v4.19.13 snapshot.
diff --git a/mm/kasan/Makefile b/mm/kasan/Makefile
new file mode 100644
index 0000000..3289db3
--- /dev/null
+++ b/mm/kasan/Makefile
@@ -0,0 +1,11 @@
+# SPDX-License-Identifier: GPL-2.0
+KASAN_SANITIZE := n
+UBSAN_SANITIZE_kasan.o := n
+KCOV_INSTRUMENT := n
+
+CFLAGS_REMOVE_kasan.o = -pg
+# Function splitter causes unnecessary splits in __asan_load1/__asan_store1
+# see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63533
+CFLAGS_kasan.o := $(call cc-option, -fno-conserve-stack -fno-stack-protector)
+
+obj-y := kasan.o report.o kasan_init.o quarantine.o
diff --git a/mm/kasan/kasan.c b/mm/kasan/kasan.c
new file mode 100644
index 0000000..c3bd520
--- /dev/null
+++ b/mm/kasan/kasan.c
@@ -0,0 +1,903 @@
+/*
+ * This file contains shadow memory manipulation code.
+ *
+ * Copyright (c) 2014 Samsung Electronics Co., Ltd.
+ * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
+ *
+ * Some code borrowed from https://github.com/xairy/kasan-prototype by
+ *        Andrey Konovalov <andreyknvl@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#define DISABLE_BRANCH_PROFILING
+
+#include <linux/export.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/kasan.h>
+#include <linux/kernel.h>
+#include <linux/kmemleak.h>
+#include <linux/linkage.h>
+#include <linux/memblock.h>
+#include <linux/memory.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/sched/task_stack.h>
+#include <linux/slab.h>
+#include <linux/stacktrace.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/vmalloc.h>
+#include <linux/bug.h>
+
+#include "kasan.h"
+#include "../slab.h"
+
+void kasan_enable_current(void)
+{
+	current->kasan_depth++;
+}
+
+void kasan_disable_current(void)
+{
+	current->kasan_depth--;
+}
+
+/*
+ * Poisons the shadow memory for 'size' bytes starting from 'addr'.
+ * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
+ */
+static void kasan_poison_shadow(const void *address, size_t size, u8 value)
+{
+	void *shadow_start, *shadow_end;
+
+	shadow_start = kasan_mem_to_shadow(address);
+	shadow_end = kasan_mem_to_shadow(address + size);
+
+	memset(shadow_start, value, shadow_end - shadow_start);
+}
+
+void kasan_unpoison_shadow(const void *address, size_t size)
+{
+	kasan_poison_shadow(address, size, 0);
+
+	if (size & KASAN_SHADOW_MASK) {
+		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
+		*shadow = size & KASAN_SHADOW_MASK;
+	}
+}
+
+static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
+{
+	void *base = task_stack_page(task);
+	size_t size = sp - base;
+
+	kasan_unpoison_shadow(base, size);
+}
+
+/* Unpoison the entire stack for a task. */
+void kasan_unpoison_task_stack(struct task_struct *task)
+{
+	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
+}
+
+/* Unpoison the stack for the current task beyond a watermark sp value. */
+asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
+{
+	/*
+	 * Calculate the task stack base address.  Avoid using 'current'
+	 * because this function is called by early resume code which hasn't
+	 * yet set up the percpu register (%gs).
+	 */
+	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
+
+	kasan_unpoison_shadow(base, watermark - base);
+}
+
+/*
+ * Clear all poison for the region between the current SP and a provided
+ * watermark value, as is sometimes required prior to hand-crafted asm function
+ * returns in the middle of functions.
+ */
+void kasan_unpoison_stack_above_sp_to(const void *watermark)
+{
+	const void *sp = __builtin_frame_address(0);
+	size_t size = watermark - sp;
+
+	if (WARN_ON(sp > watermark))
+		return;
+	kasan_unpoison_shadow(sp, size);
+}
+
+/*
+ * All functions below always inlined so compiler could
+ * perform better optimizations in each of __asan_loadX/__assn_storeX
+ * depending on memory access size X.
+ */
+
+static __always_inline bool memory_is_poisoned_1(unsigned long addr)
+{
+	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
+
+	if (unlikely(shadow_value)) {
+		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
+		return unlikely(last_accessible_byte >= shadow_value);
+	}
+
+	return false;
+}
+
+static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
+						unsigned long size)
+{
+	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
+
+	/*
+	 * Access crosses 8(shadow size)-byte boundary. Such access maps
+	 * into 2 shadow bytes, so we need to check them both.
+	 */
+	if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
+		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
+
+	return memory_is_poisoned_1(addr + size - 1);
+}
+
+static __always_inline bool memory_is_poisoned_16(unsigned long addr)
+{
+	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
+
+	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
+	if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
+		return *shadow_addr || memory_is_poisoned_1(addr + 15);
+
+	return *shadow_addr;
+}
+
+static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
+					size_t size)
+{
+	while (size) {
+		if (unlikely(*start))
+			return (unsigned long)start;
+		start++;
+		size--;
+	}
+
+	return 0;
+}
+
+static __always_inline unsigned long memory_is_nonzero(const void *start,
+						const void *end)
+{
+	unsigned int words;
+	unsigned long ret;
+	unsigned int prefix = (unsigned long)start % 8;
+
+	if (end - start <= 16)
+		return bytes_is_nonzero(start, end - start);
+
+	if (prefix) {
+		prefix = 8 - prefix;
+		ret = bytes_is_nonzero(start, prefix);
+		if (unlikely(ret))
+			return ret;
+		start += prefix;
+	}
+
+	words = (end - start) / 8;
+	while (words) {
+		if (unlikely(*(u64 *)start))
+			return bytes_is_nonzero(start, 8);
+		start += 8;
+		words--;
+	}
+
+	return bytes_is_nonzero(start, (end - start) % 8);
+}
+
+static __always_inline bool memory_is_poisoned_n(unsigned long addr,
+						size_t size)
+{
+	unsigned long ret;
+
+	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
+			kasan_mem_to_shadow((void *)addr + size - 1) + 1);
+
+	if (unlikely(ret)) {
+		unsigned long last_byte = addr + size - 1;
+		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
+
+		if (unlikely(ret != (unsigned long)last_shadow ||
+			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
+			return true;
+	}
+	return false;
+}
+
+static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
+{
+	if (__builtin_constant_p(size)) {
+		switch (size) {
+		case 1:
+			return memory_is_poisoned_1(addr);
+		case 2:
+		case 4:
+		case 8:
+			return memory_is_poisoned_2_4_8(addr, size);
+		case 16:
+			return memory_is_poisoned_16(addr);
+		default:
+			BUILD_BUG();
+		}
+	}
+
+	return memory_is_poisoned_n(addr, size);
+}
+
+static __always_inline void check_memory_region_inline(unsigned long addr,
+						size_t size, bool write,
+						unsigned long ret_ip)
+{
+	if (unlikely(size == 0))
+		return;
+
+	if (unlikely((void *)addr <
+		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
+		kasan_report(addr, size, write, ret_ip);
+		return;
+	}
+
+	if (likely(!memory_is_poisoned(addr, size)))
+		return;
+
+	kasan_report(addr, size, write, ret_ip);
+}
+
+static void check_memory_region(unsigned long addr,
+				size_t size, bool write,
+				unsigned long ret_ip)
+{
+	check_memory_region_inline(addr, size, write, ret_ip);
+}
+
+void kasan_check_read(const volatile void *p, unsigned int size)
+{
+	check_memory_region((unsigned long)p, size, false, _RET_IP_);
+}
+EXPORT_SYMBOL(kasan_check_read);
+
+void kasan_check_write(const volatile void *p, unsigned int size)
+{
+	check_memory_region((unsigned long)p, size, true, _RET_IP_);
+}
+EXPORT_SYMBOL(kasan_check_write);
+
+#undef memset
+void *memset(void *addr, int c, size_t len)
+{
+	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
+
+	return __memset(addr, c, len);
+}
+
+#undef memmove
+void *memmove(void *dest, const void *src, size_t len)
+{
+	check_memory_region((unsigned long)src, len, false, _RET_IP_);
+	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
+
+	return __memmove(dest, src, len);
+}
+
+#undef memcpy
+void *memcpy(void *dest, const void *src, size_t len)
+{
+	check_memory_region((unsigned long)src, len, false, _RET_IP_);
+	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
+
+	return __memcpy(dest, src, len);
+}
+
+void kasan_alloc_pages(struct page *page, unsigned int order)
+{
+	if (likely(!PageHighMem(page)))
+		kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
+}
+
+void kasan_free_pages(struct page *page, unsigned int order)
+{
+	if (likely(!PageHighMem(page)))
+		kasan_poison_shadow(page_address(page),
+				PAGE_SIZE << order,
+				KASAN_FREE_PAGE);
+}
+
+/*
+ * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
+ * For larger allocations larger redzones are used.
