v4.19.13 snapshot.
diff --git a/net/rds/ib_recv.c b/net/rds/ib_recv.c
new file mode 100644
index 0000000..2f16146
--- /dev/null
+++ b/net/rds/ib_recv.c
@@ -0,0 +1,1066 @@
+/*
+ * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <rdma/rdma_cm.h>
+
+#include "rds_single_path.h"
+#include "rds.h"
+#include "ib.h"
+
+static struct kmem_cache *rds_ib_incoming_slab;
+static struct kmem_cache *rds_ib_frag_slab;
+static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
+
+void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
+{
+	struct rds_ib_recv_work *recv;
+	u32 i;
+
+	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
+		struct ib_sge *sge;
+
+		recv->r_ibinc = NULL;
+		recv->r_frag = NULL;
+
+		recv->r_wr.next = NULL;
+		recv->r_wr.wr_id = i;
+		recv->r_wr.sg_list = recv->r_sge;
+		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
+
+		sge = &recv->r_sge[0];
+		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
+		sge->length = sizeof(struct rds_header);
+		sge->lkey = ic->i_pd->local_dma_lkey;
+
+		sge = &recv->r_sge[1];
+		sge->addr = 0;
+		sge->length = RDS_FRAG_SIZE;
+		sge->lkey = ic->i_pd->local_dma_lkey;
+	}
+}
+
+/*
+ * The entire 'from' list, including the from element itself, is put on
+ * to the tail of the 'to' list.
+ */
+static void list_splice_entire_tail(struct list_head *from,
+				    struct list_head *to)
+{
+	struct list_head *from_last = from->prev;
+
+	list_splice_tail(from_last, to);
+	list_add_tail(from_last, to);
+}
+
+static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
+{
+	struct list_head *tmp;
+
+	tmp = xchg(&cache->xfer, NULL);
+	if (tmp) {
+		if (cache->ready)
+			list_splice_entire_tail(tmp, cache->ready);
+		else
+			cache->ready = tmp;
+	}
+}
+
+static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
+{
+	struct rds_ib_cache_head *head;
+	int cpu;
+
+	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
+	if (!cache->percpu)
+	       return -ENOMEM;
+
+	for_each_possible_cpu(cpu) {
+		head = per_cpu_ptr(cache->percpu, cpu);
+		head->first = NULL;
+		head->count = 0;
+	}
+	cache->xfer = NULL;
+	cache->ready = NULL;
+
+	return 0;
+}
+
+int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
+{
+	int ret;
+
+	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
+	if (!ret) {
+		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
+		if (ret)
+			free_percpu(ic->i_cache_incs.percpu);
+	}
+
+	return ret;
+}
+
+static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
+					  struct list_head *caller_list)
+{
+	struct rds_ib_cache_head *head;
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		head = per_cpu_ptr(cache->percpu, cpu);
+		if (head->first) {
+			list_splice_entire_tail(head->first, caller_list);
+			head->first = NULL;
+		}
+	}
+
+	if (cache->ready) {
+		list_splice_entire_tail(cache->ready, caller_list);
+		cache->ready = NULL;
+	}
+}
+
+void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
+{
+	struct rds_ib_incoming *inc;
+	struct rds_ib_incoming *inc_tmp;
+	struct rds_page_frag *frag;
+	struct rds_page_frag *frag_tmp;
+	LIST_HEAD(list);
+
+	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
+	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
+	free_percpu(ic->i_cache_incs.percpu);
+
+	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
+		list_del(&inc->ii_cache_entry);
+		WARN_ON(!list_empty(&inc->ii_frags));
+		kmem_cache_free(rds_ib_incoming_slab, inc);
+	}
+
+	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
+	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
+	free_percpu(ic->i_cache_frags.percpu);
+
+	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
+		list_del(&frag->f_cache_entry);
+		WARN_ON(!list_empty(&frag->f_item));
+		kmem_cache_free(rds_ib_frag_slab, frag);
+	}
+}
+
+/* fwd decl */
+static void rds_ib_recv_cache_put(struct list_head *new_item,
+				  struct rds_ib_refill_cache *cache);
+static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
+
+
+/* Recycle frag and attached recv buffer f_sg */
+static void rds_ib_frag_free(struct rds_ib_connection *ic,
+			     struct rds_page_frag *frag)
+{
+	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
+
+	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
+	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
+	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
+}
+
+/* Recycle inc after freeing attached frags */
+void rds_ib_inc_free(struct rds_incoming *inc)
+{
+	struct rds_ib_incoming *ibinc;
+	struct rds_page_frag *frag;
