v4.19.13 snapshot.
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
new file mode 100644
index 0000000..d2cd70c
--- /dev/null
+++ b/mm/huge_memory.c
@@ -0,0 +1,2939 @@
+/*
+ *  Copyright (C) 2009  Red Hat, Inc.
+ *
+ *  This work is licensed under the terms of the GNU GPL, version 2. See
+ *  the COPYING file in the top-level directory.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/sched/coredump.h>
+#include <linux/sched/numa_balancing.h>
+#include <linux/highmem.h>
+#include <linux/hugetlb.h>
+#include <linux/mmu_notifier.h>
+#include <linux/rmap.h>
+#include <linux/swap.h>
+#include <linux/shrinker.h>
+#include <linux/mm_inline.h>
+#include <linux/swapops.h>
+#include <linux/dax.h>
+#include <linux/khugepaged.h>
+#include <linux/freezer.h>
+#include <linux/pfn_t.h>
+#include <linux/mman.h>
+#include <linux/memremap.h>
+#include <linux/pagemap.h>
+#include <linux/debugfs.h>
+#include <linux/migrate.h>
+#include <linux/hashtable.h>
+#include <linux/userfaultfd_k.h>
+#include <linux/page_idle.h>
+#include <linux/shmem_fs.h>
+#include <linux/oom.h>
+
+#include <asm/tlb.h>
+#include <asm/pgalloc.h>
+#include "internal.h"
+
+/*
+ * By default, transparent hugepage support is disabled in order to avoid
+ * risking an increased memory footprint for applications that are not
+ * guaranteed to benefit from it. When transparent hugepage support is
+ * enabled, it is for all mappings, and khugepaged scans all mappings.
+ * Defrag is invoked by khugepaged hugepage allocations and by page faults
+ * for all hugepage allocations.
+ */
+unsigned long transparent_hugepage_flags __read_mostly =
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
+	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
+	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
+#endif
+	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
+	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
+	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
+
+static struct shrinker deferred_split_shrinker;
+
+static atomic_t huge_zero_refcount;
+struct page *huge_zero_page __read_mostly;
+
+static struct page *get_huge_zero_page(void)
+{
+	struct page *zero_page;
+retry:
+	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
+		return READ_ONCE(huge_zero_page);
+
+	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
+			HPAGE_PMD_ORDER);
+	if (!zero_page) {
+		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
+		return NULL;
+	}
+	count_vm_event(THP_ZERO_PAGE_ALLOC);
+	preempt_disable();
+	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
+		preempt_enable();
+		__free_pages(zero_page, compound_order(zero_page));
+		goto retry;
+	}
+
+	/* We take additional reference here. It will be put back by shrinker */
+	atomic_set(&huge_zero_refcount, 2);
+	preempt_enable();
+	return READ_ONCE(huge_zero_page);
+}
+
+static void put_huge_zero_page(void)
+{
+	/*
+	 * Counter should never go to zero here. Only shrinker can put
+	 * last reference.
+	 */
+	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
+}
+
+struct page *mm_get_huge_zero_page(struct mm_struct *mm)
+{
+	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
+		return READ_ONCE(huge_zero_page);
+
+	if (!get_huge_zero_page())
+		return NULL;
+
+	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
+		put_huge_zero_page();
+
+	return READ_ONCE(huge_zero_page);
+}
+
+void mm_put_huge_zero_page(struct mm_struct *mm)
+{
+	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
+		put_huge_zero_page();
+}
+
+static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
+					struct shrink_control *sc)
+{
+	/* we can free zero page only if last reference remains */
+	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
+}
+
+static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
+				       struct shrink_control *sc)
+{
+	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
+		struct page *zero_page = xchg(&huge_zero_page, NULL);
+		BUG_ON(zero_page == NULL);
+		__free_pages(zero_page, compound_order(zero_page));
+		return HPAGE_PMD_NR;
+	}
+
+	return 0;
+}
+
+static struct shrinker huge_zero_page_shrinker = {
+	.count_objects = shrink_huge_zero_page_count,
+	.scan_objects = shrink_huge_zero_page_scan,
+	.seeks = DEFAULT_SEEKS,
+};
+
+#ifdef CONFIG_SYSFS
+static ssize_t enabled_show(struct kobject *kobj,
+			    struct kobj_attribute *attr, char *buf)
+{
+	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
+		return sprintf(buf, "[always] madvise never\n");
+	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
+		return sprintf(buf, "always [madvise] never\n");
+	else
+		return sprintf(buf, "always madvise [never]\n");
+}
+
+static ssize_t enabled_store(struct kobject *kobj,
+			     struct kobj_attribute *attr,
+			     const char *buf, size_t count)
+{
+	ssize_t ret = count;
+
+	if (!memcmp("always", buf,
+		    min(sizeof("always")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
+		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
+	} else if (!memcmp("madvise", buf,
+			   min(sizeof("madvise")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
+		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
+	} else if (!memcmp("never", buf,
+			   min(sizeof("never")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
+	} else
+		ret = -EINVAL;
+
+	if (ret > 0) {
+		int err = start_stop_khugepaged();
+		if (err)
+			ret = err;
+	}
+	return ret;
+}
+static struct kobj_attribute enabled_attr =
+	__ATTR(enabled, 0644, enabled_show, enabled_store);
+
+ssize_t single_hugepage_flag_show(struct kobject *kobj,
+				struct kobj_attribute *attr, char *buf,
+				enum transparent_hugepage_flag flag)
+{
+	return sprintf(buf, "%d\n",
+		       !!test_bit(flag, &transparent_hugepage_flags));
+}
+
+ssize_t single_hugepage_flag_store(struct kobject *kobj,
+				 struct kobj_attribute *attr,
+				 const char *buf, size_t count,
+				 enum transparent_hugepage_flag flag)
+{
+	unsigned long value;
+	int ret;
+
+	ret = kstrtoul(buf, 10, &value);
+	if (ret < 0)
+		return ret;
+	if (value > 1)
+		return -EINVAL;
+
+	if (value)
+		set_bit(flag, &transparent_hugepage_flags);
+	else
+		clear_bit(flag, &transparent_hugepage_flags);
+
+	return count;
+}
+
+static ssize_t defrag_show(struct kobject *kobj,
+			   struct kobj_attribute *attr, char *buf)
+{
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
+		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
+		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
+		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
+		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
+	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
+}
+
+static ssize_t defrag_store(struct kobject *kobj,
+			    struct kobj_attribute *attr,
+			    const char *buf, size_t count)
+{
+	if (!memcmp("always", buf,
+		    min(sizeof("always")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
+		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
+	} else if (!memcmp("defer+madvise", buf,
+		    min(sizeof("defer+madvise")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
+		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
+	} else if (!memcmp("defer", buf,
+		    min(sizeof("defer")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
+		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
+	} else if (!memcmp("madvise", buf,
+			   min(sizeof("madvise")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
+		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
+	} else if (!memcmp("never", buf,
+			   min(sizeof("never")-1, count))) {
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
+	} else
+		return -EINVAL;
+
+	return count;
+}
+static struct kobj_attribute defrag_attr =
+	__ATTR(defrag, 0644, defrag_show, defrag_store);
+
+static ssize_t use_zero_page_show(struct kobject *kobj,
