39 | * If not (means not all mappings were unmapped), a warning is printed. |
| 40 | */ |
| 41 | |
| 42 | /* |
| 43 | * alloc_device_memory - allocate device memory |
| 44 | * |
| 45 | * @ctx : current context |
| 46 | * @args : host parameters containing the requested size |
| 47 | * @ret_handle : result handle |
| 48 | * |
| 49 | * This function does the following: |
| 50 | * - Allocate the requested size rounded up to 2MB pages |
| 51 | * - Return unique handle |
| 52 | */ |
| 53 | static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, |
| 54 | u32 *ret_handle) |
| 55 | { |
| 56 | struct hl_device *hdev = ctx->hdev; |
| 57 | struct hl_vm *vm = &hdev->vm; |
| 58 | struct hl_vm_phys_pg_pack *phys_pg_pack; |
| 59 | u64 paddr = 0, total_size, num_pgs, i; |
| 60 | u32 num_curr_pgs, page_size, page_shift; |
| 61 | int handle, rc; |
| 62 | bool contiguous; |
| 63 | |
| 64 | num_curr_pgs = 0; |
| 65 | page_size = hdev->asic_prop.dram_page_size; |
| 66 | page_shift = __ffs(page_size); |
| 67 | num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift; |
| 68 | total_size = num_pgs << page_shift; |
| 69 | |
| 70 | contiguous = args->flags & HL_MEM_CONTIGUOUS; |
| 71 | |
| 72 | if (contiguous) { |
| 73 | paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size); |
| 74 | if (!paddr) { |
| 75 | dev_err(hdev->dev, |
| 76 | "failed to allocate %llu huge contiguous pages\n", |
| 77 | num_pgs); |
| 78 | return -ENOMEM; |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); |
| 83 | if (!phys_pg_pack) { |
| 84 | rc = -ENOMEM; |
| 85 | goto pages_pack_err; |
| 86 | } |
| 87 | |
| 88 | phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; |
| 89 | phys_pg_pack->asid = ctx->asid; |
| 90 | phys_pg_pack->npages = num_pgs; |
| 91 | phys_pg_pack->page_size = page_size; |
| 92 | phys_pg_pack->total_size = total_size; |
| 93 | phys_pg_pack->flags = args->flags; |
| 94 | phys_pg_pack->contiguous = contiguous; |
| 95 | |
| 96 | phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); |
| 97 | if (!phys_pg_pack->pages) { |
| 98 | rc = -ENOMEM; |
| 99 | goto pages_arr_err; |
| 100 | } |
| 101 | |
| 102 | if (phys_pg_pack->contiguous) { |
| 103 | for (i = 0 ; i < num_pgs ; i++) |
| 104 | phys_pg_pack->pages[i] = paddr + i * page_size; |
| 105 | } else { |
| 106 | for (i = 0 ; i < num_pgs ; i++) { |
| 107 | phys_pg_pack->pages[i] = (u64) gen_pool_alloc( |
| 108 | vm->dram_pg_pool, |
| 109 | page_size); |
| 110 | if (!phys_pg_pack->pages[i]) { |
| 111 | dev_err(hdev->dev, |
| 112 | "Failed to allocate device memory (out of memory)\n"); |
| 113 | rc = -ENOMEM; |
| 114 | goto page_err; |
| 115 | } |
| 116 | |
| 117 | num_curr_pgs++; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | spin_lock(&vm->idr_lock); |
| 122 | handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, |
| 123 | GFP_ATOMIC); |
| 124 | spin_unlock(&vm->idr_lock); |
| 125 | |
| 126 | if (handle < 0) { |
| 127 | dev_err(hdev->dev, "Failed to get handle for page\n"); |
| 128 | rc = -EFAULT; |
| 129 | goto idr_err; |
| 130 | } |
| 131 | |
| 132 | for (i = 0 ; i < num_pgs ; i++) |
| 133 | kref_get(&vm->dram_pg_pool_refcount); |
| 134 | |
| 135 | phys_pg_pack->handle = handle; |
| 136 | |
| 137 | atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); |
| 138 | atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); |
| 139 | |
| 140 | *ret_handle = handle; |
| 141 | |
| 142 | return 0; |
| 143 | |
| 144 | idr_err: |
| 145 | page_err: |
| 146 | if (!phys_pg_pack->contiguous) |
| 147 | for (i = 0 ; i < num_curr_pgs ; i++) |
| 148 | gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], |
| 149 | page_size); |
| 150 | |
| 151 | kvfree(phys_pg_pack->pages); |
| 152 | pages_arr_err: |
| 153 | kfree(phys_pg_pack); |
| 154 | pages_pack_err: |
| 155 | if (contiguous) |
| 156 | gen_pool_free(vm->dram_pg_pool, paddr, total_size); |
| 157 | |
| 158 | return rc; |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * get_userptr_from_host_va - initialize userptr structure from given host |
| 163 | * virtual address |
| 164 | * |
| 165 | * @hdev : habanalabs device structure |
| 166 | * @args : parameters containing the virtual address and size |
| 167 | * @p_userptr : pointer to result userptr structure |
| 168 | * |
| 169 | * This function does the following: |
| 170 | * - Allocate userptr structure |
| 171 | * - Pin the given host memory using the userptr structure |
| 172 | * - Perform DMA mapping to have the DMA addresses of the pages |
| 173 | */ |
| 174 | static int get_userptr_from_host_va(struct hl_device *hdev, |
| 175 | struct hl_mem_in *args, struct hl_userptr **p_userptr) |
| 176 | { |
| 177 | struct hl_userptr *userptr; |
| 178 | int rc; |
| 179 | |
| 180 | userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); |
| 181 | if (!userptr) { |
| 182 | rc = -ENOMEM; |
| 183 | goto userptr_err; |
| 184 | } |
| 185 | |
| 186 | rc = hl_pin_host_memory(hdev, args->map_host.host_virt_addr, |
| 187 | args->map_host.mem_size, userptr); |
| 188 | if (rc) { |
| 189 | dev_err(hdev->dev, "Failed to pin host memory\n"); |
| 190 | goto pin_err; |
| 191 | } |
| 192 | |
| 193 | rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl, |
| 194 | userptr->sgt->nents, DMA_BIDIRECTIONAL); |
| 195 | if (rc) { |
| 196 | dev_err(hdev->dev, "failed to map sgt with DMA region\n"); |
| 197 | goto dma_map_err; |
| 198 | } |
| 199 | |
| 200 | userptr->dma_mapped = true; |
| 201 | userptr->dir = DMA_BIDIRECTIONAL; |
| 202 | userptr->vm_type = VM_TYPE_USERPTR; |
| 203 | |
| 204 | *p_userptr = userptr; |
| 205 | |
| 206 | return 0; |
| 207 | |
| 208 | dma_map_err: |
| 209 | hl_unpin_host_memory(hdev, userptr); |
| 210 | pin_err: |
| 211 | kfree(userptr); |
| 212 | userptr_err: |
| 213 | |
| 214 | return rc; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * free_userptr - free userptr structure |
| 219 | * |
| 220 | * @hdev : habanalabs device structure |
| 221 | * @userptr : userptr to free |
| 222 | * |
| 223 | * This function does the following: |
| 224 | * - Unpins the physical pages |
| 225 | * - Frees the userptr structure |
| 226 | */ |
| 227 | static void free_userptr(struct hl_device *hdev, struct hl_userptr *userptr) |
| 228 | { |
| 229 | hl_unpin_host_memory(hdev, userptr); |
| 230 | kfree(userptr); |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * dram_pg_pool_do_release - free DRAM pages pool |
| 235 | * |
| 236 | * @ref : pointer to reference object |
| 237 | * |
| 238 | * This function does the following: |
| 239 | * - Frees the idr structure of physical pages handles |
| 240 | * - Frees the generic pool of DRAM physical pages |
| 241 | */ |
| 242 | static void dram_pg_pool_do_release(struct kref *ref) |
| 243 | { |
| 244 | struct hl_vm *vm = container_of(ref, struct hl_vm, |
| 245 | dram_pg_pool_refcount); |
| 246 | |
| 247 | /* |
| 248 | * free the idr here as only here we know for sure that there are no |
| 249 | * allocated physical pages and hence there are no handles in use |
| 250 | */ |
| 251 | idr_destroy(&vm->phys_pg_pack_handles); |
| 252 | gen_pool_destroy(vm->dram_pg_pool); |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * free_phys_pg_pack - free physical page pack |
| 257 | * |
