v4.19.13 snapshot.
diff --git a/mm/slab.c b/mm/slab.c
new file mode 100644
index 0000000..d73c7a4
--- /dev/null
+++ b/mm/slab.c
@@ -0,0 +1,4481 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * linux/mm/slab.c
+ * Written by Mark Hemment, 1996/97.
+ * (markhe@nextd.demon.co.uk)
+ *
+ * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
+ *
+ * Major cleanup, different bufctl logic, per-cpu arrays
+ *	(c) 2000 Manfred Spraul
+ *
+ * Cleanup, make the head arrays unconditional, preparation for NUMA
+ * 	(c) 2002 Manfred Spraul
+ *
+ * An implementation of the Slab Allocator as described in outline in;
+ *	UNIX Internals: The New Frontiers by Uresh Vahalia
+ *	Pub: Prentice Hall	ISBN 0-13-101908-2
+ * or with a little more detail in;
+ *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
+ *	Jeff Bonwick (Sun Microsystems).
+ *	Presented at: USENIX Summer 1994 Technical Conference
+ *
+ * The memory is organized in caches, one cache for each object type.
+ * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
+ * Each cache consists out of many slabs (they are small (usually one
+ * page long) and always contiguous), and each slab contains multiple
+ * initialized objects.
+ *
+ * This means, that your constructor is used only for newly allocated
+ * slabs and you must pass objects with the same initializations to
+ * kmem_cache_free.
+ *
+ * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
+ * normal). If you need a special memory type, then must create a new
+ * cache for that memory type.
+ *
+ * In order to reduce fragmentation, the slabs are sorted in 3 groups:
+ *   full slabs with 0 free objects
+ *   partial slabs
+ *   empty slabs with no allocated objects
+ *
+ * If partial slabs exist, then new allocations come from these slabs,
+ * otherwise from empty slabs or new slabs are allocated.
+ *
+ * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
+ * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
+ *
+ * Each cache has a short per-cpu head array, most allocs
+ * and frees go into that array, and if that array overflows, then 1/2
+ * of the entries in the array are given back into the global cache.
+ * The head array is strictly LIFO and should improve the cache hit rates.
+ * On SMP, it additionally reduces the spinlock operations.
+ *
+ * The c_cpuarray may not be read with enabled local interrupts -
+ * it's changed with a smp_call_function().
+ *
+ * SMP synchronization:
+ *  constructors and destructors are called without any locking.
+ *  Several members in struct kmem_cache and struct slab never change, they
+ *	are accessed without any locking.
+ *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
+ *  	and local interrupts are disabled so slab code is preempt-safe.
+ *  The non-constant members are protected with a per-cache irq spinlock.
+ *
+ * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
+ * in 2000 - many ideas in the current implementation are derived from
+ * his patch.
+ *
+ * Further notes from the original documentation:
+ *
+ * 11 April '97.  Started multi-threading - markhe
+ *	The global cache-chain is protected by the mutex 'slab_mutex'.
+ *	The sem is only needed when accessing/extending the cache-chain, which
+ *	can never happen inside an interrupt (kmem_cache_create(),
+ *	kmem_cache_shrink() and kmem_cache_reap()).
+ *
+ *	At present, each engine can be growing a cache.  This should be blocked.
+ *
+ * 15 March 2005. NUMA slab allocator.
+ *	Shai Fultheim <shai@scalex86.org>.
+ *	Shobhit Dayal <shobhit@calsoftinc.com>
+ *	Alok N Kataria <alokk@calsoftinc.com>
+ *	Christoph Lameter <christoph@lameter.com>
+ *
+ *	Modified the slab allocator to be node aware on NUMA systems.
+ *	Each node has its own list of partial, free and full slabs.
+ *	All object allocations for a node occur from node specific slab lists.
+ */
+
+#include	<linux/slab.h>
+#include	<linux/mm.h>
+#include	<linux/poison.h>
+#include	<linux/swap.h>
+#include	<linux/cache.h>
+#include	<linux/interrupt.h>
+#include	<linux/init.h>
+#include	<linux/compiler.h>
+#include	<linux/cpuset.h>
+#include	<linux/proc_fs.h>
+#include	<linux/seq_file.h>
+#include	<linux/notifier.h>
+#include	<linux/kallsyms.h>
+#include	<linux/cpu.h>
+#include	<linux/sysctl.h>
+#include	<linux/module.h>
+#include	<linux/rcupdate.h>
+#include	<linux/string.h>
+#include	<linux/uaccess.h>
+#include	<linux/nodemask.h>
+#include	<linux/kmemleak.h>
+#include	<linux/mempolicy.h>
+#include	<linux/mutex.h>
+#include	<linux/fault-inject.h>
+#include	<linux/rtmutex.h>
+#include	<linux/reciprocal_div.h>
+#include	<linux/debugobjects.h>
+#include	<linux/memory.h>
+#include	<linux/prefetch.h>
+#include	<linux/sched/task_stack.h>
+
+#include	<net/sock.h>
+
+#include	<asm/cacheflush.h>
+#include	<asm/tlbflush.h>
+#include	<asm/page.h>
+
+#include <trace/events/kmem.h>
+
+#include	"internal.h"
+
+#include	"slab.h"
+
+/*
+ * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
+ *		  0 for faster, smaller code (especially in the critical paths).
+ *
+ * STATS	- 1 to collect stats for /proc/slabinfo.
+ *		  0 for faster, smaller code (especially in the critical paths).
+ *
+ * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
+ */
+
+#ifdef CONFIG_DEBUG_SLAB
+#define	DEBUG		1
+#define	STATS		1
+#define	FORCED_DEBUG	1
+#else
+#define	DEBUG		0
+#define	STATS		0
+#define	FORCED_DEBUG	0
+#endif
+
+/* Shouldn't this be in a header file somewhere? */
+#define	BYTES_PER_WORD		sizeof(void *)
+#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
+
+#ifndef ARCH_KMALLOC_FLAGS
+#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
+#endif
+
+#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
+				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
+
+#if FREELIST_BYTE_INDEX
+typedef unsigned char freelist_idx_t;
+#else
+typedef unsigned short freelist_idx_t;
+#endif
+
+#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
+
+/*
+ * struct array_cache
+ *
+ * Purpose:
+ * - LIFO ordering, to hand out cache-warm objects from _alloc
+ * - reduce the number of linked list operations
+ * - reduce spinlock operations
+ *
+ * The limit is stored in the per-cpu structure to reduce the data cache
+ * footprint.
+ *
+ */
+struct array_cache {
+	unsigned int avail;
+	unsigned int limit;
+	unsigned int batchcount;
+	unsigned int touched;
+	void *entry[];	/*
+			 * Must have this definition in here for the proper
+			 * alignment of array_cache. Also simplifies accessing
+			 * the entries.
+			 */
+};
+
+struct alien_cache {
+	spinlock_t lock;
+	struct array_cache ac;
+};
+
+/*
+ * Need this for bootstrapping a per node allocator.
+ */
+#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
+static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
+#define	CACHE_CACHE 0
+#define	SIZE_NODE (MAX_NUMNODES)
+
+static int drain_freelist(struct kmem_cache *cache,
+			struct kmem_cache_node *n, int tofree);
+static void free_block(struct kmem_cache *cachep, void **objpp, int len,
+			int node, struct list_head *list);
+static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
+static void cache_reap(struct work_struct *unused);
+
+static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
+						void **list);
+static inline void fixup_slab_list(struct kmem_cache *cachep,
+				struct kmem_cache_node *n, struct page *page,
+				void **list);
+static int slab_early_init = 1;
+
+#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
+
+static void kmem_cache_node_init(struct kmem_cache_node *parent)
+{
+	INIT_LIST_HEAD(&parent->slabs_full);
+	INIT_LIST_HEAD(&parent->slabs_partial);
+	INIT_LIST_HEAD(&parent->slabs_free);
+	parent->total_slabs = 0;
+	parent->free_slabs = 0;
+	parent->shared = NULL;
+	parent->alien = NULL;
+	parent->colour_next = 0;
+	spin_lock_init(&parent->list_lock);
+	parent->free_objects = 0;
+	parent->free_touched = 0;
+}
+
+#define MAKE_LIST(cachep, listp, slab, nodeid)				\
+	do {								\
+		INIT_LIST_HEAD(listp);					\
+		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
+	} while (0)
+
+#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
+	do {								\
+	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
+	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
+	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
+	} while (0)
+
+#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
+#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
+#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
+#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
+
+#define BATCHREFILL_LIMIT	16
+/*
+ * Optimization question: fewer reaps means less probability for unnessary
+ * cpucache drain/refill cycles.
+ *
+ * OTOH the cpuarrays can contain lots of objects,
+ * which could lock up otherwise freeable slabs.
+ */
+#define REAPTIMEOUT_AC		(2*HZ)
+#define REAPTIMEOUT_NODE	(4*HZ)
+
+#if STATS
+#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
+#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
+#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
+#define	STATS_INC_GROWN(x)	((x)->grown++)
+#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
+#define	STATS_SET_HIGH(x)						\
+	do {								\
+		if ((x)->num_active > (x)->high_mark)			\
+			(x)->high_mark = (x)->num_active;		\
+	} while (0)
+#define	STATS_INC_ERR(x)	((x)->errors++)
+#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
+#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
+#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
+#define	STATS_SET_FREEABLE(x, i)					\
+	do {								\
+		if ((x)->max_freeable < i)				\
+			(x)->max_freeable = i;				\
+	} while (0)
+#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
+#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
+#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
+#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
+#else
+#define	STATS_INC_ACTIVE(x)	do { } while (0)
+#define	STATS_DEC_ACTIVE(x)	do { } while (0)
+#define	STATS_INC_ALLOCED(x)	do { } while (0)
+#define	STATS_INC_GROWN(x)	do { } while (0)
+#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
+#define	STATS_SET_HIGH(x)	do { } while (0)
+#define	STATS_INC_ERR(x)	do { } while (0)
+#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
+#define	STATS_INC_NODEFREES(x)	do { } while (0)
+#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
+#define	STATS_SET_FREEABLE(x, i) do { } while (0)
+#define STATS_INC_ALLOCHIT(x)	do { } while (0)
+#define STATS_INC_ALLOCMISS(x)	do { } while (0)
+#define STATS_INC_FREEHIT(x)	do { } while (0)
+#define STATS_INC_FREEMISS(x)	do { } while (0)
+#endif
+
+#if DEBUG
+
+/*
+ * memory layout of objects:
+ * 0		: objp
+ * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
+ * 		the end of an object is aligned with the end of the real
+ * 		allocation. Catches writes behind the end of the allocation.
+ * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
+ * 		redzone word.
+ * cachep->obj_offset: The real object.
+ * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
+ * cachep->size - 1* BYTES_PER_WORD: last caller address
+ *					[BYTES_PER_WORD long]
+ */
+static int obj_offset(struct kmem_cache *cachep)
+{
+	return cachep->obj_offset;
+}
+
+static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
+{
+	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
+	return (unsigned long long*) (objp + obj_offset(cachep) -
+				      sizeof(unsigned long long));
+}
+
+static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
+{
+	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
+	if (cachep->flags & SLAB_STORE_USER)
+		return (unsigned long long *)(objp + cachep->size -
+					      sizeof(unsigned long long) -
+					      REDZONE_ALIGN);
+	return (unsigned long long *) (objp + cachep->size -
+				       sizeof(unsigned long long));
+}
+
+static void **dbg_userword(struct kmem_cache *cachep, void *objp)
+{
+	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
+	return (void **)(objp + cachep->size - BYTES_PER_WORD);
+}
+
+#else
+
+#define obj_offset(x)			0
+#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
+#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
+#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
+
+#endif
+
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+
+static inline bool is_store_user_clean(struct kmem_cache *cachep)
+{
+	return atomic_read(&cachep->store_user_clean) == 1;
+}
+
+static inline void set_store_user_clean(struct kmem_cache *cachep)
+{
+	atomic_set(&cachep->store_user_clean, 1);
+}
+
+static inline void set_store_user_dirty(struct kmem_cache *cachep)
+{
+	if (is_store_user_clean(cachep))
+		atomic_set(&cachep->store_user_clean, 0);
+}
+
+#else
+static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
+
+#endif
+
+/*
+ * Do not go above this order unless 0 objects fit into the slab or
+ * overridden on the command line.
+ */
+#define	SLAB_MAX_ORDER_HI	1
+#define	SLAB_MAX_ORDER_LO	0
+static int slab_max_order = SLAB_MAX_ORDER_LO;
+static bool slab_max_order_set __initdata;
+
+static inline struct kmem_cache *virt_to_cache(const void *obj)
+{
+	struct page *page = virt_to_head_page(obj);
+	return page->slab_cache;
+}
+
+static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
+				 unsigned int idx)
+{
+	return page->s_mem + cache->size * idx;
+}
+
+/*
+ * We want to avoid an expensive divide : (offset / cache->size)
+ *   Using the fact that size is a constant for a particular cache,
+ *   we can replace (offset / cache->size) by
+ *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
+ */
+static inline unsigned int obj_to_index(const struct kmem_cache *cache,
+					const struct page *page, void *obj)
+{
+	u32 offset = (obj - page->s_mem);
+	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
+}
+
+#define BOOT_CPUCACHE_ENTRIES	1
+/* internal cache of cache description objs */
+static struct kmem_cache kmem_cache_boot = {
+	.batchcount = 1,
+	.limit = BOOT_CPUCACHE_ENTRIES,
+	.shared = 1,
+	.size = sizeof(struct kmem_cache),
+	.name = "kmem_cache",
+};
+
+static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
+
+static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
+{
+	return this_cpu_ptr(cachep->cpu_cache);
+}
+
+/*
+ * Calculate the number of objects and left-over bytes for a given buffer size.
+ */
+static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
+		slab_flags_t flags, size_t *left_over)
+{
+	unsigned int num;
+	size_t slab_size = PAGE_SIZE << gfporder;
+
+	/*
+	 * The slab management structure can be either off the slab or
+	 * on it. For the latter case, the memory allocated for a
+	 * slab is used for:
+	 *
+	 * - @buffer_size bytes for each object
+	 * - One freelist_idx_t for each object
+	 *
+	 * We don't need to consider alignment of freelist because
+	 * freelist will be at the end of slab page. The objects will be
+	 * at the correct alignment.
+	 *
+	 * If the slab management structure is off the slab, then the
+	 * alignment will already be calculated into the size. Because
+	 * the slabs are all pages aligned, the objects will be at the
+	 * correct alignment when allocated.
+	 */
+	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
+		num = slab_size / buffer_size;
+		*left_over = slab_size % buffer_size;
+	} else {
+		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
+		*left_over = slab_size %
+			(buffer_size + sizeof(freelist_idx_t));
+	}
+
+	return num;
+}
+
+#if DEBUG
+#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
+
+static void __slab_error(const char *function, struct kmem_cache *cachep,
+			char *msg)
+{
+	pr_err("slab error in %s(): cache `%s': %s\n",
+	       function, cachep->name, msg);
+	dump_stack();
+	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+}
+#endif
+
+/*
+ * By default on NUMA we use alien caches to stage the freeing of
+ * objects allocated from other nodes. This causes massive memory
+ * inefficiencies when using fake NUMA setup to split memory into a
+ * large number of small nodes, so it can be disabled on the command
+ * line
+  */
+
+static int use_alien_caches __read_mostly = 1;
+static int __init noaliencache_setup(char *s)
+{
+	use_alien_caches = 0;
+	return 1;
+}
+__setup("noaliencache", noaliencache_setup);
+
+static int __init slab_max_order_setup(char *str)
+{
+	get_option(&str, &slab_max_order);
+	slab_max_order = slab_max_order < 0 ? 0 :
+				min(slab_max_order, MAX_ORDER - 1);
+	slab_max_order_set = true;
+
+	return 1;
+}
+__setup("slab_max_order=", slab_max_order_setup);
+
+#ifdef CONFIG_NUMA
+/*
+ * Special reaping functions for NUMA systems called from cache_reap().