+ */
+static unsigned int optimal_redzone(unsigned int object_size)
+{
+	return
+		object_size <= 64        - 16   ? 16 :
+		object_size <= 128       - 32   ? 32 :
+		object_size <= 512       - 64   ? 64 :
+		object_size <= 4096      - 128  ? 128 :
+		object_size <= (1 << 14) - 256  ? 256 :
+		object_size <= (1 << 15) - 512  ? 512 :
+		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
+}
+
+void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
+			slab_flags_t *flags)
+{
+	unsigned int orig_size = *size;
+	int redzone_adjust;
+
+	/* Add alloc meta. */
+	cache->kasan_info.alloc_meta_offset = *size;
+	*size += sizeof(struct kasan_alloc_meta);
+
+	/* Add free meta. */
+	if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
+	    cache->object_size < sizeof(struct kasan_free_meta)) {
+		cache->kasan_info.free_meta_offset = *size;
+		*size += sizeof(struct kasan_free_meta);
+	}
+	redzone_adjust = optimal_redzone(cache->object_size) -
+		(*size - cache->object_size);
+
+	if (redzone_adjust > 0)
+		*size += redzone_adjust;
+
+	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
+			max(*size, cache->object_size +
+					optimal_redzone(cache->object_size)));
+
+	/*
+	 * If the metadata doesn't fit, don't enable KASAN at all.
+	 */
+	if (*size <= cache->kasan_info.alloc_meta_offset ||
+			*size <= cache->kasan_info.free_meta_offset) {
+		cache->kasan_info.alloc_meta_offset = 0;
+		cache->kasan_info.free_meta_offset = 0;
+		*size = orig_size;
+		return;
+	}
+
+	*flags |= SLAB_KASAN;
+}
+
+void kasan_cache_shrink(struct kmem_cache *cache)
+{
+	quarantine_remove_cache(cache);
+}
+
+void kasan_cache_shutdown(struct kmem_cache *cache)
+{
+	if (!__kmem_cache_empty(cache))
+		quarantine_remove_cache(cache);
+}
+
+size_t kasan_metadata_size(struct kmem_cache *cache)
+{
+	return (cache->kasan_info.alloc_meta_offset ?
+		sizeof(struct kasan_alloc_meta) : 0) +
+		(cache->kasan_info.free_meta_offset ?
+		sizeof(struct kasan_free_meta) : 0);
+}
+
+void kasan_poison_slab(struct page *page)
+{
+	kasan_poison_shadow(page_address(page),
+			PAGE_SIZE << compound_order(page),
+			KASAN_KMALLOC_REDZONE);
+}
+
+void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
+{
+	kasan_unpoison_shadow(object, cache->object_size);
+}
+
+void kasan_poison_object_data(struct kmem_cache *cache, void *object)
+{
+	kasan_poison_shadow(object,
+			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
+			KASAN_KMALLOC_REDZONE);
+}
+
+static inline int in_irqentry_text(unsigned long ptr)
+{
+	return (ptr >= (unsigned long)&__irqentry_text_start &&
+		ptr < (unsigned long)&__irqentry_text_end) ||
+		(ptr >= (unsigned long)&__softirqentry_text_start &&
+		 ptr < (unsigned long)&__softirqentry_text_end);
+}
+
+static inline void filter_irq_stacks(struct stack_trace *trace)
+{
+	int i;
+
+	if (!trace->nr_entries)
+		return;
+	for (i = 0; i < trace->nr_entries; i++)
+		if (in_irqentry_text(trace->entries[i])) {
+			/* Include the irqentry function into the stack. */
+			trace->nr_entries = i + 1;
+			break;
+		}
+}
+
+static inline depot_stack_handle_t save_stack(gfp_t flags)
+{
+	unsigned long entries[KASAN_STACK_DEPTH];
+	struct stack_trace trace = {
+		.nr_entries = 0,
+		.entries = entries,
+		.max_entries = KASAN_STACK_DEPTH,
+		.skip = 0
+	};
+
+	save_stack_trace(&trace);
+	filter_irq_stacks(&trace);
+	if (trace.nr_entries != 0 &&
+	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
+		trace.nr_entries--;
+
+	return depot_save_stack(&trace, flags);
+}
+
+static inline void set_track(struct kasan_track *track, gfp_t flags)
+{
+	track->pid = current->pid;
+	track->stack = save_stack(flags);
+}
+
+struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
+					const void *object)
+{
+	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
+	return (void *)object + cache->kasan_info.alloc_meta_offset;
+}
+
+struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
+				      const void *object)
+{
+	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
+	return (void *)object + cache->kasan_info.free_meta_offset;
+}
+
+void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
+{
+	struct kasan_alloc_meta *alloc_info;
+
+	if (!(cache->flags & SLAB_KASAN))
+		return;
+
+	alloc_info = get_alloc_info(cache, object);
+	__memset(alloc_info, 0, sizeof(*alloc_info));
+}
+
+void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
+{
+	kasan_kmalloc(cache, object, cache->object_size, flags);
+}
+
+static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
+			      unsigned long ip, bool quarantine)
+{
+	s8 shadow_byte;
+	unsigned long rounded_up_size;
+
+	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
+	    object)) {
+		kasan_report_invalid_free(object, ip);
+		return true;
+	}
+
+	/* RCU slabs could be legally used after free within the RCU period */
+	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
+		return false;
+
+	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
+	if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
+		kasan_report_invalid_free(object, ip);
+		return true;
+	}
+
+	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
+	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
+
+	if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN)))
+		return false;
+
+	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
+	quarantine_put(get_free_info(cache, object), cache);
+	return true;
+}
+
+bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
+{
+	return __kasan_slab_free(cache, object, ip, true);
+}
+
+void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
+		   gfp_t flags)
+{
+	unsigned long redzone_start;
+	unsigned long redzone_end;
+
+	if (gfpflags_allow_blocking(flags))
+		quarantine_reduce();
+
+	if (unlikely(object == NULL))
+		return;
+
+	redzone_start = round_up((unsigned long)(object + size),
+				KASAN_SHADOW_SCALE_SIZE);
+	redzone_end = round_up((unsigned long)object + cache->object_size,
+				KASAN_SHADOW_SCALE_SIZE);
+
+	kasan_unpoison_shadow(object, size);
+	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
+		KASAN_KMALLOC_REDZONE);
+
+	if (cache->flags & SLAB_KASAN)
+		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
+}
+EXPORT_SYMBOL(kasan_kmalloc);
+
+void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
+{
+	struct page *page;
+	unsigned long redzone_start;
+	unsigned long redzone_end;
+
+	if (gfpflags_allow_blocking(flags))
+		quarantine_reduce();
+
+	if (unlikely(ptr == NULL))
+		return;
+
+	page = virt_to_page(ptr);
+	redzone_start = round_up((unsigned long)(ptr + size),
+				KASAN_SHADOW_SCALE_SIZE);
+	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
+
+	kasan_unpoison_shadow(ptr, size);
+	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
+		KASAN_PAGE_REDZONE);
+}
+
+void kasan_krealloc(const void *object, size_t size, gfp_t flags)
+{
+	struct page *page;
+
+	if (unlikely(object == ZERO_SIZE_PTR))
+		return;
+
+	page = virt_to_head_page(object);
+
+	if (unlikely(!PageSlab(page)))
+		kasan_kmalloc_large(object, size, flags);
+	else
+		kasan_kmalloc(page->slab_cache, object, size, flags);
+}
+
+void kasan_poison_kfree(void *ptr, unsigned long ip)
+{
+	struct page *page;
+
+	page = virt_to_head_page(ptr);
+
+	if (unlikely(!PageSlab(page))) {
+		if (ptr != page_address(page)) {
+			kasan_report_invalid_free(ptr, ip);
+			return;
+		}
+		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
+				KASAN_FREE_PAGE);
+	} else {
+		__kasan_slab_free(page->slab_cache, ptr, ip, false);
+	}
+}
+
+void kasan_kfree_large(void *ptr, unsigned long ip)
+{
+	if (ptr != page_address(virt_to_head_page(ptr)))
+		kasan_report_invalid_free(ptr, ip);
+	/* The object will be poisoned by page_alloc. */
+}
+
+int kasan_module_alloc(void *addr, size_t size)
+{
+	void *ret;
+	size_t scaled_size;
+	size_t shadow_size;
+	unsigned long shadow_start;
+
+	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
+	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
+	shadow_size = round_up(scaled_size, PAGE_SIZE);
+
+	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
+		return -EINVAL;
+
+	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
+			shadow_start + shadow_size,
+			GFP_KERNEL | __GFP_ZERO,
+			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
+			__builtin_return_address(0));
+
+	if (ret) {
+		find_vm_area(addr)->flags |= VM_KASAN;
+		kmemleak_ignore(ret);
+		return 0;
+	}
+
+	return -ENOMEM;
+}
+
+void kasan_free_shadow(const struct vm_struct *vm)
+{
+	if (vm->flags & VM_KASAN)
+		vfree(kasan_mem_to_shadow(vm->addr));
+}
+
+static void register_global(struct kasan_global *global)
+{
+	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
+
+	kasan_unpoison_shadow(global->beg, global->size);
+
+	kasan_poison_shadow(global->beg + aligned_size,
+		global->size_with_redzone - aligned_size,
+		KASAN_GLOBAL_REDZONE);
+}
+
+void __asan_register_globals(struct kasan_global *globals, size_t size)
+{
+	int i;
+
+	for (i = 0; i < size; i++)
+		register_global(&globals[i]);
+}
+EXPORT_SYMBOL(__asan_register_globals);
+
+void __asan_unregister_globals(struct kasan_global *globals, size_t size)
+{
+}
+EXPORT_SYMBOL(__asan_unregister_globals);
+
+#define DEFINE_ASAN_LOAD_STORE(size)					\
+	void __asan_load##size(unsigned long addr)			\
+	{								\
+		check_memory_region_inline(addr, size, false, _RET_IP_);\
+	}								\
+	EXPORT_SYMBOL(__asan_load##size);				\
+	__alias(__asan_load##size)					\
+	void __asan_load##size##_noabort(unsigned long);		\
+	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
+	void __asan_store##size(unsigned long addr)			\
+	{								\
+		check_memory_region_inline(addr, size, true, _RET_IP_);	\
+	}								\
+	EXPORT_SYMBOL(__asan_store##size);				\
+	__alias(__asan_store##size)					\
+	void __asan_store##size##_noabort(unsigned long);		\
+	EXPORT_SYMBOL(__asan_store##size##_noabort)
+
+DEFINE_ASAN_LOAD_STORE(1);
+DEFINE_ASAN_LOAD_STORE(2);
+DEFINE_ASAN_LOAD_STORE(4);
+DEFINE_ASAN_LOAD_STORE(8);
+DEFINE_ASAN_LOAD_STORE(16);
+
+void __asan_loadN(unsigned long addr, size_t size)
+{
+	check_memory_region(addr, size, false, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_loadN);
+
+__alias(__asan_loadN)
+void __asan_loadN_noabort(unsigned long, size_t);
+EXPORT_SYMBOL(__asan_loadN_noabort);
+
+void __asan_storeN(unsigned long addr, size_t size)
+{
+	check_memory_region(addr, size, true, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_storeN);
+
+__alias(__asan_storeN)
+void __asan_storeN_noabort(unsigned long, size_t);
+EXPORT_SYMBOL(__asan_storeN_noabort);
+
+/* to shut up compiler complaints */
+void __asan_handle_no_return(void) {}
+EXPORT_SYMBOL(__asan_handle_no_return);
+
+/* Emitted by compiler to poison large objects when they go out of scope. */
+void __asan_poison_stack_memory(const void *addr, size_t size)
+{
+	/*
+	 * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
+	 * by redzones, so we simply round up size to simplify logic.