| 258 | * @hdev : habanalabs device structure |
| 259 | * @phys_pg_pack : physical page pack to free |
| 260 | * |
| 261 | * This function does the following: |
| 262 | * - For DRAM memory only, iterate over the pack and free each physical block |
| 263 | * structure by returning it to the general pool |
| 264 | * - Free the hl_vm_phys_pg_pack structure |
| 265 | */ |
| 266 | static void free_phys_pg_pack(struct hl_device *hdev, |
| 267 | struct hl_vm_phys_pg_pack *phys_pg_pack) |
| 268 | { |
| 269 | struct hl_vm *vm = &hdev->vm; |
| 270 | u64 i; |
| 271 | |
| 272 | if (!phys_pg_pack->created_from_userptr) { |
| 273 | if (phys_pg_pack->contiguous) { |
| 274 | gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], |
| 275 | phys_pg_pack->total_size); |
| 276 | |
| 277 | for (i = 0; i < phys_pg_pack->npages ; i++) |
| 278 | kref_put(&vm->dram_pg_pool_refcount, |
| 279 | dram_pg_pool_do_release); |
| 280 | } else { |
| 281 | for (i = 0 ; i < phys_pg_pack->npages ; i++) { |
| 282 | gen_pool_free(vm->dram_pg_pool, |
| 283 | phys_pg_pack->pages[i], |
| 284 | phys_pg_pack->page_size); |
| 285 | kref_put(&vm->dram_pg_pool_refcount, |
| 286 | dram_pg_pool_do_release); |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | kvfree(phys_pg_pack->pages); |
| 292 | kfree(phys_pg_pack); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * free_device_memory - free device memory |
| 297 | * |
| 298 | * @ctx : current context |
| 299 | * @handle : handle of the memory chunk to free |
| 300 | * |
| 301 | * This function does the following: |
| 302 | * - Free the device memory related to the given handle |
| 303 | */ |
| 304 | static int free_device_memory(struct hl_ctx *ctx, u32 handle) |
| 305 | { |
| 306 | struct hl_device *hdev = ctx->hdev; |
| 307 | struct hl_vm *vm = &hdev->vm; |
| 308 | struct hl_vm_phys_pg_pack *phys_pg_pack; |
| 309 | |
| 310 | spin_lock(&vm->idr_lock); |
| 311 | phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); |
| 312 | if (phys_pg_pack) { |
| 313 | if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { |
| 314 | dev_err(hdev->dev, "handle %u is mapped, cannot free\n", |
| 315 | handle); |
| 316 | spin_unlock(&vm->idr_lock); |
| 317 | return -EINVAL; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * must remove from idr before the freeing of the physical |
| 322 | * pages as the refcount of the pool is also the trigger of the |
| 323 | * idr destroy |
| 324 | */ |
| 325 | idr_remove(&vm->phys_pg_pack_handles, handle); |
| 326 | spin_unlock(&vm->idr_lock); |
| 327 | |
| 328 | atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); |
| 329 | atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); |
| 330 | |
| 331 | free_phys_pg_pack(hdev, phys_pg_pack); |
| 332 | } else { |
| 333 | spin_unlock(&vm->idr_lock); |
| 334 | dev_err(hdev->dev, |
| 335 | "free device memory failed, no match for handle %u\n", |
| 336 | handle); |
| 337 | return -EINVAL; |
| 338 | } |
| 339 | |
| 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * clear_va_list_locked - free virtual addresses list |
| 345 | * |
| 346 | * @hdev : habanalabs device structure |
| 347 | * @va_list : list of virtual addresses to free |
| 348 | * |
| 349 | * This function does the following: |
| 350 | * - Iterate over the list and free each virtual addresses block |
| 351 | * |
| 352 | * This function should be called only when va_list lock is taken |
| 353 | */ |
| 354 | static void clear_va_list_locked(struct hl_device *hdev, |
| 355 | struct list_head *va_list) |
| 356 | { |
| 357 | struct hl_vm_va_block *va_block, *tmp; |
| 358 | |
| 359 | list_for_each_entry_safe(va_block, tmp, va_list, node) { |
| 360 | list_del(&va_block->node); |
| 361 | kfree(va_block); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * print_va_list_locked - print virtual addresses list |
| 367 | * |
| 368 | * @hdev : habanalabs device structure |
| 369 | * @va_list : list of virtual addresses to print |
| 370 | * |
| 371 | * This function does the following: |
| 372 | * - Iterate over the list and print each virtual addresses block |
| 373 | * |
| 374 | * This function should be called only when va_list lock is taken |
| 375 | */ |
| 376 | static void print_va_list_locked(struct hl_device *hdev, |
| 377 | struct list_head *va_list) |
| 378 | { |
| 379 | #if HL_MMU_DEBUG |
| 380 | struct hl_vm_va_block *va_block; |
| 381 | |
| 382 | dev_dbg(hdev->dev, "print va list:\n"); |
| 383 | |
| 384 | list_for_each_entry(va_block, va_list, node) |
| 385 | dev_dbg(hdev->dev, |
| 386 | "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", |
| 387 | va_block->start, va_block->end, va_block->size); |
| 388 | #endif |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * merge_va_blocks_locked - merge a virtual block if possible |
| 393 | * |
| 394 | * @hdev : pointer to the habanalabs device structure |
| 395 | * @va_list : pointer to the virtual addresses block list |
| 396 | * @va_block : virtual block to merge with adjacent blocks |
| 397 | * |
| 398 | * This function does the following: |
| 399 | * - Merge the given blocks with the adjacent blocks if their virtual ranges |
| 400 | * create a contiguous virtual range |
| 401 | * |
| 402 | * This Function should be called only when va_list lock is taken |
| 403 | */ |
| 404 | static void merge_va_blocks_locked(struct hl_device *hdev, |
| 405 | struct list_head *va_list, struct hl_vm_va_block *va_block) |
| 406 | { |
| 407 | struct hl_vm_va_block *prev, *next; |
| 408 | |
| 409 | prev = list_prev_entry(va_block, node); |
| 410 | if (&prev->node != va_list && prev->end + 1 == va_block->start) { |
| 411 | prev->end = va_block->end; |
| 412 | prev->size = prev->end - prev->start; |
| 413 | list_del(&va_block->node); |
| 414 | kfree(va_block); |
| 415 | va_block = prev; |
| 416 | } |
| 417 | |
| 418 | next = list_next_entry(va_block, node); |
| 419 | if (&next->node != va_list && va_block->end + 1 == next->start) { |
| 420 | next->start = va_block->start; |
| 421 | next->size = next->end - next->start; |
| 422 | list_del(&va_block->node); |
| 423 | kfree(va_block); |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * add_va_block_locked - add a virtual block to the virtual addresses list |
| 429 | * |
| 430 | * @hdev : pointer to the habanalabs device structure |
| 431 | * @va_list : pointer to the virtual addresses block list |
| 432 | * @start : start virtual address |
| 433 | * @end : end virtual address |
| 434 | * |
| 435 | * This function does the following: |
| 436 | * - Add the given block to the virtual blocks list and merge with other |
| 437 | * blocks if a contiguous virtual block can be created |
| 438 | * |
| 439 | * This Function should be called only when va_list lock is taken |
| 440 | */ |
| 441 | static int add_va_block_locked(struct hl_device *hdev, |
| 442 | struct list_head *va_list, u64 start, u64 end) |
| 443 | { |
| 444 | struct hl_vm_va_block *va_block, *res = NULL; |
| 445 | u64 size = end - start; |
| 446 | |
| 447 | print_va_list_locked(hdev, va_list); |
| 448 | |
| 449 | list_for_each_entry(va_block, va_list, node) { |
| 450 | /* TODO: remove upon matureness */ |
| 451 | if (hl_mem_area_crosses_range(start, size, va_block->start, |