+		struct kobj_attribute *attr, char *buf)
+{
+	return single_hugepage_flag_show(kobj, attr, buf,
+				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
+}
+static ssize_t use_zero_page_store(struct kobject *kobj,
+		struct kobj_attribute *attr, const char *buf, size_t count)
+{
+	return single_hugepage_flag_store(kobj, attr, buf, count,
+				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
+}
+static struct kobj_attribute use_zero_page_attr =
+	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
+
+static ssize_t hpage_pmd_size_show(struct kobject *kobj,
+		struct kobj_attribute *attr, char *buf)
+{
+	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
+}
+static struct kobj_attribute hpage_pmd_size_attr =
+	__ATTR_RO(hpage_pmd_size);
+
+#ifdef CONFIG_DEBUG_VM
+static ssize_t debug_cow_show(struct kobject *kobj,
+				struct kobj_attribute *attr, char *buf)
+{
+	return single_hugepage_flag_show(kobj, attr, buf,
+				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
+}
+static ssize_t debug_cow_store(struct kobject *kobj,
+			       struct kobj_attribute *attr,
+			       const char *buf, size_t count)
+{
+	return single_hugepage_flag_store(kobj, attr, buf, count,
+				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
+}
+static struct kobj_attribute debug_cow_attr =
+	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
+#endif /* CONFIG_DEBUG_VM */
+
+static struct attribute *hugepage_attr[] = {
+	&enabled_attr.attr,
+	&defrag_attr.attr,
+	&use_zero_page_attr.attr,
+	&hpage_pmd_size_attr.attr,
+#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
+	&shmem_enabled_attr.attr,
+#endif
+#ifdef CONFIG_DEBUG_VM
+	&debug_cow_attr.attr,
+#endif
+	NULL,
+};
+
+static const struct attribute_group hugepage_attr_group = {
+	.attrs = hugepage_attr,
+};
+
+static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
+{
+	int err;
+
+	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
+	if (unlikely(!*hugepage_kobj)) {
+		pr_err("failed to create transparent hugepage kobject\n");
+		return -ENOMEM;
+	}
+
+	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
+	if (err) {
+		pr_err("failed to register transparent hugepage group\n");
+		goto delete_obj;
+	}
+
+	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
+	if (err) {
+		pr_err("failed to register transparent hugepage group\n");
+		goto remove_hp_group;
+	}
+
+	return 0;
+
+remove_hp_group:
+	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
+delete_obj:
+	kobject_put(*hugepage_kobj);
+	return err;
+}
+
+static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
+{
+	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
+	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
+	kobject_put(hugepage_kobj);
+}
+#else
+static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
+{
+	return 0;
+}
+
+static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
+{
+}
+#endif /* CONFIG_SYSFS */
+
+static int __init hugepage_init(void)
+{
+	int err;
+	struct kobject *hugepage_kobj;
+
+	if (!has_transparent_hugepage()) {
+		transparent_hugepage_flags = 0;
+		return -EINVAL;
+	}
+
+	/*
+	 * hugepages can't be allocated by the buddy allocator
+	 */
+	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
+	/*
+	 * we use page->mapping and page->index in second tail page
+	 * as list_head: assuming THP order >= 2
+	 */
+	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
+
+	err = hugepage_init_sysfs(&hugepage_kobj);
+	if (err)
+		goto err_sysfs;
+
+	err = khugepaged_init();
+	if (err)
+		goto err_slab;
+
+	err = register_shrinker(&huge_zero_page_shrinker);
+	if (err)
+		goto err_hzp_shrinker;
+	err = register_shrinker(&deferred_split_shrinker);
+	if (err)
+		goto err_split_shrinker;
+
+	/*
+	 * By default disable transparent hugepages on smaller systems,
+	 * where the extra memory used could hurt more than TLB overhead
+	 * is likely to save.  The admin can still enable it through /sys.
+	 */
+	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
+		transparent_hugepage_flags = 0;
+		return 0;
+	}
+
+	err = start_stop_khugepaged();
+	if (err)
+		goto err_khugepaged;
+
+	return 0;
+err_khugepaged:
+	unregister_shrinker(&deferred_split_shrinker);
+err_split_shrinker:
+	unregister_shrinker(&huge_zero_page_shrinker);
+err_hzp_shrinker:
+	khugepaged_destroy();
+err_slab:
+	hugepage_exit_sysfs(hugepage_kobj);
+err_sysfs:
+	return err;
+}
+subsys_initcall(hugepage_init);
+
+static int __init setup_transparent_hugepage(char *str)
+{
+	int ret = 0;
+	if (!str)
+		goto out;
+	if (!strcmp(str, "always")) {
+		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
+			&transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+			  &transparent_hugepage_flags);
+		ret = 1;
+	} else if (!strcmp(str, "madvise")) {
+		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
+			  &transparent_hugepage_flags);
+		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+			&transparent_hugepage_flags);
+		ret = 1;
+	} else if (!strcmp(str, "never")) {
+		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
+			  &transparent_hugepage_flags);
+		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+			  &transparent_hugepage_flags);
+		ret = 1;
+	}
+out:
+	if (!ret)
+		pr_warn("transparent_hugepage= cannot parse, ignored\n");
+	return ret;
+}
+__setup("transparent_hugepage=", setup_transparent_hugepage);
+
+pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
+{
+	if (likely(vma->vm_flags & VM_WRITE))
+		pmd = pmd_mkwrite(pmd);
+	return pmd;
+}
+
+static inline struct list_head *page_deferred_list(struct page *page)
+{
+	/* ->lru in the tail pages is occupied by compound_head. */
+	return &page[2].deferred_list;
+}
+
+void prep_transhuge_page(struct page *page)
+{
+	/*
+	 * we use page->mapping and page->indexlru in second tail page
+	 * as list_head: assuming THP order >= 2
+	 */
+
+	INIT_LIST_HEAD(page_deferred_list(page));
+	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
+}
+
+unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
+		loff_t off, unsigned long flags, unsigned long size)
+{
+	unsigned long addr;
+	loff_t off_end = off + len;
+	loff_t off_align = round_up(off, size);
+	unsigned long len_pad;
+
+	if (off_end <= off_align || (off_end - off_align) < size)
+		return 0;
+
+	len_pad = len + size;
+	if (len_pad < len || (off + len_pad) < off)
+		return 0;
+
+	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
+					      off >> PAGE_SHIFT, flags);
+	if (IS_ERR_VALUE(addr))
+		return 0;
+
+	addr += (off - addr) & (size - 1);
+	return addr;
+}
+
+unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
+		unsigned long len, unsigned long pgoff, unsigned long flags)
+{
+	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
+
+	if (addr)
+		goto out;
+	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
+		goto out;
+
+	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
+	if (addr)
+		return addr;
+
+ out:
+	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
+}
+EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
+
+static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
+			struct page *page, gfp_t gfp)
+{
+	struct vm_area_struct *vma = vmf->vma;
+	struct mem_cgroup *memcg;
+	pgtable_t pgtable;
+	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
+	vm_fault_t ret = 0;
+
+	VM_BUG_ON_PAGE(!PageCompound(page), page);
+
+	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
+		put_page(page);
+		count_vm_event(THP_FAULT_FALLBACK);
+		return VM_FAULT_FALLBACK;
+	}
+
+	pgtable = pte_alloc_one(vma->vm_mm, haddr);
+	if (unlikely(!pgtable)) {
+		ret = VM_FAULT_OOM;
+		goto release;
+	}
+
+	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
+	/*
+	 * The memory barrier inside __SetPageUptodate makes sure that
+	 * clear_huge_page writes become visible before the set_pmd_at()
+	 * write.