+	 */
+	kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
+			    KASAN_USE_AFTER_SCOPE);
+}
+EXPORT_SYMBOL(__asan_poison_stack_memory);
+
+/* Emitted by compiler to unpoison large objects when they go into scope. */
+void __asan_unpoison_stack_memory(const void *addr, size_t size)
+{
+	kasan_unpoison_shadow(addr, size);
+}
+EXPORT_SYMBOL(__asan_unpoison_stack_memory);
+
+/* Emitted by compiler to poison alloca()ed objects. */
+void __asan_alloca_poison(unsigned long addr, size_t size)
+{
+	size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
+	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
+			rounded_up_size;
+	size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
+
+	const void *left_redzone = (const void *)(addr -
+			KASAN_ALLOCA_REDZONE_SIZE);
+	const void *right_redzone = (const void *)(addr + rounded_up_size);
+
+	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
+
+	kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
+			      size - rounded_down_size);
+	kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
+			KASAN_ALLOCA_LEFT);
+	kasan_poison_shadow(right_redzone,
+			padding_size + KASAN_ALLOCA_REDZONE_SIZE,
+			KASAN_ALLOCA_RIGHT);
+}
+EXPORT_SYMBOL(__asan_alloca_poison);
+
+/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
+void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
+{
+	if (unlikely(!stack_top || stack_top > stack_bottom))
+		return;
+
+	kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
+}
+EXPORT_SYMBOL(__asan_allocas_unpoison);
+
+/* Emitted by the compiler to [un]poison local variables. */
+#define DEFINE_ASAN_SET_SHADOW(byte) \
+	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
+	{								\
+		__memset((void *)addr, 0x##byte, size);			\
+	}								\
+	EXPORT_SYMBOL(__asan_set_shadow_##byte)
+
+DEFINE_ASAN_SET_SHADOW(00);
+DEFINE_ASAN_SET_SHADOW(f1);
+DEFINE_ASAN_SET_SHADOW(f2);
+DEFINE_ASAN_SET_SHADOW(f3);
+DEFINE_ASAN_SET_SHADOW(f5);
+DEFINE_ASAN_SET_SHADOW(f8);
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+static bool shadow_mapped(unsigned long addr)
+{
+	pgd_t *pgd = pgd_offset_k(addr);
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+
+	if (pgd_none(*pgd))
+		return false;
+	p4d = p4d_offset(pgd, addr);
+	if (p4d_none(*p4d))
+		return false;
+	pud = pud_offset(p4d, addr);
+	if (pud_none(*pud))
+		return false;
+
+	/*
+	 * We can't use pud_large() or pud_huge(), the first one is
+	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
+	 * pud_bad(), if pud is bad then it's bad because it's huge.
+	 */
+	if (pud_bad(*pud))
+		return true;
+	pmd = pmd_offset(pud, addr);
+	if (pmd_none(*pmd))
+		return false;
+
+	if (pmd_bad(*pmd))
+		return true;
+	pte = pte_offset_kernel(pmd, addr);
+	return !pte_none(*pte);
+}
+
+static int __meminit kasan_mem_notifier(struct notifier_block *nb,
+			unsigned long action, void *data)
+{
+	struct memory_notify *mem_data = data;
+	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
+	unsigned long shadow_end, shadow_size;
+
+	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
+	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
+	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
+	shadow_size = nr_shadow_pages << PAGE_SHIFT;
+	shadow_end = shadow_start + shadow_size;
+
+	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
+		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
+		return NOTIFY_BAD;
+
+	switch (action) {
+	case MEM_GOING_ONLINE: {
+		void *ret;
+
+		/*
+		 * If shadow is mapped already than it must have been mapped
+		 * during the boot. This could happen if we onlining previously
+		 * offlined memory.
+		 */
+		if (shadow_mapped(shadow_start))
+			return NOTIFY_OK;
+
+		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
+					shadow_end, GFP_KERNEL,
+					PAGE_KERNEL, VM_NO_GUARD,
+					pfn_to_nid(mem_data->start_pfn),
+					__builtin_return_address(0));
+		if (!ret)
+			return NOTIFY_BAD;
+
+		kmemleak_ignore(ret);
+		return NOTIFY_OK;
+	}
+	case MEM_CANCEL_ONLINE:
+	case MEM_OFFLINE: {
+		struct vm_struct *vm;
+
+		/*
+		 * shadow_start was either mapped during boot by kasan_init()
+		 * or during memory online by __vmalloc_node_range().
+		 * In the latter case we can use vfree() to free shadow.
+		 * Non-NULL result of the find_vm_area() will tell us if
+		 * that was the second case.
+		 *
+		 * Currently it's not possible to free shadow mapped
+		 * during boot by kasan_init(). It's because the code
+		 * to do that hasn't been written yet. So we'll just
+		 * leak the memory.
+		 */
+		vm = find_vm_area((void *)shadow_start);
+		if (vm)
+			vfree((void *)shadow_start);
+	}
+	}
+
+	return NOTIFY_OK;
+}
+
+static int __init kasan_memhotplug_init(void)
+{
+	hotplug_memory_notifier(kasan_mem_notifier, 0);
+
+	return 0;
+}
+
+core_initcall(kasan_memhotplug_init);
+#endif
diff --git a/mm/kasan/kasan.h b/mm/kasan/kasan.h
new file mode 100644
index 0000000..c12dcfd
--- /dev/null
+++ b/mm/kasan/kasan.h
@@ -0,0 +1,167 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __MM_KASAN_KASAN_H
+#define __MM_KASAN_KASAN_H
+
+#include <linux/kasan.h>
+#include <linux/stackdepot.h>
+
+#define KASAN_SHADOW_SCALE_SIZE (1UL << KASAN_SHADOW_SCALE_SHIFT)
+#define KASAN_SHADOW_MASK       (KASAN_SHADOW_SCALE_SIZE - 1)
+
+#define KASAN_FREE_PAGE         0xFF  /* page was freed */
+#define KASAN_PAGE_REDZONE      0xFE  /* redzone for kmalloc_large allocations */
+#define KASAN_KMALLOC_REDZONE   0xFC  /* redzone inside slub object */
+#define KASAN_KMALLOC_FREE      0xFB  /* object was freed (kmem_cache_free/kfree) */
+#define KASAN_GLOBAL_REDZONE    0xFA  /* redzone for global variable */
+
+/*
+ * Stack redzone shadow values
+ * (Those are compiler's ABI, don't change them)
+ */
+#define KASAN_STACK_LEFT        0xF1
+#define KASAN_STACK_MID         0xF2
+#define KASAN_STACK_RIGHT       0xF3
+#define KASAN_STACK_PARTIAL     0xF4
+#define KASAN_USE_AFTER_SCOPE   0xF8
+
+/*
+ * alloca redzone shadow values
+ */
+#define KASAN_ALLOCA_LEFT	0xCA
+#define KASAN_ALLOCA_RIGHT	0xCB
+
+#define KASAN_ALLOCA_REDZONE_SIZE	32
+
+/* Don't break randconfig/all*config builds */
+#ifndef KASAN_ABI_VERSION
+#define KASAN_ABI_VERSION 1
+#endif
+
+struct kasan_access_info {
+	const void *access_addr;
+	const void *first_bad_addr;
+	size_t access_size;
+	bool is_write;
+	unsigned long ip;
+};
+
+/* The layout of struct dictated by compiler */
+struct kasan_source_location {
+	const char *filename;
+	int line_no;
+	int column_no;
+};
+
+/* The layout of struct dictated by compiler */
+struct kasan_global {
+	const void *beg;		/* Address of the beginning of the global variable. */
+	size_t size;			/* Size of the global variable. */
+	size_t size_with_redzone;	/* Size of the variable + size of the red zone. 32 bytes aligned */
+	const void *name;
+	const void *module_name;	/* Name of the module where the global variable is declared. */
+	unsigned long has_dynamic_init;	/* This needed for C++ */
+#if KASAN_ABI_VERSION >= 4
+	struct kasan_source_location *location;
+#endif
+#if KASAN_ABI_VERSION >= 5
+	char *odr_indicator;
+#endif
+};
+
+/**
+ * Structures to keep alloc and free tracks *
+ */
+
+#define KASAN_STACK_DEPTH 64
+
+struct kasan_track {
+	u32 pid;
+	depot_stack_handle_t stack;
+};
+
+struct kasan_alloc_meta {
+	struct kasan_track alloc_track;
+	struct kasan_track free_track;
+};
+
+struct qlist_node {
+	struct qlist_node *next;
+};
+struct kasan_free_meta {
+	/* This field is used while the object is in the quarantine.
