v4.19.13 snapshot.
diff --git a/mm/page_io.c b/mm/page_io.c
new file mode 100644
index 0000000..aafd19e
--- /dev/null
+++ b/mm/page_io.c
@@ -0,0 +1,434 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  linux/mm/page_io.c
+ *
+ *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
+ *
+ *  Swap reorganised 29.12.95, 
+ *  Asynchronous swapping added 30.12.95. Stephen Tweedie
+ *  Removed race in async swapping. 14.4.1996. Bruno Haible
+ *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
+ *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
+ */
+
+#include <linux/mm.h>
+#include <linux/kernel_stat.h>
+#include <linux/gfp.h>
+#include <linux/pagemap.h>
+#include <linux/swap.h>
+#include <linux/bio.h>
+#include <linux/swapops.h>
+#include <linux/buffer_head.h>
+#include <linux/writeback.h>
+#include <linux/frontswap.h>
+#include <linux/blkdev.h>
+#include <linux/uio.h>
+#include <linux/sched/task.h>
+#include <asm/pgtable.h>
+
+static struct bio *get_swap_bio(gfp_t gfp_flags,
+				struct page *page, bio_end_io_t end_io)
+{
+	int i, nr = hpage_nr_pages(page);
+	struct bio *bio;
+
+	bio = bio_alloc(gfp_flags, nr);
+	if (bio) {
+		struct block_device *bdev;
+
+		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
+		bio_set_dev(bio, bdev);
+		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
+		bio->bi_end_io = end_io;
+
+		for (i = 0; i < nr; i++)
+			bio_add_page(bio, page + i, PAGE_SIZE, 0);
+		VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
+	}
+	return bio;
+}
+
+void end_swap_bio_write(struct bio *bio)
+{
+	struct page *page = bio_first_page_all(bio);
+
+	if (bio->bi_status) {
+		SetPageError(page);
+		/*
+		 * We failed to write the page out to swap-space.
+		 * Re-dirty the page in order to avoid it being reclaimed.
+		 * Also print a dire warning that things will go BAD (tm)
+		 * very quickly.
+		 *
+		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
+		 */
+		set_page_dirty(page);
+		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
+			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
+			 (unsigned long long)bio->bi_iter.bi_sector);
+		ClearPageReclaim(page);
+	}
+	end_page_writeback(page);
+	bio_put(bio);
+}
+
+static void swap_slot_free_notify(struct page *page)
+{
+	struct swap_info_struct *sis;
+	struct gendisk *disk;
+
+	/*
+	 * There is no guarantee that the page is in swap cache - the software
+	 * suspend code (at least) uses end_swap_bio_read() against a non-
+	 * swapcache page.  So we must check PG_swapcache before proceeding with
+	 * this optimization.
+	 */
+	if (unlikely(!PageSwapCache(page)))
+		return;
+
+	sis = page_swap_info(page);
+	if (!(sis->flags & SWP_BLKDEV))
+		return;
+
+	/*
+	 * The swap subsystem performs lazy swap slot freeing,
+	 * expecting that the page will be swapped out again.
+	 * So we can avoid an unnecessary write if the page
+	 * isn't redirtied.
+	 * This is good for real swap storage because we can
+	 * reduce unnecessary I/O and enhance wear-leveling
+	 * if an SSD is used as the as swap device.
+	 * But if in-memory swap device (eg zram) is used,
+	 * this causes a duplicated copy between uncompressed
+	 * data in VM-owned memory and compressed data in
+	 * zram-owned memory.  So let's free zram-owned memory
+	 * and make the VM-owned decompressed page *dirty*,
+	 * so the page should be swapped out somewhere again if
+	 * we again wish to reclaim it.