+	 */
+	__SetPageUptodate(page);
+
+	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
+	if (unlikely(!pmd_none(*vmf->pmd))) {
+		goto unlock_release;
+	} else {
+		pmd_t entry;
+
+		ret = check_stable_address_space(vma->vm_mm);
+		if (ret)
+			goto unlock_release;
+
+		/* Deliver the page fault to userland */
+		if (userfaultfd_missing(vma)) {
+			vm_fault_t ret2;
+
+			spin_unlock(vmf->ptl);
+			mem_cgroup_cancel_charge(page, memcg, true);
+			put_page(page);
+			pte_free(vma->vm_mm, pgtable);
+			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
+			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
+			return ret2;
+		}
+
+		entry = mk_huge_pmd(page, vma->vm_page_prot);
+		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+		page_add_new_anon_rmap(page, vma, haddr, true);
+		mem_cgroup_commit_charge(page, memcg, false, true);
+		lru_cache_add_active_or_unevictable(page, vma);
+		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
+		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
+		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+		mm_inc_nr_ptes(vma->vm_mm);
+		spin_unlock(vmf->ptl);
+		count_vm_event(THP_FAULT_ALLOC);
+	}
+
+	return 0;
+unlock_release:
+	spin_unlock(vmf->ptl);
+release:
+	if (pgtable)
+		pte_free(vma->vm_mm, pgtable);
+	mem_cgroup_cancel_charge(page, memcg, true);
+	put_page(page);
+	return ret;
+
+}
+
+/*
+ * always: directly stall for all thp allocations
+ * defer: wake kswapd and fail if not immediately available
+ * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
+ *		  fail if not immediately available
+ * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
+ *	    available
+ * never: never stall for any thp allocation
+ */
+static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
+{
+	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
+
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
+		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
+		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
+		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
+							     __GFP_KSWAPD_RECLAIM);
+	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
+		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
+							     0);
+	return GFP_TRANSHUGE_LIGHT;
+}
+
+/* Caller must hold page table lock. */
+static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
+		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
+		struct page *zero_page)
+{
+	pmd_t entry;
+	if (!pmd_none(*pmd))
+		return false;
+	entry = mk_pmd(zero_page, vma->vm_page_prot);
+	entry = pmd_mkhuge(entry);
+	if (pgtable)
+		pgtable_trans_huge_deposit(mm, pmd, pgtable);
+	set_pmd_at(mm, haddr, pmd, entry);
+	mm_inc_nr_ptes(mm);
+	return true;
+}
+
+vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
+{
+	struct vm_area_struct *vma = vmf->vma;
+	gfp_t gfp;
+	struct page *page;
+	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
+
+	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
+		return VM_FAULT_FALLBACK;
+	if (unlikely(anon_vma_prepare(vma)))
+		return VM_FAULT_OOM;
+	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
+		return VM_FAULT_OOM;
+	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
+			!mm_forbids_zeropage(vma->vm_mm) &&
+			transparent_hugepage_use_zero_page()) {
+		pgtable_t pgtable;
+		struct page *zero_page;
+		bool set;
+		vm_fault_t ret;
+		pgtable = pte_alloc_one(vma->vm_mm, haddr);
+		if (unlikely(!pgtable))
+			return VM_FAULT_OOM;
+		zero_page = mm_get_huge_zero_page(vma->vm_mm);
+		if (unlikely(!zero_page)) {
+			pte_free(vma->vm_mm, pgtable);
+			count_vm_event(THP_FAULT_FALLBACK);
+			return VM_FAULT_FALLBACK;
+		}
+		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
+		ret = 0;
+		set = false;
+		if (pmd_none(*vmf->pmd)) {
+			ret = check_stable_address_space(vma->vm_mm);
+			if (ret) {
+				spin_unlock(vmf->ptl);
+			} else if (userfaultfd_missing(vma)) {
+				spin_unlock(vmf->ptl);
+				ret = handle_userfault(vmf, VM_UFFD_MISSING);
+				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
+			} else {
+				set_huge_zero_page(pgtable, vma->vm_mm, vma,
+						   haddr, vmf->pmd, zero_page);
+				spin_unlock(vmf->ptl);
+				set = true;
+			}
+		} else
+			spin_unlock(vmf->ptl);
+		if (!set)
+			pte_free(vma->vm_mm, pgtable);
+		return ret;
+	}
+	gfp = alloc_hugepage_direct_gfpmask(vma);
+	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
+	if (unlikely(!page)) {
+		count_vm_event(THP_FAULT_FALLBACK);
+		return VM_FAULT_FALLBACK;
+	}
+	prep_transhuge_page(page);
+	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
+}
+
+static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
+		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
+		pgtable_t pgtable)
+{
+	struct mm_struct *mm = vma->vm_mm;
+	pmd_t entry;
+	spinlock_t *ptl;
+
+	ptl = pmd_lock(mm, pmd);
+	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
+	if (pfn_t_devmap(pfn))
+		entry = pmd_mkdevmap(entry);
+	if (write) {
+		entry = pmd_mkyoung(pmd_mkdirty(entry));
+		entry = maybe_pmd_mkwrite(entry, vma);
+	}
+
+	if (pgtable) {
+		pgtable_trans_huge_deposit(mm, pmd, pgtable);
+		mm_inc_nr_ptes(mm);
+	}
+
+	set_pmd_at(mm, addr, pmd, entry);
+	update_mmu_cache_pmd(vma, addr, pmd);
+	spin_unlock(ptl);
+}
+
+vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
+			pmd_t *pmd, pfn_t pfn, bool write)
+{
+	pgprot_t pgprot = vma->vm_page_prot;
+	pgtable_t pgtable = NULL;
+	/*
+	 * If we had pmd_special, we could avoid all these restrictions,
+	 * but we need to be consistent with PTEs and architectures that
+	 * can't support a 'special' bit.
+	 */
+	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
+			!pfn_t_devmap(pfn));
+	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
+						(VM_PFNMAP|VM_MIXEDMAP));
+	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
+
+	if (addr < vma->vm_start || addr >= vma->vm_end)
+		return VM_FAULT_SIGBUS;
+
+	if (arch_needs_pgtable_deposit()) {
+		pgtable = pte_alloc_one(vma->vm_mm, addr);
+		if (!pgtable)
+			return VM_FAULT_OOM;
+	}
+
+	track_pfn_insert(vma, &pgprot, pfn);
+
+	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
+	return VM_FAULT_NOPAGE;
+}
+EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
+
+#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
+static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
+{
+	if (likely(vma->vm_flags & VM_WRITE))
+		pud = pud_mkwrite(pud);
+	return pud;
+}
+
+static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
+		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
+{
+	struct mm_struct *mm = vma->vm_mm;
+	pud_t entry;
+	spinlock_t *ptl;
+
+	ptl = pud_lock(mm, pud);
+	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
+	if (pfn_t_devmap(pfn))
+		entry = pud_mkdevmap(entry);
+	if (write) {
+		entry = pud_mkyoung(pud_mkdirty(entry));
+		entry = maybe_pud_mkwrite(entry, vma);
+	}
+	set_pud_at(mm, addr, pud, entry);
+	update_mmu_cache_pud(vma, addr, pud);
+	spin_unlock(ptl);
+}
+
+vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
+			pud_t *pud, pfn_t pfn, bool write)
+{
+	pgprot_t pgprot = vma->vm_page_prot;
+	/*
+	 * If we had pud_special, we could avoid all these restrictions,
+	 * but we need to be consistent with PTEs and architectures that
+	 * can't support a 'special' bit.