+	 * Otherwise it might be used for the allocator freelist.
+	 */
+	struct qlist_node quarantine_link;
+};
+
+struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
+					const void *object);
+struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
+					const void *object);
+
+static inline const void *kasan_shadow_to_mem(const void *shadow_addr)
+{
+	return (void *)(((unsigned long)shadow_addr - KASAN_SHADOW_OFFSET)
+		<< KASAN_SHADOW_SCALE_SHIFT);
+}
+
+void kasan_report(unsigned long addr, size_t size,
+		bool is_write, unsigned long ip);
+void kasan_report_invalid_free(void *object, unsigned long ip);
+
+#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB)
+void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache);
+void quarantine_reduce(void);
+void quarantine_remove_cache(struct kmem_cache *cache);
+#else
+static inline void quarantine_put(struct kasan_free_meta *info,
+				struct kmem_cache *cache) { }
+static inline void quarantine_reduce(void) { }
+static inline void quarantine_remove_cache(struct kmem_cache *cache) { }
+#endif
+
+/*
+ * Exported functions for interfaces called from assembly or from generated
+ * code. Declarations here to avoid warning about missing declarations.
+ */
+asmlinkage void kasan_unpoison_task_stack_below(const void *watermark);
+void __asan_register_globals(struct kasan_global *globals, size_t size);
+void __asan_unregister_globals(struct kasan_global *globals, size_t size);
+void __asan_loadN(unsigned long addr, size_t size);
+void __asan_storeN(unsigned long addr, size_t size);
+void __asan_handle_no_return(void);
+void __asan_poison_stack_memory(const void *addr, size_t size);
+void __asan_unpoison_stack_memory(const void *addr, size_t size);
+void __asan_alloca_poison(unsigned long addr, size_t size);
+void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom);
+
+void __asan_load1(unsigned long addr);
+void __asan_store1(unsigned long addr);
+void __asan_load2(unsigned long addr);
+void __asan_store2(unsigned long addr);
+void __asan_load4(unsigned long addr);
+void __asan_store4(unsigned long addr);
+void __asan_load8(unsigned long addr);
+void __asan_store8(unsigned long addr);
+void __asan_load16(unsigned long addr);
+void __asan_store16(unsigned long addr);
+
+void __asan_load1_noabort(unsigned long addr);
+void __asan_store1_noabort(unsigned long addr);
+void __asan_load2_noabort(unsigned long addr);
+void __asan_store2_noabort(unsigned long addr);
+void __asan_load4_noabort(unsigned long addr);
+void __asan_store4_noabort(unsigned long addr);
+void __asan_load8_noabort(unsigned long addr);
+void __asan_store8_noabort(unsigned long addr);
+void __asan_load16_noabort(unsigned long addr);
+void __asan_store16_noabort(unsigned long addr);
+
+void __asan_set_shadow_00(const void *addr, size_t size);
+void __asan_set_shadow_f1(const void *addr, size_t size);
+void __asan_set_shadow_f2(const void *addr, size_t size);
+void __asan_set_shadow_f3(const void *addr, size_t size);
+void __asan_set_shadow_f5(const void *addr, size_t size);
+void __asan_set_shadow_f8(const void *addr, size_t size);
+
+#endif
diff --git a/mm/kasan/kasan_init.c b/mm/kasan/kasan_init.c
new file mode 100644
index 0000000..7a2a2f1
--- /dev/null
+++ b/mm/kasan/kasan_init.c
@@ -0,0 +1,489 @@
+/*
+ * This file contains some kasan initialization code.
+ *
+ * Copyright (c) 2015 Samsung Electronics Co., Ltd.
+ * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/bootmem.h>
+#include <linux/init.h>
+#include <linux/kasan.h>
+#include <linux/kernel.h>
+#include <linux/memblock.h>
+#include <linux/mm.h>
+#include <linux/pfn.h>
+#include <linux/slab.h>
+
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+
+#include "kasan.h"
+
+/*
+ * This page serves two purposes:
+ *   - It used as early shadow memory. The entire shadow region populated
+ *     with this page, before we will be able to setup normal shadow memory.
+ *   - Latter it reused it as zero shadow to cover large ranges of memory
+ *     that allowed to access, but not handled by kasan (vmalloc/vmemmap ...).
+ */
+unsigned char kasan_zero_page[PAGE_SIZE] __page_aligned_bss;
+
+#if CONFIG_PGTABLE_LEVELS > 4
+p4d_t kasan_zero_p4d[MAX_PTRS_PER_P4D] __page_aligned_bss;
+static inline bool kasan_p4d_table(pgd_t pgd)
+{
+	return pgd_page(pgd) == virt_to_page(lm_alias(kasan_zero_p4d));
+}
+#else
+static inline bool kasan_p4d_table(pgd_t pgd)
+{
+	return 0;
+}
+#endif
+#if CONFIG_PGTABLE_LEVELS > 3
+pud_t kasan_zero_pud[PTRS_PER_PUD] __page_aligned_bss;
+static inline bool kasan_pud_table(p4d_t p4d)
+{
+	return p4d_page(p4d) == virt_to_page(lm_alias(kasan_zero_pud));
+}
+#else
+static inline bool kasan_pud_table(p4d_t p4d)
+{
+	return 0;
+}
+#endif
+#if CONFIG_PGTABLE_LEVELS > 2
+pmd_t kasan_zero_pmd[PTRS_PER_PMD] __page_aligned_bss;
+static inline bool kasan_pmd_table(pud_t pud)
+{
+	return pud_page(pud) == virt_to_page(lm_alias(kasan_zero_pmd));
+}
+#else
+static inline bool kasan_pmd_table(pud_t pud)
+{
+	return 0;
+}
+#endif
+pte_t kasan_zero_pte[PTRS_PER_PTE] __page_aligned_bss;
+
+static inline bool kasan_pte_table(pmd_t pmd)
+{
+	return pmd_page(pmd) == virt_to_page(lm_alias(kasan_zero_pte));
+}
+
+static inline bool kasan_zero_page_entry(pte_t pte)
+{
+	return pte_page(pte) == virt_to_page(lm_alias(kasan_zero_page));
+}
+
+static __init void *early_alloc(size_t size, int node)
+{
+	return memblock_virt_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
+					BOOTMEM_ALLOC_ACCESSIBLE, node);
+}
+
+static void __ref zero_pte_populate(pmd_t *pmd, unsigned long addr,
+				unsigned long end)
+{
+	pte_t *pte = pte_offset_kernel(pmd, addr);
+	pte_t zero_pte;
+
+	zero_pte = pfn_pte(PFN_DOWN(__pa_symbol(kasan_zero_page)), PAGE_KERNEL);
+	zero_pte = pte_wrprotect(zero_pte);
+
+	while (addr + PAGE_SIZE <= end) {
+		set_pte_at(&init_mm, addr, pte, zero_pte);
+		addr += PAGE_SIZE;
+		pte = pte_offset_kernel(pmd, addr);
+	}
+}
+
+static int __ref zero_pmd_populate(pud_t *pud, unsigned long addr,
+				unsigned long end)
+{
+	pmd_t *pmd = pmd_offset(pud, addr);
+	unsigned long next;
+
+	do {
+		next = pmd_addr_end(addr, end);
+
+		if (IS_ALIGNED(addr, PMD_SIZE) && end - addr >= PMD_SIZE) {
+			pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
+			continue;
+		}
+
+		if (pmd_none(*pmd)) {
+			pte_t *p;
+
+			if (slab_is_available())
+				p = pte_alloc_one_kernel(&init_mm, addr);
+			else
+				p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
+			if (!p)
+				return -ENOMEM;
+
+			pmd_populate_kernel(&init_mm, pmd, p);
+		}
+		zero_pte_populate(pmd, addr, next);
+	} while (pmd++, addr = next, addr != end);
+
+	return 0;
+}
+
+static int __ref zero_pud_populate(p4d_t *p4d, unsigned long addr,
+				unsigned long end)
+{
+	pud_t *pud = pud_offset(p4d, addr);
+	unsigned long next;
+
+	do {
+		next = pud_addr_end(addr, end);
+		if (IS_ALIGNED(addr, PUD_SIZE) && end - addr >= PUD_SIZE) {
+			pmd_t *pmd;
+
+			pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
+			pmd = pmd_offset(pud, addr);
+			pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
+			continue;
+		}
+
+		if (pud_none(*pud)) {
+			pmd_t *p;
+
+			if (slab_is_available()) {
+				p = pmd_alloc(&init_mm, pud, addr);
+				if (!p)
+					return -ENOMEM;
+			} else {
+				pud_populate(&init_mm, pud,
+					early_alloc(PAGE_SIZE, NUMA_NO_NODE));
+			}
+		}
+		zero_pmd_populate(pud, addr, next);
+	} while (pud++, addr = next, addr != end);
+
+	return 0;
+}
+
+static int __ref zero_p4d_populate(pgd_t *pgd, unsigned long addr,
+				unsigned long end)
+{
+	p4d_t *p4d = p4d_offset(pgd, addr);