+ * These take care of doing round robin flushing of alien caches (containing
+ * objects freed on different nodes from which they were allocated) and the
+ * flushing of remote pcps by calling drain_node_pages.
+ */
+static DEFINE_PER_CPU(unsigned long, slab_reap_node);
+
+static void init_reap_node(int cpu)
+{
+	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
+						    node_online_map);
+}
+
+static void next_reap_node(void)
+{
+	int node = __this_cpu_read(slab_reap_node);
+
+	node = next_node_in(node, node_online_map);
+	__this_cpu_write(slab_reap_node, node);
+}
+
+#else
+#define init_reap_node(cpu) do { } while (0)
+#define next_reap_node(void) do { } while (0)
+#endif
+
+/*
+ * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
+ * via the workqueue/eventd.
+ * Add the CPU number into the expiration time to minimize the possibility of
+ * the CPUs getting into lockstep and contending for the global cache chain
+ * lock.
+ */
+static void start_cpu_timer(int cpu)
+{
+	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
+
+	if (reap_work->work.func == NULL) {
+		init_reap_node(cpu);
+		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
+		schedule_delayed_work_on(cpu, reap_work,
+					__round_jiffies_relative(HZ, cpu));
+	}
+}
+
+static void init_arraycache(struct array_cache *ac, int limit, int batch)
+{
+	/*
+	 * The array_cache structures contain pointers to free object.
+	 * However, when such objects are allocated or transferred to another
+	 * cache the pointers are not cleared and they could be counted as
+	 * valid references during a kmemleak scan. Therefore, kmemleak must
+	 * not scan such objects.
+	 */
+	kmemleak_no_scan(ac);
+	if (ac) {
+		ac->avail = 0;
+		ac->limit = limit;
+		ac->batchcount = batch;
+		ac->touched = 0;
+	}
+}
+
+static struct array_cache *alloc_arraycache(int node, int entries,
+					    int batchcount, gfp_t gfp)
+{
+	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
+	struct array_cache *ac = NULL;
+
+	ac = kmalloc_node(memsize, gfp, node);
+	init_arraycache(ac, entries, batchcount);
+	return ac;
+}
+
+static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
+					struct page *page, void *objp)
+{
+	struct kmem_cache_node *n;
+	int page_node;
+	LIST_HEAD(list);
+
+	page_node = page_to_nid(page);
+	n = get_node(cachep, page_node);
+
+	spin_lock(&n->list_lock);
+	free_block(cachep, &objp, 1, page_node, &list);
+	spin_unlock(&n->list_lock);
+
+	slabs_destroy(cachep, &list);
+}
+
+/*
+ * Transfer objects in one arraycache to another.
+ * Locking must be handled by the caller.
+ *
+ * Return the number of entries transferred.
+ */
+static int transfer_objects(struct array_cache *to,
+		struct array_cache *from, unsigned int max)
+{
+	/* Figure out how many entries to transfer */
+	int nr = min3(from->avail, max, to->limit - to->avail);
+
+	if (!nr)
+		return 0;
+
+	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
+			sizeof(void *) *nr);
+
+	from->avail -= nr;
+	to->avail += nr;
+	return nr;
+}
+
+#ifndef CONFIG_NUMA
+
+#define drain_alien_cache(cachep, alien) do { } while (0)
+#define reap_alien(cachep, n) do { } while (0)
+
+static inline struct alien_cache **alloc_alien_cache(int node,
+						int limit, gfp_t gfp)
+{
+	return NULL;
+}
+
+static inline void free_alien_cache(struct alien_cache **ac_ptr)
+{
+}
+
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
+{
+	return 0;
+}
+
+static inline void *alternate_node_alloc(struct kmem_cache *cachep,
+		gfp_t flags)
+{
+	return NULL;
+}
+
+static inline void *____cache_alloc_node(struct kmem_cache *cachep,
+		 gfp_t flags, int nodeid)
+{
+	return NULL;
+}
+
+static inline gfp_t gfp_exact_node(gfp_t flags)
+{
+	return flags & ~__GFP_NOFAIL;
+}
+
+#else	/* CONFIG_NUMA */
+
+static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
+static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
+
+static struct alien_cache *__alloc_alien_cache(int node, int entries,
+						int batch, gfp_t gfp)
+{
+	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
+	struct alien_cache *alc = NULL;
+
+	alc = kmalloc_node(memsize, gfp, node);
+	init_arraycache(&alc->ac, entries, batch);
+	spin_lock_init(&alc->lock);
+	return alc;
+}
+
+static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
+{
+	struct alien_cache **alc_ptr;
+	size_t memsize = sizeof(void *) * nr_node_ids;
+	int i;
+
+	if (limit > 1)
+		limit = 12;
+	alc_ptr = kzalloc_node(memsize, gfp, node);
+	if (!alc_ptr)
+		return NULL;
+
+	for_each_node(i) {
+		if (i == node || !node_online(i))
+			continue;
+		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
+		if (!alc_ptr[i]) {
+			for (i--; i >= 0; i--)
+				kfree(alc_ptr[i]);
+			kfree(alc_ptr);
+			return NULL;
+		}
+	}
+	return alc_ptr;
+}
+
+static void free_alien_cache(struct alien_cache **alc_ptr)
+{
+	int i;
+
+	if (!alc_ptr)
+		return;
+	for_each_node(i)
+	    kfree(alc_ptr[i]);
+	kfree(alc_ptr);
+}
+
+static void __drain_alien_cache(struct kmem_cache *cachep,
+				struct array_cache *ac, int node,
+				struct list_head *list)
+{
+	struct kmem_cache_node *n = get_node(cachep, node);
+
+	if (ac->avail) {
+		spin_lock(&n->list_lock);
+		/*
+		 * Stuff objects into the remote nodes shared array first.
+		 * That way we could avoid the overhead of putting the objects
+		 * into the free lists and getting them back later.
+		 */
+		if (n->shared)
+			transfer_objects(n->shared, ac, ac->limit);
+
+		free_block(cachep, ac->entry, ac->avail, node, list);
+		ac->avail = 0;
+		spin_unlock(&n->list_lock);
+	}
+}
+
+/*
+ * Called from cache_reap() to regularly drain alien caches round robin.
+ */
+static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
+{
+	int node = __this_cpu_read(slab_reap_node);
+
+	if (n->alien) {
+		struct alien_cache *alc = n->alien[node];
+		struct array_cache *ac;
+
+		if (alc) {
+			ac = &alc->ac;
+			if (ac->avail && spin_trylock_irq(&alc->lock)) {
+				LIST_HEAD(list);
+
+				__drain_alien_cache(cachep, ac, node, &list);
+				spin_unlock_irq(&alc->lock);
+				slabs_destroy(cachep, &list);
+			}
+		}
+	}
+}
+
+static void drain_alien_cache(struct kmem_cache *cachep,
+				struct alien_cache **alien)
+{
+	int i = 0;
+	struct alien_cache *alc;
+	struct array_cache *ac;
+	unsigned long flags;
+
+	for_each_online_node(i) {
+		alc = alien[i];
+		if (alc) {
+			LIST_HEAD(list);
+
+			ac = &alc->ac;
+			spin_lock_irqsave(&alc->lock, flags);
+			__drain_alien_cache(cachep, ac, i, &list);
+			spin_unlock_irqrestore(&alc->lock, flags);
+			slabs_destroy(cachep, &list);
+		}
+	}
+}
+
+static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
+				int node, int page_node)
+{
+	struct kmem_cache_node *n;
+	struct alien_cache *alien = NULL;
+	struct array_cache *ac;
+	LIST_HEAD(list);
+
+	n = get_node(cachep, node);
+	STATS_INC_NODEFREES(cachep);
+	if (n->alien && n->alien[page_node]) {
+		alien = n->alien[page_node];
+		ac = &alien->ac;
+		spin_lock(&alien->lock);
+		if (unlikely(ac->avail == ac->limit)) {
+			STATS_INC_ACOVERFLOW(cachep);
+			__drain_alien_cache(cachep, ac, page_node, &list);
+		}
+		ac->entry[ac->avail++] = objp;
+		spin_unlock(&alien->lock);
+		slabs_destroy(cachep, &list);
+	} else {
+		n = get_node(cachep, page_node);
+		spin_lock(&n->list_lock);
+		free_block(cachep, &objp, 1, page_node, &list);
+		spin_unlock(&n->list_lock);
+		slabs_destroy(cachep, &list);
+	}
+	return 1;
+}
+
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
+{
+	int page_node = page_to_nid(virt_to_page(objp));
+	int node = numa_mem_id();
+	/*
+	 * Make sure we are not freeing a object from another node to the array
+	 * cache on this cpu.
+	 */
+	if (likely(node == page_node))
+		return 0;
+
+	return __cache_free_alien(cachep, objp, node, page_node);
+}
+
+/*
+ * Construct gfp mask to allocate from a specific node but do not reclaim or
+ * warn about failures.
+ */
+static inline gfp_t gfp_exact_node(gfp_t flags)
+{
+	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
+}
+#endif
+
+static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
+{
+	struct kmem_cache_node *n;
+
+	/*
+	 * Set up the kmem_cache_node for cpu before we can
+	 * begin anything. Make sure some other cpu on this
+	 * node has not already allocated this
+	 */
+	n = get_node(cachep, node);
+	if (n) {
+		spin_lock_irq(&n->list_lock);
+		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
+				cachep->num;
+		spin_unlock_irq(&n->list_lock);
+
+		return 0;
+	}
+
+	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
+	if (!n)
+		return -ENOMEM;
+
+	kmem_cache_node_init(n);
+	n->next_reap = jiffies + REAPTIMEOUT_NODE +
+		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
+
+	n->free_limit =
+		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
+
+	/*
+	 * The kmem_cache_nodes don't come and go as CPUs
+	 * come and go.  slab_mutex is sufficient
+	 * protection here.
+	 */
+	cachep->node[node] = n;
+
+	return 0;
+}
+
+#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
+/*
+ * Allocates and initializes node for a node on each slab cache, used for
+ * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
+ * will be allocated off-node since memory is not yet online for the new node.
+ * When hotplugging memory or a cpu, existing node are not replaced if
+ * already in use.
+ *
+ * Must hold slab_mutex.
+ */
+static int init_cache_node_node(int node)
+{
+	int ret;
+	struct kmem_cache *cachep;
+
+	list_for_each_entry(cachep, &slab_caches, list) {
+		ret = init_cache_node(cachep, node, GFP_KERNEL);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+#endif
+
+static int setup_kmem_cache_node(struct kmem_cache *cachep,
+				int node, gfp_t gfp, bool force_change)
+{
+	int ret = -ENOMEM;
+	struct kmem_cache_node *n;
+	struct array_cache *old_shared = NULL;
+	struct array_cache *new_shared = NULL;
+	struct alien_cache **new_alien = NULL;
+	LIST_HEAD(list);
+
+	if (use_alien_caches) {
+		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
+		if (!new_alien)
+			goto fail;
+	}
+
+	if (cachep->shared) {
+		new_shared = alloc_arraycache(node,
+			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
+		if (!new_shared)
+			goto fail;
+	}
+
+	ret = init_cache_node(cachep, node, gfp);
+	if (ret)
+		goto fail;
+
+	n = get_node(cachep, node);
+	spin_lock_irq(&n->list_lock);
+	if (n->shared && force_change) {
+		free_block(cachep, n->shared->entry,
+				n->shared->avail, node, &list);
+		n->shared->avail = 0;
+	}
+
+	if (!n->shared || force_change) {
+		old_shared = n->shared;
+		n->shared = new_shared;
+		new_shared = NULL;
+	}
+
+	if (!n->alien) {
+		n->alien = new_alien;
+		new_alien = NULL;
+	}
+
+	spin_unlock_irq(&n->list_lock);
+	slabs_destroy(cachep, &list);
+
+	/*
+	 * To protect lockless access to n->shared during irq disabled context.
+	 * If n->shared isn't NULL in irq disabled context, accessing to it is
+	 * guaranteed to be valid until irq is re-enabled, because it will be
+	 * freed after synchronize_sched().
+	 */
+	if (old_shared && force_change)
+		synchronize_sched();
+
+fail:
+	kfree(old_shared);
+	kfree(new_shared);
+	free_alien_cache(new_alien);
+
+	return ret;
+}
+
+#ifdef CONFIG_SMP
+
+static void cpuup_canceled(long cpu)
+{
+	struct kmem_cache *cachep;
+	struct kmem_cache_node *n = NULL;
+	int node = cpu_to_mem(cpu);
+	const struct cpumask *mask = cpumask_of_node(node);
+
+	list_for_each_entry(cachep, &slab_caches, list) {
+		struct array_cache *nc;
+		struct array_cache *shared;
+		struct alien_cache **alien;
+		LIST_HEAD(list);
+
+		n = get_node(cachep, node);
+		if (!n)
+			continue;
+
+		spin_lock_irq(&n->list_lock);
+
+		/* Free limit for this kmem_cache_node */
+		n->free_limit -= cachep->batchcount;
+
+		/* cpu is dead; no one can alloc from it. */
+		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
+		if (nc) {
+			free_block(cachep, nc->entry, nc->avail, node, &list);
+			nc->avail = 0;
+		}
+
+		if (!cpumask_empty(mask)) {
+			spin_unlock_irq(&n->list_lock);
+			goto free_slab;
+		}
+
+		shared = n->shared;
+		if (shared) {
+			free_block(cachep, shared->entry,
+				   shared->avail, node, &list);
+			n->shared = NULL;
+		}
+
+		alien = n->alien;
+		n->alien = NULL;
+
+		spin_unlock_irq(&n->list_lock);
+
+		kfree(shared);
+		if (alien) {
+			drain_alien_cache(cachep, alien);
+			free_alien_cache(alien);
+		}
+
+free_slab:
+		slabs_destroy(cachep, &list);
+	}
+	/*
+	 * In the previous loop, all the objects were freed to
+	 * the respective cache's slabs,  now we can go ahead and
+	 * shrink each nodelist to its limit.
+	 */
+	list_for_each_entry(cachep, &slab_caches, list) {
+		n = get_node(cachep, node);
+		if (!n)
+			continue;
+		drain_freelist(cachep, n, INT_MAX);
+	}
+}
+
+static int cpuup_prepare(long cpu)
+{
+	struct kmem_cache *cachep;
+	int node = cpu_to_mem(cpu);
+	int err;
+
+	/*
+	 * We need to do this right in the beginning since
+	 * alloc_arraycache's are going to use this list.
+	 * kmalloc_node allows us to add the slab to the right
+	 * kmem_cache_node and not this cpu's kmem_cache_node
+	 */
+	err = init_cache_node_node(node);
+	if (err < 0)
+		goto bad;
+
+	/*
+	 * Now we can go ahead with allocating the shared arrays and
+	 * array caches
+	 */
+	list_for_each_entry(cachep, &slab_caches, list) {
+		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
+		if (err)
+			goto bad;
+	}
+
+	return 0;
+bad:
+	cpuup_canceled(cpu);
+	return -ENOMEM;
+}
+
+int slab_prepare_cpu(unsigned int cpu)
+{
+	int err;
+
+	mutex_lock(&slab_mutex);
+	err = cpuup_prepare(cpu);
+	mutex_unlock(&slab_mutex);
+	return err;
+}
+
+/*
+ * This is called for a failed online attempt and for a successful
+ * offline.