+	 */
+	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
+			!pfn_t_devmap(pfn));
+	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
+						(VM_PFNMAP|VM_MIXEDMAP));
+	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
+
+	if (addr < vma->vm_start || addr >= vma->vm_end)
+		return VM_FAULT_SIGBUS;
+
+	track_pfn_insert(vma, &pgprot, pfn);
+
+	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
+	return VM_FAULT_NOPAGE;
+}
+EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
+#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
+
+static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
+		pmd_t *pmd, int flags)
+{
+	pmd_t _pmd;
+
+	_pmd = pmd_mkyoung(*pmd);
+	if (flags & FOLL_WRITE)
+		_pmd = pmd_mkdirty(_pmd);
+	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
+				pmd, _pmd, flags & FOLL_WRITE))
+		update_mmu_cache_pmd(vma, addr, pmd);
+}
+
+struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
+		pmd_t *pmd, int flags)
+{
+	unsigned long pfn = pmd_pfn(*pmd);
+	struct mm_struct *mm = vma->vm_mm;
+	struct dev_pagemap *pgmap;
+	struct page *page;
+
+	assert_spin_locked(pmd_lockptr(mm, pmd));
+
+	/*
+	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
+	 * not be in this function with `flags & FOLL_COW` set.
+	 */
+	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
+
+	if (flags & FOLL_WRITE && !pmd_write(*pmd))
+		return NULL;
+
+	if (pmd_present(*pmd) && pmd_devmap(*pmd))
+		/* pass */;
+	else
+		return NULL;
+
+	if (flags & FOLL_TOUCH)
+		touch_pmd(vma, addr, pmd, flags);
+
+	/*
+	 * device mapped pages can only be returned if the
+	 * caller will manage the page reference count.
+	 */
+	if (!(flags & FOLL_GET))
+		return ERR_PTR(-EEXIST);
+
+	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
+	pgmap = get_dev_pagemap(pfn, NULL);
+	if (!pgmap)
+		return ERR_PTR(-EFAULT);
+	page = pfn_to_page(pfn);
+	get_page(page);
+	put_dev_pagemap(pgmap);
+
+	return page;
+}
+
+int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
+		  struct vm_area_struct *vma)
+{
+	spinlock_t *dst_ptl, *src_ptl;
+	struct page *src_page;
+	pmd_t pmd;
+	pgtable_t pgtable = NULL;
+	int ret = -ENOMEM;
+
+	/* Skip if can be re-fill on fault */
+	if (!vma_is_anonymous(vma))
+		return 0;
+
+	pgtable = pte_alloc_one(dst_mm, addr);
+	if (unlikely(!pgtable))
+		goto out;
+
+	dst_ptl = pmd_lock(dst_mm, dst_pmd);
+	src_ptl = pmd_lockptr(src_mm, src_pmd);
+	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+
+	ret = -EAGAIN;
+	pmd = *src_pmd;
+
+#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
+	if (unlikely(is_swap_pmd(pmd))) {
+		swp_entry_t entry = pmd_to_swp_entry(pmd);
+
+		VM_BUG_ON(!is_pmd_migration_entry(pmd));
+		if (is_write_migration_entry(entry)) {
+			make_migration_entry_read(&entry);
+			pmd = swp_entry_to_pmd(entry);
+			if (pmd_swp_soft_dirty(*src_pmd))
+				pmd = pmd_swp_mksoft_dirty(pmd);
+			set_pmd_at(src_mm, addr, src_pmd, pmd);
+		}
+		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+		mm_inc_nr_ptes(dst_mm);
+		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
+		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
+		ret = 0;
+		goto out_unlock;
+	}
+#endif
+
+	if (unlikely(!pmd_trans_huge(pmd))) {
+		pte_free(dst_mm, pgtable);
+		goto out_unlock;
+	}
+	/*
+	 * When page table lock is held, the huge zero pmd should not be
+	 * under splitting since we don't split the page itself, only pmd to
+	 * a page table.
+	 */
+	if (is_huge_zero_pmd(pmd)) {
+		struct page *zero_page;
+		/*
+		 * get_huge_zero_page() will never allocate a new page here,
+		 * since we already have a zero page to copy. It just takes a
+		 * reference.
+		 */
+		zero_page = mm_get_huge_zero_page(dst_mm);
+		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
+				zero_page);
+		ret = 0;
+		goto out_unlock;
+	}
+
+	src_page = pmd_page(pmd);
+	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
+	get_page(src_page);
+	page_dup_rmap(src_page, true);
+	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+	mm_inc_nr_ptes(dst_mm);
+	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
+
+	pmdp_set_wrprotect(src_mm, addr, src_pmd);
+	pmd = pmd_mkold(pmd_wrprotect(pmd));
+	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
+
+	ret = 0;
+out_unlock:
+	spin_unlock(src_ptl);
+	spin_unlock(dst_ptl);
+out:
+	return ret;
+}
+
+#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
+static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
+		pud_t *pud, int flags)
+{
+	pud_t _pud;
+
+	_pud = pud_mkyoung(*pud);
+	if (flags & FOLL_WRITE)
+		_pud = pud_mkdirty(_pud);
+	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
+				pud, _pud, flags & FOLL_WRITE))
+		update_mmu_cache_pud(vma, addr, pud);
+}
+
+struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
+		pud_t *pud, int flags)
+{
+	unsigned long pfn = pud_pfn(*pud);
+	struct mm_struct *mm = vma->vm_mm;
+	struct dev_pagemap *pgmap;
+	struct page *page;
+
+	assert_spin_locked(pud_lockptr(mm, pud));
+
+	if (flags & FOLL_WRITE && !pud_write(*pud))
+		return NULL;
+
+	if (pud_present(*pud) && pud_devmap(*pud))
+		/* pass */;
+	else
+		return NULL;
+
+	if (flags & FOLL_TOUCH)
+		touch_pud(vma, addr, pud, flags);
+
+	/*
+	 * device mapped pages can only be returned if the
+	 * caller will manage the page reference count.