+	unsigned long next;
+
+	do {
+		next = p4d_addr_end(addr, end);
+		if (IS_ALIGNED(addr, P4D_SIZE) && end - addr >= P4D_SIZE) {
+			pud_t *pud;
+			pmd_t *pmd;
+
+			p4d_populate(&init_mm, p4d, lm_alias(kasan_zero_pud));
+			pud = pud_offset(p4d, addr);
+			pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
+			pmd = pmd_offset(pud, addr);
+			pmd_populate_kernel(&init_mm, pmd,
+						lm_alias(kasan_zero_pte));
+			continue;
+		}
+
+		if (p4d_none(*p4d)) {
+			pud_t *p;
+
+			if (slab_is_available()) {
+				p = pud_alloc(&init_mm, p4d, addr);
+				if (!p)
+					return -ENOMEM;
+			} else {
+				p4d_populate(&init_mm, p4d,
+					early_alloc(PAGE_SIZE, NUMA_NO_NODE));
+			}
+		}
+		zero_pud_populate(p4d, addr, next);
+	} while (p4d++, addr = next, addr != end);
+
+	return 0;
+}
+
+/**
+ * kasan_populate_zero_shadow - populate shadow memory region with
+ *                               kasan_zero_page
+ * @shadow_start - start of the memory range to populate
+ * @shadow_end   - end of the memory range to populate
+ */
+int __ref kasan_populate_zero_shadow(const void *shadow_start,
+				const void *shadow_end)
+{
+	unsigned long addr = (unsigned long)shadow_start;
+	unsigned long end = (unsigned long)shadow_end;
+	pgd_t *pgd = pgd_offset_k(addr);
+	unsigned long next;
+
+	do {
+		next = pgd_addr_end(addr, end);
+
+		if (IS_ALIGNED(addr, PGDIR_SIZE) && end - addr >= PGDIR_SIZE) {
+			p4d_t *p4d;
+			pud_t *pud;
+			pmd_t *pmd;
+
+			/*
+			 * kasan_zero_pud should be populated with pmds
+			 * at this moment.
+			 * [pud,pmd]_populate*() below needed only for
+			 * 3,2 - level page tables where we don't have
+			 * puds,pmds, so pgd_populate(), pud_populate()
+			 * is noops.
+			 *
+			 * The ifndef is required to avoid build breakage.
+			 *
+			 * With 5level-fixup.h, pgd_populate() is not nop and
+			 * we reference kasan_zero_p4d. It's not defined
+			 * unless 5-level paging enabled.
+			 *
+			 * The ifndef can be dropped once all KASAN-enabled
+			 * architectures will switch to pgtable-nop4d.h.
+			 */
+#ifndef __ARCH_HAS_5LEVEL_HACK
+			pgd_populate(&init_mm, pgd, lm_alias(kasan_zero_p4d));
+#endif
+			p4d = p4d_offset(pgd, addr);
+			p4d_populate(&init_mm, p4d, lm_alias(kasan_zero_pud));
+			pud = pud_offset(p4d, addr);
+			pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
+			pmd = pmd_offset(pud, addr);
+			pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
+			continue;
+		}
+
+		if (pgd_none(*pgd)) {
+			p4d_t *p;
+
+			if (slab_is_available()) {
+				p = p4d_alloc(&init_mm, pgd, addr);
+				if (!p)
+					return -ENOMEM;
+			} else {
+				pgd_populate(&init_mm, pgd,
+					early_alloc(PAGE_SIZE, NUMA_NO_NODE));
+			}
+		}
+		zero_p4d_populate(pgd, addr, next);
+	} while (pgd++, addr = next, addr != end);
+
+	return 0;
+}
+
+static void kasan_free_pte(pte_t *pte_start, pmd_t *pmd)
+{
+	pte_t *pte;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PTE; i++) {
+		pte = pte_start + i;
+		if (!pte_none(*pte))
+			return;
+	}
+
+	pte_free_kernel(&init_mm, (pte_t *)page_to_virt(pmd_page(*pmd)));
+	pmd_clear(pmd);
+}
+
+static void kasan_free_pmd(pmd_t *pmd_start, pud_t *pud)
+{
+	pmd_t *pmd;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PMD; i++) {
+		pmd = pmd_start + i;
+		if (!pmd_none(*pmd))
+			return;
+	}
+
+	pmd_free(&init_mm, (pmd_t *)page_to_virt(pud_page(*pud)));
+	pud_clear(pud);
+}
+
+static void kasan_free_pud(pud_t *pud_start, p4d_t *p4d)
+{
+	pud_t *pud;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PUD; i++) {
+		pud = pud_start + i;
+		if (!pud_none(*pud))
+			return;
+	}
+
+	pud_free(&init_mm, (pud_t *)page_to_virt(p4d_page(*p4d)));
+	p4d_clear(p4d);
+}
+
+static void kasan_free_p4d(p4d_t *p4d_start, pgd_t *pgd)
+{
+	p4d_t *p4d;
+	int i;
+
+	for (i = 0; i < PTRS_PER_P4D; i++) {
+		p4d = p4d_start + i;
+		if (!p4d_none(*p4d))
+			return;
+	}
+
+	p4d_free(&init_mm, (p4d_t *)page_to_virt(pgd_page(*pgd)));
+	pgd_clear(pgd);
+}
+
+static void kasan_remove_pte_table(pte_t *pte, unsigned long addr,
+				unsigned long end)
+{
+	unsigned long next;
+
+	for (; addr < end; addr = next, pte++) {
+		next = (addr + PAGE_SIZE) & PAGE_MASK;
+		if (next > end)
+			next = end;
+
+		if (!pte_present(*pte))
+			continue;
+
+		if (WARN_ON(!kasan_zero_page_entry(*pte)))
+			continue;
+		pte_clear(&init_mm, addr, pte);
+	}
+}
+
+static void kasan_remove_pmd_table(pmd_t *pmd, unsigned long addr,
+				unsigned long end)
+{
+	unsigned long next;
+
+	for (; addr < end; addr = next, pmd++) {
+		pte_t *pte;
+
+		next = pmd_addr_end(addr, end);
+
+		if (!pmd_present(*pmd))
+			continue;
+
+		if (kasan_pte_table(*pmd)) {
+			if (IS_ALIGNED(addr, PMD_SIZE) &&
+			    IS_ALIGNED(next, PMD_SIZE))
+				pmd_clear(pmd);
+			continue;
+		}
+		pte = pte_offset_kernel(pmd, addr);
+		kasan_remove_pte_table(pte, addr, next);
+		kasan_free_pte(pte_offset_kernel(pmd, 0), pmd);
+	}
+}
+
+static void kasan_remove_pud_table(pud_t *pud, unsigned long addr,
+				unsigned long end)
+{
+	unsigned long next;
+
+	for (; addr < end; addr = next, pud++) {
+		pmd_t *pmd, *pmd_base;
+
+		next = pud_addr_end(addr, end);
+
+		if (!pud_present(*pud))
+			continue;
+
+		if (kasan_pmd_table(*pud)) {
+			if (IS_ALIGNED(addr, PUD_SIZE) &&
+			    IS_ALIGNED(next, PUD_SIZE))
+				pud_clear(pud);
+			continue;
+		}
+		pmd = pmd_offset(pud, addr);
+		pmd_base = pmd_offset(pud, 0);
+		kasan_remove_pmd_table(pmd, addr, next);
+		kasan_free_pmd(pmd_base, pud);
+	}
+}
+
+static void kasan_remove_p4d_table(p4d_t *p4d, unsigned long addr,
+				unsigned long end)
+{
+	unsigned long next;
+
+	for (; addr < end; addr = next, p4d++) {
+		pud_t *pud;
+
+		next = p4d_addr_end(addr, end);
+
+		if (!p4d_present(*p4d))
+			continue;
+
+		if (kasan_pud_table(*p4d)) {
+			if (IS_ALIGNED(addr, P4D_SIZE) &&
+			    IS_ALIGNED(next, P4D_SIZE))
+				p4d_clear(p4d);
+			continue;
+		}
+		pud = pud_offset(p4d, addr);
+		kasan_remove_pud_table(pud, addr, next);
+		kasan_free_pud(pud_offset(p4d, 0), p4d);
+	}
+}
+
+void kasan_remove_zero_shadow(void *start, unsigned long size)
+{
+	unsigned long addr, end, next;
+	pgd_t *pgd;
+
+	addr = (unsigned long)kasan_mem_to_shadow(start);
+	end = addr + (size >> KASAN_SHADOW_SCALE_SHIFT);
+
+	if (WARN_ON((unsigned long)start %
+			(KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
+	    WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
+		return;
+
+	for (; addr < end; addr = next) {
+		p4d_t *p4d;
+
+		next = pgd_addr_end(addr, end);
+
+		pgd = pgd_offset_k(addr);
+		if (!pgd_present(*pgd))
+			continue;
+
+		if (kasan_p4d_table(*pgd)) {
+			if (IS_ALIGNED(addr, PGDIR_SIZE) &&
+			    IS_ALIGNED(next, PGDIR_SIZE))
+				pgd_clear(pgd);
+			continue;
+		}
+
+		p4d = p4d_offset(pgd, addr);
+		kasan_remove_p4d_table(p4d, addr, next);
+		kasan_free_p4d(p4d_offset(pgd, 0), pgd);
+	}
+}
+
+int kasan_add_zero_shadow(void *start, unsigned long size)
+{
+	int ret;
+	void *shadow_start, *shadow_end;
+
+	shadow_start = kasan_mem_to_shadow(start);
+	shadow_end = shadow_start + (size >> KASAN_SHADOW_SCALE_SHIFT);
+
+	if (WARN_ON((unsigned long)start %
+			(KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
+	    WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
+		return -EINVAL;
+
+	ret = kasan_populate_zero_shadow(shadow_start, shadow_end);
+	if (ret)
+		kasan_remove_zero_shadow(shadow_start,
+					size >> KASAN_SHADOW_SCALE_SHIFT);
+	return ret;
+}
diff --git a/mm/kasan/quarantine.c b/mm/kasan/quarantine.c
new file mode 100644
index 0000000..3a8ddf8
--- /dev/null
+++ b/mm/kasan/quarantine.c
@@ -0,0 +1,328 @@
+/*
+ * KASAN quarantine.