| 452 | va_block->end)) { |
| 453 | dev_err(hdev->dev, |
| 454 | "block crossing ranges at start 0x%llx, end 0x%llx\n", |
| 455 | va_block->start, va_block->end); |
| 456 | return -EINVAL; |
| 457 | } |
| 458 | |
| 459 | if (va_block->end < start) |
| 460 | res = va_block; |
| 461 | } |
| 462 | |
| 463 | va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); |
| 464 | if (!va_block) |
| 465 | return -ENOMEM; |
| 466 | |
| 467 | va_block->start = start; |
| 468 | va_block->end = end; |
| 469 | va_block->size = size; |
| 470 | |
| 471 | if (!res) |
| 472 | list_add(&va_block->node, va_list); |
| 473 | else |
| 474 | list_add(&va_block->node, &res->node); |
| 475 | |
| 476 | merge_va_blocks_locked(hdev, va_list, va_block); |
| 477 | |
| 478 | print_va_list_locked(hdev, va_list); |
| 479 | |
| 480 | return 0; |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * add_va_block - wrapper for add_va_block_locked |
| 485 | * |
| 486 | * @hdev : pointer to the habanalabs device structure |
| 487 | * @va_list : pointer to the virtual addresses block list |
| 488 | * @start : start virtual address |
| 489 | * @end : end virtual address |
| 490 | * |
| 491 | * This function does the following: |
| 492 | * - Takes the list lock and calls add_va_block_locked |
| 493 | */ |
| 494 | static inline int add_va_block(struct hl_device *hdev, |
| 495 | struct hl_va_range *va_range, u64 start, u64 end) |
| 496 | { |
| 497 | int rc; |
| 498 | |
| 499 | mutex_lock(&va_range->lock); |
| 500 | rc = add_va_block_locked(hdev, &va_range->list, start, end); |
| 501 | mutex_unlock(&va_range->lock); |
| 502 | |
| 503 | return rc; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * get_va_block - get a virtual block with the requested size |
| 508 | * |
| 509 | * @hdev : pointer to the habanalabs device structure |
| 510 | * @va_range : pointer to the virtual addresses range |
| 511 | * @size : requested block size |
| 512 | * @hint_addr : hint for request address by the user |
| 513 | * @is_userptr : is host or DRAM memory |
| 514 | * |
| 515 | * This function does the following: |
| 516 | * - Iterate on the virtual block list to find a suitable virtual block for the |
| 517 | * requested size |
| 518 | * - Reserve the requested block and update the list |
| 519 | * - Return the start address of the virtual block |
| 520 | */ |
| 521 | static u64 get_va_block(struct hl_device *hdev, |
| 522 | struct hl_va_range *va_range, u64 size, u64 hint_addr, |
| 523 | bool is_userptr) |
| 524 | { |
| 525 | struct hl_vm_va_block *va_block, *new_va_block = NULL; |
| 526 | u64 valid_start, valid_size, prev_start, prev_end, page_mask, |
| 527 | res_valid_start = 0, res_valid_size = 0; |
| 528 | u32 page_size; |
| 529 | bool add_prev = false; |
| 530 | |
| 531 | if (is_userptr) { |
| 532 | /* |
| 533 | * We cannot know if the user allocated memory with huge pages |
| 534 | * or not, hence we continue with the biggest possible |
| 535 | * granularity. |
| 536 | */ |
| 537 | page_size = PAGE_SIZE_2MB; |
| 538 | page_mask = PAGE_MASK_2MB; |
| 539 | } else { |
| 540 | page_size = hdev->asic_prop.dram_page_size; |
| 541 | page_mask = ~((u64)page_size - 1); |
| 542 | } |
| 543 | |
| 544 | mutex_lock(&va_range->lock); |
| 545 | |
| 546 | print_va_list_locked(hdev, &va_range->list); |
| 547 | |
| 548 | list_for_each_entry(va_block, &va_range->list, node) { |
| 549 | /* calc the first possible aligned addr */ |
| 550 | valid_start = va_block->start; |
| 551 | |
| 552 | |
| 553 | if (valid_start & (page_size - 1)) { |
| 554 | valid_start &= page_mask; |
| 555 | valid_start += page_size; |
| 556 | if (valid_start > va_block->end) |
| 557 | continue; |
| 558 | } |
| 559 | |
| 560 | valid_size = va_block->end - valid_start; |
| 561 | |
| 562 | if (valid_size >= size && |
| 563 | (!new_va_block || valid_size < res_valid_size)) { |
| 564 | |
| 565 | new_va_block = va_block; |
| 566 | res_valid_start = valid_start; |
| 567 | res_valid_size = valid_size; |
| 568 | } |
| 569 | |
| 570 | if (hint_addr && hint_addr >= valid_start && |
| 571 | ((hint_addr + size) <= va_block->end)) { |
| 572 | new_va_block = va_block; |
| 573 | res_valid_start = hint_addr; |
| 574 | res_valid_size = valid_size; |
| 575 | break; |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | if (!new_va_block) { |
| 580 | dev_err(hdev->dev, "no available va block for size %llu\n", |
| 581 | size); |
| 582 | goto out; |
| 583 | } |
| 584 | |
| 585 | if (res_valid_start > new_va_block->start) { |
| 586 | prev_start = new_va_block->start; |
| 587 | prev_end = res_valid_start - 1; |
| 588 | |
| 589 | new_va_block->start = res_valid_start; |
| 590 | new_va_block->size = res_valid_size; |
| 591 | |
| 592 | add_prev = true; |
| 593 | } |
| 594 | |
| 595 | if (new_va_block->size > size) { |
| 596 | new_va_block->start += size; |
| 597 | new_va_block->size = new_va_block->end - new_va_block->start; |
| 598 | } else { |
| 599 | list_del(&new_va_block->node); |
| 600 | kfree(new_va_block); |
| 601 | } |
| 602 | |
| 603 | if (add_prev) |
| 604 | add_va_block_locked(hdev, &va_range->list, prev_start, |
| 605 | prev_end); |
| 606 | |
| 607 | print_va_list_locked(hdev, &va_range->list); |
| 608 | out: |
| 609 | mutex_unlock(&va_range->lock); |
| 610 | |
| 611 | return res_valid_start; |
| 612 | } |
| 613 | |
| 614 | /* |
| 615 | * get_sg_info - get number of pages and the DMA address from SG list |
| 616 | * |
| 617 | * @sg : the SG list |
| 618 | * @dma_addr : pointer to DMA address to return |
| 619 | * |
| 620 | * Calculate the number of consecutive pages described by the SG list. Take the |
| 621 | * offset of the address in the first page, add to it the length and round it up |
| 622 | * to the number of needed pages. |
| 623 | */ |
| 624 | static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) |
| 625 | { |
| 626 | *dma_addr = sg_dma_address(sg); |
| 627 | |
| 628 | return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + |
| 629 | (PAGE_SIZE - 1)) >> PAGE_SHIFT; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * init_phys_pg_pack_from_userptr - initialize physical page pack from host |
| 634 | * memory |
| 635 | * |
| 636 | * @ctx : current context |
| 637 | * @userptr : userptr to initialize from |
| 638 | * @pphys_pg_pack : res pointer |
| 639 | * |
| 640 | * This function does the following: |
| 641 | * - Pin the physical pages related to the given virtual block |
| 642 | * - Create a physical page pack from the physical pages related to the given |
| 643 | * virtual block |
| 644 | */ |
| 645 | static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, |
| 646 | struct hl_userptr *userptr, |
| 647 | struct hl_vm_phys_pg_pack **pphys_pg_pack) |
| 648 | { |
| 649 | struct hl_vm_phys_pg_pack *phys_pg_pack; |
| 650 | struct scatterlist *sg; |
| 651 | dma_addr_t dma_addr; |
| 652 | u64 page_mask, total_npages; |
| 653 | u32 npages, page_size = PAGE_SIZE; |
| 654 | bool first = true, is_huge_page_opt = true; |
| 655 | int rc, i, j; |
| 656 | |
| 657 | phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); |
| 658 | if (!phys_pg_pack) |
| 659 | return -ENOMEM; |
| 660 | |
| 661 | phys_pg_pack->vm_type = userptr->vm_type; |