+ *
+ * Even if all the cpus of a node are down, we don't free the
+ * kmem_list3 of any cache. This to avoid a race between cpu_down, and
+ * a kmalloc allocation from another cpu for memory from the node of
+ * the cpu going down.  The list3 structure is usually allocated from
+ * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
+ */
+int slab_dead_cpu(unsigned int cpu)
+{
+	mutex_lock(&slab_mutex);
+	cpuup_canceled(cpu);
+	mutex_unlock(&slab_mutex);
+	return 0;
+}
+#endif
+
+static int slab_online_cpu(unsigned int cpu)
+{
+	start_cpu_timer(cpu);
+	return 0;
+}
+
+static int slab_offline_cpu(unsigned int cpu)
+{
+	/*
+	 * Shutdown cache reaper. Note that the slab_mutex is held so
+	 * that if cache_reap() is invoked it cannot do anything
+	 * expensive but will only modify reap_work and reschedule the
+	 * timer.
+	 */
+	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
+	/* Now the cache_reaper is guaranteed to be not running. */
+	per_cpu(slab_reap_work, cpu).work.func = NULL;
+	return 0;
+}
+
+#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
+/*
+ * Drains freelist for a node on each slab cache, used for memory hot-remove.
+ * Returns -EBUSY if all objects cannot be drained so that the node is not
+ * removed.
+ *
+ * Must hold slab_mutex.
+ */
+static int __meminit drain_cache_node_node(int node)
+{
+	struct kmem_cache *cachep;
+	int ret = 0;
+
+	list_for_each_entry(cachep, &slab_caches, list) {
+		struct kmem_cache_node *n;
+
+		n = get_node(cachep, node);
+		if (!n)
+			continue;
+
+		drain_freelist(cachep, n, INT_MAX);
+
+		if (!list_empty(&n->slabs_full) ||
+		    !list_empty(&n->slabs_partial)) {
+			ret = -EBUSY;
+			break;
+		}
+	}
+	return ret;
+}
+
+static int __meminit slab_memory_callback(struct notifier_block *self,
+					unsigned long action, void *arg)
+{
+	struct memory_notify *mnb = arg;
+	int ret = 0;
+	int nid;
+
+	nid = mnb->status_change_nid;
+	if (nid < 0)
+		goto out;
+
+	switch (action) {
+	case MEM_GOING_ONLINE:
+		mutex_lock(&slab_mutex);
+		ret = init_cache_node_node(nid);
+		mutex_unlock(&slab_mutex);
+		break;
+	case MEM_GOING_OFFLINE:
+		mutex_lock(&slab_mutex);
+		ret = drain_cache_node_node(nid);
+		mutex_unlock(&slab_mutex);
+		break;
+	case MEM_ONLINE:
+	case MEM_OFFLINE:
+	case MEM_CANCEL_ONLINE:
+	case MEM_CANCEL_OFFLINE:
+		break;
+	}
+out:
+	return notifier_from_errno(ret);
+}
+#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
+
+/*
+ * swap the static kmem_cache_node with kmalloced memory
+ */
+static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
+				int nodeid)
+{
+	struct kmem_cache_node *ptr;
+
+	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
+	BUG_ON(!ptr);
+
+	memcpy(ptr, list, sizeof(struct kmem_cache_node));
+	/*
+	 * Do not assume that spinlocks can be initialized via memcpy:
+	 */
+	spin_lock_init(&ptr->list_lock);
+
+	MAKE_ALL_LISTS(cachep, ptr, nodeid);
+	cachep->node[nodeid] = ptr;
+}
+
+/*
+ * For setting up all the kmem_cache_node for cache whose buffer_size is same as
+ * size of kmem_cache_node.
+ */
+static void __init set_up_node(struct kmem_cache *cachep, int index)
+{
+	int node;
+
+	for_each_online_node(node) {
+		cachep->node[node] = &init_kmem_cache_node[index + node];
+		cachep->node[node]->next_reap = jiffies +
+		    REAPTIMEOUT_NODE +
+		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
+	}
+}
+
+/*
+ * Initialisation.  Called after the page allocator have been initialised and
+ * before smp_init().
+ */
+void __init kmem_cache_init(void)
+{
+	int i;
+
+	kmem_cache = &kmem_cache_boot;
+
+	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
+		use_alien_caches = 0;
+
+	for (i = 0; i < NUM_INIT_LISTS; i++)
+		kmem_cache_node_init(&init_kmem_cache_node[i]);
+
+	/*
+	 * Fragmentation resistance on low memory - only use bigger
+	 * page orders on machines with more than 32MB of memory if
+	 * not overridden on the command line.
+	 */
+	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
+		slab_max_order = SLAB_MAX_ORDER_HI;
+
+	/* Bootstrap is tricky, because several objects are allocated
+	 * from caches that do not exist yet:
+	 * 1) initialize the kmem_cache cache: it contains the struct
+	 *    kmem_cache structures of all caches, except kmem_cache itself:
+	 *    kmem_cache is statically allocated.
+	 *    Initially an __init data area is used for the head array and the
+	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
+	 *    array at the end of the bootstrap.
+	 * 2) Create the first kmalloc cache.
+	 *    The struct kmem_cache for the new cache is allocated normally.
+	 *    An __init data area is used for the head array.
+	 * 3) Create the remaining kmalloc caches, with minimally sized
+	 *    head arrays.
+	 * 4) Replace the __init data head arrays for kmem_cache and the first
+	 *    kmalloc cache with kmalloc allocated arrays.
+	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
+	 *    the other cache's with kmalloc allocated memory.
+	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
+	 */
+
+	/* 1) create the kmem_cache */
+
+	/*
+	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
+	 */
+	create_boot_cache(kmem_cache, "kmem_cache",
+		offsetof(struct kmem_cache, node) +
+				  nr_node_ids * sizeof(struct kmem_cache_node *),
+				  SLAB_HWCACHE_ALIGN, 0, 0);
+	list_add(&kmem_cache->list, &slab_caches);
+	memcg_link_cache(kmem_cache);
+	slab_state = PARTIAL;
+
+	/*
+	 * Initialize the caches that provide memory for the  kmem_cache_node
+	 * structures first.  Without this, further allocations will bug.
+	 */
+	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
+				kmalloc_info[INDEX_NODE].name,
+				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
+				0, kmalloc_size(INDEX_NODE));
+	slab_state = PARTIAL_NODE;
+	setup_kmalloc_cache_index_table();
+
+	slab_early_init = 0;
+
+	/* 5) Replace the bootstrap kmem_cache_node */
+	{
+		int nid;
+
+		for_each_online_node(nid) {
+			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
+
+			init_list(kmalloc_caches[INDEX_NODE],
+					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
+		}
+	}
+
+	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
+}
+
+void __init kmem_cache_init_late(void)
+{
+	struct kmem_cache *cachep;
+
+	/* 6) resize the head arrays to their final sizes */
+	mutex_lock(&slab_mutex);
+	list_for_each_entry(cachep, &slab_caches, list)
+		if (enable_cpucache(cachep, GFP_NOWAIT))
+			BUG();
+	mutex_unlock(&slab_mutex);
+
+	/* Done! */
+	slab_state = FULL;
+
+#ifdef CONFIG_NUMA
+	/*
+	 * Register a memory hotplug callback that initializes and frees
+	 * node.
+	 */
+	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
+#endif
+
+	/*
+	 * The reap timers are started later, with a module init call: That part
+	 * of the kernel is not yet operational.
+	 */
+}
+
+static int __init cpucache_init(void)
+{
+	int ret;
+
+	/*
+	 * Register the timers that return unneeded pages to the page allocator
+	 */
+	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
+				slab_online_cpu, slab_offline_cpu);
+	WARN_ON(ret < 0);
+
+	return 0;
+}
+__initcall(cpucache_init);
+
+static noinline void
+slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
+{
+#if DEBUG
+	struct kmem_cache_node *n;
+	unsigned long flags;
+	int node;
+	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
+				      DEFAULT_RATELIMIT_BURST);
+
+	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
+		return;
+
+	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
+		nodeid, gfpflags, &gfpflags);
+	pr_warn("  cache: %s, object size: %d, order: %d\n",
+		cachep->name, cachep->size, cachep->gfporder);
+
+	for_each_kmem_cache_node(cachep, node, n) {
+		unsigned long total_slabs, free_slabs, free_objs;
+
+		spin_lock_irqsave(&n->list_lock, flags);
+		total_slabs = n->total_slabs;
+		free_slabs = n->free_slabs;
+		free_objs = n->free_objects;
+		spin_unlock_irqrestore(&n->list_lock, flags);
+
+		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
+			node, total_slabs - free_slabs, total_slabs,
+			(total_slabs * cachep->num) - free_objs,
+			total_slabs * cachep->num);
+	}
+#endif
+}
+
+/*
+ * Interface to system's page allocator. No need to hold the
+ * kmem_cache_node ->list_lock.
+ *
+ * If we requested dmaable memory, we will get it. Even if we
+ * did not request dmaable memory, we might get it, but that
+ * would be relatively rare and ignorable.
+ */
+static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
+								int nodeid)
+{
+	struct page *page;
+	int nr_pages;
+
+	flags |= cachep->allocflags;
+
+	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
+	if (!page) {
+		slab_out_of_memory(cachep, flags, nodeid);
+		return NULL;
+	}
+
+	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
+		__free_pages(page, cachep->gfporder);
+		return NULL;
+	}
+
+	nr_pages = (1 << cachep->gfporder);
+	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
+	else
+		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
+
+	__SetPageSlab(page);
+	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
+	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
+		SetPageSlabPfmemalloc(page);
+
+	return page;
+}
+
+/*
+ * Interface to system's page release.
+ */
+static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
+{
+	int order = cachep->gfporder;
+	unsigned long nr_freed = (1 << order);
+
+	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
+	else
+		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
+
+	BUG_ON(!PageSlab(page));
+	__ClearPageSlabPfmemalloc(page);
+	__ClearPageSlab(page);
+	page_mapcount_reset(page);
+	page->mapping = NULL;
+
+	if (current->reclaim_state)
+		current->reclaim_state->reclaimed_slab += nr_freed;
+	memcg_uncharge_slab(page, order, cachep);
+	__free_pages(page, order);
+}
+
+static void kmem_rcu_free(struct rcu_head *head)
+{
+	struct kmem_cache *cachep;
+	struct page *page;
+
+	page = container_of(head, struct page, rcu_head);
+	cachep = page->slab_cache;
+
+	kmem_freepages(cachep, page);
+}
+
+#if DEBUG
+static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
+{
+	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
+		(cachep->size % PAGE_SIZE) == 0)
+		return true;
+
+	return false;
+}
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
+			    unsigned long caller)
+{
+	int size = cachep->object_size;
+
+	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
+
+	if (size < 5 * sizeof(unsigned long))
+		return;
+
+	*addr++ = 0x12345678;
+	*addr++ = caller;
+	*addr++ = smp_processor_id();
+	size -= 3 * sizeof(unsigned long);
+	{
+		unsigned long *sptr = &caller;
+		unsigned long svalue;
+
+		while (!kstack_end(sptr)) {
+			svalue = *sptr++;
+			if (kernel_text_address(svalue)) {
+				*addr++ = svalue;
+				size -= sizeof(unsigned long);
+				if (size <= sizeof(unsigned long))
+					break;
+			}
+		}
+
+	}
+	*addr++ = 0x87654321;
+}
+
+static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
+				int map, unsigned long caller)
+{
+	if (!is_debug_pagealloc_cache(cachep))
+		return;
+
+	if (caller)
+		store_stackinfo(cachep, objp, caller);
+
+	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
+}
+
+#else
+static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
+				int map, unsigned long caller) {}
+
+#endif
+
+static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
+{
+	int size = cachep->object_size;
+	addr = &((char *)addr)[obj_offset(cachep)];
+
+	memset(addr, val, size);
+	*(unsigned char *)(addr + size - 1) = POISON_END;
+}
+
+static void dump_line(char *data, int offset, int limit)
+{
+	int i;
+	unsigned char error = 0;
+	int bad_count = 0;
+
+	pr_err("%03x: ", offset);
+	for (i = 0; i < limit; i++) {
+		if (data[offset + i] != POISON_FREE) {
+			error = data[offset + i];
+			bad_count++;
+		}
+	}
+	print_hex_dump(KERN_CONT, "", 0, 16, 1,
+			&data[offset], limit, 1);
+
+	if (bad_count == 1) {
+		error ^= POISON_FREE;
+		if (!(error & (error - 1))) {
+			pr_err("Single bit error detected. Probably bad RAM.\n");
+#ifdef CONFIG_X86
+			pr_err("Run memtest86+ or a similar memory test tool.\n");
+#else
+			pr_err("Run a memory test tool.\n");
+#endif
+		}
+	}
+}
+#endif
+
+#if DEBUG
+
+static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
+{
+	int i, size;
+	char *realobj;
+
+	if (cachep->flags & SLAB_RED_ZONE) {
+		pr_err("Redzone: 0x%llx/0x%llx\n",
+		       *dbg_redzone1(cachep, objp),
+		       *dbg_redzone2(cachep, objp));
+	}
+
+	if (cachep->flags & SLAB_STORE_USER)
+		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
+	realobj = (char *)objp + obj_offset(cachep);
+	size = cachep->object_size;
+	for (i = 0; i < size && lines; i += 16, lines--) {
+		int limit;
+		limit = 16;
+		if (i + limit > size)
+			limit = size - i;
+		dump_line(realobj, i, limit);
+	}
+}
+
+static void check_poison_obj(struct kmem_cache *cachep, void *objp)
+{
+	char *realobj;
+	int size, i;
+	int lines = 0;
+
+	if (is_debug_pagealloc_cache(cachep))
+		return;
+
+	realobj = (char *)objp + obj_offset(cachep);
+	size = cachep->object_size;
+
+	for (i = 0; i < size; i++) {
+		char exp = POISON_FREE;
+		if (i == size - 1)
+			exp = POISON_END;
+		if (realobj[i] != exp) {
+			int limit;
+			/* Mismatch ! */
+			/* Print header */
+			if (lines == 0) {
+				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
+				       print_tainted(), cachep->name,
+				       realobj, size);
+				print_objinfo(cachep, objp, 0);
+			}
+			/* Hexdump the affected line */
+			i = (i / 16) * 16;
+			limit = 16;
+			if (i + limit > size)
+				limit = size - i;
+			dump_line(realobj, i, limit);
+			i += 16;
+			lines++;
+			/* Limit to 5 lines */
+			if (lines > 5)
+				break;
+		}
+	}
+	if (lines != 0) {
+		/* Print some data about the neighboring objects, if they
+		 * exist:
+		 */
+		struct page *page = virt_to_head_page(objp);
+		unsigned int objnr;
+
+		objnr = obj_to_index(cachep, page, objp);
+		if (objnr) {
+			objp = index_to_obj(cachep, page, objnr - 1);
+			realobj = (char *)objp + obj_offset(cachep);
+			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
+			print_objinfo(cachep, objp, 2);
+		}
+		if (objnr + 1 < cachep->num) {
+			objp = index_to_obj(cachep, page, objnr + 1);
+			realobj = (char *)objp + obj_offset(cachep);
+			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
+			print_objinfo(cachep, objp, 2);
+		}
+	}
+}
+#endif
+
+#if DEBUG
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+						struct page *page)
+{
+	int i;
+
+	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
+		poison_obj(cachep, page->freelist - obj_offset(cachep),
+			POISON_FREE);
+	}
+
+	for (i = 0; i < cachep->num; i++) {
+		void *objp = index_to_obj(cachep, page, i);
+
+		if (cachep->flags & SLAB_POISON) {
+			check_poison_obj(cachep, objp);
+			slab_kernel_map(cachep, objp, 1, 0);
+		}
+		if (cachep->flags & SLAB_RED_ZONE) {
+			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
+				slab_error(cachep, "start of a freed object was overwritten");
+			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
+				slab_error(cachep, "end of a freed object was overwritten");
+		}
+	}
+}
+#else
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+						struct page *page)
+{
+}
+#endif
+
+/**
+ * slab_destroy - destroy and release all objects in a slab
+ * @cachep: cache pointer being destroyed
+ * @page: page pointer being destroyed
+ *
+ * Destroy all the objs in a slab page, and release the mem back to the system.