+ *
+ * Author: Alexander Potapenko <glider@google.com>
+ * Copyright (C) 2016 Google, Inc.
+ *
+ * Based on code by Dmitry Chernenkov.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ */
+
+#include <linux/gfp.h>
+#include <linux/hash.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/percpu.h>
+#include <linux/printk.h>
+#include <linux/shrinker.h>
+#include <linux/slab.h>
+#include <linux/srcu.h>
+#include <linux/string.h>
+#include <linux/types.h>
+
+#include "../slab.h"
+#include "kasan.h"
+
+/* Data structure and operations for quarantine queues. */
+
+/*
+ * Each queue is a signle-linked list, which also stores the total size of
+ * objects inside of it.
+ */
+struct qlist_head {
+	struct qlist_node *head;
+	struct qlist_node *tail;
+	size_t bytes;
+};
+
+#define QLIST_INIT { NULL, NULL, 0 }
+
+static bool qlist_empty(struct qlist_head *q)
+{
+	return !q->head;
+}
+
+static void qlist_init(struct qlist_head *q)
+{
+	q->head = q->tail = NULL;
+	q->bytes = 0;
+}
+
+static void qlist_put(struct qlist_head *q, struct qlist_node *qlink,
+		size_t size)
+{
+	if (unlikely(qlist_empty(q)))
+		q->head = qlink;
+	else
+		q->tail->next = qlink;
+	q->tail = qlink;
+	qlink->next = NULL;
+	q->bytes += size;
+}
+
+static void qlist_move_all(struct qlist_head *from, struct qlist_head *to)
+{
+	if (unlikely(qlist_empty(from)))
+		return;
+
+	if (qlist_empty(to)) {
+		*to = *from;
+		qlist_init(from);
+		return;
+	}
+
+	to->tail->next = from->head;
+	to->tail = from->tail;
+	to->bytes += from->bytes;
+
+	qlist_init(from);
+}
+
+#define QUARANTINE_PERCPU_SIZE (1 << 20)
+#define QUARANTINE_BATCHES \
+	(1024 > 4 * CONFIG_NR_CPUS ? 1024 : 4 * CONFIG_NR_CPUS)
+
+/*
+ * The object quarantine consists of per-cpu queues and a global queue,
+ * guarded by quarantine_lock.
+ */
+static DEFINE_PER_CPU(struct qlist_head, cpu_quarantine);
+
+/* Round-robin FIFO array of batches. */
+static struct qlist_head global_quarantine[QUARANTINE_BATCHES];
+static int quarantine_head;
+static int quarantine_tail;
+/* Total size of all objects in global_quarantine across all batches. */
+static unsigned long quarantine_size;
+static DEFINE_SPINLOCK(quarantine_lock);
+DEFINE_STATIC_SRCU(remove_cache_srcu);
+
+/* Maximum size of the global queue. */
+static unsigned long quarantine_max_size;
+
+/*
+ * Target size of a batch in global_quarantine.
+ * Usually equal to QUARANTINE_PERCPU_SIZE unless we have too much RAM.
+ */
+static unsigned long quarantine_batch_size;
+
+/*
+ * The fraction of physical memory the quarantine is allowed to occupy.
+ * Quarantine doesn't support memory shrinker with SLAB allocator, so we keep
+ * the ratio low to avoid OOM.
+ */
+#define QUARANTINE_FRACTION 32
+
+static struct kmem_cache *qlink_to_cache(struct qlist_node *qlink)
+{
+	return virt_to_head_page(qlink)->slab_cache;
+}
+
+static void *qlink_to_object(struct qlist_node *qlink, struct kmem_cache *cache)
+{
+	struct kasan_free_meta *free_info =
+		container_of(qlink, struct kasan_free_meta,
+			     quarantine_link);
+
+	return ((void *)free_info) - cache->kasan_info.free_meta_offset;
+}
+
+static void qlink_free(struct qlist_node *qlink, struct kmem_cache *cache)
+{
+	void *object = qlink_to_object(qlink, cache);
+	unsigned long flags;
+
+	if (IS_ENABLED(CONFIG_SLAB))
+		local_irq_save(flags);
+
+	___cache_free(cache, object, _THIS_IP_);
+
+	if (IS_ENABLED(CONFIG_SLAB))
+		local_irq_restore(flags);
+}
+
+static void qlist_free_all(struct qlist_head *q, struct kmem_cache *cache)
+{
+	struct qlist_node *qlink;
+
+	if (unlikely(qlist_empty(q)))
+		return;
+
+	qlink = q->head;
+	while (qlink) {
+		struct kmem_cache *obj_cache =
+			cache ? cache :	qlink_to_cache(qlink);
+		struct qlist_node *next = qlink->next;
+
+		qlink_free(qlink, obj_cache);
+		qlink = next;
+	}
+	qlist_init(q);
+}
+
+void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache)
+{
+	unsigned long flags;
+	struct qlist_head *q;
+	struct qlist_head temp = QLIST_INIT;
+
+	/*
+	 * Note: irq must be disabled until after we move the batch to the
+	 * global quarantine. Otherwise quarantine_remove_cache() can miss
+	 * some objects belonging to the cache if they are in our local temp
+	 * list. quarantine_remove_cache() executes on_each_cpu() at the
+	 * beginning which ensures that it either sees the objects in per-cpu
+	 * lists or in the global quarantine.
+	 */
+	local_irq_save(flags);
+
+	q = this_cpu_ptr(&cpu_quarantine);
+	qlist_put(q, &info->quarantine_link, cache->size);
+	if (unlikely(q->bytes > QUARANTINE_PERCPU_SIZE)) {
+		qlist_move_all(q, &temp);
+
+		spin_lock(&quarantine_lock);
+		WRITE_ONCE(quarantine_size, quarantine_size + temp.bytes);
+		qlist_move_all(&temp, &global_quarantine[quarantine_tail]);
+		if (global_quarantine[quarantine_tail].bytes >=
+				READ_ONCE(quarantine_batch_size)) {
+			int new_tail;
+
+			new_tail = quarantine_tail + 1;
+			if (new_tail == QUARANTINE_BATCHES)
+				new_tail = 0;
+			if (new_tail != quarantine_head)
+				quarantine_tail = new_tail;
+		}
+		spin_unlock(&quarantine_lock);
+	}
+
+	local_irq_restore(flags);
+}
+
+void quarantine_reduce(void)
+{
+	size_t total_size, new_quarantine_size, percpu_quarantines;
+	unsigned long flags;
+	int srcu_idx;
+	struct qlist_head to_free = QLIST_INIT;
+
+	if (likely(READ_ONCE(quarantine_size) <=
+		   READ_ONCE(quarantine_max_size)))
+		return;
+
+	/*
+	 * srcu critical section ensures that quarantine_remove_cache()
+	 * will not miss objects belonging to the cache while they are in our
+	 * local to_free list. srcu is chosen because (1) it gives us private
+	 * grace period domain that does not interfere with anything else,
+	 * and (2) it allows synchronize_srcu() to return without waiting
+	 * if there are no pending read critical sections (which is the
+	 * expected case).
+	 */
+	srcu_idx = srcu_read_lock(&remove_cache_srcu);
+	spin_lock_irqsave(&quarantine_lock, flags);
+
+	/*
+	 * Update quarantine size in case of hotplug. Allocate a fraction of
+	 * the installed memory to quarantine minus per-cpu queue limits.