| 662 | phys_pg_pack->created_from_userptr = true; |
| 663 | phys_pg_pack->asid = ctx->asid; |
| 664 | atomic_set(&phys_pg_pack->mapping_cnt, 1); |
| 665 | |
| 666 | /* Only if all dma_addrs are aligned to 2MB and their |
| 667 | * sizes is at least 2MB, we can use huge page mapping. |
| 668 | * We limit the 2MB optimization to this condition, |
| 669 | * since later on we acquire the related VA range as one |
| 670 | * consecutive block. |
| 671 | */ |
| 672 | total_npages = 0; |
| 673 | for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) { |
| 674 | npages = get_sg_info(sg, &dma_addr); |
| 675 | |
| 676 | total_npages += npages; |
| 677 | |
| 678 | if ((npages % PGS_IN_2MB_PAGE) || |
| 679 | (dma_addr & (PAGE_SIZE_2MB - 1))) |
| 680 | is_huge_page_opt = false; |
| 681 | } |
| 682 | |
| 683 | if (is_huge_page_opt) { |
| 684 | page_size = PAGE_SIZE_2MB; |
| 685 | total_npages /= PGS_IN_2MB_PAGE; |
| 686 | } |
| 687 | |
| 688 | page_mask = ~(((u64) page_size) - 1); |
| 689 | |
| 690 | phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), |
| 691 | GFP_KERNEL); |
| 692 | if (!phys_pg_pack->pages) { |
| 693 | rc = -ENOMEM; |
| 694 | goto page_pack_arr_mem_err; |
| 695 | } |
| 696 | |
| 697 | phys_pg_pack->npages = total_npages; |
| 698 | phys_pg_pack->page_size = page_size; |
| 699 | phys_pg_pack->total_size = total_npages * page_size; |
| 700 | |
| 701 | j = 0; |
| 702 | for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) { |
| 703 | npages = get_sg_info(sg, &dma_addr); |
| 704 | |
| 705 | /* align down to physical page size and save the offset */ |
| 706 | if (first) { |
| 707 | first = false; |
| 708 | phys_pg_pack->offset = dma_addr & (page_size - 1); |
| 709 | dma_addr &= page_mask; |
| 710 | } |
| 711 | |
| 712 | while (npages) { |
| 713 | phys_pg_pack->pages[j++] = dma_addr; |
| 714 | dma_addr += page_size; |
| 715 | |
| 716 | if (is_huge_page_opt) |
| 717 | npages -= PGS_IN_2MB_PAGE; |
| 718 | else |
| 719 | npages--; |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | *pphys_pg_pack = phys_pg_pack; |
| 724 | |
| 725 | return 0; |
| 726 | |
| 727 | page_pack_arr_mem_err: |
| 728 | kfree(phys_pg_pack); |
| 729 | |
| 730 | return rc; |
| 731 | } |
| 732 | |
| 733 | /* |
| 734 | * map_phys_page_pack - maps the physical page pack |
| 735 | * |
| 736 | * @ctx : current context |
| 737 | * @vaddr : start address of the virtual area to map from |
| 738 | * @phys_pg_pack : the pack of physical pages to map to |
| 739 | * |
| 740 | * This function does the following: |
| 741 | * - Maps each chunk of virtual memory to matching physical chunk |
| 742 | * - Stores number of successful mappings in the given argument |
| 743 | * - Returns 0 on success, error code otherwise. |
| 744 | */ |
| 745 | static int map_phys_page_pack(struct hl_ctx *ctx, u64 vaddr, |
| 746 | struct hl_vm_phys_pg_pack *phys_pg_pack) |
| 747 | { |
| 748 | struct hl_device *hdev = ctx->hdev; |
| 749 | u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; |
| 750 | u32 page_size = phys_pg_pack->page_size; |
| 751 | int rc = 0; |
| 752 | |
| 753 | for (i = 0 ; i < phys_pg_pack->npages ; i++) { |
| 754 | paddr = phys_pg_pack->pages[i]; |
| 755 | |
| 756 | rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size); |
| 757 | if (rc) { |
| 758 | dev_err(hdev->dev, |
| 759 | "map failed for handle %u, npages: %llu, mapped: %llu", |
| 760 | phys_pg_pack->handle, phys_pg_pack->npages, |
| 761 | mapped_pg_cnt); |
| 762 | goto err; |
| 763 | } |
| 764 | |
| 765 | mapped_pg_cnt++; |
| 766 | next_vaddr += page_size; |
| 767 | } |
| 768 | |
| 769 | return 0; |
| 770 | |
| 771 | err: |
| 772 | next_vaddr = vaddr; |
| 773 | for (i = 0 ; i < mapped_pg_cnt ; i++) { |
| 774 | if (hl_mmu_unmap(ctx, next_vaddr, page_size)) |
| 775 | dev_warn_ratelimited(hdev->dev, |
| 776 | "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", |
| 777 | phys_pg_pack->handle, next_vaddr, |
| 778 | phys_pg_pack->pages[i], page_size); |
| 779 | |
| 780 | next_vaddr += page_size; |
| 781 | } |
| 782 | |
| 783 | return rc; |
| 784 | } |
| 785 | |
| 786 | static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args, |
| 787 | u64 *paddr) |
| 788 | { |
| 789 | struct hl_device *hdev = ctx->hdev; |
| 790 | struct hl_vm *vm = &hdev->vm; |
| 791 | struct hl_vm_phys_pg_pack *phys_pg_pack; |
| 792 | u32 handle; |
| 793 | |
| 794 | handle = lower_32_bits(args->map_device.handle); |
| 795 | spin_lock(&vm->idr_lock); |
| 796 | phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); |
| 797 | if (!phys_pg_pack) { |
| 798 | spin_unlock(&vm->idr_lock); |
| 799 | dev_err(hdev->dev, "no match for handle %u\n", handle); |
| 800 | return -EINVAL; |
| 801 | } |
| 802 | |
| 803 | *paddr = phys_pg_pack->pages[0]; |
| 804 | |
| 805 | spin_unlock(&vm->idr_lock); |
| 806 | |
| 807 | return 0; |
| 808 | } |
| 809 | |
| 810 | /* |
| 811 | * map_device_va - map the given memory |
| 812 | * |
| 813 | * @ctx : current context |
| 814 | * @args : host parameters with handle/host virtual address |
| 815 | * @device_addr : pointer to result device virtual address |
| 816 | * |
| 817 | * This function does the following: |
| 818 | * - If given a physical device memory handle, map to a device virtual block |
| 819 | * and return the start address of this block |
| 820 | * - If given a host virtual address and size, find the related physical pages, |
| 821 | * map a device virtual block to this pages and return the start address of |
| 822 | * this block |
| 823 | */ |
| 824 | static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, |
| 825 | u64 *device_addr) |
| 826 | { |
| 827 | struct hl_device *hdev = ctx->hdev; |
| 828 | struct hl_vm *vm = &hdev->vm; |
| 829 | struct hl_vm_phys_pg_pack *phys_pg_pack; |
| 830 | struct hl_userptr *userptr = NULL; |
| 831 | struct hl_vm_hash_node *hnode; |
| 832 | enum vm_type_t *vm_type; |
| 833 | u64 ret_vaddr, hint_addr; |
| 834 | u32 handle = 0; |
| 835 | int rc; |
| 836 | bool is_userptr = args->flags & HL_MEM_USERPTR; |
| 837 | |
| 838 | /* Assume failure */ |
| 839 | *device_addr = 0; |
| 840 | |
| 841 | if (is_userptr) { |
| 842 | rc = get_userptr_from_host_va(hdev, args, &userptr); |
| 843 | if (rc) { |
| 844 | dev_err(hdev->dev, "failed to get userptr from va\n"); |
| 845 | return rc; |
| 846 | } |
| 847 | |
| 848 | rc = init_phys_pg_pack_from_userptr(ctx, userptr, |
| 849 | &phys_pg_pack); |
| 850 | if (rc) { |
| 851 | dev_err(hdev->dev, |
| 852 | "unable to init page pack for vaddr 0x%llx\n", |
| 853 | args->map_host.host_virt_addr); |
| 854 | goto init_page_pack_err; |
| 855 | } |
| 856 | |
| 857 | vm_type = (enum vm_type_t *) userptr; |
| 858 | hint_addr = args->map_host.hint_addr; |
| 859 | } else { |
| 860 | handle = lower_32_bits(args->map_device.handle); |
| 861 | |
| 862 | spin_lock(&vm->idr_lock); |
| 863 | phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); |
| 864 | if (!phys_pg_pack) { |
| 865 | spin_unlock(&vm->idr_lock); |
| 866 | dev_err(hdev->dev, |
| 867 | "no match for handle %u\n", handle); |
| 868 | return -EINVAL; |
| 869 | } |
| 870 | |
| 871 | /* increment now to avoid freeing device memory while mapping */ |
| 872 | atomic_inc(&phys_pg_pack->mapping_cnt); |