+	struct rds_page_frag *pos;
+	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
+
+	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
+
+	/* Free attached frags */
+	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
+		list_del_init(&frag->f_item);
+		rds_ib_frag_free(ic, frag);
+	}
+	BUG_ON(!list_empty(&ibinc->ii_frags));
+
+	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
+	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
+}
+
+static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
+				  struct rds_ib_recv_work *recv)
+{
+	if (recv->r_ibinc) {
+		rds_inc_put(&recv->r_ibinc->ii_inc);
+		recv->r_ibinc = NULL;
+	}
+	if (recv->r_frag) {
+		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
+		rds_ib_frag_free(ic, recv->r_frag);
+		recv->r_frag = NULL;
+	}
+}
+
+void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
+{
+	u32 i;
+
+	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
+		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
+}
+
+static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
+						     gfp_t slab_mask)
+{
+	struct rds_ib_incoming *ibinc;
+	struct list_head *cache_item;
+	int avail_allocs;
+
+	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
+	if (cache_item) {
+		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
+	} else {
+		avail_allocs = atomic_add_unless(&rds_ib_allocation,
+						 1, rds_ib_sysctl_max_recv_allocation);
+		if (!avail_allocs) {
+			rds_ib_stats_inc(s_ib_rx_alloc_limit);
+			return NULL;
+		}
+		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
+		if (!ibinc) {
+			atomic_dec(&rds_ib_allocation);
+			return NULL;
+		}
+		rds_ib_stats_inc(s_ib_rx_total_incs);
+	}
+	INIT_LIST_HEAD(&ibinc->ii_frags);
+	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
+
+	return ibinc;
+}
+
+static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
+						    gfp_t slab_mask, gfp_t page_mask)
+{
+	struct rds_page_frag *frag;
+	struct list_head *cache_item;
+	int ret;
+
+	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
+	if (cache_item) {
+		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
+		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
+		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
+	} else {
+		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
+		if (!frag)
+			return NULL;
+
+		sg_init_table(&frag->f_sg, 1);
+		ret = rds_page_remainder_alloc(&frag->f_sg,
+					       RDS_FRAG_SIZE, page_mask);
+		if (ret) {
+			kmem_cache_free(rds_ib_frag_slab, frag);
+			return NULL;
+		}
+		rds_ib_stats_inc(s_ib_rx_total_frags);
+	}
+
+	INIT_LIST_HEAD(&frag->f_item);
+
+	return frag;
+}
+
+static int rds_ib_recv_refill_one(struct rds_connection *conn,
+				  struct rds_ib_recv_work *recv, gfp_t gfp)
+{
+	struct rds_ib_connection *ic = conn->c_transport_data;
+	struct ib_sge *sge;
+	int ret = -ENOMEM;
+	gfp_t slab_mask = GFP_NOWAIT;
+	gfp_t page_mask = GFP_NOWAIT;
+
+	if (gfp & __GFP_DIRECT_RECLAIM) {
+		slab_mask = GFP_KERNEL;
+		page_mask = GFP_HIGHUSER;
+	}
+
+	if (!ic->i_cache_incs.ready)
+		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
+	if (!ic->i_cache_frags.ready)
+		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
+
+	/*
+	 * ibinc was taken from recv if recv contained the start of a message.
+	 * recvs that were continuations will still have this allocated.
+	 */
+	if (!recv->r_ibinc) {
+		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
+		if (!recv->r_ibinc)
+			goto out;
+	}
+
+	WARN_ON(recv->r_frag); /* leak! */
+	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
+	if (!recv->r_frag)
+		goto out;
+
+	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
+			    1, DMA_FROM_DEVICE);
+	WARN_ON(ret != 1);
+
+	sge = &recv->r_sge[0];
+	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
+	sge->length = sizeof(struct rds_header);
+
+	sge = &recv->r_sge[1];
+	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
+	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
+
+	ret = 0;
+out:
+	return ret;
+}
+
+static int acquire_refill(struct rds_connection *conn)
+{
+	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
+}
+
+static void release_refill(struct rds_connection *conn)
+{
+	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
+
+	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
+	 * hot path and finding waiters is very rare.  We don't want to walk
+	 * the system-wide hashed waitqueue buckets in the fast path only to
+	 * almost never find waiters.