+	 */
+	total_size = (READ_ONCE(totalram_pages) << PAGE_SHIFT) /
+		QUARANTINE_FRACTION;
+	percpu_quarantines = QUARANTINE_PERCPU_SIZE * num_online_cpus();
+	new_quarantine_size = (total_size < percpu_quarantines) ?
+		0 : total_size - percpu_quarantines;
+	WRITE_ONCE(quarantine_max_size, new_quarantine_size);
+	/* Aim at consuming at most 1/2 of slots in quarantine. */
+	WRITE_ONCE(quarantine_batch_size, max((size_t)QUARANTINE_PERCPU_SIZE,
+		2 * total_size / QUARANTINE_BATCHES));
+
+	if (likely(quarantine_size > quarantine_max_size)) {
+		qlist_move_all(&global_quarantine[quarantine_head], &to_free);
+		WRITE_ONCE(quarantine_size, quarantine_size - to_free.bytes);
+		quarantine_head++;
+		if (quarantine_head == QUARANTINE_BATCHES)
+			quarantine_head = 0;
+	}
+
+	spin_unlock_irqrestore(&quarantine_lock, flags);
+
+	qlist_free_all(&to_free, NULL);
+	srcu_read_unlock(&remove_cache_srcu, srcu_idx);
+}
+
+static void qlist_move_cache(struct qlist_head *from,
+				   struct qlist_head *to,
+				   struct kmem_cache *cache)
+{
+	struct qlist_node *curr;
+
+	if (unlikely(qlist_empty(from)))
+		return;
+
+	curr = from->head;
+	qlist_init(from);
+	while (curr) {
+		struct qlist_node *next = curr->next;
+		struct kmem_cache *obj_cache = qlink_to_cache(curr);
+
+		if (obj_cache == cache)
+			qlist_put(to, curr, obj_cache->size);
+		else
+			qlist_put(from, curr, obj_cache->size);
+
+		curr = next;
+	}
+}
+
+static void per_cpu_remove_cache(void *arg)
+{
+	struct kmem_cache *cache = arg;
+	struct qlist_head to_free = QLIST_INIT;
+	struct qlist_head *q;
+
+	q = this_cpu_ptr(&cpu_quarantine);
+	qlist_move_cache(q, &to_free, cache);
+	qlist_free_all(&to_free, cache);
+}
+
+/* Free all quarantined objects belonging to cache. */
+void quarantine_remove_cache(struct kmem_cache *cache)
+{
+	unsigned long flags, i;
+	struct qlist_head to_free = QLIST_INIT;
+
+	/*
+	 * Must be careful to not miss any objects that are being moved from
+	 * per-cpu list to the global quarantine in quarantine_put(),
+	 * nor objects being freed in quarantine_reduce(). on_each_cpu()
+	 * achieves the first goal, while synchronize_srcu() achieves the
+	 * second.
+	 */
+	on_each_cpu(per_cpu_remove_cache, cache, 1);
+
+	spin_lock_irqsave(&quarantine_lock, flags);
+	for (i = 0; i < QUARANTINE_BATCHES; i++) {
+		if (qlist_empty(&global_quarantine[i]))
+			continue;
+		qlist_move_cache(&global_quarantine[i], &to_free, cache);
+		/* Scanning whole quarantine can take a while. */
+		spin_unlock_irqrestore(&quarantine_lock, flags);
+		cond_resched();
+		spin_lock_irqsave(&quarantine_lock, flags);
+	}
+	spin_unlock_irqrestore(&quarantine_lock, flags);
+
+	qlist_free_all(&to_free, cache);
+
+	synchronize_srcu(&remove_cache_srcu);
+}
diff --git a/mm/kasan/report.c b/mm/kasan/report.c
new file mode 100644
index 0000000..5c169aa
--- /dev/null
+++ b/mm/kasan/report.c
@@ -0,0 +1,451 @@
+/*
+ * This file contains error reporting code.
+ *
+ * Copyright (c) 2014 Samsung Electronics Co., Ltd.
+ * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
+ *
+ * Some code borrowed from https://github.com/xairy/kasan-prototype by
+ *        Andrey Konovalov <andreyknvl@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/bitops.h>
+#include <linux/ftrace.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/stackdepot.h>
+#include <linux/stacktrace.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/kasan.h>
+#include <linux/module.h>
+
+#include <asm/sections.h>
+
+#include "kasan.h"
+#include "../slab.h"
+
+/* Shadow layout customization. */
+#define SHADOW_BYTES_PER_BLOCK 1
+#define SHADOW_BLOCKS_PER_ROW 16
+#define SHADOW_BYTES_PER_ROW (SHADOW_BLOCKS_PER_ROW * SHADOW_BYTES_PER_BLOCK)
+#define SHADOW_ROWS_AROUND_ADDR 2
+
+static const void *find_first_bad_addr(const void *addr, size_t size)
+{
+	u8 shadow_val = *(u8 *)kasan_mem_to_shadow(addr);
+	const void *first_bad_addr = addr;
+
+	while (!shadow_val && first_bad_addr < addr + size) {
+		first_bad_addr += KASAN_SHADOW_SCALE_SIZE;
+		shadow_val = *(u8 *)kasan_mem_to_shadow(first_bad_addr);
+	}
+	return first_bad_addr;
+}
+
+static bool addr_has_shadow(struct kasan_access_info *info)
+{
+	return (info->access_addr >=
+		kasan_shadow_to_mem((void *)KASAN_SHADOW_START));
+}
+
+static const char *get_shadow_bug_type(struct kasan_access_info *info)
+{
+	const char *bug_type = "unknown-crash";
+	u8 *shadow_addr;
+
+	info->first_bad_addr = find_first_bad_addr(info->access_addr,
+						info->access_size);
+
+	shadow_addr = (u8 *)kasan_mem_to_shadow(info->first_bad_addr);
+
+	/*
+	 * If shadow byte value is in [0, KASAN_SHADOW_SCALE_SIZE) we can look
+	 * at the next shadow byte to determine the type of the bad access.
+	 */
+	if (*shadow_addr > 0 && *shadow_addr <= KASAN_SHADOW_SCALE_SIZE - 1)
+		shadow_addr++;
+
+	switch (*shadow_addr) {
+	case 0 ... KASAN_SHADOW_SCALE_SIZE - 1:
+		/*
+		 * In theory it's still possible to see these shadow values
+		 * due to a data race in the kernel code.
+		 */
+		bug_type = "out-of-bounds";
+		break;
+	case KASAN_PAGE_REDZONE:
+	case KASAN_KMALLOC_REDZONE:
+		bug_type = "slab-out-of-bounds";
+		break;
+	case KASAN_GLOBAL_REDZONE:
+		bug_type = "global-out-of-bounds";
+		break;
+	case KASAN_STACK_LEFT:
+	case KASAN_STACK_MID:
+	case KASAN_STACK_RIGHT:
+	case KASAN_STACK_PARTIAL:
+		bug_type = "stack-out-of-bounds";
+		break;
+	case KASAN_FREE_PAGE:
+	case KASAN_KMALLOC_FREE:
+		bug_type = "use-after-free";
+		break;
+	case KASAN_USE_AFTER_SCOPE:
+		bug_type = "use-after-scope";
+		break;
+	case KASAN_ALLOCA_LEFT:
+	case KASAN_ALLOCA_RIGHT:
+		bug_type = "alloca-out-of-bounds";
+		break;
+	}
+
+	return bug_type;
+}
+
+static const char *get_wild_bug_type(struct kasan_access_info *info)
+{
+	const char *bug_type = "unknown-crash";
+
+	if ((unsigned long)info->access_addr < PAGE_SIZE)
+		bug_type = "null-ptr-deref";
+	else if ((unsigned long)info->access_addr < TASK_SIZE)
+		bug_type = "user-memory-access";
+	else
+		bug_type = "wild-memory-access";
+
+	return bug_type;
+}
+
+static const char *get_bug_type(struct kasan_access_info *info)
+{
+	if (addr_has_shadow(info))
+		return get_shadow_bug_type(info);
+	return get_wild_bug_type(info);
+}
+
+static void print_error_description(struct kasan_access_info *info)
+{
+	const char *bug_type = get_bug_type(info);
+
+	pr_err("BUG: KASAN: %s in %pS\n",
+		bug_type, (void *)info->ip);
+	pr_err("%s of size %zu at addr %px by task %s/%d\n",
+		info->is_write ? "Write" : "Read", info->access_size,
+		info->access_addr, current->comm, task_pid_nr(current));
+}
+
+static inline bool kernel_or_module_addr(const void *addr)
+{
+	if (addr >= (void *)_stext && addr < (void *)_end)
+		return true;
+	if (is_module_address((unsigned long)addr))
+		return true;
+	return false;
+}
+
+static inline bool init_task_stack_addr(const void *addr)
+{
+	return addr >= (void *)&init_thread_union.stack &&
+		(addr <= (void *)&init_thread_union.stack +
+			sizeof(init_thread_union.stack));
+}
+
+static DEFINE_SPINLOCK(report_lock);
+
+static void kasan_start_report(unsigned long *flags)
+{
+	/*
+	 * Make sure we don't end up in loop.