+ * Before calling the slab page must have been unlinked from the cache. The
+ * kmem_cache_node ->list_lock is not held/needed.
+ */
+static void slab_destroy(struct kmem_cache *cachep, struct page *page)
+{
+	void *freelist;
+
+	freelist = page->freelist;
+	slab_destroy_debugcheck(cachep, page);
+	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
+		call_rcu(&page->rcu_head, kmem_rcu_free);
+	else
+		kmem_freepages(cachep, page);
+
+	/*
+	 * From now on, we don't use freelist
+	 * although actual page can be freed in rcu context
+	 */
+	if (OFF_SLAB(cachep))
+		kmem_cache_free(cachep->freelist_cache, freelist);
+}
+
+static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
+{
+	struct page *page, *n;
+
+	list_for_each_entry_safe(page, n, list, lru) {
+		list_del(&page->lru);
+		slab_destroy(cachep, page);
+	}
+}
+
+/**
+ * calculate_slab_order - calculate size (page order) of slabs
+ * @cachep: pointer to the cache that is being created
+ * @size: size of objects to be created in this cache.
+ * @flags: slab allocation flags
+ *
+ * Also calculates the number of objects per slab.
+ *
+ * This could be made much more intelligent.  For now, try to avoid using
+ * high order pages for slabs.  When the gfp() functions are more friendly
+ * towards high-order requests, this should be changed.
+ */
+static size_t calculate_slab_order(struct kmem_cache *cachep,
+				size_t size, slab_flags_t flags)
+{
+	size_t left_over = 0;
+	int gfporder;
+
+	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
+		unsigned int num;
+		size_t remainder;
+
+		num = cache_estimate(gfporder, size, flags, &remainder);
+		if (!num)
+			continue;
+
+		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
+		if (num > SLAB_OBJ_MAX_NUM)
+			break;
+
+		if (flags & CFLGS_OFF_SLAB) {
+			struct kmem_cache *freelist_cache;
+			size_t freelist_size;
+
+			freelist_size = num * sizeof(freelist_idx_t);
+			freelist_cache = kmalloc_slab(freelist_size, 0u);
+			if (!freelist_cache)
+				continue;
+
+			/*
+			 * Needed to avoid possible looping condition
+			 * in cache_grow_begin()
+			 */
+			if (OFF_SLAB(freelist_cache))
+				continue;
+
+			/* check if off slab has enough benefit */
+			if (freelist_cache->size > cachep->size / 2)
+				continue;
+		}
+
+		/* Found something acceptable - save it away */
+		cachep->num = num;
+		cachep->gfporder = gfporder;
+		left_over = remainder;
+
+		/*
+		 * A VFS-reclaimable slab tends to have most allocations
+		 * as GFP_NOFS and we really don't want to have to be allocating
+		 * higher-order pages when we are unable to shrink dcache.
+		 */
+		if (flags & SLAB_RECLAIM_ACCOUNT)
+			break;
+
+		/*
+		 * Large number of objects is good, but very large slabs are
+		 * currently bad for the gfp()s.
+		 */
+		if (gfporder >= slab_max_order)
+			break;
+
+		/*
+		 * Acceptable internal fragmentation?
+		 */
+		if (left_over * 8 <= (PAGE_SIZE << gfporder))
+			break;
+	}
+	return left_over;
+}
+
+static struct array_cache __percpu *alloc_kmem_cache_cpus(
+		struct kmem_cache *cachep, int entries, int batchcount)
+{
+	int cpu;
+	size_t size;
+	struct array_cache __percpu *cpu_cache;
+
+	size = sizeof(void *) * entries + sizeof(struct array_cache);
+	cpu_cache = __alloc_percpu(size, sizeof(void *));
+
+	if (!cpu_cache)
+		return NULL;
+
+	for_each_possible_cpu(cpu) {
+		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
+				entries, batchcount);
+	}
+
+	return cpu_cache;
+}
+
+static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
+{
+	if (slab_state >= FULL)
+		return enable_cpucache(cachep, gfp);
+
+	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
+	if (!cachep->cpu_cache)
+		return 1;
+
+	if (slab_state == DOWN) {
+		/* Creation of first cache (kmem_cache). */
+		set_up_node(kmem_cache, CACHE_CACHE);
+	} else if (slab_state == PARTIAL) {
+		/* For kmem_cache_node */
+		set_up_node(cachep, SIZE_NODE);
+	} else {
+		int node;
+
+		for_each_online_node(node) {
+			cachep->node[node] = kmalloc_node(
+				sizeof(struct kmem_cache_node), gfp, node);
+			BUG_ON(!cachep->node[node]);
+			kmem_cache_node_init(cachep->node[node]);
+		}
+	}
+
+	cachep->node[numa_mem_id()]->next_reap =
+			jiffies + REAPTIMEOUT_NODE +
+			((unsigned long)cachep) % REAPTIMEOUT_NODE;
+
+	cpu_cache_get(cachep)->avail = 0;
+	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
+	cpu_cache_get(cachep)->batchcount = 1;
+	cpu_cache_get(cachep)->touched = 0;
+	cachep->batchcount = 1;
+	cachep->limit = BOOT_CPUCACHE_ENTRIES;
+	return 0;
+}
+
+slab_flags_t kmem_cache_flags(unsigned int object_size,
+	slab_flags_t flags, const char *name,
+	void (*ctor)(void *))
+{
+	return flags;
+}
+
+struct kmem_cache *
+__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
+		   slab_flags_t flags, void (*ctor)(void *))
+{
+	struct kmem_cache *cachep;
+
+	cachep = find_mergeable(size, align, flags, name, ctor);
+	if (cachep) {
+		cachep->refcount++;
+
+		/*
+		 * Adjust the object sizes so that we clear
+		 * the complete object on kzalloc.
+		 */
+		cachep->object_size = max_t(int, cachep->object_size, size);
+	}
+	return cachep;
+}
+
+static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
+			size_t size, slab_flags_t flags)
+{
+	size_t left;
+
+	cachep->num = 0;
+
+	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
+		return false;
+
+	left = calculate_slab_order(cachep, size,
+			flags | CFLGS_OBJFREELIST_SLAB);
+	if (!cachep->num)
+		return false;
+
+	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
+		return false;
+
+	cachep->colour = left / cachep->colour_off;
+
+	return true;
+}
+
+static bool set_off_slab_cache(struct kmem_cache *cachep,
+			size_t size, slab_flags_t flags)
+{
+	size_t left;
+
+	cachep->num = 0;
+
+	/*
+	 * Always use on-slab management when SLAB_NOLEAKTRACE
+	 * to avoid recursive calls into kmemleak.
+	 */
+	if (flags & SLAB_NOLEAKTRACE)
+		return false;
+
+	/*
+	 * Size is large, assume best to place the slab management obj
+	 * off-slab (should allow better packing of objs).
+	 */
+	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
+	if (!cachep->num)
+		return false;
+
+	/*
+	 * If the slab has been placed off-slab, and we have enough space then
+	 * move it on-slab. This is at the expense of any extra colouring.
+	 */
+	if (left >= cachep->num * sizeof(freelist_idx_t))
+		return false;
+
+	cachep->colour = left / cachep->colour_off;
+
+	return true;
+}
+
+static bool set_on_slab_cache(struct kmem_cache *cachep,
+			size_t size, slab_flags_t flags)
+{
+	size_t left;
+
+	cachep->num = 0;
+
+	left = calculate_slab_order(cachep, size, flags);
+	if (!cachep->num)
+		return false;
+
+	cachep->colour = left / cachep->colour_off;
+
+	return true;
+}
+
+/**
+ * __kmem_cache_create - Create a cache.
+ * @cachep: cache management descriptor
+ * @flags: SLAB flags
+ *
+ * Returns a ptr to the cache on success, NULL on failure.
+ * Cannot be called within a int, but can be interrupted.
+ * The @ctor is run when new pages are allocated by the cache.
+ *
+ * The flags are
+ *
+ * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
+ * to catch references to uninitialised memory.
+ *
+ * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
+ * for buffer overruns.
+ *
+ * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
+ * cacheline.  This can be beneficial if you're counting cycles as closely
+ * as davem.
+ */
+int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
+{
+	size_t ralign = BYTES_PER_WORD;
+	gfp_t gfp;
+	int err;
+	unsigned int size = cachep->size;
+
+#if DEBUG
+#if FORCED_DEBUG
+	/*
+	 * Enable redzoning and last user accounting, except for caches with
+	 * large objects, if the increased size would increase the object size
+	 * above the next power of two: caches with object sizes just above a
+	 * power of two have a significant amount of internal fragmentation.
+	 */
+	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
+						2 * sizeof(unsigned long long)))
+		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
+	if (!(flags & SLAB_TYPESAFE_BY_RCU))
+		flags |= SLAB_POISON;
+#endif
+#endif
+
+	/*
+	 * Check that size is in terms of words.  This is needed to avoid
+	 * unaligned accesses for some archs when redzoning is used, and makes
+	 * sure any on-slab bufctl's are also correctly aligned.
+	 */
+	size = ALIGN(size, BYTES_PER_WORD);
+
+	if (flags & SLAB_RED_ZONE) {
+		ralign = REDZONE_ALIGN;
+		/* If redzoning, ensure that the second redzone is suitably
+		 * aligned, by adjusting the object size accordingly. */
+		size = ALIGN(size, REDZONE_ALIGN);
+	}
+
+	/* 3) caller mandated alignment */
+	if (ralign < cachep->align) {
+		ralign = cachep->align;
+	}
+	/* disable debug if necessary */
+	if (ralign > __alignof__(unsigned long long))
+		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
+	/*
+	 * 4) Store it.
+	 */
+	cachep->align = ralign;
+	cachep->colour_off = cache_line_size();
+	/* Offset must be a multiple of the alignment. */
+	if (cachep->colour_off < cachep->align)
+		cachep->colour_off = cachep->align;
+
+	if (slab_is_available())
+		gfp = GFP_KERNEL;
+	else
+		gfp = GFP_NOWAIT;
+
+#if DEBUG
+
+	/*
+	 * Both debugging options require word-alignment which is calculated
+	 * into align above.
+	 */
+	if (flags & SLAB_RED_ZONE) {
+		/* add space for red zone words */
+		cachep->obj_offset += sizeof(unsigned long long);
+		size += 2 * sizeof(unsigned long long);
+	}
+	if (flags & SLAB_STORE_USER) {
+		/* user store requires one word storage behind the end of
+		 * the real object. But if the second red zone needs to be
+		 * aligned to 64 bits, we must allow that much space.
+		 */
+		if (flags & SLAB_RED_ZONE)
+			size += REDZONE_ALIGN;
+		else
+			size += BYTES_PER_WORD;
+	}
+#endif
+
+	kasan_cache_create(cachep, &size, &flags);
+
+	size = ALIGN(size, cachep->align);
+	/*
+	 * We should restrict the number of objects in a slab to implement
+	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
+	 */
+	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
+		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
+
+#if DEBUG
+	/*
+	 * To activate debug pagealloc, off-slab management is necessary
+	 * requirement. In early phase of initialization, small sized slab
+	 * doesn't get initialized so it would not be possible. So, we need
+	 * to check size >= 256. It guarantees that all necessary small
+	 * sized slab is initialized in current slab initialization sequence.
+	 */
+	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
+		size >= 256 && cachep->object_size > cache_line_size()) {
+		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
+			size_t tmp_size = ALIGN(size, PAGE_SIZE);
+
+			if (set_off_slab_cache(cachep, tmp_size, flags)) {
+				flags |= CFLGS_OFF_SLAB;
+				cachep->obj_offset += tmp_size - size;
+				size = tmp_size;
+				goto done;
+			}
+		}
+	}
+#endif
+
+	if (set_objfreelist_slab_cache(cachep, size, flags)) {
+		flags |= CFLGS_OBJFREELIST_SLAB;
+		goto done;
+	}
+
+	if (set_off_slab_cache(cachep, size, flags)) {
+		flags |= CFLGS_OFF_SLAB;
+		goto done;
+	}
+
+	if (set_on_slab_cache(cachep, size, flags))
+		goto done;
+
+	return -E2BIG;
+
+done:
+	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
+	cachep->flags = flags;
+	cachep->allocflags = __GFP_COMP;
+	if (flags & SLAB_CACHE_DMA)
+		cachep->allocflags |= GFP_DMA;
+	if (flags & SLAB_RECLAIM_ACCOUNT)
+		cachep->allocflags |= __GFP_RECLAIMABLE;
+	cachep->size = size;
+	cachep->reciprocal_buffer_size = reciprocal_value(size);
+
+#if DEBUG
+	/*
+	 * If we're going to use the generic kernel_map_pages()
+	 * poisoning, then it's going to smash the contents of
+	 * the redzone and userword anyhow, so switch them off.
+	 */
+	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
+		(cachep->flags & SLAB_POISON) &&
+		is_debug_pagealloc_cache(cachep))
+		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
+#endif
+
+	if (OFF_SLAB(cachep)) {
+		cachep->freelist_cache =
+			kmalloc_slab(cachep->freelist_size, 0u);
+	}
+
+	err = setup_cpu_cache(cachep, gfp);
+	if (err) {
+		__kmem_cache_release(cachep);
+		return err;
+	}
+
+	return 0;
+}
+
+#if DEBUG
+static void check_irq_off(void)
+{
+	BUG_ON(!irqs_disabled());
+}
+
+static void check_irq_on(void)
+{
+	BUG_ON(irqs_disabled());
+}
+
+static void check_mutex_acquired(void)
+{
+	BUG_ON(!mutex_is_locked(&slab_mutex));
+}
+
+static void check_spinlock_acquired(struct kmem_cache *cachep)
+{
+#ifdef CONFIG_SMP
+	check_irq_off();
+	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
+#endif
+}
+
+static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
+{
+#ifdef CONFIG_SMP
+	check_irq_off();
+	assert_spin_locked(&get_node(cachep, node)->list_lock);
+#endif
+}
+
+#else
+#define check_irq_off()	do { } while(0)
+#define check_irq_on()	do { } while(0)
+#define check_mutex_acquired()	do { } while(0)
+#define check_spinlock_acquired(x) do { } while(0)
+#define check_spinlock_acquired_node(x, y) do { } while(0)
+#endif
+
+static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
+				int node, bool free_all, struct list_head *list)
+{
+	int tofree;
+
+	if (!ac || !ac->avail)
+		return;
+
+	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
+	if (tofree > ac->avail)
+		tofree = (ac->avail + 1) / 2;
+
+	free_block(cachep, ac->entry, tofree, node, list);
+	ac->avail -= tofree;
+	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
+}
+
+static void do_drain(void *arg)
+{
+	struct kmem_cache *cachep = arg;
+	struct array_cache *ac;
+	int node = numa_mem_id();
+	struct kmem_cache_node *n;
+	LIST_HEAD(list);
+
+	check_irq_off();
+	ac = cpu_cache_get(cachep);
+	n = get_node(cachep, node);
+	spin_lock(&n->list_lock);
+	free_block(cachep, ac->entry, ac->avail, node, &list);
+	spin_unlock(&n->list_lock);
+	slabs_destroy(cachep, &list);
+	ac->avail = 0;
+}
+
+static void drain_cpu_caches(struct kmem_cache *cachep)
+{
+	struct kmem_cache_node *n;
+	int node;
+	LIST_HEAD(list);
+
+	on_each_cpu(do_drain, cachep, 1);
+	check_irq_on();
+	for_each_kmem_cache_node(cachep, node, n)
+		if (n->alien)
+			drain_alien_cache(cachep, n->alien);
+
+	for_each_kmem_cache_node(cachep, node, n) {
+		spin_lock_irq(&n->list_lock);
+		drain_array_locked(cachep, n->shared, node, true, &list);
+		spin_unlock_irq(&n->list_lock);
+
+		slabs_destroy(cachep, &list);
+	}
+}
+
+/*
+ * Remove slabs from the list of free slabs.