+	 */
+	if (waitqueue_active(&conn->c_waitq))
+		wake_up_all(&conn->c_waitq);
+}
+
+/*
+ * This tries to allocate and post unused work requests after making sure that
+ * they have all the allocations they need to queue received fragments into
+ * sockets.
+ */
+void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
+{
+	struct rds_ib_connection *ic = conn->c_transport_data;
+	struct rds_ib_recv_work *recv;
+	unsigned int posted = 0;
+	int ret = 0;
+	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
+	u32 pos;
+
+	/* the goal here is to just make sure that someone, somewhere
+	 * is posting buffers.  If we can't get the refill lock,
+	 * let them do their thing
+	 */
+	if (!acquire_refill(conn))
+		return;
+
+	while ((prefill || rds_conn_up(conn)) &&
+	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
+		if (pos >= ic->i_recv_ring.w_nr) {
+			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
+					pos);
+			break;
+		}
+
+		recv = &ic->i_recvs[pos];
+		ret = rds_ib_recv_refill_one(conn, recv, gfp);
+		if (ret) {
+			break;
+		}
+
+		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
+			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
+			 (long) ib_sg_dma_address(
+				ic->i_cm_id->device,
+				&recv->r_frag->f_sg));
+
+		/* XXX when can this fail? */
+		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
+		if (ret) {
+			rds_ib_conn_error(conn, "recv post on "
+			       "%pI6c returned %d, disconnecting and "
+			       "reconnecting\n", &conn->c_faddr,
+			       ret);
+			break;
+		}
+
+		posted++;
+	}
+
+	/* We're doing flow control - update the window. */
+	if (ic->i_flowctl && posted)
+		rds_ib_advertise_credits(conn, posted);
+
+	if (ret)
+		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
+
+	release_refill(conn);
+
+	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
+	 * in this case the ring being low is going to lead to more interrupts
+	 * and we can safely let the softirq code take care of it unless the
+	 * ring is completely empty.
+	 *
+	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
+	 * we might have raced with the softirq code while we had the refill
+	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
+	 * if we should requeue.
+	 */
+	if (rds_conn_up(conn) &&
+	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
+	    rds_ib_ring_empty(&ic->i_recv_ring))) {
+		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
+	}
+}
+
+/*
+ * We want to recycle several types of recv allocations, like incs and frags.
+ * To use this, the *_free() function passes in the ptr to a list_head within
+ * the recyclee, as well as the cache to put it on.
+ *
+ * First, we put the memory on a percpu list. When this reaches a certain size,
+ * We move it to an intermediate non-percpu list in a lockless manner, with some
+ * xchg/compxchg wizardry.
+ *
+ * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
+ * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
+ * list_empty() will return true with one element is actually present.
+ */
+static void rds_ib_recv_cache_put(struct list_head *new_item,
+				 struct rds_ib_refill_cache *cache)
+{
+	unsigned long flags;
+	struct list_head *old, *chpfirst;
+
+	local_irq_save(flags);
+
+	chpfirst = __this_cpu_read(cache->percpu->first);
+	if (!chpfirst)
+		INIT_LIST_HEAD(new_item);
+	else /* put on front */
+		list_add_tail(new_item, chpfirst);
+
+	__this_cpu_write(cache->percpu->first, new_item);
+	__this_cpu_inc(cache->percpu->count);
+
+	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
+		goto end;
+
+	/*
+	 * Return our per-cpu first list to the cache's xfer by atomically
+	 * grabbing the current xfer list, appending it to our per-cpu list,
+	 * and then atomically returning that entire list back to the
+	 * cache's xfer list as long as it's still empty.