| 873 | |
| 874 | spin_unlock(&vm->idr_lock); |
| 875 | |
| 876 | vm_type = (enum vm_type_t *) phys_pg_pack; |
| 877 | |
| 878 | hint_addr = args->map_device.hint_addr; |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * relevant for mapping device physical memory only, as host memory is |
| 883 | * implicitly shared |
| 884 | */ |
| 885 | if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && |
| 886 | phys_pg_pack->asid != ctx->asid) { |
| 887 | dev_err(hdev->dev, |
| 888 | "Failed to map memory, handle %u is not shared\n", |
| 889 | handle); |
| 890 | rc = -EPERM; |
| 891 | goto shared_err; |
| 892 | } |
| 893 | |
| 894 | hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); |
| 895 | if (!hnode) { |
| 896 | rc = -ENOMEM; |
| 897 | goto hnode_err; |
| 898 | } |
| 899 | |
| 900 | ret_vaddr = get_va_block(hdev, |
| 901 | is_userptr ? &ctx->host_va_range : &ctx->dram_va_range, |
| 902 | phys_pg_pack->total_size, hint_addr, is_userptr); |
| 903 | if (!ret_vaddr) { |
| 904 | dev_err(hdev->dev, "no available va block for handle %u\n", |
| 905 | handle); |
| 906 | rc = -ENOMEM; |
| 907 | goto va_block_err; |
| 908 | } |
| 909 | |
| 910 | mutex_lock(&ctx->mmu_lock); |
| 911 | |
| 912 | rc = map_phys_page_pack(ctx, ret_vaddr, phys_pg_pack); |
| 913 | if (rc) { |
| 914 | mutex_unlock(&ctx->mmu_lock); |
| 915 | dev_err(hdev->dev, "mapping page pack failed for handle %u\n", |
| 916 | handle); |
| 917 | goto map_err; |
| 918 | } |
| 919 | |
| 920 | hdev->asic_funcs->mmu_invalidate_cache(hdev, false); |
| 921 | |
| 922 | mutex_unlock(&ctx->mmu_lock); |
| 923 | |
| 924 | ret_vaddr += phys_pg_pack->offset; |
| 925 | |
| 926 | hnode->ptr = vm_type; |
| 927 | hnode->vaddr = ret_vaddr; |
| 928 | |
| 929 | mutex_lock(&ctx->mem_hash_lock); |
| 930 | hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); |
| 931 | mutex_unlock(&ctx->mem_hash_lock); |
| 932 | |
| 933 | *device_addr = ret_vaddr; |
| 934 | |
| 935 | if (is_userptr) |
| 936 | free_phys_pg_pack(hdev, phys_pg_pack); |
| 937 | |
| 938 | return 0; |
| 939 | |
| 940 | map_err: |
| 941 | if (add_va_block(hdev, |
| 942 | is_userptr ? &ctx->host_va_range : &ctx->dram_va_range, |
| 943 | ret_vaddr, |
| 944 | ret_vaddr + phys_pg_pack->total_size - 1)) |
| 945 | dev_warn(hdev->dev, |
| 946 | "release va block failed for handle 0x%x, vaddr: 0x%llx\n", |
| 947 | handle, ret_vaddr); |
| 948 | |
| 949 | va_block_err: |
| 950 | kfree(hnode); |
| 951 | hnode_err: |
| 952 | shared_err: |
| 953 | atomic_dec(&phys_pg_pack->mapping_cnt); |
| 954 | if (is_userptr) |
| 955 | free_phys_pg_pack(hdev, phys_pg_pack); |
| 956 | init_page_pack_err: |
| 957 | if (is_userptr) |
| 958 | free_userptr(hdev, userptr); |
| 959 | |
| 960 | return rc; |
| 961 | } |
| 962 | |
| 963 | /* |
| 964 | * unmap_device_va - unmap the given device virtual address |
| 965 | * |
| 966 | * @ctx : current context |
| 967 | * @vaddr : device virtual address to unmap |
| 968 | * |
| 969 | * This function does the following: |
| 970 | * - Unmap the physical pages related to the given virtual address |
| 971 | * - return the device virtual block to the virtual block list |
| 972 | */ |
| 973 | static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr) |
| 974 | { |
| 975 | struct hl_device *hdev = ctx->hdev; |
| 976 | struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; |
| 977 | struct hl_vm_hash_node *hnode = NULL; |
| 978 | struct hl_userptr *userptr = NULL; |
| 979 | enum vm_type_t *vm_type; |
| 980 | u64 next_vaddr, i; |
| 981 | u32 page_size; |
| 982 | bool is_userptr; |
| 983 | int rc; |
| 984 | |
| 985 | /* protect from double entrance */ |
| 986 | mutex_lock(&ctx->mem_hash_lock); |
| 987 | hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr) |
| 988 | if (vaddr == hnode->vaddr) |
| 989 | break; |
| 990 | |
| 991 | if (!hnode) { |
| 992 | mutex_unlock(&ctx->mem_hash_lock); |
| 993 | dev_err(hdev->dev, |
| 994 | "unmap failed, no mem hnode for vaddr 0x%llx\n", |
| 995 | vaddr); |
| 996 | return -EINVAL; |
| 997 | } |
| 998 | |
| 999 | hash_del(&hnode->node); |
| 1000 | mutex_unlock(&ctx->mem_hash_lock); |
| 1001 | |
| 1002 | vm_type = hnode->ptr; |
| 1003 | |
| 1004 | if (*vm_type == VM_TYPE_USERPTR) { |
| 1005 | is_userptr = true; |
| 1006 | userptr = hnode->ptr; |
| 1007 | rc = init_phys_pg_pack_from_userptr(ctx, userptr, |
| 1008 | &phys_pg_pack); |
| 1009 | if (rc) { |
| 1010 | dev_err(hdev->dev, |
| 1011 | "unable to init page pack for vaddr 0x%llx\n", |
| 1012 | vaddr); |
| 1013 | goto vm_type_err; |
| 1014 | } |
| 1015 | } else if (*vm_type == VM_TYPE_PHYS_PACK) { |
| 1016 | is_userptr = false; |
| 1017 | phys_pg_pack = hnode->ptr; |
| 1018 | } else { |
| 1019 | dev_warn(hdev->dev, |
| 1020 | "unmap failed, unknown vm desc for vaddr 0x%llx\n", |
| 1021 | vaddr); |
| 1022 | rc = -EFAULT; |
| 1023 | goto vm_type_err; |
| 1024 | } |
| 1025 | |
| 1026 | if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { |
| 1027 | dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); |
| 1028 | rc = -EINVAL; |
| 1029 | goto mapping_cnt_err; |
| 1030 | } |
| 1031 | |
| 1032 | page_size = phys_pg_pack->page_size; |
| 1033 | vaddr &= ~(((u64) page_size) - 1); |
| 1034 | |
| 1035 | next_vaddr = vaddr; |
| 1036 | |
| 1037 | mutex_lock(&ctx->mmu_lock); |
| 1038 | |
| 1039 | for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { |
| 1040 | if (hl_mmu_unmap(ctx, next_vaddr, page_size)) |
| 1041 | dev_warn_ratelimited(hdev->dev, |
| 1042 | "unmap failed for vaddr: 0x%llx\n", next_vaddr); |
| 1043 | |
| 1044 | /* unmapping on Palladium can be really long, so avoid a CPU |
| 1045 | * soft lockup bug by sleeping a little between unmapping pages |
| 1046 | */ |
| 1047 | if (hdev->pldm) |
| 1048 | usleep_range(500, 1000); |
| 1049 | } |
| 1050 | |
| 1051 | hdev->asic_funcs->mmu_invalidate_cache(hdev, true); |
| 1052 | |
| 1053 | mutex_unlock(&ctx->mmu_lock); |
| 1054 | |
| 1055 | if (add_va_block(hdev, |
| 1056 | is_userptr ? &ctx->host_va_range : &ctx->dram_va_range, |
| 1057 | vaddr, |
| 1058 | vaddr + phys_pg_pack->total_size - 1)) |
| 1059 | dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n", |
| 1060 | vaddr); |
| 1061 | |
| 1062 | atomic_dec(&phys_pg_pack->mapping_cnt); |
| 1063 | kfree(hnode); |
| 1064 | |
| 1065 | if (is_userptr) { |
| 1066 | free_phys_pg_pack(hdev, phys_pg_pack); |
| 1067 | free_userptr(hdev, userptr); |
| 1068 | } |
| 1069 | |
| 1070 | return 0; |
| 1071 | |
| 1072 | mapping_cnt_err: |
| 1073 | if (is_userptr) |
| 1074 | free_phys_pg_pack(hdev, phys_pg_pack); |
| 1075 | vm_type_err: |
| 1076 | mutex_lock(&ctx->mem_hash_lock); |
| 1077 | hash_add(ctx->mem_hash, &hnode->node, vaddr); |
| 1078 | mutex_unlock(&ctx->mem_hash_lock); |
| 1079 | |
| 1080 | return rc; |
| 1081 | } |
| 1082 | |
| 1083 | static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args) |
| 1084 | { |
| 1085 | struct hl_device *hdev = hpriv->hdev; |
| 1086 | struct hl_ctx *ctx = hpriv->ctx; |
| 1087 | u64 device_addr = 0; |
| 1088 | u32 handle = 0; |
| 1089 | int rc; |
| 1090 | |
| 1091 | switch (args->in.op) { |
| 1092 | case HL_MEM_OP_ALLOC: |
| 1093 | if (args->in.alloc.mem_size == 0) { |
| 1094 | dev_err(hdev->dev, |