+ * Specify the number of slabs to drain in tofree.
+ *
+ * Returns the actual number of slabs released.
+ */
+static int drain_freelist(struct kmem_cache *cache,
+			struct kmem_cache_node *n, int tofree)
+{
+	struct list_head *p;
+	int nr_freed;
+	struct page *page;
+
+	nr_freed = 0;
+	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
+
+		spin_lock_irq(&n->list_lock);
+		p = n->slabs_free.prev;
+		if (p == &n->slabs_free) {
+			spin_unlock_irq(&n->list_lock);
+			goto out;
+		}
+
+		page = list_entry(p, struct page, lru);
+		list_del(&page->lru);
+		n->free_slabs--;
+		n->total_slabs--;
+		/*
+		 * Safe to drop the lock. The slab is no longer linked
+		 * to the cache.
+		 */
+		n->free_objects -= cache->num;
+		spin_unlock_irq(&n->list_lock);
+		slab_destroy(cache, page);
+		nr_freed++;
+	}
+out:
+	return nr_freed;
+}
+
+bool __kmem_cache_empty(struct kmem_cache *s)
+{
+	int node;
+	struct kmem_cache_node *n;
+
+	for_each_kmem_cache_node(s, node, n)
+		if (!list_empty(&n->slabs_full) ||
+		    !list_empty(&n->slabs_partial))
+			return false;
+	return true;
+}
+
+int __kmem_cache_shrink(struct kmem_cache *cachep)
+{
+	int ret = 0;
+	int node;
+	struct kmem_cache_node *n;
+
+	drain_cpu_caches(cachep);
+
+	check_irq_on();
+	for_each_kmem_cache_node(cachep, node, n) {
+		drain_freelist(cachep, n, INT_MAX);
+
+		ret += !list_empty(&n->slabs_full) ||
+			!list_empty(&n->slabs_partial);
+	}
+	return (ret ? 1 : 0);
+}
+
+#ifdef CONFIG_MEMCG
+void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
+{
+	__kmem_cache_shrink(cachep);
+}
+#endif
+
+int __kmem_cache_shutdown(struct kmem_cache *cachep)
+{
+	return __kmem_cache_shrink(cachep);
+}
+
+void __kmem_cache_release(struct kmem_cache *cachep)
+{
+	int i;
+	struct kmem_cache_node *n;
+
+	cache_random_seq_destroy(cachep);
+
+	free_percpu(cachep->cpu_cache);
+
+	/* NUMA: free the node structures */
+	for_each_kmem_cache_node(cachep, i, n) {
+		kfree(n->shared);
+		free_alien_cache(n->alien);
+		kfree(n);
+		cachep->node[i] = NULL;
+	}
+}
+
+/*
+ * Get the memory for a slab management obj.
+ *
+ * For a slab cache when the slab descriptor is off-slab, the
+ * slab descriptor can't come from the same cache which is being created,
+ * Because if it is the case, that means we defer the creation of
+ * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
+ * And we eventually call down to __kmem_cache_create(), which
+ * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
+ * This is a "chicken-and-egg" problem.
+ *
+ * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
+ * which are all initialized during kmem_cache_init().
+ */
+static void *alloc_slabmgmt(struct kmem_cache *cachep,
+				   struct page *page, int colour_off,
+				   gfp_t local_flags, int nodeid)
+{
+	void *freelist;
+	void *addr = page_address(page);
+
+	page->s_mem = addr + colour_off;
+	page->active = 0;
+
+	if (OBJFREELIST_SLAB(cachep))
+		freelist = NULL;
+	else if (OFF_SLAB(cachep)) {
+		/* Slab management obj is off-slab. */
+		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
+					      local_flags, nodeid);
+		if (!freelist)
+			return NULL;
+	} else {
+		/* We will use last bytes at the slab for freelist */
+		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
+				cachep->freelist_size;
+	}
+
+	return freelist;
+}
+
+static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
+{
+	return ((freelist_idx_t *)page->freelist)[idx];
+}
+
+static inline void set_free_obj(struct page *page,
+					unsigned int idx, freelist_idx_t val)
+{
+	((freelist_idx_t *)(page->freelist))[idx] = val;
+}
+
+static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
+{
+#if DEBUG
+	int i;
+
+	for (i = 0; i < cachep->num; i++) {
+		void *objp = index_to_obj(cachep, page, i);
+
+		if (cachep->flags & SLAB_STORE_USER)
+			*dbg_userword(cachep, objp) = NULL;
+
+		if (cachep->flags & SLAB_RED_ZONE) {
+			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
+			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
+		}
+		/*
+		 * Constructors are not allowed to allocate memory from the same
+		 * cache which they are a constructor for.  Otherwise, deadlock.
+		 * They must also be threaded.
+		 */
+		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
+			kasan_unpoison_object_data(cachep,
+						   objp + obj_offset(cachep));
+			cachep->ctor(objp + obj_offset(cachep));
+			kasan_poison_object_data(
+				cachep, objp + obj_offset(cachep));
+		}
+
+		if (cachep->flags & SLAB_RED_ZONE) {
+			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
+				slab_error(cachep, "constructor overwrote the end of an object");
+			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
+				slab_error(cachep, "constructor overwrote the start of an object");
+		}
+		/* need to poison the objs? */
+		if (cachep->flags & SLAB_POISON) {
+			poison_obj(cachep, objp, POISON_FREE);
+			slab_kernel_map(cachep, objp, 0, 0);
+		}
+	}
+#endif
+}
+
+#ifdef CONFIG_SLAB_FREELIST_RANDOM
+/* Hold information during a freelist initialization */
+union freelist_init_state {
+	struct {
+		unsigned int pos;
+		unsigned int *list;
+		unsigned int count;
+	};
+	struct rnd_state rnd_state;
+};
+
+/*
+ * Initialize the state based on the randomization methode available.
+ * return true if the pre-computed list is available, false otherwize.
+ */
+static bool freelist_state_initialize(union freelist_init_state *state,
+				struct kmem_cache *cachep,
+				unsigned int count)
+{
+	bool ret;
+	unsigned int rand;
+
+	/* Use best entropy available to define a random shift */
+	rand = get_random_int();
+
+	/* Use a random state if the pre-computed list is not available */
+	if (!cachep->random_seq) {
+		prandom_seed_state(&state->rnd_state, rand);
+		ret = false;
+	} else {
+		state->list = cachep->random_seq;
+		state->count = count;
+		state->pos = rand % count;
+		ret = true;
+	}
+	return ret;
+}
+
+/* Get the next entry on the list and randomize it using a random shift */
+static freelist_idx_t next_random_slot(union freelist_init_state *state)
+{
+	if (state->pos >= state->count)
+		state->pos = 0;
+	return state->list[state->pos++];
+}
+
+/* Swap two freelist entries */
+static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
+{
+	swap(((freelist_idx_t *)page->freelist)[a],
+		((freelist_idx_t *)page->freelist)[b]);
+}
+
+/*
+ * Shuffle the freelist initialization state based on pre-computed lists.
+ * return true if the list was successfully shuffled, false otherwise.
+ */
+static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
+{
+	unsigned int objfreelist = 0, i, rand, count = cachep->num;
+	union freelist_init_state state;
+	bool precomputed;
+
+	if (count < 2)
+		return false;
+
+	precomputed = freelist_state_initialize(&state, cachep, count);
+
+	/* Take a random entry as the objfreelist */
+	if (OBJFREELIST_SLAB(cachep)) {
+		if (!precomputed)
+			objfreelist = count - 1;
+		else
+			objfreelist = next_random_slot(&state);
+		page->freelist = index_to_obj(cachep, page, objfreelist) +
+						obj_offset(cachep);
+		count--;
+	}
+
+	/*
+	 * On early boot, generate the list dynamically.
+	 * Later use a pre-computed list for speed.
+	 */
+	if (!precomputed) {
+		for (i = 0; i < count; i++)
+			set_free_obj(page, i, i);
+
+		/* Fisher-Yates shuffle */
+		for (i = count - 1; i > 0; i--) {
+			rand = prandom_u32_state(&state.rnd_state);
+			rand %= (i + 1);
+			swap_free_obj(page, i, rand);
+		}
+	} else {
+		for (i = 0; i < count; i++)
+			set_free_obj(page, i, next_random_slot(&state));
+	}
+
+	if (OBJFREELIST_SLAB(cachep))
+		set_free_obj(page, cachep->num - 1, objfreelist);
+
+	return true;
+}
+#else
+static inline bool shuffle_freelist(struct kmem_cache *cachep,
+				struct page *page)
+{
+	return false;
+}
+#endif /* CONFIG_SLAB_FREELIST_RANDOM */
+
+static void cache_init_objs(struct kmem_cache *cachep,
+			    struct page *page)
+{
+	int i;
+	void *objp;
+	bool shuffled;
+
+	cache_init_objs_debug(cachep, page);
+
+	/* Try to randomize the freelist if enabled */
+	shuffled = shuffle_freelist(cachep, page);
+
+	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
+		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
+						obj_offset(cachep);
+	}
+
+	for (i = 0; i < cachep->num; i++) {
+		objp = index_to_obj(cachep, page, i);
+		kasan_init_slab_obj(cachep, objp);
+
+		/* constructor could break poison info */
+		if (DEBUG == 0 && cachep->ctor) {
+			kasan_unpoison_object_data(cachep, objp);
+			cachep->ctor(objp);
+			kasan_poison_object_data(cachep, objp);
+		}
+
+		if (!shuffled)
+			set_free_obj(page, i, i);
+	}
+}
+
+static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
+{
+	void *objp;
+
+	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
+	page->active++;
+
+#if DEBUG
+	if (cachep->flags & SLAB_STORE_USER)
+		set_store_user_dirty(cachep);
+#endif
+
+	return objp;
+}
+
+static void slab_put_obj(struct kmem_cache *cachep,
+			struct page *page, void *objp)
+{
+	unsigned int objnr = obj_to_index(cachep, page, objp);
+#if DEBUG
+	unsigned int i;
+
+	/* Verify double free bug */
+	for (i = page->active; i < cachep->num; i++) {
+		if (get_free_obj(page, i) == objnr) {
+			pr_err("slab: double free detected in cache '%s', objp %px\n",
+			       cachep->name, objp);
+			BUG();
+		}
+	}
+#endif
+	page->active--;
+	if (!page->freelist)
+		page->freelist = objp + obj_offset(cachep);
+
+	set_free_obj(page, page->active, objnr);
+}
+
+/*
+ * Map pages beginning at addr to the given cache and slab. This is required
+ * for the slab allocator to be able to lookup the cache and slab of a
+ * virtual address for kfree, ksize, and slab debugging.
+ */
+static void slab_map_pages(struct kmem_cache *cache, struct page *page,
+			   void *freelist)
+{
+	page->slab_cache = cache;
+	page->freelist = freelist;
+}
+
+/*
+ * Grow (by 1) the number of slabs within a cache.  This is called by
+ * kmem_cache_alloc() when there are no active objs left in a cache.
+ */
+static struct page *cache_grow_begin(struct kmem_cache *cachep,
+				gfp_t flags, int nodeid)
+{
+	void *freelist;
+	size_t offset;
+	gfp_t local_flags;
+	int page_node;
+	struct kmem_cache_node *n;
+	struct page *page;
+
+	/*
+	 * Be lazy and only check for valid flags here,  keeping it out of the
+	 * critical path in kmem_cache_alloc().
+	 */
+	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
+		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
+		flags &= ~GFP_SLAB_BUG_MASK;
+		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
+				invalid_mask, &invalid_mask, flags, &flags);
+		dump_stack();
+	}
+	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
+	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
+
+	check_irq_off();
+	if (gfpflags_allow_blocking(local_flags))
+		local_irq_enable();
+
+	/*
+	 * Get mem for the objs.  Attempt to allocate a physical page from
+	 * 'nodeid'.
+	 */
+	page = kmem_getpages(cachep, local_flags, nodeid);
+	if (!page)
+		goto failed;
+
+	page_node = page_to_nid(page);
+	n = get_node(cachep, page_node);
+
+	/* Get colour for the slab, and cal the next value. */
+	n->colour_next++;
+	if (n->colour_next >= cachep->colour)
+		n->colour_next = 0;
+
+	offset = n->colour_next;
+	if (offset >= cachep->colour)
+		offset = 0;
+
+	offset *= cachep->colour_off;
+
+	/* Get slab management. */
+	freelist = alloc_slabmgmt(cachep, page, offset,
+			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
+	if (OFF_SLAB(cachep) && !freelist)
+		goto opps1;
+
+	slab_map_pages(cachep, page, freelist);
+
+	kasan_poison_slab(page);
+	cache_init_objs(cachep, page);
+
+	if (gfpflags_allow_blocking(local_flags))
+		local_irq_disable();
+
+	return page;
+
+opps1:
+	kmem_freepages(cachep, page);
+failed:
+	if (gfpflags_allow_blocking(local_flags))
+		local_irq_disable();
+	return NULL;
+}
+
+static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
+{
+	struct kmem_cache_node *n;
+	void *list = NULL;
+
+	check_irq_off();
+
+	if (!page)
+		return;
+
+	INIT_LIST_HEAD(&page->lru);
+	n = get_node(cachep, page_to_nid(page));
+
+	spin_lock(&n->list_lock);
+	n->total_slabs++;
+	if (!page->active) {
+		list_add_tail(&page->lru, &(n->slabs_free));
+		n->free_slabs++;
+	} else
+		fixup_slab_list(cachep, n, page, &list);
+
+	STATS_INC_GROWN(cachep);
+	n->free_objects += cachep->num - page->active;
+	spin_unlock(&n->list_lock);
+
+	fixup_objfreelist_debug(cachep, &list);
+}
+
+#if DEBUG
+
+/*
+ * Perform extra freeing checks:
+ * - detect bad pointers.
+ * - POISON/RED_ZONE checking
+ */
+static void kfree_debugcheck(const void *objp)
+{
+	if (!virt_addr_valid(objp)) {
+		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
+		       (unsigned long)objp);
+		BUG();
+	}
+}
+
+static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
+{
+	unsigned long long redzone1, redzone2;
+
+	redzone1 = *dbg_redzone1(cache, obj);
+	redzone2 = *dbg_redzone2(cache, obj);
+
+	/*
+	 * Redzone is ok.