+	 */
+	disk = sis->bdev->bd_disk;
+	if (disk->fops->swap_slot_free_notify) {
+		swp_entry_t entry;
+		unsigned long offset;
+
+		entry.val = page_private(page);
+		offset = swp_offset(entry);
+
+		SetPageDirty(page);
+		disk->fops->swap_slot_free_notify(sis->bdev,
+				offset);
+	}
+}
+
+static void end_swap_bio_read(struct bio *bio)
+{
+	struct page *page = bio_first_page_all(bio);
+	struct task_struct *waiter = bio->bi_private;
+
+	if (bio->bi_status) {
+		SetPageError(page);
+		ClearPageUptodate(page);
+		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
+			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
+			 (unsigned long long)bio->bi_iter.bi_sector);
+		goto out;
+	}
+
+	SetPageUptodate(page);
+	swap_slot_free_notify(page);
+out:
+	unlock_page(page);
+	WRITE_ONCE(bio->bi_private, NULL);
+	bio_put(bio);
+	wake_up_process(waiter);
+	put_task_struct(waiter);
+}
+
+int generic_swapfile_activate(struct swap_info_struct *sis,
+				struct file *swap_file,
+				sector_t *span)
+{
+	struct address_space *mapping = swap_file->f_mapping;
+	struct inode *inode = mapping->host;
+	unsigned blocks_per_page;
+	unsigned long page_no;
+	unsigned blkbits;
+	sector_t probe_block;
+	sector_t last_block;
+	sector_t lowest_block = -1;
+	sector_t highest_block = 0;
+	int nr_extents = 0;
+	int ret;
+
+	blkbits = inode->i_blkbits;
+	blocks_per_page = PAGE_SIZE >> blkbits;
+
+	/*
+	 * Map all the blocks into the extent list.  This code doesn't try
+	 * to be very smart.
+	 */
+	probe_block = 0;
+	page_no = 0;
+	last_block = i_size_read(inode) >> blkbits;
+	while ((probe_block + blocks_per_page) <= last_block &&
+			page_no < sis->max) {
+		unsigned block_in_page;
+		sector_t first_block;
+
+		cond_resched();
+
+		first_block = bmap(inode, probe_block);
+		if (first_block == 0)
+			goto bad_bmap;
+
+		/*
+		 * It must be PAGE_SIZE aligned on-disk
+		 */
+		if (first_block & (blocks_per_page - 1)) {
+			probe_block++;
+			goto reprobe;
+		}
+
+		for (block_in_page = 1; block_in_page < blocks_per_page;
+					block_in_page++) {
+			sector_t block;
+
+			block = bmap(inode, probe_block + block_in_page);
+			if (block == 0)
+				goto bad_bmap;
+			if (block != first_block + block_in_page) {
+				/* Discontiguity */
+				probe_block++;
+				goto reprobe;
+			}
+		}
+
+		first_block >>= (PAGE_SHIFT - blkbits);
+		if (page_no) {	/* exclude the header page */
+			if (first_block < lowest_block)
+				lowest_block = first_block;
+			if (first_block > highest_block)
+				highest_block = first_block;
+		}
+
+		/*
+		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
+		 */
+		ret = add_swap_extent(sis, page_no, 1, first_block);
+		if (ret < 0)
+			goto out;
+		nr_extents += ret;
+		page_no++;
+		probe_block += blocks_per_page;
+reprobe:
+		continue;
+	}
+	ret = nr_extents;
+	*span = 1 + highest_block - lowest_block;
+	if (page_no == 0)
+		page_no = 1;	/* force Empty message */
+	sis->max = page_no;
+	sis->pages = page_no - 1;
+	sis->highest_bit = page_no - 1;
+out:
+	return ret;
+bad_bmap:
+	pr_err("swapon: swapfile has holes\n");
+	ret = -EINVAL;
+	goto out;
+}
+
+/*
+ * We may have stale swap cache pages in memory: notice
+ * them here and get rid of the unnecessary final write.
+ */
+int swap_writepage(struct page *page, struct writeback_control *wbc)
+{
+	int ret = 0;
+
+	if (try_to_free_swap(page)) {
+		unlock_page(page);
+		goto out;
+	}
+	if (frontswap_store(page) == 0) {
+		set_page_writeback(page);
+		unlock_page(page);
+		end_page_writeback(page);
+		goto out;
+	}
+	ret = __swap_writepage(page, wbc, end_swap_bio_write);
+out:
+	return ret;
+}
+
+static sector_t swap_page_sector(struct page *page)
+{
+	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
+}
+
+static inline void count_swpout_vm_event(struct page *page)
+{
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+	if (unlikely(PageTransHuge(page)))
+		count_vm_event(THP_SWPOUT);
+#endif
+	count_vm_events(PSWPOUT, hpage_nr_pages(page));
+}
+
+int __swap_writepage(struct page *page, struct writeback_control *wbc,
+		bio_end_io_t end_write_func)
+{
+	struct bio *bio;
+	int ret;
+	struct swap_info_struct *sis = page_swap_info(page);
+
+	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
+	if (sis->flags & SWP_FILE) {
+		struct kiocb kiocb;
+		struct file *swap_file = sis->swap_file;
+		struct address_space *mapping = swap_file->f_mapping;
+		struct bio_vec bv = {
+			.bv_page = page,
+			.bv_len  = PAGE_SIZE,
+			.bv_offset = 0
+		};
+		struct iov_iter from;
+
+		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
+		init_sync_kiocb(&kiocb, swap_file);
+		kiocb.ki_pos = page_file_offset(page);
+
+		set_page_writeback(page);
+		unlock_page(page);
+		ret = mapping->a_ops->direct_IO(&kiocb, &from);
+		if (ret == PAGE_SIZE) {
+			count_vm_event(PSWPOUT);
+			ret = 0;
+		} else {
+			/*
+			 * In the case of swap-over-nfs, this can be a
+			 * temporary failure if the system has limited
+			 * memory for allocating transmit buffers.