+	 */
+	do {
+		old = xchg(&cache->xfer, NULL);
+		if (old)
+			list_splice_entire_tail(old, chpfirst);
+		old = cmpxchg(&cache->xfer, NULL, chpfirst);
+	} while (old);
+
+
+	__this_cpu_write(cache->percpu->first, NULL);
+	__this_cpu_write(cache->percpu->count, 0);
+end:
+	local_irq_restore(flags);
+}
+
+static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
+{
+	struct list_head *head = cache->ready;
+
+	if (head) {
+		if (!list_empty(head)) {
+			cache->ready = head->next;
+			list_del_init(head);
+		} else
+			cache->ready = NULL;
+	}
+
+	return head;
+}
+
+int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
+{
+	struct rds_ib_incoming *ibinc;
+	struct rds_page_frag *frag;
+	unsigned long to_copy;
+	unsigned long frag_off = 0;
+	int copied = 0;
+	int ret;
+	u32 len;
+
+	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
+	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
+	len = be32_to_cpu(inc->i_hdr.h_len);
+
+	while (iov_iter_count(to) && copied < len) {
+		if (frag_off == RDS_FRAG_SIZE) {
+			frag = list_entry(frag->f_item.next,
+					  struct rds_page_frag, f_item);
+			frag_off = 0;
+		}
+		to_copy = min_t(unsigned long, iov_iter_count(to),
+				RDS_FRAG_SIZE - frag_off);
+		to_copy = min_t(unsigned long, to_copy, len - copied);
+
+		/* XXX needs + offset for multiple recvs per page */
+		rds_stats_add(s_copy_to_user, to_copy);
+		ret = copy_page_to_iter(sg_page(&frag->f_sg),
+					frag->f_sg.offset + frag_off,
+					to_copy,
+					to);
+		if (ret != to_copy)
+			return -EFAULT;
+
+		frag_off += to_copy;
+		copied += to_copy;
+	}
+
+	return copied;
+}
+
+/* ic starts out kzalloc()ed */
+void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
+{
+	struct ib_send_wr *wr = &ic->i_ack_wr;
+	struct ib_sge *sge = &ic->i_ack_sge;
+
+	sge->addr = ic->i_ack_dma;
+	sge->length = sizeof(struct rds_header);
+	sge->lkey = ic->i_pd->local_dma_lkey;
+
+	wr->sg_list = sge;
+	wr->num_sge = 1;
+	wr->opcode = IB_WR_SEND;
+	wr->wr_id = RDS_IB_ACK_WR_ID;
+	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
+}
+
+/*
+ * You'd think that with reliable IB connections you wouldn't need to ack
+ * messages that have been received.  The problem is that IB hardware generates
+ * an ack message before it has DMAed the message into memory.  This creates a
+ * potential message loss if the HCA is disabled for any reason between when it
+ * sends the ack and before the message is DMAed and processed.  This is only a
+ * potential issue if another HCA is available for fail-over.
+ *
+ * When the remote host receives our ack they'll free the sent message from
+ * their send queue.  To decrease the latency of this we always send an ack
+ * immediately after we've received messages.
+ *
+ * For simplicity, we only have one ack in flight at a time.  This puts
+ * pressure on senders to have deep enough send queues to absorb the latency of
+ * a single ack frame being in flight.  This might not be good enough.
+ *
+ * This is implemented by have a long-lived send_wr and sge which point to a
+ * statically allocated ack frame.  This ack wr does not fall under the ring
+ * accounting that the tx and rx wrs do.  The QP attribute specifically makes
+ * room for it beyond the ring size.  Send completion notices its special
+ * wr_id and avoids working with the ring in that case.
+ */
+#ifndef KERNEL_HAS_ATOMIC64
+void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&ic->i_ack_lock, flags);
+	ic->i_ack_next = seq;
+	if (ack_required)
+		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
+}
+
+static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
+{
+	unsigned long flags;
+	u64 seq;
+
+	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+
+	spin_lock_irqsave(&ic->i_ack_lock, flags);
+	seq = ic->i_ack_next;
+	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
+
+	return seq;
+}
+#else
+void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
+{
+	atomic64_set(&ic->i_ack_next, seq);
+	if (ack_required) {
+		smp_mb__before_atomic();
+		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+	}
+}
+
+static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
+{
+	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+	smp_mb__after_atomic();
+
+	return atomic64_read(&ic->i_ack_next);
+}
+#endif
+
+
+static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
+{
+	struct rds_header *hdr = ic->i_ack;
+	u64 seq;
+	int ret;
+
+	seq = rds_ib_get_ack(ic);
+
+	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
+	rds_message_populate_header(hdr, 0, 0, 0);
+	hdr->h_ack = cpu_to_be64(seq);
+	hdr->h_credit = adv_credits;
+	rds_message_make_checksum(hdr);
+	ic->i_ack_queued = jiffies;
+
+	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
+	if (unlikely(ret)) {
+		/* Failed to send. Release the WR, and
+		 * force another ACK.