+	 */
+	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
+		return;
+
+	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
+		slab_error(cache, "double free detected");
+	else
+		slab_error(cache, "memory outside object was overwritten");
+
+	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
+	       obj, redzone1, redzone2);
+}
+
+static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
+				   unsigned long caller)
+{
+	unsigned int objnr;
+	struct page *page;
+
+	BUG_ON(virt_to_cache(objp) != cachep);
+
+	objp -= obj_offset(cachep);
+	kfree_debugcheck(objp);
+	page = virt_to_head_page(objp);
+
+	if (cachep->flags & SLAB_RED_ZONE) {
+		verify_redzone_free(cachep, objp);
+		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
+		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
+	}
+	if (cachep->flags & SLAB_STORE_USER) {
+		set_store_user_dirty(cachep);
+		*dbg_userword(cachep, objp) = (void *)caller;
+	}
+
+	objnr = obj_to_index(cachep, page, objp);
+
+	BUG_ON(objnr >= cachep->num);
+	BUG_ON(objp != index_to_obj(cachep, page, objnr));
+
+	if (cachep->flags & SLAB_POISON) {
+		poison_obj(cachep, objp, POISON_FREE);
+		slab_kernel_map(cachep, objp, 0, caller);
+	}
+	return objp;
+}
+
+#else
+#define kfree_debugcheck(x) do { } while(0)
+#define cache_free_debugcheck(x,objp,z) (objp)
+#endif
+
+static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
+						void **list)
+{
+#if DEBUG
+	void *next = *list;
+	void *objp;
+
+	while (next) {
+		objp = next - obj_offset(cachep);
+		next = *(void **)next;
+		poison_obj(cachep, objp, POISON_FREE);
+	}
+#endif
+}
+
+static inline void fixup_slab_list(struct kmem_cache *cachep,
+				struct kmem_cache_node *n, struct page *page,
+				void **list)
+{
+	/* move slabp to correct slabp list: */
+	list_del(&page->lru);
+	if (page->active == cachep->num) {
+		list_add(&page->lru, &n->slabs_full);
+		if (OBJFREELIST_SLAB(cachep)) {
+#if DEBUG
+			/* Poisoning will be done without holding the lock */
+			if (cachep->flags & SLAB_POISON) {
+				void **objp = page->freelist;
+
+				*objp = *list;
+				*list = objp;
+			}
+#endif
+			page->freelist = NULL;
+		}
+	} else
+		list_add(&page->lru, &n->slabs_partial);
+}
+
+/* Try to find non-pfmemalloc slab if needed */
+static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
+					struct page *page, bool pfmemalloc)
+{
+	if (!page)
+		return NULL;
+
+	if (pfmemalloc)
+		return page;
+
+	if (!PageSlabPfmemalloc(page))
+		return page;
+
+	/* No need to keep pfmemalloc slab if we have enough free objects */
+	if (n->free_objects > n->free_limit) {
+		ClearPageSlabPfmemalloc(page);
+		return page;
+	}
+
+	/* Move pfmemalloc slab to the end of list to speed up next search */
+	list_del(&page->lru);
+	if (!page->active) {
+		list_add_tail(&page->lru, &n->slabs_free);
+		n->free_slabs++;
+	} else
+		list_add_tail(&page->lru, &n->slabs_partial);
+
+	list_for_each_entry(page, &n->slabs_partial, lru) {
+		if (!PageSlabPfmemalloc(page))
+			return page;
+	}
+
+	n->free_touched = 1;
+	list_for_each_entry(page, &n->slabs_free, lru) {
+		if (!PageSlabPfmemalloc(page)) {
+			n->free_slabs--;
+			return page;
+		}
+	}
+
+	return NULL;
+}
+
+static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
+{
+	struct page *page;
+
+	assert_spin_locked(&n->list_lock);
+	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
+	if (!page) {
+		n->free_touched = 1;
+		page = list_first_entry_or_null(&n->slabs_free, struct page,
+						lru);
+		if (page)
+			n->free_slabs--;
+	}
+
+	if (sk_memalloc_socks())
+		page = get_valid_first_slab(n, page, pfmemalloc);
+
+	return page;
+}
+
+static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
+				struct kmem_cache_node *n, gfp_t flags)
+{
+	struct page *page;
+	void *obj;
+	void *list = NULL;
+
+	if (!gfp_pfmemalloc_allowed(flags))
+		return NULL;
+
+	spin_lock(&n->list_lock);
+	page = get_first_slab(n, true);
+	if (!page) {
+		spin_unlock(&n->list_lock);
+		return NULL;
+	}
+
+	obj = slab_get_obj(cachep, page);
+	n->free_objects--;
+
+	fixup_slab_list(cachep, n, page, &list);
+
+	spin_unlock(&n->list_lock);
+	fixup_objfreelist_debug(cachep, &list);
+
+	return obj;
+}
+
+/*
+ * Slab list should be fixed up by fixup_slab_list() for existing slab
+ * or cache_grow_end() for new slab
+ */
+static __always_inline int alloc_block(struct kmem_cache *cachep,
+		struct array_cache *ac, struct page *page, int batchcount)
+{
+	/*
+	 * There must be at least one object available for
+	 * allocation.
+	 */
+	BUG_ON(page->active >= cachep->num);
+
+	while (page->active < cachep->num && batchcount--) {
+		STATS_INC_ALLOCED(cachep);
+		STATS_INC_ACTIVE(cachep);
+		STATS_SET_HIGH(cachep);
+
+		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
+	}
+
+	return batchcount;
+}
+
+static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
+{
+	int batchcount;
+	struct kmem_cache_node *n;
+	struct array_cache *ac, *shared;
+	int node;
+	void *list = NULL;
+	struct page *page;
+
+	check_irq_off();
+	node = numa_mem_id();
+
+	ac = cpu_cache_get(cachep);
+	batchcount = ac->batchcount;
+	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
+		/*
+		 * If there was little recent activity on this cache, then
+		 * perform only a partial refill.  Otherwise we could generate
+		 * refill bouncing.
+		 */
+		batchcount = BATCHREFILL_LIMIT;
+	}
+	n = get_node(cachep, node);
+
+	BUG_ON(ac->avail > 0 || !n);
+	shared = READ_ONCE(n->shared);
+	if (!n->free_objects && (!shared || !shared->avail))
+		goto direct_grow;
+
+	spin_lock(&n->list_lock);
+	shared = READ_ONCE(n->shared);
+
+	/* See if we can refill from the shared array */
+	if (shared && transfer_objects(ac, shared, batchcount)) {
+		shared->touched = 1;
+		goto alloc_done;
+	}
+
+	while (batchcount > 0) {
+		/* Get slab alloc is to come from. */
+		page = get_first_slab(n, false);
+		if (!page)
+			goto must_grow;
+
+		check_spinlock_acquired(cachep);
+
+		batchcount = alloc_block(cachep, ac, page, batchcount);
+		fixup_slab_list(cachep, n, page, &list);
+	}
+
+must_grow:
+	n->free_objects -= ac->avail;
+alloc_done:
+	spin_unlock(&n->list_lock);
+	fixup_objfreelist_debug(cachep, &list);
+
+direct_grow:
+	if (unlikely(!ac->avail)) {
+		/* Check if we can use obj in pfmemalloc slab */
+		if (sk_memalloc_socks()) {
+			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
+
+			if (obj)
+				return obj;
+		}
+
+		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
+
+		/*
+		 * cache_grow_begin() can reenable interrupts,
+		 * then ac could change.
+		 */
+		ac = cpu_cache_get(cachep);
+		if (!ac->avail && page)
+			alloc_block(cachep, ac, page, batchcount);
+		cache_grow_end(cachep, page);
+
+		if (!ac->avail)
+			return NULL;
+	}
+	ac->touched = 1;
+
+	return ac->entry[--ac->avail];
+}
+
+static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
+						gfp_t flags)
+{
+	might_sleep_if(gfpflags_allow_blocking(flags));
+}
+
+#if DEBUG
+static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
+				gfp_t flags, void *objp, unsigned long caller)
+{
+	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
+	if (!objp)
+		return objp;
+	if (cachep->flags & SLAB_POISON) {
+		check_poison_obj(cachep, objp);
+		slab_kernel_map(cachep, objp, 1, 0);
+		poison_obj(cachep, objp, POISON_INUSE);
+	}
+	if (cachep->flags & SLAB_STORE_USER)
+		*dbg_userword(cachep, objp) = (void *)caller;
+
+	if (cachep->flags & SLAB_RED_ZONE) {
+		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
+				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
+			slab_error(cachep, "double free, or memory outside object was overwritten");
+			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
+			       objp, *dbg_redzone1(cachep, objp),
+			       *dbg_redzone2(cachep, objp));
+		}
+		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
+		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
+	}
+
+	objp += obj_offset(cachep);
+	if (cachep->ctor && cachep->flags & SLAB_POISON)
+		cachep->ctor(objp);
+	if (ARCH_SLAB_MINALIGN &&
+	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
+		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
+		       objp, (int)ARCH_SLAB_MINALIGN);
+	}
+	return objp;
+}
+#else
+#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
+#endif
+
+static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+	void *objp;
+	struct array_cache *ac;
+
+	check_irq_off();
+
+	ac = cpu_cache_get(cachep);
+	if (likely(ac->avail)) {
+		ac->touched = 1;
+		objp = ac->entry[--ac->avail];
+
+		STATS_INC_ALLOCHIT(cachep);
+		goto out;
+	}
+
+	STATS_INC_ALLOCMISS(cachep);
+	objp = cache_alloc_refill(cachep, flags);
+	/*
+	 * the 'ac' may be updated by cache_alloc_refill(),
+	 * and kmemleak_erase() requires its correct value.
+	 */
+	ac = cpu_cache_get(cachep);
+
+out:
+	/*
+	 * To avoid a false negative, if an object that is in one of the
+	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
+	 * treat the array pointers as a reference to the object.
+	 */
+	if (objp)
+		kmemleak_erase(&ac->entry[ac->avail]);
+	return objp;
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
+ *
+ * If we are in_interrupt, then process context, including cpusets and
+ * mempolicy, may not apply and should not be used for allocation policy.
+ */
+static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+	int nid_alloc, nid_here;
+
+	if (in_interrupt() || (flags & __GFP_THISNODE))
+		return NULL;
+	nid_alloc = nid_here = numa_mem_id();
+	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
+		nid_alloc = cpuset_slab_spread_node();
+	else if (current->mempolicy)
+		nid_alloc = mempolicy_slab_node();
+	if (nid_alloc != nid_here)
+		return ____cache_alloc_node(cachep, flags, nid_alloc);
+	return NULL;
+}
+
+/*
+ * Fallback function if there was no memory available and no objects on a
+ * certain node and fall back is permitted. First we scan all the
+ * available node for available objects. If that fails then we
+ * perform an allocation without specifying a node. This allows the page
+ * allocator to do its reclaim / fallback magic. We then insert the
+ * slab into the proper nodelist and then allocate from it.
+ */
+static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
+{
+	struct zonelist *zonelist;
+	struct zoneref *z;
+	struct zone *zone;
+	enum zone_type high_zoneidx = gfp_zone(flags);
+	void *obj = NULL;
+	struct page *page;
+	int nid;
+	unsigned int cpuset_mems_cookie;
+
+	if (flags & __GFP_THISNODE)
+		return NULL;
+
+retry_cpuset:
+	cpuset_mems_cookie = read_mems_allowed_begin();
+	zonelist = node_zonelist(mempolicy_slab_node(), flags);
+
+retry:
+	/*
+	 * Look through allowed nodes for objects available
+	 * from existing per node queues.
+	 */
+	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
+		nid = zone_to_nid(zone);
+
+		if (cpuset_zone_allowed(zone, flags) &&
+			get_node(cache, nid) &&
+			get_node(cache, nid)->free_objects) {
+				obj = ____cache_alloc_node(cache,
+					gfp_exact_node(flags), nid);
+				if (obj)
+					break;
+		}
+	}
+
+	if (!obj) {
+		/*
+		 * This allocation will be performed within the constraints
+		 * of the current cpuset / memory policy requirements.
+		 * We may trigger various forms of reclaim on the allowed
+		 * set and go into memory reserves if necessary.
+		 */
+		page = cache_grow_begin(cache, flags, numa_mem_id());
+		cache_grow_end(cache, page);
+		if (page) {
+			nid = page_to_nid(page);
+			obj = ____cache_alloc_node(cache,
+				gfp_exact_node(flags), nid);
+
+			/*
+			 * Another processor may allocate the objects in
+			 * the slab since we are not holding any locks.
+			 */
+			if (!obj)
+				goto retry;
+		}
+	}
+
+	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
+		goto retry_cpuset;
+	return obj;
+}
+
+/*
+ * A interface to enable slab creation on nodeid
+ */
+static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
+				int nodeid)
+{
+	struct page *page;
+	struct kmem_cache_node *n;
+	void *obj = NULL;
+	void *list = NULL;
+
+	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
+	n = get_node(cachep, nodeid);
+	BUG_ON(!n);
+
+	check_irq_off();
+	spin_lock(&n->list_lock);
+	page = get_first_slab(n, false);
+	if (!page)
+		goto must_grow;
+
+	check_spinlock_acquired_node(cachep, nodeid);
+
+	STATS_INC_NODEALLOCS(cachep);
+	STATS_INC_ACTIVE(cachep);
+	STATS_SET_HIGH(cachep);
+
+	BUG_ON(page->active == cachep->num);
+
+	obj = slab_get_obj(cachep, page);
+	n->free_objects--;
+
+	fixup_slab_list(cachep, n, page, &list);
+
+	spin_unlock(&n->list_lock);
+	fixup_objfreelist_debug(cachep, &list);
+	return obj;
+
+must_grow:
+	spin_unlock(&n->list_lock);
+	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
+	if (page) {
+		/* This slab isn't counted yet so don't update free_objects */
+		obj = slab_get_obj(cachep, page);
+	}
+	cache_grow_end(cachep, page);
+
+	return obj ? obj : fallback_alloc(cachep, flags);
+}
+
+static __always_inline void *
+slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
+		   unsigned long caller)
+{
+	unsigned long save_flags;
+	void *ptr;
+	int slab_node = numa_mem_id();
+
+	flags &= gfp_allowed_mask;
+	cachep = slab_pre_alloc_hook(cachep, flags);
+	if (unlikely(!cachep))
+		return NULL;
+
+	cache_alloc_debugcheck_before(cachep, flags);
+	local_irq_save(save_flags);
+
+	if (nodeid == NUMA_NO_NODE)
+		nodeid = slab_node;
+
+	if (unlikely(!get_node(cachep, nodeid))) {
+		/* Node not bootstrapped yet */
+		ptr = fallback_alloc(cachep, flags);
+		goto out;
+	}
+
+	if (nodeid == slab_node) {
+		/*
+		 * Use the locally cached objects if possible.
+		 * However ____cache_alloc does not allow fallback
+		 * to other nodes. It may fail while we still have
+		 * objects on other nodes available.
+		 */
+		ptr = ____cache_alloc(cachep, flags);
+		if (ptr)
+			goto out;
+	}
+	/* ___cache_alloc_node can fall back to other nodes */
+	ptr = ____cache_alloc_node(cachep, flags, nodeid);
+  out:
+	local_irq_restore(save_flags);
+	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
+
+	if (unlikely(flags & __GFP_ZERO) && ptr)
+		memset(ptr, 0, cachep->object_size);
+
+	slab_post_alloc_hook(cachep, flags, 1, &ptr);
+	return ptr;
+}
+
+static __always_inline void *
+__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
+{
+	void *objp;
+
+	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
+		objp = alternate_node_alloc(cache, flags);
+		if (objp)
+			goto out;
+	}
+	objp = ____cache_alloc(cache, flags);
+
+	/*
+	 * We may just have run out of memory on the local node.