+			 * Mark the page dirty and avoid
+			 * rotate_reclaimable_page but rate-limit the
+			 * messages but do not flag PageError like
+			 * the normal direct-to-bio case as it could
+			 * be temporary.
+			 */
+			set_page_dirty(page);
+			ClearPageReclaim(page);
+			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
+					   page_file_offset(page));
+		}
+		end_page_writeback(page);
+		return ret;
+	}
+
+	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
+	if (!ret) {
+		count_swpout_vm_event(page);
+		return 0;
+	}
+
+	ret = 0;
+	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
+	if (bio == NULL) {
+		set_page_dirty(page);
+		unlock_page(page);
+		ret = -ENOMEM;
+		goto out;
+	}
+	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
+	bio_associate_blkcg_from_page(bio, page);
+	count_swpout_vm_event(page);
+	set_page_writeback(page);
+	unlock_page(page);
+	submit_bio(bio);
+out:
+	return ret;
+}
+
+int swap_readpage(struct page *page, bool synchronous)
+{
+	struct bio *bio;
+	int ret = 0;
+	struct swap_info_struct *sis = page_swap_info(page);
+	blk_qc_t qc;
+	struct gendisk *disk;
+
+	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
+	VM_BUG_ON_PAGE(!PageLocked(page), page);
+	VM_BUG_ON_PAGE(PageUptodate(page), page);
+	if (frontswap_load(page) == 0) {
+		SetPageUptodate(page);
+		unlock_page(page);
+		goto out;
+	}
+
+	if (sis->flags & SWP_FILE) {
+		struct file *swap_file = sis->swap_file;
+		struct address_space *mapping = swap_file->f_mapping;
+
+		ret = mapping->a_ops->readpage(swap_file, page);
+		if (!ret)
+			count_vm_event(PSWPIN);
+		return ret;
+	}
+
+	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
+	if (!ret) {
+		if (trylock_page(page)) {
+			swap_slot_free_notify(page);
+			unlock_page(page);
+		}
+
+		count_vm_event(PSWPIN);
+		return 0;
+	}
+
+	ret = 0;
+	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
+	if (bio == NULL) {
+		unlock_page(page);
+		ret = -ENOMEM;
+		goto out;
+	}
+	disk = bio->bi_disk;
+	/*
+	 * Keep this task valid during swap readpage because the oom killer may
+	 * attempt to access it in the page fault retry time check.
+	 */
+	get_task_struct(current);
+	bio->bi_private = current;
+	bio_set_op_attrs(bio, REQ_OP_READ, 0);
+	count_vm_event(PSWPIN);
+	bio_get(bio);
+	qc = submit_bio(bio);
+	while (synchronous) {
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		if (!READ_ONCE(bio->bi_private))
+			break;
+
+		if (!blk_poll(disk->queue, qc))
+			break;
+	}
+	__set_current_state(TASK_RUNNING);
+	bio_put(bio);
+
+out:
+	return ret;
+}
+
+int swap_set_page_dirty(struct page *page)
+{
+	struct swap_info_struct *sis = page_swap_info(page);
+
+	if (sis->flags & SWP_FILE) {
+		struct address_space *mapping = sis->swap_file->f_mapping;
+
+		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
+		return mapping->a_ops->set_page_dirty(page);
+	} else {
+		return __set_page_dirty_no_writeback(page);
+	}
+}