+	 */
+	if (!(flags & FOLL_GET))
+		return ERR_PTR(-EEXIST);
+
+	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
+	pgmap = get_dev_pagemap(pfn, NULL);
+	if (!pgmap)
+		return ERR_PTR(-EFAULT);
+	page = pfn_to_page(pfn);
+	get_page(page);
+	put_dev_pagemap(pgmap);
+
+	return page;
+}
+
+int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
+		  struct vm_area_struct *vma)
+{
+	spinlock_t *dst_ptl, *src_ptl;
+	pud_t pud;
+	int ret;
+
+	dst_ptl = pud_lock(dst_mm, dst_pud);
+	src_ptl = pud_lockptr(src_mm, src_pud);
+	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+
+	ret = -EAGAIN;
+	pud = *src_pud;
+	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
+		goto out_unlock;
+
+	/*
+	 * When page table lock is held, the huge zero pud should not be
+	 * under splitting since we don't split the page itself, only pud to
+	 * a page table.
+	 */
+	if (is_huge_zero_pud(pud)) {
+		/* No huge zero pud yet */
+	}
+
+	pudp_set_wrprotect(src_mm, addr, src_pud);
+	pud = pud_mkold(pud_wrprotect(pud));
+	set_pud_at(dst_mm, addr, dst_pud, pud);
+
+	ret = 0;
+out_unlock:
+	spin_unlock(src_ptl);
+	spin_unlock(dst_ptl);
+	return ret;
+}
+
+void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
+{
+	pud_t entry;
+	unsigned long haddr;
+	bool write = vmf->flags & FAULT_FLAG_WRITE;
+
+	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
+	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
+		goto unlock;
+
+	entry = pud_mkyoung(orig_pud);
+	if (write)
+		entry = pud_mkdirty(entry);
+	haddr = vmf->address & HPAGE_PUD_MASK;
+	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
+		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
+
+unlock:
+	spin_unlock(vmf->ptl);
+}
+#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
+
+void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
+{
+	pmd_t entry;
+	unsigned long haddr;
+	bool write = vmf->flags & FAULT_FLAG_WRITE;
+
+	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
+	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
+		goto unlock;
+
+	entry = pmd_mkyoung(orig_pmd);
+	if (write)
+		entry = pmd_mkdirty(entry);
+	haddr = vmf->address & HPAGE_PMD_MASK;
+	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
+		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
+
+unlock:
+	spin_unlock(vmf->ptl);
+}
+
+static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
+			pmd_t orig_pmd, struct page *page)
+{
+	struct vm_area_struct *vma = vmf->vma;
+	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
+	struct mem_cgroup *memcg;
+	pgtable_t pgtable;
+	pmd_t _pmd;
+	int i;
+	vm_fault_t ret = 0;
+	struct page **pages;
+	unsigned long mmun_start;	/* For mmu_notifiers */
+	unsigned long mmun_end;		/* For mmu_notifiers */
+
+	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
+			      GFP_KERNEL);
+	if (unlikely(!pages)) {
+		ret |= VM_FAULT_OOM;
+		goto out;
+	}
+
+	for (i = 0; i < HPAGE_PMD_NR; i++) {
+		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
+					       vmf->address, page_to_nid(page));
+		if (unlikely(!pages[i] ||
+			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
+				     GFP_KERNEL, &memcg, false))) {
+			if (pages[i])
+				put_page(pages[i]);
+			while (--i >= 0) {
+				memcg = (void *)page_private(pages[i]);
+				set_page_private(pages[i], 0);
+				mem_cgroup_cancel_charge(pages[i], memcg,
+						false);
+				put_page(pages[i]);
+			}
+			kfree(pages);
+			ret |= VM_FAULT_OOM;
+			goto out;
+		}
+		set_page_private(pages[i], (unsigned long)memcg);
+	}
+
+	for (i = 0; i < HPAGE_PMD_NR; i++) {
+		copy_user_highpage(pages[i], page + i,
+				   haddr + PAGE_SIZE * i, vma);
+		__SetPageUptodate(pages[i]);
+		cond_resched();
+	}
+
+	mmun_start = haddr;
+	mmun_end   = haddr + HPAGE_PMD_SIZE;
+	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
+
+	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
+	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
+		goto out_free_pages;
+	VM_BUG_ON_PAGE(!PageHead(page), page);
+
+	/*
+	 * Leave pmd empty until pte is filled note we must notify here as
+	 * concurrent CPU thread might write to new page before the call to
+	 * mmu_notifier_invalidate_range_end() happens which can lead to a
+	 * device seeing memory write in different order than CPU.
+	 *
+	 * See Documentation/vm/mmu_notifier.rst
+	 */
+	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
+
+	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
+	pmd_populate(vma->vm_mm, &_pmd, pgtable);
+
+	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
+		pte_t entry;
+		entry = mk_pte(pages[i], vma->vm_page_prot);
+		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+		memcg = (void *)page_private(pages[i]);
+		set_page_private(pages[i], 0);
+		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
+		mem_cgroup_commit_charge(pages[i], memcg, false, false);
+		lru_cache_add_active_or_unevictable(pages[i], vma);
+		vmf->pte = pte_offset_map(&_pmd, haddr);
+		VM_BUG_ON(!pte_none(*vmf->pte));
+		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
+		pte_unmap(vmf->pte);
+	}
+	kfree(pages);
+
+	smp_wmb(); /* make pte visible before pmd */
+	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
+	page_remove_rmap(page, true);
+	spin_unlock(vmf->ptl);
+
+	/*
+	 * No need to double call mmu_notifier->invalidate_range() callback as
+	 * the above pmdp_huge_clear_flush_notify() did already call it.
+	 */
+	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
+						mmun_end);
+
+	ret |= VM_FAULT_WRITE;
+	put_page(page);
+
+out:
+	return ret;
+
+out_free_pages:
+	spin_unlock(vmf->ptl);
+	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
+	for (i = 0; i < HPAGE_PMD_NR; i++) {
+		memcg = (void *)page_private(pages[i]);
+		set_page_private(pages[i], 0);
+		mem_cgroup_cancel_charge(pages[i], memcg, false);
+		put_page(pages[i]);
+	}
+	kfree(pages);
+	goto out;
+}
+
+vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
+{
+	struct vm_area_struct *vma = vmf->vma;
+	struct page *page = NULL, *new_page;
+	struct mem_cgroup *memcg;
+	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
+	unsigned long mmun_start;	/* For mmu_notifiers */
+	unsigned long mmun_end;		/* For mmu_notifiers */
+	gfp_t huge_gfp;			/* for allocation and charge */
+	vm_fault_t ret = 0;
+
+	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
+	VM_BUG_ON_VMA(!vma->anon_vma, vma);
+	if (is_huge_zero_pmd(orig_pmd))
+		goto alloc;
+	spin_lock(vmf->ptl);
+	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
+		goto out_unlock;
+
+	page = pmd_page(orig_pmd);
+	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
+	/*
+	 * We can only reuse the page if nobody else maps the huge page or it's
+	 * part.