+	 * ____cache_alloc_node() knows how to locate memory on other nodes
+	 */
+	if (!objp)
+		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
+
+  out:
+	return objp;
+}
+#else
+
+static __always_inline void *
+__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+	return ____cache_alloc(cachep, flags);
+}
+
+#endif /* CONFIG_NUMA */
+
+static __always_inline void *
+slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
+{
+	unsigned long save_flags;
+	void *objp;
+
+	flags &= gfp_allowed_mask;
+	cachep = slab_pre_alloc_hook(cachep, flags);
+	if (unlikely(!cachep))
+		return NULL;
+
+	cache_alloc_debugcheck_before(cachep, flags);
+	local_irq_save(save_flags);
+	objp = __do_cache_alloc(cachep, flags);
+	local_irq_restore(save_flags);
+	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
+	prefetchw(objp);
+
+	if (unlikely(flags & __GFP_ZERO) && objp)
+		memset(objp, 0, cachep->object_size);
+
+	slab_post_alloc_hook(cachep, flags, 1, &objp);
+	return objp;
+}
+
+/*
+ * Caller needs to acquire correct kmem_cache_node's list_lock
+ * @list: List of detached free slabs should be freed by caller
+ */
+static void free_block(struct kmem_cache *cachep, void **objpp,
+			int nr_objects, int node, struct list_head *list)
+{
+	int i;
+	struct kmem_cache_node *n = get_node(cachep, node);
+	struct page *page;
+
+	n->free_objects += nr_objects;
+
+	for (i = 0; i < nr_objects; i++) {
+		void *objp;
+		struct page *page;
+
+		objp = objpp[i];
+
+		page = virt_to_head_page(objp);
+		list_del(&page->lru);
+		check_spinlock_acquired_node(cachep, node);
+		slab_put_obj(cachep, page, objp);
+		STATS_DEC_ACTIVE(cachep);
+
+		/* fixup slab chains */
+		if (page->active == 0) {
+			list_add(&page->lru, &n->slabs_free);
+			n->free_slabs++;
+		} else {
+			/* Unconditionally move a slab to the end of the
+			 * partial list on free - maximum time for the
+			 * other objects to be freed, too.
+			 */
+			list_add_tail(&page->lru, &n->slabs_partial);
+		}
+	}
+
+	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
+		n->free_objects -= cachep->num;
+
+		page = list_last_entry(&n->slabs_free, struct page, lru);
+		list_move(&page->lru, list);
+		n->free_slabs--;
+		n->total_slabs--;
+	}
+}
+
+static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
+{
+	int batchcount;
+	struct kmem_cache_node *n;
+	int node = numa_mem_id();
+	LIST_HEAD(list);
+
+	batchcount = ac->batchcount;
+
+	check_irq_off();
+	n = get_node(cachep, node);
+	spin_lock(&n->list_lock);
+	if (n->shared) {
+		struct array_cache *shared_array = n->shared;
+		int max = shared_array->limit - shared_array->avail;
+		if (max) {
+			if (batchcount > max)
+				batchcount = max;
+			memcpy(&(shared_array->entry[shared_array->avail]),
+			       ac->entry, sizeof(void *) * batchcount);
+			shared_array->avail += batchcount;
+			goto free_done;
+		}
+	}
+
+	free_block(cachep, ac->entry, batchcount, node, &list);
+free_done:
+#if STATS
+	{
+		int i = 0;
+		struct page *page;
+
+		list_for_each_entry(page, &n->slabs_free, lru) {
+			BUG_ON(page->active);
+
+			i++;
+		}
+		STATS_SET_FREEABLE(cachep, i);
+	}
+#endif
+	spin_unlock(&n->list_lock);
+	slabs_destroy(cachep, &list);
+	ac->avail -= batchcount;
+	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
+}
+
+/*
+ * Release an obj back to its cache. If the obj has a constructed state, it must
+ * be in this state _before_ it is released.  Called with disabled ints.
+ */
+static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
+					 unsigned long caller)
+{
+	/* Put the object into the quarantine, don't touch it for now. */
+	if (kasan_slab_free(cachep, objp, _RET_IP_))
+		return;
+
+	___cache_free(cachep, objp, caller);
+}
+
+void ___cache_free(struct kmem_cache *cachep, void *objp,
+		unsigned long caller)
+{
+	struct array_cache *ac = cpu_cache_get(cachep);
+
+	check_irq_off();
+	kmemleak_free_recursive(objp, cachep->flags);
+	objp = cache_free_debugcheck(cachep, objp, caller);
+
+	/*
+	 * Skip calling cache_free_alien() when the platform is not numa.
+	 * This will avoid cache misses that happen while accessing slabp (which
+	 * is per page memory  reference) to get nodeid. Instead use a global
+	 * variable to skip the call, which is mostly likely to be present in
+	 * the cache.
+	 */
+	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
+		return;
+
+	if (ac->avail < ac->limit) {
+		STATS_INC_FREEHIT(cachep);
+	} else {
+		STATS_INC_FREEMISS(cachep);
+		cache_flusharray(cachep, ac);
+	}
+
+	if (sk_memalloc_socks()) {
+		struct page *page = virt_to_head_page(objp);
+
+		if (unlikely(PageSlabPfmemalloc(page))) {
+			cache_free_pfmemalloc(cachep, page, objp);
+			return;
+		}
+	}
+
+	ac->entry[ac->avail++] = objp;
+}
+
+/**
+ * kmem_cache_alloc - Allocate an object
+ * @cachep: The cache to allocate from.
+ * @flags: See kmalloc().
+ *
+ * Allocate an object from this cache.  The flags are only relevant
+ * if the cache has no available objects.
+ */
+void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+	void *ret = slab_alloc(cachep, flags, _RET_IP_);
+
+	kasan_slab_alloc(cachep, ret, flags);
+	trace_kmem_cache_alloc(_RET_IP_, ret,
+			       cachep->object_size, cachep->size, flags);
+
+	return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc);
+
+static __always_inline void
+cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
+				  size_t size, void **p, unsigned long caller)
+{
+	size_t i;
+
+	for (i = 0; i < size; i++)
+		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
+}
+
+int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
+			  void **p)
+{
+	size_t i;
+
+	s = slab_pre_alloc_hook(s, flags);
+	if (!s)
+		return 0;
+
+	cache_alloc_debugcheck_before(s, flags);
+
+	local_irq_disable();
+	for (i = 0; i < size; i++) {
+		void *objp = __do_cache_alloc(s, flags);
+
+		if (unlikely(!objp))
+			goto error;
+		p[i] = objp;
+	}
+	local_irq_enable();
+
+	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
+
+	/* Clear memory outside IRQ disabled section */
+	if (unlikely(flags & __GFP_ZERO))
+		for (i = 0; i < size; i++)
+			memset(p[i], 0, s->object_size);
+
+	slab_post_alloc_hook(s, flags, size, p);
+	/* FIXME: Trace call missing. Christoph would like a bulk variant */
+	return size;
+error:
+	local_irq_enable();
+	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
+	slab_post_alloc_hook(s, flags, i, p);
+	__kmem_cache_free_bulk(s, i, p);
+	return 0;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_bulk);
+
+#ifdef CONFIG_TRACING
+void *
+kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
+{
+	void *ret;
+
+	ret = slab_alloc(cachep, flags, _RET_IP_);
+
+	kasan_kmalloc(cachep, ret, size, flags);
+	trace_kmalloc(_RET_IP_, ret,
+		      size, cachep->size, flags);
+	return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_trace);
+#endif
+
+#ifdef CONFIG_NUMA
+/**
+ * kmem_cache_alloc_node - Allocate an object on the specified node
+ * @cachep: The cache to allocate from.
+ * @flags: See kmalloc().
+ * @nodeid: node number of the target node.
+ *
+ * Identical to kmem_cache_alloc but it will allocate memory on the given
+ * node, which can improve the performance for cpu bound structures.
+ *
+ * Fallback to other node is possible if __GFP_THISNODE is not set.
+ */
+void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+{
+	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
+
+	kasan_slab_alloc(cachep, ret, flags);
+	trace_kmem_cache_alloc_node(_RET_IP_, ret,
+				    cachep->object_size, cachep->size,
+				    flags, nodeid);
+
+	return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_node);
+
+#ifdef CONFIG_TRACING
+void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
+				  gfp_t flags,
+				  int nodeid,
+				  size_t size)
+{
+	void *ret;
+
+	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
+
+	kasan_kmalloc(cachep, ret, size, flags);
+	trace_kmalloc_node(_RET_IP_, ret,
+			   size, cachep->size,
+			   flags, nodeid);
+	return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
+#endif
+
+static __always_inline void *
+__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
+{
+	struct kmem_cache *cachep;
+	void *ret;
+
+	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
+		return NULL;
+	cachep = kmalloc_slab(size, flags);
+	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
+		return cachep;
+	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
+	kasan_kmalloc(cachep, ret, size, flags);
+
+	return ret;
+}
+
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+	return __do_kmalloc_node(size, flags, node, _RET_IP_);
+}
+EXPORT_SYMBOL(__kmalloc_node);
+
+void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
+		int node, unsigned long caller)
+{
+	return __do_kmalloc_node(size, flags, node, caller);
+}
+EXPORT_SYMBOL(__kmalloc_node_track_caller);
+#endif /* CONFIG_NUMA */
+
+/**
+ * __do_kmalloc - allocate memory
+ * @size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate (see kmalloc).
+ * @caller: function caller for debug tracking of the caller
+ */
+static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
+					  unsigned long caller)
+{
+	struct kmem_cache *cachep;
+	void *ret;
+
+	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
+		return NULL;
+	cachep = kmalloc_slab(size, flags);
+	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
+		return cachep;
+	ret = slab_alloc(cachep, flags, caller);
+
+	kasan_kmalloc(cachep, ret, size, flags);
+	trace_kmalloc(caller, ret,
+		      size, cachep->size, flags);
+
+	return ret;
+}
+
+void *__kmalloc(size_t size, gfp_t flags)
+{
+	return __do_kmalloc(size, flags, _RET_IP_);
+}
+EXPORT_SYMBOL(__kmalloc);
+
+void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
+{
+	return __do_kmalloc(size, flags, caller);
+}
+EXPORT_SYMBOL(__kmalloc_track_caller);
+
+/**
+ * kmem_cache_free - Deallocate an object
+ * @cachep: The cache the allocation was from.
+ * @objp: The previously allocated object.
+ *
+ * Free an object which was previously allocated from this
+ * cache.
+ */
+void kmem_cache_free(struct kmem_cache *cachep, void *objp)
+{
+	unsigned long flags;
+	cachep = cache_from_obj(cachep, objp);
+	if (!cachep)
+		return;
+
+	local_irq_save(flags);
+	debug_check_no_locks_freed(objp, cachep->object_size);
+	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
+		debug_check_no_obj_freed(objp, cachep->object_size);
+	__cache_free(cachep, objp, _RET_IP_);
+	local_irq_restore(flags);
+
+	trace_kmem_cache_free(_RET_IP_, objp);
+}
+EXPORT_SYMBOL(kmem_cache_free);
+
+void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
+{
+	struct kmem_cache *s;
+	size_t i;
+
+	local_irq_disable();
+	for (i = 0; i < size; i++) {
+		void *objp = p[i];
+
+		if (!orig_s) /* called via kfree_bulk */
+			s = virt_to_cache(objp);
+		else
+			s = cache_from_obj(orig_s, objp);
+
+		debug_check_no_locks_freed(objp, s->object_size);
+		if (!(s->flags & SLAB_DEBUG_OBJECTS))
+			debug_check_no_obj_freed(objp, s->object_size);
+
+		__cache_free(s, objp, _RET_IP_);
+	}
+	local_irq_enable();
+
+	/* FIXME: add tracing */
+}
+EXPORT_SYMBOL(kmem_cache_free_bulk);
+
+/**
+ * kfree - free previously allocated memory
+ * @objp: pointer returned by kmalloc.
+ *
+ * If @objp is NULL, no operation is performed.
+ *
+ * Don't free memory not originally allocated by kmalloc()
+ * or you will run into trouble.
+ */
+void kfree(const void *objp)
+{
+	struct kmem_cache *c;
+	unsigned long flags;
+
+	trace_kfree(_RET_IP_, objp);
+
+	if (unlikely(ZERO_OR_NULL_PTR(objp)))
+		return;
+	local_irq_save(flags);
+	kfree_debugcheck(objp);
+	c = virt_to_cache(objp);
+	debug_check_no_locks_freed(objp, c->object_size);
+
+	debug_check_no_obj_freed(objp, c->object_size);
+	__cache_free(c, (void *)objp, _RET_IP_);
+	local_irq_restore(flags);
+}
+EXPORT_SYMBOL(kfree);
+
+/*
+ * This initializes kmem_cache_node or resizes various caches for all nodes.
+ */
+static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
+{
+	int ret;
+	int node;
+	struct kmem_cache_node *n;
+
+	for_each_online_node(node) {
+		ret = setup_kmem_cache_node(cachep, node, gfp, true);
+		if (ret)
+			goto fail;
+
+	}
+
+	return 0;
+
+fail:
+	if (!cachep->list.next) {
+		/* Cache is not active yet. Roll back what we did */
+		node--;
+		while (node >= 0) {
+			n = get_node(cachep, node);
+			if (n) {
+				kfree(n->shared);
+				free_alien_cache(n->alien);
+				kfree(n);
+				cachep->node[node] = NULL;
+			}
+			node--;
+		}
+	}
+	return -ENOMEM;
+}
+
+/* Always called with the slab_mutex held */
+static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
+				int batchcount, int shared, gfp_t gfp)
+{
+	struct array_cache __percpu *cpu_cache, *prev;
+	int cpu;
+
+	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
+	if (!cpu_cache)
+		return -ENOMEM;
+
+	prev = cachep->cpu_cache;
+	cachep->cpu_cache = cpu_cache;
+	/*
+	 * Without a previous cpu_cache there's no need to synchronize remote
+	 * cpus, so skip the IPIs.
+	 */
+	if (prev)
+		kick_all_cpus_sync();
+
+	check_irq_on();
+	cachep->batchcount = batchcount;
+	cachep->limit = limit;
+	cachep->shared = shared;
+
+	if (!prev)
+		goto setup_node;
+
+	for_each_online_cpu(cpu) {
+		LIST_HEAD(list);
+		int node;
+		struct kmem_cache_node *n;
+		struct array_cache *ac = per_cpu_ptr(prev, cpu);
+
+		node = cpu_to_mem(cpu);
+		n = get_node(cachep, node);
+		spin_lock_irq(&n->list_lock);
+		free_block(cachep, ac->entry, ac->avail, node, &list);
+		spin_unlock_irq(&n->list_lock);
+		slabs_destroy(cachep, &list);
+	}
+	free_percpu(prev);
+
+setup_node:
+	return setup_kmem_cache_nodes(cachep, gfp);
+}
+
+static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
+				int batchcount, int shared, gfp_t gfp)
+{
+	int ret;
+	struct kmem_cache *c;
+
+	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
+
+	if (slab_state < FULL)
+		return ret;
+
+	if ((ret < 0) || !is_root_cache(cachep))
+		return ret;
+
+	lockdep_assert_held(&slab_mutex);
+	for_each_memcg_cache(c, cachep) {
+		/* return value determined by the root cache only */
+		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
+	}
+
+	return ret;
+}
+
+/* Called with slab_mutex held always */
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
+{
+	int err;
+	int limit = 0;
+	int shared = 0;
+	int batchcount = 0;
+
+	err = cache_random_seq_create(cachep, cachep->num, gfp);
+	if (err)
+		goto end;
+
+	if (!is_root_cache(cachep)) {
+		struct kmem_cache *root = memcg_root_cache(cachep);
+		limit = root->limit;
+		shared = root->shared;
+		batchcount = root->batchcount;
+	}
+
+	if (limit && shared && batchcount)
+		goto skip_setup;
+	/*
+	 * The head array serves three purposes:
+	 * - create a LIFO ordering, i.e. return objects that are cache-warm
+	 * - reduce the number of spinlock operations.