+	 */
+	kasan_disable_current();
+	spin_lock_irqsave(&report_lock, *flags);
+	pr_err("==================================================================\n");
+}
+
+static void kasan_end_report(unsigned long *flags)
+{
+	pr_err("==================================================================\n");
+	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+	spin_unlock_irqrestore(&report_lock, *flags);
+	if (panic_on_warn)
+		panic("panic_on_warn set ...\n");
+	kasan_enable_current();
+}
+
+static void print_track(struct kasan_track *track, const char *prefix)
+{
+	pr_err("%s by task %u:\n", prefix, track->pid);
+	if (track->stack) {
+		struct stack_trace trace;
+
+		depot_fetch_stack(track->stack, &trace);
+		print_stack_trace(&trace, 0);
+	} else {
+		pr_err("(stack is not available)\n");
+	}
+}
+
+static struct page *addr_to_page(const void *addr)
+{
+	if ((addr >= (void *)PAGE_OFFSET) &&
+			(addr < high_memory))
+		return virt_to_head_page(addr);
+	return NULL;
+}
+
+static void describe_object_addr(struct kmem_cache *cache, void *object,
+				const void *addr)
+{
+	unsigned long access_addr = (unsigned long)addr;
+	unsigned long object_addr = (unsigned long)object;
+	const char *rel_type;
+	int rel_bytes;
+
+	pr_err("The buggy address belongs to the object at %px\n"
+	       " which belongs to the cache %s of size %d\n",
+		object, cache->name, cache->object_size);
+
+	if (!addr)
+		return;
+
+	if (access_addr < object_addr) {
+		rel_type = "to the left";
+		rel_bytes = object_addr - access_addr;
+	} else if (access_addr >= object_addr + cache->object_size) {
+		rel_type = "to the right";
+		rel_bytes = access_addr - (object_addr + cache->object_size);
+	} else {
+		rel_type = "inside";
+		rel_bytes = access_addr - object_addr;
+	}
+
+	pr_err("The buggy address is located %d bytes %s of\n"
+	       " %d-byte region [%px, %px)\n",
+		rel_bytes, rel_type, cache->object_size, (void *)object_addr,
+		(void *)(object_addr + cache->object_size));
+}
+
+static void describe_object(struct kmem_cache *cache, void *object,
+				const void *addr)
+{
+	struct kasan_alloc_meta *alloc_info = get_alloc_info(cache, object);
+
+	if (cache->flags & SLAB_KASAN) {
+		print_track(&alloc_info->alloc_track, "Allocated");
+		pr_err("\n");
+		print_track(&alloc_info->free_track, "Freed");
+		pr_err("\n");
+	}
+
+	describe_object_addr(cache, object, addr);
+}
+
+static void print_address_description(void *addr)
+{
+	struct page *page = addr_to_page(addr);
+
+	dump_stack();
+	pr_err("\n");
+
+	if (page && PageSlab(page)) {
+		struct kmem_cache *cache = page->slab_cache;
+		void *object = nearest_obj(cache, page,	addr);
+
+		describe_object(cache, object, addr);
+	}
+
+	if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) {
+		pr_err("The buggy address belongs to the variable:\n");
+		pr_err(" %pS\n", addr);
+	}
+
+	if (page) {
+		pr_err("The buggy address belongs to the page:\n");
+		dump_page(page, "kasan: bad access detected");
+	}
+}
+
+static bool row_is_guilty(const void *row, const void *guilty)
+{
+	return (row <= guilty) && (guilty < row + SHADOW_BYTES_PER_ROW);
+}
+
+static int shadow_pointer_offset(const void *row, const void *shadow)
+{
+	/* The length of ">ff00ff00ff00ff00: " is
+	 *    3 + (BITS_PER_LONG/8)*2 chars.
+	 */
+	return 3 + (BITS_PER_LONG/8)*2 + (shadow - row)*2 +
+		(shadow - row) / SHADOW_BYTES_PER_BLOCK + 1;
+}
+
+static void print_shadow_for_address(const void *addr)
+{
+	int i;
+	const void *shadow = kasan_mem_to_shadow(addr);
+	const void *shadow_row;
+
+	shadow_row = (void *)round_down((unsigned long)shadow,
+					SHADOW_BYTES_PER_ROW)
+		- SHADOW_ROWS_AROUND_ADDR * SHADOW_BYTES_PER_ROW;
+
+	pr_err("Memory state around the buggy address:\n");
+
+	for (i = -SHADOW_ROWS_AROUND_ADDR; i <= SHADOW_ROWS_AROUND_ADDR; i++) {
+		const void *kaddr = kasan_shadow_to_mem(shadow_row);
+		char buffer[4 + (BITS_PER_LONG/8)*2];
+		char shadow_buf[SHADOW_BYTES_PER_ROW];
+
+		snprintf(buffer, sizeof(buffer),
+			(i == 0) ? ">%px: " : " %px: ", kaddr);
+		/*
+		 * We should not pass a shadow pointer to generic
+		 * function, because generic functions may try to
+		 * access kasan mapping for the passed address.
+		 */
+		memcpy(shadow_buf, shadow_row, SHADOW_BYTES_PER_ROW);
+		print_hex_dump(KERN_ERR, buffer,
+			DUMP_PREFIX_NONE, SHADOW_BYTES_PER_ROW, 1,
+			shadow_buf, SHADOW_BYTES_PER_ROW, 0);
+
+		if (row_is_guilty(shadow_row, shadow))
+			pr_err("%*c\n",
+				shadow_pointer_offset(shadow_row, shadow),
+				'^');
+
+		shadow_row += SHADOW_BYTES_PER_ROW;
+	}
+}
+
+void kasan_report_invalid_free(void *object, unsigned long ip)
+{
+	unsigned long flags;
+
+	kasan_start_report(&flags);
+	pr_err("BUG: KASAN: double-free or invalid-free in %pS\n", (void *)ip);
+	pr_err("\n");
+	print_address_description(object);
+	pr_err("\n");
+	print_shadow_for_address(object);
+	kasan_end_report(&flags);
+}
+
+static void kasan_report_error(struct kasan_access_info *info)
+{
+	unsigned long flags;
+
+	kasan_start_report(&flags);
+
+	print_error_description(info);
+	pr_err("\n");
+
+	if (!addr_has_shadow(info)) {
+		dump_stack();
+	} else {
+		print_address_description((void *)info->access_addr);
+		pr_err("\n");
+		print_shadow_for_address(info->first_bad_addr);
+	}
+
+	kasan_end_report(&flags);
+}
+
+static unsigned long kasan_flags;
+
+#define KASAN_BIT_REPORTED	0
+#define KASAN_BIT_MULTI_SHOT	1
+
+bool kasan_save_enable_multi_shot(void)
+{
+	return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
+}
+EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot);
+
+void kasan_restore_multi_shot(bool enabled)
+{
+	if (!enabled)
+		clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
+}
+EXPORT_SYMBOL_GPL(kasan_restore_multi_shot);
+
+static int __init kasan_set_multi_shot(char *str)
+{
+	set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
+	return 1;
+}
+__setup("kasan_multi_shot", kasan_set_multi_shot);
+
+static inline bool kasan_report_enabled(void)
+{
+	if (current->kasan_depth)
+		return false;
+	if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
+		return true;
+	return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags);
+}
+
+void kasan_report(unsigned long addr, size_t size,
+		bool is_write, unsigned long ip)
+{
+	struct kasan_access_info info;
+
+	if (likely(!kasan_report_enabled()))
+		return;
+
+	disable_trace_on_warning();
+
+	info.access_addr = (void *)addr;
+	info.first_bad_addr = (void *)addr;
+	info.access_size = size;
+	info.is_write = is_write;
+	info.ip = ip;
+
+	kasan_report_error(&info);
+}
+
+
+#define DEFINE_ASAN_REPORT_LOAD(size)                     \
+void __asan_report_load##size##_noabort(unsigned long addr) \
+{                                                         \
+	kasan_report(addr, size, false, _RET_IP_);	  \
+}                                                         \
+EXPORT_SYMBOL(__asan_report_load##size##_noabort)
+
+#define DEFINE_ASAN_REPORT_STORE(size)                     \
+void __asan_report_store##size##_noabort(unsigned long addr) \
+{                                                          \
+	kasan_report(addr, size, true, _RET_IP_);	   \
+}                                                          \
+EXPORT_SYMBOL(__asan_report_store##size##_noabort)
+
+DEFINE_ASAN_REPORT_LOAD(1);
+DEFINE_ASAN_REPORT_LOAD(2);
+DEFINE_ASAN_REPORT_LOAD(4);
+DEFINE_ASAN_REPORT_LOAD(8);
+DEFINE_ASAN_REPORT_LOAD(16);
+DEFINE_ASAN_REPORT_STORE(1);
+DEFINE_ASAN_REPORT_STORE(2);
+DEFINE_ASAN_REPORT_STORE(4);
+DEFINE_ASAN_REPORT_STORE(8);
+DEFINE_ASAN_REPORT_STORE(16);
+
+void __asan_report_load_n_noabort(unsigned long addr, size_t size)
+{
+	kasan_report(addr, size, false, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_report_load_n_noabort);
+
+void __asan_report_store_n_noabort(unsigned long addr, size_t size)
+{
+	kasan_report(addr, size, true, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_report_store_n_noabort);