| 1095 | "alloc size must be larger than 0\n"); |
| 1096 | rc = -EINVAL; |
| 1097 | goto out; |
| 1098 | } |
| 1099 | |
| 1100 | /* Force contiguous as there are no real MMU |
| 1101 | * translations to overcome physical memory gaps |
| 1102 | */ |
| 1103 | args->in.flags |= HL_MEM_CONTIGUOUS; |
| 1104 | rc = alloc_device_memory(ctx, &args->in, &handle); |
| 1105 | |
| 1106 | memset(args, 0, sizeof(*args)); |
| 1107 | args->out.handle = (__u64) handle; |
| 1108 | break; |
| 1109 | |
| 1110 | case HL_MEM_OP_FREE: |
| 1111 | rc = free_device_memory(ctx, args->in.free.handle); |
| 1112 | break; |
| 1113 | |
| 1114 | case HL_MEM_OP_MAP: |
| 1115 | if (args->in.flags & HL_MEM_USERPTR) { |
| 1116 | device_addr = args->in.map_host.host_virt_addr; |
| 1117 | rc = 0; |
| 1118 | } else { |
| 1119 | rc = get_paddr_from_handle(ctx, &args->in, |
| 1120 | &device_addr); |
| 1121 | } |
| 1122 | |
| 1123 | memset(args, 0, sizeof(*args)); |
| 1124 | args->out.device_virt_addr = device_addr; |
| 1125 | break; |
| 1126 | |
| 1127 | case HL_MEM_OP_UNMAP: |
| 1128 | rc = 0; |
| 1129 | break; |
| 1130 | |
| 1131 | default: |
| 1132 | dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); |
| 1133 | rc = -ENOTTY; |
| 1134 | break; |
| 1135 | } |
| 1136 | |
| 1137 | out: |
| 1138 | return rc; |
| 1139 | } |
| 1140 | |
| 1141 | int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) |
| 1142 | { |
| 1143 | union hl_mem_args *args = data; |
| 1144 | struct hl_device *hdev = hpriv->hdev; |
| 1145 | struct hl_ctx *ctx = hpriv->ctx; |
| 1146 | u64 device_addr = 0; |
| 1147 | u32 handle = 0; |
| 1148 | int rc; |
| 1149 | |
| 1150 | if (hl_device_disabled_or_in_reset(hdev)) { |
| 1151 | dev_warn_ratelimited(hdev->dev, |
| 1152 | "Device is %s. Can't execute MEMORY IOCTL\n", |
| 1153 | atomic_read(&hdev->in_reset) ? "in_reset" : "disabled"); |
| 1154 | return -EBUSY; |
| 1155 | } |
| 1156 | |
| 1157 | if (!hdev->mmu_enable) |
| 1158 | return mem_ioctl_no_mmu(hpriv, args); |
| 1159 | |
| 1160 | switch (args->in.op) { |
| 1161 | case HL_MEM_OP_ALLOC: |
| 1162 | if (!hdev->dram_supports_virtual_memory) { |
| 1163 | dev_err(hdev->dev, "DRAM alloc is not supported\n"); |
| 1164 | rc = -EINVAL; |
| 1165 | goto out; |
| 1166 | } |
| 1167 | |
| 1168 | if (args->in.alloc.mem_size == 0) { |
| 1169 | dev_err(hdev->dev, |
| 1170 | "alloc size must be larger than 0\n"); |
| 1171 | rc = -EINVAL; |
| 1172 | goto out; |
| 1173 | } |
| 1174 | rc = alloc_device_memory(ctx, &args->in, &handle); |
| 1175 | |
| 1176 | memset(args, 0, sizeof(*args)); |
| 1177 | args->out.handle = (__u64) handle; |
| 1178 | break; |
| 1179 | |
| 1180 | case HL_MEM_OP_FREE: |
| 1181 | rc = free_device_memory(ctx, args->in.free.handle); |
| 1182 | break; |
| 1183 | |
| 1184 | case HL_MEM_OP_MAP: |
| 1185 | rc = map_device_va(ctx, &args->in, &device_addr); |
| 1186 | |
| 1187 | memset(args, 0, sizeof(*args)); |
| 1188 | args->out.device_virt_addr = device_addr; |
| 1189 | break; |
| 1190 | |
| 1191 | case HL_MEM_OP_UNMAP: |
| 1192 | rc = unmap_device_va(ctx, |
| 1193 | args->in.unmap.device_virt_addr); |
| 1194 | break; |
| 1195 | |
| 1196 | default: |
| 1197 | dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); |
| 1198 | rc = -ENOTTY; |
| 1199 | break; |
| 1200 | } |
| 1201 | |
| 1202 | out: |
| 1203 | return rc; |
| 1204 | } |
| 1205 | |
| 1206 | /* |
| 1207 | * hl_pin_host_memory - pins a chunk of host memory |
| 1208 | * |
| 1209 | * @hdev : pointer to the habanalabs device structure |
| 1210 | * @addr : the user-space virtual address of the memory area |
| 1211 | * @size : the size of the memory area |
| 1212 | * @userptr : pointer to hl_userptr structure |
| 1213 | * |
| 1214 | * This function does the following: |
| 1215 | * - Pins the physical pages |
| 1216 | * - Create a SG list from those pages |
| 1217 | */ |
| 1218 | int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, |
| 1219 | struct hl_userptr *userptr) |
| 1220 | { |
| 1221 | u64 start, end; |
| 1222 | u32 npages, offset; |
| 1223 | int rc; |
| 1224 | |
| 1225 | if (!size) { |
| 1226 | dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); |
| 1227 | return -EINVAL; |
| 1228 | } |
| 1229 | |
| 1230 | if (!access_ok((void __user *) (uintptr_t) addr, size)) { |
| 1231 | dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); |
| 1232 | return -EFAULT; |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * If the combination of the address and size requested for this memory |
| 1237 | * region causes an integer overflow, return error. |
| 1238 | */ |
| 1239 | if (((addr + size) < addr) || |
| 1240 | PAGE_ALIGN(addr + size) < (addr + size)) { |
| 1241 | dev_err(hdev->dev, |
| 1242 | "user pointer 0x%llx + %llu causes integer overflow\n", |
| 1243 | addr, size); |
| 1244 | return -EINVAL; |
| 1245 | } |
| 1246 | |
| 1247 | start = addr & PAGE_MASK; |
| 1248 | offset = addr & ~PAGE_MASK; |
| 1249 | end = PAGE_ALIGN(addr + size); |
| 1250 | npages = (end - start) >> PAGE_SHIFT; |
| 1251 | |
| 1252 | userptr->size = size; |
| 1253 | userptr->addr = addr; |
| 1254 | userptr->dma_mapped = false; |
| 1255 | INIT_LIST_HEAD(&userptr->job_node); |
| 1256 | |
| 1257 | userptr->vec = frame_vector_create(npages); |
| 1258 | if (!userptr->vec) { |
| 1259 | dev_err(hdev->dev, "Failed to create frame vector\n"); |
| 1260 | return -ENOMEM; |
| 1261 | } |
| 1262 | |
| 1263 | rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE, |
| 1264 | userptr->vec); |
| 1265 | |
| 1266 | if (rc != npages) { |
| 1267 | dev_err(hdev->dev, |
| 1268 | "Failed to map host memory, user ptr probably wrong\n"); |
| 1269 | if (rc < 0) |
| 1270 | goto destroy_framevec; |
| 1271 | rc = -EFAULT; |
| 1272 | goto put_framevec; |
| 1273 | } |
| 1274 | |
| 1275 | if (frame_vector_to_pages(userptr->vec) < 0) { |
| 1276 | dev_err(hdev->dev, |
| 1277 | "Failed to translate frame vector to pages\n"); |
| 1278 | rc = -EFAULT; |
| 1279 | goto put_framevec; |
| 1280 | } |
| 1281 | |
| 1282 | userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC); |
| 1283 | if (!userptr->sgt) { |
| 1284 | rc = -ENOMEM; |
| 1285 | goto put_framevec; |
| 1286 | } |
| 1287 | |
| 1288 | rc = sg_alloc_table_from_pages(userptr->sgt, |
| 1289 | frame_vector_pages(userptr->vec), |
| 1290 | npages, offset, size, GFP_ATOMIC); |
| 1291 | if (rc < 0) { |
| 1292 | dev_err(hdev->dev, "failed to create SG table from pages\n"); |
| 1293 | goto free_sgt; |
| 1294 | } |
| 1295 | |
| 1296 | hl_debugfs_add_userptr(hdev, userptr); |
| 1297 | |
| 1298 | return 0; |
| 1299 | |
| 1300 | free_sgt: |
| 1301 | kfree(userptr->sgt); |
| 1302 | put_framevec: |
| 1303 | put_vaddr_frames(userptr->vec); |
| 1304 | destroy_framevec: |
| 1305 | frame_vector_destroy(userptr->vec); |
| 1306 | return rc; |
| 1307 | } |
| 1308 | |
| 1309 | /* |
| 1310 | * hl_unpin_host_memory - unpins a chunk of host memory |
| 1311 | * |
| 1312 | * @hdev : pointer to the habanalabs device structure |
| 1313 | * @userptr : pointer to hl_userptr structure |
| 1314 | * |
| 1315 | * This function does the following: |
| 1316 | * - Unpins the physical pages related to the host memory |
| 1317 | * - Free the SG list |
| 1318 | */ |
| 1319 | int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) |