+	 * - reduce the number of linked list operations on the slab and
+	 *   bufctl chains: array operations are cheaper.
+	 * The numbers are guessed, we should auto-tune as described by
+	 * Bonwick.
+	 */
+	if (cachep->size > 131072)
+		limit = 1;
+	else if (cachep->size > PAGE_SIZE)
+		limit = 8;
+	else if (cachep->size > 1024)
+		limit = 24;
+	else if (cachep->size > 256)
+		limit = 54;
+	else
+		limit = 120;
+
+	/*
+	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
+	 * allocation behaviour: Most allocs on one cpu, most free operations
+	 * on another cpu. For these cases, an efficient object passing between
+	 * cpus is necessary. This is provided by a shared array. The array
+	 * replaces Bonwick's magazine layer.
+	 * On uniprocessor, it's functionally equivalent (but less efficient)
+	 * to a larger limit. Thus disabled by default.
+	 */
+	shared = 0;
+	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
+		shared = 8;
+
+#if DEBUG
+	/*
+	 * With debugging enabled, large batchcount lead to excessively long
+	 * periods with disabled local interrupts. Limit the batchcount
+	 */
+	if (limit > 32)
+		limit = 32;
+#endif
+	batchcount = (limit + 1) / 2;
+skip_setup:
+	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
+end:
+	if (err)
+		pr_err("enable_cpucache failed for %s, error %d\n",
+		       cachep->name, -err);
+	return err;
+}
+
+/*
+ * Drain an array if it contains any elements taking the node lock only if
+ * necessary. Note that the node listlock also protects the array_cache
+ * if drain_array() is used on the shared array.
+ */
+static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
+			 struct array_cache *ac, int node)
+{
+	LIST_HEAD(list);
+
+	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
+	check_mutex_acquired();
+
+	if (!ac || !ac->avail)
+		return;
+
+	if (ac->touched) {
+		ac->touched = 0;
+		return;
+	}
+
+	spin_lock_irq(&n->list_lock);
+	drain_array_locked(cachep, ac, node, false, &list);
+	spin_unlock_irq(&n->list_lock);
+
+	slabs_destroy(cachep, &list);
+}
+
+/**
+ * cache_reap - Reclaim memory from caches.
+ * @w: work descriptor
+ *
+ * Called from workqueue/eventd every few seconds.
+ * Purpose:
+ * - clear the per-cpu caches for this CPU.
+ * - return freeable pages to the main free memory pool.
+ *
+ * If we cannot acquire the cache chain mutex then just give up - we'll try
+ * again on the next iteration.
+ */
+static void cache_reap(struct work_struct *w)
+{
+	struct kmem_cache *searchp;
+	struct kmem_cache_node *n;
+	int node = numa_mem_id();
+	struct delayed_work *work = to_delayed_work(w);
+
+	if (!mutex_trylock(&slab_mutex))
+		/* Give up. Setup the next iteration. */
+		goto out;
+
+	list_for_each_entry(searchp, &slab_caches, list) {
+		check_irq_on();
+
+		/*
+		 * We only take the node lock if absolutely necessary and we
+		 * have established with reasonable certainty that
+		 * we can do some work if the lock was obtained.
+		 */
+		n = get_node(searchp, node);
+
+		reap_alien(searchp, n);
+
+		drain_array(searchp, n, cpu_cache_get(searchp), node);
+
+		/*
+		 * These are racy checks but it does not matter
+		 * if we skip one check or scan twice.
+		 */
+		if (time_after(n->next_reap, jiffies))
+			goto next;
+
+		n->next_reap = jiffies + REAPTIMEOUT_NODE;
+
+		drain_array(searchp, n, n->shared, node);
+
+		if (n->free_touched)
+			n->free_touched = 0;
+		else {
+			int freed;
+
+			freed = drain_freelist(searchp, n, (n->free_limit +
+				5 * searchp->num - 1) / (5 * searchp->num));
+			STATS_ADD_REAPED(searchp, freed);
+		}
+next:
+		cond_resched();
+	}
+	check_irq_on();
+	mutex_unlock(&slab_mutex);
+	next_reap_node();
+out:
+	/* Set up the next iteration */
+	schedule_delayed_work_on(smp_processor_id(), work,
+				round_jiffies_relative(REAPTIMEOUT_AC));
+}
+
+void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
+{
+	unsigned long active_objs, num_objs, active_slabs;
+	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
+	unsigned long free_slabs = 0;
+	int node;
+	struct kmem_cache_node *n;
+
+	for_each_kmem_cache_node(cachep, node, n) {
+		check_irq_on();
+		spin_lock_irq(&n->list_lock);
+
+		total_slabs += n->total_slabs;
+		free_slabs += n->free_slabs;
+		free_objs += n->free_objects;
+
+		if (n->shared)
+			shared_avail += n->shared->avail;
+
+		spin_unlock_irq(&n->list_lock);
+	}
+	num_objs = total_slabs * cachep->num;
+	active_slabs = total_slabs - free_slabs;
+	active_objs = num_objs - free_objs;
+
+	sinfo->active_objs = active_objs;
+	sinfo->num_objs = num_objs;
+	sinfo->active_slabs = active_slabs;
+	sinfo->num_slabs = total_slabs;
+	sinfo->shared_avail = shared_avail;
+	sinfo->limit = cachep->limit;
+	sinfo->batchcount = cachep->batchcount;
+	sinfo->shared = cachep->shared;
+	sinfo->objects_per_slab = cachep->num;
+	sinfo->cache_order = cachep->gfporder;
+}
+
+void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
+{
+#if STATS
+	{			/* node stats */
+		unsigned long high = cachep->high_mark;
+		unsigned long allocs = cachep->num_allocations;
+		unsigned long grown = cachep->grown;
+		unsigned long reaped = cachep->reaped;
+		unsigned long errors = cachep->errors;
+		unsigned long max_freeable = cachep->max_freeable;
+		unsigned long node_allocs = cachep->node_allocs;
+		unsigned long node_frees = cachep->node_frees;
+		unsigned long overflows = cachep->node_overflow;
+
+		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
+			   allocs, high, grown,
+			   reaped, errors, max_freeable, node_allocs,
+			   node_frees, overflows);
+	}
+	/* cpu stats */
+	{
+		unsigned long allochit = atomic_read(&cachep->allochit);
+		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
+		unsigned long freehit = atomic_read(&cachep->freehit);
+		unsigned long freemiss = atomic_read(&cachep->freemiss);
+
+		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
+			   allochit, allocmiss, freehit, freemiss);
+	}
+#endif
+}
+
+#define MAX_SLABINFO_WRITE 128
+/**
+ * slabinfo_write - Tuning for the slab allocator
+ * @file: unused
+ * @buffer: user buffer
+ * @count: data length
+ * @ppos: unused
+ */
+ssize_t slabinfo_write(struct file *file, const char __user *buffer,
+		       size_t count, loff_t *ppos)
+{
+	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
+	int limit, batchcount, shared, res;
+	struct kmem_cache *cachep;
+
+	if (count > MAX_SLABINFO_WRITE)
+		return -EINVAL;
+	if (copy_from_user(&kbuf, buffer, count))
+		return -EFAULT;
+	kbuf[MAX_SLABINFO_WRITE] = '\0';
+
+	tmp = strchr(kbuf, ' ');
+	if (!tmp)
+		return -EINVAL;
+	*tmp = '\0';
+	tmp++;
+	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
+		return -EINVAL;
+
+	/* Find the cache in the chain of caches. */
+	mutex_lock(&slab_mutex);
+	res = -EINVAL;
+	list_for_each_entry(cachep, &slab_caches, list) {
+		if (!strcmp(cachep->name, kbuf)) {
+			if (limit < 1 || batchcount < 1 ||
+					batchcount > limit || shared < 0) {
+				res = 0;
+			} else {
+				res = do_tune_cpucache(cachep, limit,
+						       batchcount, shared,
+						       GFP_KERNEL);
+			}
+			break;
+		}
+	}
+	mutex_unlock(&slab_mutex);
+	if (res >= 0)
+		res = count;
+	return res;
+}
+
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+
+static inline int add_caller(unsigned long *n, unsigned long v)
+{
+	unsigned long *p;
+	int l;
+	if (!v)
+		return 1;
+	l = n[1];
+	p = n + 2;
+	while (l) {
+		int i = l/2;
+		unsigned long *q = p + 2 * i;
+		if (*q == v) {
+			q[1]++;
+			return 1;
+		}
+		if (*q > v) {
+			l = i;
+		} else {
+			p = q + 2;
+			l -= i + 1;
+		}
+	}
+	if (++n[1] == n[0])
+		return 0;
+	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
+	p[0] = v;
+	p[1] = 1;
+	return 1;
+}
+
+static void handle_slab(unsigned long *n, struct kmem_cache *c,
+						struct page *page)
+{
+	void *p;
+	int i, j;
+	unsigned long v;
+
+	if (n[0] == n[1])
+		return;
+	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
+		bool active = true;
+
+		for (j = page->active; j < c->num; j++) {
+			if (get_free_obj(page, j) == i) {
+				active = false;
+				break;
+			}
+		}
+
+		if (!active)
+			continue;
+
+		/*
+		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
+		 * mapping is established when actual object allocation and
+		 * we could mistakenly access the unmapped object in the cpu
+		 * cache.
+		 */
+		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
+			continue;
+
+		if (!add_caller(n, v))
+			return;
+	}
+}
+
+static void show_symbol(struct seq_file *m, unsigned long address)
+{
+#ifdef CONFIG_KALLSYMS
+	unsigned long offset, size;
+	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
+
+	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
+		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
+		if (modname[0])
+			seq_printf(m, " [%s]", modname);
+		return;
+	}
+#endif
+	seq_printf(m, "%px", (void *)address);
+}
+
+static int leaks_show(struct seq_file *m, void *p)
+{
+	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
+	struct page *page;
+	struct kmem_cache_node *n;
+	const char *name;
+	unsigned long *x = m->private;
+	int node;
+	int i;
+
+	if (!(cachep->flags & SLAB_STORE_USER))
+		return 0;
+	if (!(cachep->flags & SLAB_RED_ZONE))
+		return 0;
+
+	/*
+	 * Set store_user_clean and start to grab stored user information
+	 * for all objects on this cache. If some alloc/free requests comes
+	 * during the processing, information would be wrong so restart
+	 * whole processing.
+	 */
+	do {
+		set_store_user_clean(cachep);
+		drain_cpu_caches(cachep);
+
+		x[1] = 0;
+
+		for_each_kmem_cache_node(cachep, node, n) {
+
+			check_irq_on();
+			spin_lock_irq(&n->list_lock);
+
+			list_for_each_entry(page, &n->slabs_full, lru)
+				handle_slab(x, cachep, page);
+			list_for_each_entry(page, &n->slabs_partial, lru)
+				handle_slab(x, cachep, page);
+			spin_unlock_irq(&n->list_lock);
+		}
+	} while (!is_store_user_clean(cachep));
+
+	name = cachep->name;
+	if (x[0] == x[1]) {
+		/* Increase the buffer size */
+		mutex_unlock(&slab_mutex);
+		m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
+				     GFP_KERNEL);
+		if (!m->private) {
+			/* Too bad, we are really out */
+			m->private = x;
+			mutex_lock(&slab_mutex);
+			return -ENOMEM;
+		}
+		*(unsigned long *)m->private = x[0] * 2;
+		kfree(x);
+		mutex_lock(&slab_mutex);
+		/* Now make sure this entry will be retried */
+		m->count = m->size;
+		return 0;
+	}
+	for (i = 0; i < x[1]; i++) {
+		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
+		show_symbol(m, x[2*i+2]);
+		seq_putc(m, '\n');
+	}
+
+	return 0;
+}
+
+static const struct seq_operations slabstats_op = {
+	.start = slab_start,
+	.next = slab_next,
+	.stop = slab_stop,
+	.show = leaks_show,
+};
+
+static int slabstats_open(struct inode *inode, struct file *file)
+{
+	unsigned long *n;
+
+	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
+	if (!n)
+		return -ENOMEM;
+
+	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
+
+	return 0;
+}
+
+static const struct file_operations proc_slabstats_operations = {
+	.open		= slabstats_open,
+	.read		= seq_read,
+	.llseek		= seq_lseek,
+	.release	= seq_release_private,
+};
+#endif
+
+static int __init slab_proc_init(void)
+{
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
+#endif
+	return 0;
+}
+module_init(slab_proc_init);
+
+#ifdef CONFIG_HARDENED_USERCOPY
+/*
+ * Rejects incorrectly sized objects and objects that are to be copied
+ * to/from userspace but do not fall entirely within the containing slab
+ * cache's usercopy region.
+ *
+ * Returns NULL if check passes, otherwise const char * to name of cache
+ * to indicate an error.
+ */
+void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
+			 bool to_user)
+{
+	struct kmem_cache *cachep;
+	unsigned int objnr;
+	unsigned long offset;
+
+	/* Find and validate object. */
+	cachep = page->slab_cache;
+	objnr = obj_to_index(cachep, page, (void *)ptr);
+	BUG_ON(objnr >= cachep->num);
+
+	/* Find offset within object. */
+	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
+
+	/* Allow address range falling entirely within usercopy region. */
+	if (offset >= cachep->useroffset &&
+	    offset - cachep->useroffset <= cachep->usersize &&
+	    n <= cachep->useroffset - offset + cachep->usersize)
+		return;
+
+	/*
+	 * If the copy is still within the allocated object, produce
+	 * a warning instead of rejecting the copy. This is intended
+	 * to be a temporary method to find any missing usercopy
+	 * whitelists.
+	 */
+	if (usercopy_fallback &&
+	    offset <= cachep->object_size &&
+	    n <= cachep->object_size - offset) {
+		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
+		return;
+	}
+
+	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
+}
+#endif /* CONFIG_HARDENED_USERCOPY */
+
+/**
+ * ksize - get the actual amount of memory allocated for a given object
+ * @objp: Pointer to the object
+ *
+ * kmalloc may internally round up allocations and return more memory
+ * than requested. ksize() can be used to determine the actual amount of
+ * memory allocated. The caller may use this additional memory, even though
+ * a smaller amount of memory was initially specified with the kmalloc call.
+ * The caller must guarantee that objp points to a valid object previously
+ * allocated with either kmalloc() or kmem_cache_alloc(). The object
+ * must not be freed during the duration of the call.
+ */
+size_t ksize(const void *objp)
+{
+	size_t size;
+
+	BUG_ON(!objp);
+	if (unlikely(objp == ZERO_SIZE_PTR))
+		return 0;
+
+	size = virt_to_cache(objp)->object_size;
+	/* We assume that ksize callers could use the whole allocated area,
+	 * so we need to unpoison this area.
+	 */
+	kasan_unpoison_shadow(objp, size);
+
+	return size;
+}
+EXPORT_SYMBOL(ksize);