+		 */
+		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
+		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+
+		rds_ib_stats_inc(s_ib_ack_send_failure);
+
+		rds_ib_conn_error(ic->conn, "sending ack failed\n");
+	} else
+		rds_ib_stats_inc(s_ib_ack_sent);
+}
+
+/*
+ * There are 3 ways of getting acknowledgements to the peer:
+ *  1.	We call rds_ib_attempt_ack from the recv completion handler
+ *	to send an ACK-only frame.
+ *	However, there can be only one such frame in the send queue
+ *	at any time, so we may have to postpone it.
+ *  2.	When another (data) packet is transmitted while there's
+ *	an ACK in the queue, we piggyback the ACK sequence number
+ *	on the data packet.
+ *  3.	If the ACK WR is done sending, we get called from the
+ *	send queue completion handler, and check whether there's
+ *	another ACK pending (postponed because the WR was on the
+ *	queue). If so, we transmit it.
+ *
+ * We maintain 2 variables:
+ *  -	i_ack_flags, which keeps track of whether the ACK WR
+ *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
+ *  -	i_ack_next, which is the last sequence number we received
+ *
+ * Potentially, send queue and receive queue handlers can run concurrently.
+ * It would be nice to not have to use a spinlock to synchronize things,
+ * but the one problem that rules this out is that 64bit updates are
+ * not atomic on all platforms. Things would be a lot simpler if
+ * we had atomic64 or maybe cmpxchg64 everywhere.
+ *
+ * Reconnecting complicates this picture just slightly. When we
+ * reconnect, we may be seeing duplicate packets. The peer
+ * is retransmitting them, because it hasn't seen an ACK for
+ * them. It is important that we ACK these.
+ *
+ * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
+ * this flag set *MUST* be acknowledged immediately.
+ */
+
+/*
+ * When we get here, we're called from the recv queue handler.
+ * Check whether we ought to transmit an ACK.
+ */
+void rds_ib_attempt_ack(struct rds_ib_connection *ic)
+{
+	unsigned int adv_credits;
+
+	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
+		return;
+
+	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
+		rds_ib_stats_inc(s_ib_ack_send_delayed);
+		return;
+	}
+
+	/* Can we get a send credit? */
+	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
+		rds_ib_stats_inc(s_ib_tx_throttle);
+		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
+		return;
+	}
+
+	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+	rds_ib_send_ack(ic, adv_credits);
+}
+
+/*
+ * We get here from the send completion handler, when the
+ * adapter tells us the ACK frame was sent.
+ */
+void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
+{
+	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
+	rds_ib_attempt_ack(ic);
+}
+
+/*
+ * This is called by the regular xmit code when it wants to piggyback
+ * an ACK on an outgoing frame.
+ */
+u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
+{
+	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
+		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
+	return rds_ib_get_ack(ic);
+}
+
+/*
+ * It's kind of lame that we're copying from the posted receive pages into
+ * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
+ * them.  But receiving new congestion bitmaps should be a *rare* event, so
+ * hopefully we won't need to invest that complexity in making it more
+ * efficient.  By copying we can share a simpler core with TCP which has to
+ * copy.