+	 */
+	if (!trylock_page(page)) {
+		get_page(page);
+		spin_unlock(vmf->ptl);
+		lock_page(page);
+		spin_lock(vmf->ptl);
+		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
+			unlock_page(page);
+			put_page(page);
+			goto out_unlock;
+		}
+		put_page(page);
+	}
+	if (reuse_swap_page(page, NULL)) {
+		pmd_t entry;
+		entry = pmd_mkyoung(orig_pmd);
+		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
+			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
+		ret |= VM_FAULT_WRITE;
+		unlock_page(page);
+		goto out_unlock;
+	}
+	unlock_page(page);
+	get_page(page);
+	spin_unlock(vmf->ptl);
+alloc:
+	if (transparent_hugepage_enabled(vma) &&
+	    !transparent_hugepage_debug_cow()) {
+		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
+		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
+	} else
+		new_page = NULL;
+
+	if (likely(new_page)) {
+		prep_transhuge_page(new_page);
+	} else {
+		if (!page) {
+			split_huge_pmd(vma, vmf->pmd, vmf->address);
+			ret |= VM_FAULT_FALLBACK;
+		} else {
+			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
+			if (ret & VM_FAULT_OOM) {
+				split_huge_pmd(vma, vmf->pmd, vmf->address);
+				ret |= VM_FAULT_FALLBACK;
+			}
+			put_page(page);
+		}
+		count_vm_event(THP_FAULT_FALLBACK);
+		goto out;
+	}
+
+	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
+					huge_gfp, &memcg, true))) {
+		put_page(new_page);
+		split_huge_pmd(vma, vmf->pmd, vmf->address);
+		if (page)
+			put_page(page);
+		ret |= VM_FAULT_FALLBACK;
+		count_vm_event(THP_FAULT_FALLBACK);
+		goto out;
+	}
+
+	count_vm_event(THP_FAULT_ALLOC);
+
+	if (!page)
+		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
+	else
+		copy_user_huge_page(new_page, page, vmf->address,
+				    vma, HPAGE_PMD_NR);
+	__SetPageUptodate(new_page);
+
+	mmun_start = haddr;
+	mmun_end   = haddr + HPAGE_PMD_SIZE;
+	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
+
+	spin_lock(vmf->ptl);
+	if (page)
+		put_page(page);
+	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
+		spin_unlock(vmf->ptl);
+		mem_cgroup_cancel_charge(new_page, memcg, true);
+		put_page(new_page);
+		goto out_mn;
+	} else {
+		pmd_t entry;
+		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
+		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
+		page_add_new_anon_rmap(new_page, vma, haddr, true);
+		mem_cgroup_commit_charge(new_page, memcg, false, true);
+		lru_cache_add_active_or_unevictable(new_page, vma);
+		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
+		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
+		if (!page) {
+			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+		} else {
+			VM_BUG_ON_PAGE(!PageHead(page), page);
+			page_remove_rmap(page, true);
+			put_page(page);
+		}
+		ret |= VM_FAULT_WRITE;
+	}
+	spin_unlock(vmf->ptl);
+out_mn:
+	/*
+	 * No need to double call mmu_notifier->invalidate_range() callback as
+	 * the above pmdp_huge_clear_flush_notify() did already call it.
+	 */
+	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
+					       mmun_end);
+out:
+	return ret;
+out_unlock:
+	spin_unlock(vmf->ptl);
+	return ret;
+}
+
+/*
+ * FOLL_FORCE can write to even unwritable pmd's, but only
+ * after we've gone through a COW cycle and they are dirty.
+ */
+static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
+{
+	return pmd_write(pmd) ||
+	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
+}
+
+struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
+				   unsigned long addr,
+				   pmd_t *pmd,
+				   unsigned int flags)
+{
+	struct mm_struct *mm = vma->vm_mm;
+	struct page *page = NULL;
+
+	assert_spin_locked(pmd_lockptr(mm, pmd));
+
+	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
+		goto out;
+
+	/* Avoid dumping huge zero page */
+	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
+		return ERR_PTR(-EFAULT);
+
+	/* Full NUMA hinting faults to serialise migration in fault paths */
+	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
+		goto out;
+
+	page = pmd_page(*pmd);
+	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
+	if (flags & FOLL_TOUCH)
+		touch_pmd(vma, addr, pmd, flags);
+	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
+		/*
+		 * We don't mlock() pte-mapped THPs. This way we can avoid
+		 * leaking mlocked pages into non-VM_LOCKED VMAs.
+		 *
+		 * For anon THP:
+		 *
+		 * In most cases the pmd is the only mapping of the page as we
+		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
+		 * writable private mappings in populate_vma_page_range().
+		 *
+		 * The only scenario when we have the page shared here is if we
+		 * mlocking read-only mapping shared over fork(). We skip
+		 * mlocking such pages.
+		 *
+		 * For file THP:
+		 *
+		 * We can expect PageDoubleMap() to be stable under page lock:
+		 * for file pages we set it in page_add_file_rmap(), which
+		 * requires page to be locked.
+		 */
+
+		if (PageAnon(page) && compound_mapcount(page) != 1)
+			goto skip_mlock;
+		if (PageDoubleMap(page) || !page->mapping)
+			goto skip_mlock;
+		if (!trylock_page(page))
+			goto skip_mlock;
+		lru_add_drain();
+		if (page->mapping && !PageDoubleMap(page))
+			mlock_vma_page(page);
+		unlock_page(page);
+	}
+skip_mlock:
+	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
+	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
+	if (flags & FOLL_GET)
+		get_page(page);
+
+out:
+	return page;
+}
+
+/* NUMA hinting page fault entry point for trans huge pmds */
+vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
+{
+	struct vm_area_struct *vma = vmf->vma;
+	struct anon_vma *anon_vma = NULL;
+	struct page *page;
+	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
+	int page_nid = -1, this_nid = numa_node_id();
+	int target_nid, last_cpupid = -1;
+	bool page_locked;
+	bool migrated = false;
+	bool was_writable;
+	int flags = 0;
+
+	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
+	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
+		goto out_unlock;
+
+	/*
+	 * If there are potential migrations, wait for completion and retry
+	 * without disrupting NUMA hinting information. Do not relock and
+	 * check_same as the page may no longer be mapped.
+	 */
+	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
+		page = pmd_page(*vmf->pmd);
+		if (!get_page_unless_zero(page))
+			goto out_unlock;
+		spin_unlock(vmf->ptl);
+		wait_on_page_locked(page);
+		put_page(page);
+		goto out;
+	}
+
+	page = pmd_page(pmd);
+	BUG_ON(is_huge_zero_page(page));
+	page_nid = page_to_nid(page);
+	last_cpupid = page_cpupid_last(page);
+	count_vm_numa_event(NUMA_HINT_FAULTS);
+	if (page_nid == this_nid) {
+		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+		flags |= TNF_FAULT_LOCAL;
+	}
+
+	/* See similar comment in do_numa_page for explanation */
+	if (!pmd_savedwrite(pmd))
+		flags |= TNF_NO_GROUP;
+
+	/*
+	 * Acquire the page lock to serialise THP migrations but avoid dropping
+	 * page_table_lock if at all possible
+	 */
+	page_locked = trylock_page(page);
+	target_nid = mpol_misplaced(page, vma, haddr);
+	if (target_nid == -1) {
+		/* If the page was locked, there are no parallel migrations */
+		if (page_locked)
+			goto clear_pmdnuma;
+	}
+
+	/* Migration could have started since the pmd_trans_migrating check */
+	if (!page_locked) {
+		page_nid = -1;
+		if (!get_page_unless_zero(page))
+			goto out_unlock;
+		spin_unlock(vmf->ptl);
+		wait_on_page_locked(page);
+		put_page(page);
+		goto out;
+	}
+
+	/*
+	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
+	 * to serialises splits
+	 */
+	get_page(page);
+	spin_unlock(vmf->ptl);
+	anon_vma = page_lock_anon_vma_read(page);
+
+	/* Confirm the PMD did not change while page_table_lock was released */
+	spin_lock(vmf->ptl);
+	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
+		unlock_page(page);
+		put_page(page);
+		page_nid = -1;
+		goto out_unlock;
+	}
+
+	/* Bail if we fail to protect against THP splits for any reason */
+	if (unlikely(!anon_vma)) {
+		put_page(page);
+		page_nid = -1;
+		goto clear_pmdnuma;
+	}
+
+	/*
+	 * Since we took the NUMA fault, we must have observed the !accessible
+	 * bit. Make sure all other CPUs agree with that, to avoid them
+	 * modifying the page we're about to migrate.