| 1320 | { |
| 1321 | struct page **pages; |
| 1322 | |
| 1323 | hl_debugfs_remove_userptr(hdev, userptr); |
| 1324 | |
| 1325 | if (userptr->dma_mapped) |
| 1326 | hdev->asic_funcs->hl_dma_unmap_sg(hdev, |
| 1327 | userptr->sgt->sgl, |
| 1328 | userptr->sgt->nents, |
| 1329 | userptr->dir); |
| 1330 | |
| 1331 | pages = frame_vector_pages(userptr->vec); |
| 1332 | if (!IS_ERR(pages)) { |
| 1333 | int i; |
| 1334 | |
| 1335 | for (i = 0; i < frame_vector_count(userptr->vec); i++) |
| 1336 | set_page_dirty_lock(pages[i]); |
| 1337 | } |
| 1338 | put_vaddr_frames(userptr->vec); |
| 1339 | frame_vector_destroy(userptr->vec); |
| 1340 | |
| 1341 | list_del(&userptr->job_node); |
| 1342 | |
| 1343 | sg_free_table(userptr->sgt); |
| 1344 | kfree(userptr->sgt); |
| 1345 | |
| 1346 | return 0; |
| 1347 | } |
| 1348 | |
| 1349 | /* |
| 1350 | * hl_userptr_delete_list - clear userptr list |
| 1351 | * |
| 1352 | * @hdev : pointer to the habanalabs device structure |
| 1353 | * @userptr_list : pointer to the list to clear |
| 1354 | * |
| 1355 | * This function does the following: |
| 1356 | * - Iterates over the list and unpins the host memory and frees the userptr |
| 1357 | * structure. |
| 1358 | */ |
| 1359 | void hl_userptr_delete_list(struct hl_device *hdev, |
| 1360 | struct list_head *userptr_list) |
| 1361 | { |
| 1362 | struct hl_userptr *userptr, *tmp; |
| 1363 | |
| 1364 | list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { |
| 1365 | hl_unpin_host_memory(hdev, userptr); |
| 1366 | kfree(userptr); |
| 1367 | } |
| 1368 | |
| 1369 | INIT_LIST_HEAD(userptr_list); |
| 1370 | } |
| 1371 | |
| 1372 | /* |
| 1373 | * hl_userptr_is_pinned - returns whether the given userptr is pinned |
| 1374 | * |
| 1375 | * @hdev : pointer to the habanalabs device structure |
| 1376 | * @userptr_list : pointer to the list to clear |
| 1377 | * @userptr : pointer to userptr to check |
| 1378 | * |
| 1379 | * This function does the following: |
| 1380 | * - Iterates over the list and checks if the given userptr is in it, means is |
| 1381 | * pinned. If so, returns true, otherwise returns false. |
| 1382 | */ |
| 1383 | bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, |
| 1384 | u32 size, struct list_head *userptr_list, |
| 1385 | struct hl_userptr **userptr) |
| 1386 | { |
| 1387 | list_for_each_entry((*userptr), userptr_list, job_node) { |
| 1388 | if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) |
| 1389 | return true; |
| 1390 | } |
| 1391 | |
| 1392 | return false; |
| 1393 | } |
| 1394 | |
| 1395 | /* |
| 1396 | * hl_va_range_init - initialize virtual addresses range |
| 1397 | * |
| 1398 | * @hdev : pointer to the habanalabs device structure |
| 1399 | * @va_range : pointer to the range to initialize |
| 1400 | * @start : range start address |
| 1401 | * @end : range end address |
| 1402 | * |
| 1403 | * This function does the following: |
| 1404 | * - Initializes the virtual addresses list of the given range with the given |
| 1405 | * addresses. |
| 1406 | */ |
| 1407 | static int hl_va_range_init(struct hl_device *hdev, |
| 1408 | struct hl_va_range *va_range, u64 start, u64 end) |
| 1409 | { |
| 1410 | int rc; |
| 1411 | |
| 1412 | INIT_LIST_HEAD(&va_range->list); |
| 1413 | |
| 1414 | /* PAGE_SIZE alignment */ |
| 1415 | |
| 1416 | if (start & (PAGE_SIZE - 1)) { |
| 1417 | start &= PAGE_MASK; |
| 1418 | start += PAGE_SIZE; |
| 1419 | } |
| 1420 | |
| 1421 | if (end & (PAGE_SIZE - 1)) |
| 1422 | end &= PAGE_MASK; |
| 1423 | |
| 1424 | if (start >= end) { |
| 1425 | dev_err(hdev->dev, "too small vm range for va list\n"); |
| 1426 | return -EFAULT; |
| 1427 | } |
| 1428 | |
| 1429 | rc = add_va_block(hdev, va_range, start, end); |
| 1430 | |
| 1431 | if (rc) { |
| 1432 | dev_err(hdev->dev, "Failed to init host va list\n"); |
| 1433 | return rc; |
| 1434 | } |
| 1435 | |
| 1436 | va_range->start_addr = start; |
| 1437 | va_range->end_addr = end; |
| 1438 | |
| 1439 | return 0; |
| 1440 | } |
| 1441 | |
| 1442 | /* |
| 1443 | * hl_vm_ctx_init_with_ranges - initialize virtual memory for context |
| 1444 | * |
| 1445 | * @ctx : pointer to the habanalabs context structure |
| 1446 | * @host_range_start : host virtual addresses range start |
| 1447 | * @host_range_end : host virtual addresses range end |
| 1448 | * @dram_range_start : dram virtual addresses range start |
| 1449 | * @dram_range_end : dram virtual addresses range end |
| 1450 | * |
| 1451 | * This function initializes the following: |
| 1452 | * - MMU for context |
| 1453 | * - Virtual address to area descriptor hashtable |
| 1454 | * - Virtual block list of available virtual memory |
| 1455 | */ |
| 1456 | static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start, |
| 1457 | u64 host_range_end, u64 dram_range_start, |
| 1458 | u64 dram_range_end) |
| 1459 | { |
| 1460 | struct hl_device *hdev = ctx->hdev; |
| 1461 | int rc; |
| 1462 | |
| 1463 | rc = hl_mmu_ctx_init(ctx); |
| 1464 | if (rc) { |
| 1465 | dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); |
| 1466 | return rc; |
| 1467 | } |
| 1468 | |
| 1469 | mutex_init(&ctx->mem_hash_lock); |
| 1470 | hash_init(ctx->mem_hash); |
| 1471 | |
| 1472 | mutex_init(&ctx->host_va_range.lock); |
| 1473 | |
| 1474 | rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start, |
| 1475 | host_range_end); |
| 1476 | if (rc) { |
| 1477 | dev_err(hdev->dev, "failed to init host vm range\n"); |
| 1478 | goto host_vm_err; |
| 1479 | } |
| 1480 | |
| 1481 | mutex_init(&ctx->dram_va_range.lock); |
| 1482 | |
| 1483 | rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start, |
| 1484 | dram_range_end); |
| 1485 | if (rc) { |
| 1486 | dev_err(hdev->dev, "failed to init dram vm range\n"); |
| 1487 | goto dram_vm_err; |
| 1488 | } |
| 1489 | |
| 1490 | hl_debugfs_add_ctx_mem_hash(hdev, ctx); |
| 1491 | |
| 1492 | return 0; |
| 1493 | |
| 1494 | dram_vm_err: |
| 1495 | mutex_destroy(&ctx->dram_va_range.lock); |
| 1496 | |
| 1497 | mutex_lock(&ctx->host_va_range.lock); |
| 1498 | clear_va_list_locked(hdev, &ctx->host_va_range.list); |
| 1499 | mutex_unlock(&ctx->host_va_range.lock); |
| 1500 | host_vm_err: |
| 1501 | mutex_destroy(&ctx->host_va_range.lock); |
| 1502 | mutex_destroy(&ctx->mem_hash_lock); |
| 1503 | hl_mmu_ctx_fini(ctx); |
| 1504 | |
| 1505 | return rc; |
| 1506 | } |
| 1507 | |
| 1508 | int hl_vm_ctx_init(struct hl_ctx *ctx) |
| 1509 | { |
| 1510 | struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; |
| 1511 | u64 host_range_start, host_range_end, dram_range_start, |
| 1512 | dram_range_end; |
| 1513 | |
| 1514 | atomic64_set(&ctx->dram_phys_mem, 0); |
| 1515 | |
| 1516 | /* |
| 1517 | * - If MMU is enabled, init the ranges as usual. |
| 1518 | * - If MMU is disabled, in case of host mapping, the returned address |
| 1519 | * is the given one. |
| 1520 | * In case of DRAM mapping, the returned address is the physical |
| 1521 | * address of the memory related to the given handle. |
| 1522 | */ |
| 1523 | if (ctx->hdev->mmu_enable) { |
| 1524 | dram_range_start = prop->va_space_dram_start_address; |
| 1525 | dram_range_end = prop->va_space_dram_end_address; |
| 1526 | host_range_start = prop->va_space_host_start_address; |