+ */
+static void rds_ib_cong_recv(struct rds_connection *conn,
+			      struct rds_ib_incoming *ibinc)
+{
+	struct rds_cong_map *map;
+	unsigned int map_off;
+	unsigned int map_page;
+	struct rds_page_frag *frag;
+	unsigned long frag_off;
+	unsigned long to_copy;
+	unsigned long copied;
+	uint64_t uncongested = 0;
+	void *addr;
+
+	/* catch completely corrupt packets */
+	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
+		return;
+
+	map = conn->c_fcong;
+	map_page = 0;
+	map_off = 0;
+
+	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
+	frag_off = 0;
+
+	copied = 0;
+
+	while (copied < RDS_CONG_MAP_BYTES) {
+		uint64_t *src, *dst;
+		unsigned int k;
+
+		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
+		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
+
+		addr = kmap_atomic(sg_page(&frag->f_sg));
+
+		src = addr + frag->f_sg.offset + frag_off;
+		dst = (void *)map->m_page_addrs[map_page] + map_off;
+		for (k = 0; k < to_copy; k += 8) {
+			/* Record ports that became uncongested, ie
+			 * bits that changed from 0 to 1. */
+			uncongested |= ~(*src) & *dst;
+			*dst++ = *src++;
+		}
+		kunmap_atomic(addr);
+
+		copied += to_copy;
+
+		map_off += to_copy;
+		if (map_off == PAGE_SIZE) {
+			map_off = 0;
+			map_page++;
+		}
+
+		frag_off += to_copy;
+		if (frag_off == RDS_FRAG_SIZE) {
+			frag = list_entry(frag->f_item.next,
+					  struct rds_page_frag, f_item);
+			frag_off = 0;
+		}
+	}
+
+	/* the congestion map is in little endian order */
+	uncongested = le64_to_cpu(uncongested);
+
+	rds_cong_map_updated(map, uncongested);
+}
+
+static void rds_ib_process_recv(struct rds_connection *conn,
+				struct rds_ib_recv_work *recv, u32 data_len,
+				struct rds_ib_ack_state *state)
+{
+	struct rds_ib_connection *ic = conn->c_transport_data;
+	struct rds_ib_incoming *ibinc = ic->i_ibinc;
+	struct rds_header *ihdr, *hdr;
+
+	/* XXX shut down the connection if port 0,0 are seen? */
+
+	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
+		 data_len);
+
+	if (data_len < sizeof(struct rds_header)) {
+		rds_ib_conn_error(conn, "incoming message "
+		       "from %pI6c didn't include a "
+		       "header, disconnecting and "
+		       "reconnecting\n",
+		       &conn->c_faddr);
+		return;
+	}
+	data_len -= sizeof(struct rds_header);
+
+	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
+
+	/* Validate the checksum. */
+	if (!rds_message_verify_checksum(ihdr)) {
+		rds_ib_conn_error(conn, "incoming message "
+		       "from %pI6c has corrupted header - "
+		       "forcing a reconnect\n",
+		       &conn->c_faddr);
+		rds_stats_inc(s_recv_drop_bad_checksum);
+		return;
+	}
+
+	/* Process the ACK sequence which comes with every packet */
+	state->ack_recv = be64_to_cpu(ihdr->h_ack);
+	state->ack_recv_valid = 1;
+
+	/* Process the credits update if there was one */
+	if (ihdr->h_credit)
+		rds_ib_send_add_credits(conn, ihdr->h_credit);
+
+	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
+		/* This is an ACK-only packet. The fact that it gets
+		 * special treatment here is that historically, ACKs
+		 * were rather special beasts.
+		 */
+		rds_ib_stats_inc(s_ib_ack_received);
+
+		/*
+		 * Usually the frags make their way on to incs and are then freed as
+		 * the inc is freed.  We don't go that route, so we have to drop the
+		 * page ref ourselves.  We can't just leave the page on the recv
+		 * because that confuses the dma mapping of pages and each recv's use
+		 * of a partial page.
+		 *
+		 * FIXME: Fold this into the code path below.
+		 */
+		rds_ib_frag_free(ic, recv->r_frag);
+		recv->r_frag = NULL;
+		return;
+	}
+
+	/*
+	 * If we don't already have an inc on the connection then this
+	 * fragment has a header and starts a message.. copy its header
+	 * into the inc and save the inc so we can hang upcoming fragments
+	 * off its list.