+	 *
+	 * Must be done under PTL such that we'll observe the relevant
+	 * inc_tlb_flush_pending().
+	 *
+	 * We are not sure a pending tlb flush here is for a huge page
+	 * mapping or not. Hence use the tlb range variant
+	 */
+	if (mm_tlb_flush_pending(vma->vm_mm))
+		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
+
+	/*
+	 * Migrate the THP to the requested node, returns with page unlocked
+	 * and access rights restored.
+	 */
+	spin_unlock(vmf->ptl);
+
+	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
+				vmf->pmd, pmd, vmf->address, page, target_nid);
+	if (migrated) {
+		flags |= TNF_MIGRATED;
+		page_nid = target_nid;
+	} else
+		flags |= TNF_MIGRATE_FAIL;
+
+	goto out;
+clear_pmdnuma:
+	BUG_ON(!PageLocked(page));
+	was_writable = pmd_savedwrite(pmd);
+	pmd = pmd_modify(pmd, vma->vm_page_prot);
+	pmd = pmd_mkyoung(pmd);
+	if (was_writable)
+		pmd = pmd_mkwrite(pmd);
+	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
+	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
+	unlock_page(page);
+out_unlock:
+	spin_unlock(vmf->ptl);
+
+out:
+	if (anon_vma)
+		page_unlock_anon_vma_read(anon_vma);
+
+	if (page_nid != -1)
+		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
+				flags);
+
+	return 0;
+}
+
+/*
+ * Return true if we do MADV_FREE successfully on entire pmd page.
+ * Otherwise, return false.
+ */
+bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
+		pmd_t *pmd, unsigned long addr, unsigned long next)
+{
+	spinlock_t *ptl;
+	pmd_t orig_pmd;
+	struct page *page;
+	struct mm_struct *mm = tlb->mm;
+	bool ret = false;
+
+	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
+
+	ptl = pmd_trans_huge_lock(pmd, vma);
+	if (!ptl)
+		goto out_unlocked;
+
+	orig_pmd = *pmd;
+	if (is_huge_zero_pmd(orig_pmd))
+		goto out;
+
+	if (unlikely(!pmd_present(orig_pmd))) {
+		VM_BUG_ON(thp_migration_supported() &&
+				  !is_pmd_migration_entry(orig_pmd));
+		goto out;
+	}
+
+	page = pmd_page(orig_pmd);
+	/*
+	 * If other processes are mapping this page, we couldn't discard
+	 * the page unless they all do MADV_FREE so let's skip the page.
+	 */
+	if (page_mapcount(page) != 1)
+		goto out;
+
+	if (!trylock_page(page))
+		goto out;
+
+	/*
+	 * If user want to discard part-pages of THP, split it so MADV_FREE
+	 * will deactivate only them.
+	 */
+	if (next - addr != HPAGE_PMD_SIZE) {
+		get_page(page);
+		spin_unlock(ptl);
+		split_huge_page(page);
+		unlock_page(page);
+		put_page(page);
+		goto out_unlocked;
+	}
+
+	if (PageDirty(page))
+		ClearPageDirty(page);
+	unlock_page(page);
+
+	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
+		pmdp_invalidate(vma, addr, pmd);
+		orig_pmd = pmd_mkold(orig_pmd);
+		orig_pmd = pmd_mkclean(orig_pmd);
+
+		set_pmd_at(mm, addr, pmd, orig_pmd);
+		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
+	}
+
+	mark_page_lazyfree(page);
+	ret = true;
+out:
+	spin_unlock(ptl);
+out_unlocked:
+	return ret;
+}
+
+static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
+{
+	pgtable_t pgtable;
+
+	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
+	pte_free(mm, pgtable);
+	mm_dec_nr_ptes(mm);
+}
+
+int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
+		 pmd_t *pmd, unsigned long addr)
+{
+	pmd_t orig_pmd;
+	spinlock_t *ptl;
+
+	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
+
+	ptl = __pmd_trans_huge_lock(pmd, vma);
+	if (!ptl)
+		return 0;
+	/*
+	 * For architectures like ppc64 we look at deposited pgtable
+	 * when calling pmdp_huge_get_and_clear. So do the
+	 * pgtable_trans_huge_withdraw after finishing pmdp related
+	 * operations.
+	 */
+	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
+			tlb->fullmm);
+	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
+	if (vma_is_dax(vma)) {
+		if (arch_needs_pgtable_deposit())
+			zap_deposited_table(tlb->mm, pmd);
+		spin_unlock(ptl);
+		if (is_huge_zero_pmd(orig_pmd))
+			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
+	} else if (is_huge_zero_pmd(orig_pmd)) {
+		zap_deposited_table(tlb->mm, pmd);
+		spin_unlock(ptl);
+		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
+	} else {
+		struct page *page = NULL;
+		int flush_needed = 1;
+
+		if (pmd_present(orig_pmd)) {
+			page = pmd_page(orig_pmd);
+			page_remove_rmap(page, true);
+			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
+			VM_BUG_ON_PAGE(!PageHead(page), page);
+		} else if (thp_migration_supported()) {
+			swp_entry_t entry;
+
+			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
+			entry = pmd_to_swp_entry(orig_pmd);
+			page = pfn_to_page(swp_offset(entry));
+			flush_needed = 0;
+		} else
+			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
+
+		if (PageAnon(page)) {
+			zap_deposited_table(tlb->mm, pmd);
+			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
+		} else {
+			if (arch_needs_pgtable_deposit())
+				zap_deposited_table(tlb->mm, pmd);
+			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
+		}
+
+		spin_unlock(ptl);
+		if (flush_needed)
+			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
+	}
+	return 1;
+}
+
+#ifndef pmd_move_must_withdraw
+static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
+					 spinlock_t *old_pmd_ptl,
+					 struct vm_area_struct *vma)
+{
+	/*
+	 * With split pmd lock we also need to move preallocated
+	 * PTE page table if new_pmd is on different PMD page table.
+	 *
+	 * We also don't deposit and withdraw tables for file pages.