| 1527 | host_range_end = prop->va_space_host_end_address; |
| 1528 | } else { |
| 1529 | dram_range_start = prop->dram_user_base_address; |
| 1530 | dram_range_end = prop->dram_end_address; |
| 1531 | host_range_start = prop->dram_user_base_address; |
| 1532 | host_range_end = prop->dram_end_address; |
| 1533 | } |
| 1534 | |
| 1535 | return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, |
| 1536 | dram_range_start, dram_range_end); |
| 1537 | } |
| 1538 | |
| 1539 | /* |
| 1540 | * hl_va_range_fini - clear a virtual addresses range |
| 1541 | * |
| 1542 | * @hdev : pointer to the habanalabs structure |
| 1543 | * va_range : pointer to virtual addresses range |
| 1544 | * |
| 1545 | * This function initializes the following: |
| 1546 | * - Checks that the given range contains the whole initial range |
| 1547 | * - Frees the virtual addresses block list and its lock |
| 1548 | */ |
| 1549 | static void hl_va_range_fini(struct hl_device *hdev, |
| 1550 | struct hl_va_range *va_range) |
| 1551 | { |
| 1552 | struct hl_vm_va_block *va_block; |
| 1553 | |
| 1554 | if (list_empty(&va_range->list)) { |
| 1555 | dev_warn(hdev->dev, |
| 1556 | "va list should not be empty on cleanup!\n"); |
| 1557 | goto out; |
| 1558 | } |
| 1559 | |
| 1560 | if (!list_is_singular(&va_range->list)) { |
| 1561 | dev_warn(hdev->dev, |
| 1562 | "va list should not contain multiple blocks on cleanup!\n"); |
| 1563 | goto free_va_list; |
| 1564 | } |
| 1565 | |
| 1566 | va_block = list_first_entry(&va_range->list, typeof(*va_block), node); |
| 1567 | |
| 1568 | if (va_block->start != va_range->start_addr || |
| 1569 | va_block->end != va_range->end_addr) { |
| 1570 | dev_warn(hdev->dev, |
| 1571 | "wrong va block on cleanup, from 0x%llx to 0x%llx\n", |
| 1572 | va_block->start, va_block->end); |
| 1573 | goto free_va_list; |
| 1574 | } |
| 1575 | |
| 1576 | free_va_list: |
| 1577 | mutex_lock(&va_range->lock); |
| 1578 | clear_va_list_locked(hdev, &va_range->list); |
| 1579 | mutex_unlock(&va_range->lock); |
| 1580 | |
| 1581 | out: |
| 1582 | mutex_destroy(&va_range->lock); |
| 1583 | } |
| 1584 | |
| 1585 | /* |
| 1586 | * hl_vm_ctx_fini - virtual memory teardown of context |
| 1587 | * |
| 1588 | * @ctx : pointer to the habanalabs context structure |
| 1589 | * |
| 1590 | * This function perform teardown the following: |
| 1591 | * - Virtual block list of available virtual memory |
| 1592 | * - Virtual address to area descriptor hashtable |
| 1593 | * - MMU for context |
| 1594 | * |
| 1595 | * In addition this function does the following: |
| 1596 | * - Unmaps the existing hashtable nodes if the hashtable is not empty. The |
| 1597 | * hashtable should be empty as no valid mappings should exist at this |
| 1598 | * point. |
| 1599 | * - Frees any existing physical page list from the idr which relates to the |
| 1600 | * current context asid. |
| 1601 | * - This function checks the virtual block list for correctness. At this point |
| 1602 | * the list should contain one element which describes the whole virtual |
| 1603 | * memory range of the context. Otherwise, a warning is printed. |
| 1604 | */ |
| 1605 | void hl_vm_ctx_fini(struct hl_ctx *ctx) |
| 1606 | { |
| 1607 | struct hl_device *hdev = ctx->hdev; |
| 1608 | struct hl_vm *vm = &hdev->vm; |
| 1609 | struct hl_vm_phys_pg_pack *phys_pg_list; |
| 1610 | struct hl_vm_hash_node *hnode; |
| 1611 | struct hlist_node *tmp_node; |
| 1612 | int i; |
| 1613 | |
| 1614 | hl_debugfs_remove_ctx_mem_hash(hdev, ctx); |
| 1615 | |
| 1616 | if (!hash_empty(ctx->mem_hash)) |
| 1617 | dev_notice(hdev->dev, "ctx is freed while it has va in use\n"); |
| 1618 | |
| 1619 | hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { |
| 1620 | dev_dbg(hdev->dev, |
| 1621 | "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", |
| 1622 | hnode->vaddr, ctx->asid); |
| 1623 | unmap_device_va(ctx, hnode->vaddr); |
| 1624 | } |
| 1625 | |
| 1626 | spin_lock(&vm->idr_lock); |
| 1627 | idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) |
| 1628 | if (phys_pg_list->asid == ctx->asid) { |
| 1629 | dev_dbg(hdev->dev, |
| 1630 | "page list 0x%p of asid %d is still alive\n", |
| 1631 | phys_pg_list, ctx->asid); |
| 1632 | atomic64_sub(phys_pg_list->total_size, |
| 1633 | &hdev->dram_used_mem); |
| 1634 | free_phys_pg_pack(hdev, phys_pg_list); |
| 1635 | idr_remove(&vm->phys_pg_pack_handles, i); |
| 1636 | } |
| 1637 | spin_unlock(&vm->idr_lock); |
| 1638 | |
| 1639 | hl_va_range_fini(hdev, &ctx->dram_va_range); |
| 1640 | hl_va_range_fini(hdev, &ctx->host_va_range); |
| 1641 | |
| 1642 | mutex_destroy(&ctx->mem_hash_lock); |
| 1643 | hl_mmu_ctx_fini(ctx); |
| 1644 | } |
| 1645 | |
| 1646 | /* |
| 1647 | * hl_vm_init - initialize virtual memory module |
| 1648 | * |
| 1649 | * @hdev : pointer to the habanalabs device structure |
| 1650 | * |
| 1651 | * This function initializes the following: |
| 1652 | * - MMU module |
| 1653 | * - DRAM physical pages pool of 2MB |
| 1654 | * - Idr for device memory allocation handles |
| 1655 | */ |
| 1656 | int hl_vm_init(struct hl_device *hdev) |
| 1657 | { |
| 1658 | struct asic_fixed_properties *prop = &hdev->asic_prop; |
| 1659 | struct hl_vm *vm = &hdev->vm; |
| 1660 | int rc; |
| 1661 | |
| 1662 | vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1); |
| 1663 | if (!vm->dram_pg_pool) { |
| 1664 | dev_err(hdev->dev, "Failed to create dram page pool\n"); |
| 1665 | return -ENOMEM; |
| 1666 | } |
| 1667 | |
| 1668 | kref_init(&vm->dram_pg_pool_refcount); |
| 1669 | |
| 1670 | rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, |
| 1671 | prop->dram_end_address - prop->dram_user_base_address, |
| 1672 | -1); |
| 1673 | |
| 1674 | if (rc) { |
| 1675 | dev_err(hdev->dev, |
| 1676 | "Failed to add memory to dram page pool %d\n", rc); |
| 1677 | goto pool_add_err; |
| 1678 | } |
| 1679 | |
| 1680 | spin_lock_init(&vm->idr_lock); |
| 1681 | idr_init(&vm->phys_pg_pack_handles); |
| 1682 | |
| 1683 | atomic64_set(&hdev->dram_used_mem, 0); |
| 1684 | |
| 1685 | vm->init_done = true; |
| 1686 | |
| 1687 | return 0; |
| 1688 | |
| 1689 | pool_add_err: |
| 1690 | gen_pool_destroy(vm->dram_pg_pool); |
| 1691 | |
| 1692 | return rc; |
| 1693 | } |
| 1694 | |
| 1695 | /* |
| 1696 | * hl_vm_fini - virtual memory module teardown |
| 1697 | * |
| 1698 | * @hdev : pointer to the habanalabs device structure |
| 1699 | * |
| 1700 | * This function perform teardown to the following: |
| 1701 | * - Idr for device memory allocation handles |
| 1702 | * - DRAM physical pages pool of 2MB |
| 1703 | * - MMU module |
| 1704 | */ |
| 1705 | void hl_vm_fini(struct hl_device *hdev) |
| 1706 | { |
| 1707 | struct hl_vm *vm = &hdev->vm; |
| 1708 | |
| 1709 | if (!vm->init_done) |
| 1710 | return; |
| 1711 | |
| 1712 | /* |
| 1713 | * At this point all the contexts should be freed and hence no DRAM |
| 1714 | * memory should be in use. Hence the DRAM pool should be freed here. |
| 1715 | */ |
| 1716 | if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) |
| 1717 | dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", |
| 1718 | __func__); |
| 1719 | |
| 1720 | vm->init_done = false; |
| 1721 | } |