+	 */
+	if (!ibinc) {
+		ibinc = recv->r_ibinc;
+		recv->r_ibinc = NULL;
+		ic->i_ibinc = ibinc;
+
+		hdr = &ibinc->ii_inc.i_hdr;
+		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
+				local_clock();
+		memcpy(hdr, ihdr, sizeof(*hdr));
+		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
+		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
+				local_clock();
+
+		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
+			 ic->i_recv_data_rem, hdr->h_flags);
+	} else {
+		hdr = &ibinc->ii_inc.i_hdr;
+		/* We can't just use memcmp here; fragments of a
+		 * single message may carry different ACKs */
+		if (hdr->h_sequence != ihdr->h_sequence ||
+		    hdr->h_len != ihdr->h_len ||
+		    hdr->h_sport != ihdr->h_sport ||
+		    hdr->h_dport != ihdr->h_dport) {
+			rds_ib_conn_error(conn,
+				"fragment header mismatch; forcing reconnect\n");
+			return;
+		}
+	}
+
+	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
+	recv->r_frag = NULL;
+
+	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
+		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
+	else {
+		ic->i_recv_data_rem = 0;
+		ic->i_ibinc = NULL;
+
+		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
+			rds_ib_cong_recv(conn, ibinc);
+		} else {
+			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
+					  &ibinc->ii_inc, GFP_ATOMIC);
+			state->ack_next = be64_to_cpu(hdr->h_sequence);
+			state->ack_next_valid = 1;
+		}
+
+		/* Evaluate the ACK_REQUIRED flag *after* we received
+		 * the complete frame, and after bumping the next_rx
+		 * sequence. */
+		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
+			rds_stats_inc(s_recv_ack_required);
+			state->ack_required = 1;
+		}
+
+		rds_inc_put(&ibinc->ii_inc);
+	}
+}
+
+void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
+			     struct ib_wc *wc,
+			     struct rds_ib_ack_state *state)
+{
+	struct rds_connection *conn = ic->conn;
+	struct rds_ib_recv_work *recv;
+
+	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
+		 (unsigned long long)wc->wr_id, wc->status,
+		 ib_wc_status_msg(wc->status), wc->byte_len,
+		 be32_to_cpu(wc->ex.imm_data));
+
+	rds_ib_stats_inc(s_ib_rx_cq_event);
+	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
+	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
+			DMA_FROM_DEVICE);
+
+	/* Also process recvs in connecting state because it is possible
+	 * to get a recv completion _before_ the rdmacm ESTABLISHED
+	 * event is processed.
+	 */
+	if (wc->status == IB_WC_SUCCESS) {
+		rds_ib_process_recv(conn, recv, wc->byte_len, state);
+	} else {
+		/* We expect errors as the qp is drained during shutdown */
+		if (rds_conn_up(conn) || rds_conn_connecting(conn))
+			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c> had status %u (%s), disconnecting and reconnecting\n",
+					  &conn->c_laddr, &conn->c_faddr,
+					  wc->status,
+					  ib_wc_status_msg(wc->status));
+	}
+
+	/* rds_ib_process_recv() doesn't always consume the frag, and
+	 * we might not have called it at all if the wc didn't indicate
+	 * success. We already unmapped the frag's pages, though, and
+	 * the following rds_ib_ring_free() call tells the refill path
+	 * that it will not find an allocated frag here. Make sure we
+	 * keep that promise by freeing a frag that's still on the ring.
+	 */
+	if (recv->r_frag) {
+		rds_ib_frag_free(ic, recv->r_frag);
+		recv->r_frag = NULL;
+	}
+	rds_ib_ring_free(&ic->i_recv_ring, 1);
+
+	/* If we ever end up with a really empty receive ring, we're
+	 * in deep trouble, as the sender will definitely see RNR
+	 * timeouts. */
+	if (rds_ib_ring_empty(&ic->i_recv_ring))
+		rds_ib_stats_inc(s_ib_rx_ring_empty);
+
+	if (rds_ib_ring_low(&ic->i_recv_ring)) {
+		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
+		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
+	}
+}
+
+int rds_ib_recv_path(struct rds_conn_path *cp)
+{
+	struct rds_connection *conn = cp->cp_conn;
+	struct rds_ib_connection *ic = conn->c_transport_data;
+
+	rdsdebug("conn %p\n", conn);
+	if (rds_conn_up(conn)) {
+		rds_ib_attempt_ack(ic);
+		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
+		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
+	}
+
+	return 0;
+}
+
+int rds_ib_recv_init(void)
+{
+	struct sysinfo si;
+	int ret = -ENOMEM;
+
+	/* Default to 30% of all available RAM for recv memory */
+	si_meminfo(&si);
+	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
+
+	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
+					sizeof(struct rds_ib_incoming),
+					0, SLAB_HWCACHE_ALIGN, NULL);
+	if (!rds_ib_incoming_slab)
+		goto out;
+
+	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
+					sizeof(struct rds_page_frag),
+					0, SLAB_HWCACHE_ALIGN, NULL);
+	if (!rds_ib_frag_slab) {
+		kmem_cache_destroy(rds_ib_incoming_slab);
+		rds_ib_incoming_slab = NULL;
+	} else
+		ret = 0;
+out:
+	return ret;
+}
+
+void rds_ib_recv_exit(void)
+{
+	kmem_cache_destroy(rds_ib_incoming_slab);
+	kmem_cache_destroy(rds_ib_frag_slab);
+}