+	 */
+	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
+}
+#endif
+
+static pmd_t move_soft_dirty_pmd(pmd_t pmd)
+{
+#ifdef CONFIG_MEM_SOFT_DIRTY
+	if (unlikely(is_pmd_migration_entry(pmd)))
+		pmd = pmd_swp_mksoft_dirty(pmd);
+	else if (pmd_present(pmd))
+		pmd = pmd_mksoft_dirty(pmd);
+#endif
+	return pmd;
+}
+
+bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
+		  unsigned long new_addr, unsigned long old_end,
+		  pmd_t *old_pmd, pmd_t *new_pmd)
+{
+	spinlock_t *old_ptl, *new_ptl;
+	pmd_t pmd;
+	struct mm_struct *mm = vma->vm_mm;
+	bool force_flush = false;
+
+	if ((old_addr & ~HPAGE_PMD_MASK) ||
+	    (new_addr & ~HPAGE_PMD_MASK) ||
+	    old_end - old_addr < HPAGE_PMD_SIZE)
+		return false;
+
+	/*
+	 * The destination pmd shouldn't be established, free_pgtables()
+	 * should have release it.
+	 */
+	if (WARN_ON(!pmd_none(*new_pmd))) {
+		VM_BUG_ON(pmd_trans_huge(*new_pmd));
+		return false;
+	}
+
+	/*
+	 * We don't have to worry about the ordering of src and dst
+	 * ptlocks because exclusive mmap_sem prevents deadlock.
+	 */
+	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
+	if (old_ptl) {
+		new_ptl = pmd_lockptr(mm, new_pmd);
+		if (new_ptl != old_ptl)
+			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
+		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
+		if (pmd_present(pmd))
+			force_flush = true;
+		VM_BUG_ON(!pmd_none(*new_pmd));
+
+		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
+			pgtable_t pgtable;
+			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
+			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
+		}
+		pmd = move_soft_dirty_pmd(pmd);
+		set_pmd_at(mm, new_addr, new_pmd, pmd);
+		if (force_flush)
+			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
+		if (new_ptl != old_ptl)
+			spin_unlock(new_ptl);
+		spin_unlock(old_ptl);
+		return true;
+	}
+	return false;
+}
+
+/*
+ * Returns
+ *  - 0 if PMD could not be locked
+ *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
+ *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
+ */
+int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+		unsigned long addr, pgprot_t newprot, int prot_numa)
+{
+	struct mm_struct *mm = vma->vm_mm;
+	spinlock_t *ptl;
+	pmd_t entry;
+	bool preserve_write;
+	int ret;
+
+	ptl = __pmd_trans_huge_lock(pmd, vma);
+	if (!ptl)
+		return 0;
+
+	preserve_write = prot_numa && pmd_write(*pmd);
+	ret = 1;
+
+#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
+	if (is_swap_pmd(*pmd)) {
+		swp_entry_t entry = pmd_to_swp_entry(*pmd);
+
+		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
+		if (is_write_migration_entry(entry)) {
+			pmd_t newpmd;
+			/*
+			 * A protection check is difficult so
+			 * just be safe and disable write
+			 */
+			make_migration_entry_read(&entry);
+			newpmd = swp_entry_to_pmd(entry);
+			if (pmd_swp_soft_dirty(*pmd))
+				newpmd = pmd_swp_mksoft_dirty(newpmd);
+			set_pmd_at(mm, addr, pmd, newpmd);
+		}
+		goto unlock;
+	}
+#endif
+
+	/*
+	 * Avoid trapping faults against the zero page. The read-only
+	 * data is likely to be read-cached on the local CPU and
+	 * local/remote hits to the zero page are not interesting.
+	 */
+	if (prot_numa && is_huge_zero_pmd(*pmd))
+		goto unlock;
+
+	if (prot_numa && pmd_protnone(*pmd))
+		goto unlock;
+
+	/*
+	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
+	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
+	 * which is also under down_read(mmap_sem):
+	 *
+	 *	CPU0:				CPU1:
+	 *				change_huge_pmd(prot_numa=1)
+	 *				 pmdp_huge_get_and_clear_notify()
+	 * madvise_dontneed()
+	 *  zap_pmd_range()
+	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
+	 *   // skip the pmd
+	 *				 set_pmd_at();
+	 *				 // pmd is re-established
+	 *
+	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
+	 * which may break userspace.
+	 *
+	 * pmdp_invalidate() is required to make sure we don't miss
+	 * dirty/young flags set by hardware.
+	 */
+	entry = pmdp_invalidate(vma, addr, pmd);
+
+	entry = pmd_modify(entry, newprot);
+	if (preserve_write)
+		entry = pmd_mk_savedwrite(entry);
+	ret = HPAGE_PMD_NR;
+	set_pmd_at(mm, addr, pmd, entry);
+	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
+unlock:
+	spin_unlock(ptl);
+	return ret;
+}
+
+/*
+ * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
+ *
+ * Note that if it returns page table lock pointer, this routine returns without
+ * unlocking page table lock. So callers must unlock it.
+ */
+spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
+{
+	spinlock_t *ptl;
+	ptl = pmd_lock(vma->vm_mm, pmd);
+	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
+			pmd_devmap(*pmd)))
+		return ptl;
+	spin_unlock(ptl);
+	return NULL;
+}
+
+/*
+ * Returns true if a given pud maps a thp, false otherwise.
+ *
+ * Note that if it returns true, this routine returns without unlocking page
+ * table lock. So callers must unlock it.
+ */
+spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
+{
+	spinlock_t *ptl;
+
+	ptl = pud_lock(vma->vm_mm, pud);
+	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
+		return ptl;
+	spin_unlock(ptl);
+	return NULL;
+}
+
+#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
+int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
+		 pud_t *pud, unsigned long addr)
+{
+	pud_t orig_pud;
+	spinlock_t *ptl;
+
+	ptl = __pud_trans_huge_lock(pud, vma);
+	if (!ptl)
+		return 0;
+	/*
+	 * For architectures like ppc64 we look at deposited pgtable
+	 * when calling pudp_huge_get_and_clear. So do the
+	 * pgtable_trans_huge_withdraw after finishing pudp related
+	 * operations.
+	 */
+	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
+			tlb->fullmm);
+	tlb_remove_pud_tlb_entry(tlb, pud, addr);
+	if (vma_is_dax(vma)) {
+		spin_unlock(ptl);
+		/* No zero page support yet */
+	} else {
+		/* No support for anonymous PUD pages yet */
+		BUG();
+	}
+	return 1;
+}
+
+static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
+		unsigned long haddr)
+{
+	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
+	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
+	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
+	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
+
+	count_vm_event(THP_SPLIT_PUD);
+
+	pudp_huge_clear_flush_notify(vma, haddr, pud);
+}
+
+void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
+		unsigned long address)
+{
+	spinlock_t *ptl;
+	struct mm_struct *mm = vma->vm_mm;
+	unsigned long haddr = address & HPAGE_PUD_MASK;
+
+	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
+	ptl = pud_lock(mm, pud);
+	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
+		goto out;
+	__split_huge_pud_locked(vma, pud, haddr);
+
+out:
+	spin_unlock(ptl);
+	/*
+	 * No need to double call mmu_notifier->invalidate_range() callback as
+	 * the above pudp_huge_clear_flush_notify() did already call it.
+	 */
+	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
+					       HPAGE_PUD_SIZE);
+}
+#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
+
+static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
+		unsigned long haddr, pmd_t *pmd)
+{
+	struct mm_struct *mm = vma->vm_mm;
+	pgtable_t pgtable;
+	pmd_t _pmd;
+	int i;
+
+	/*
+	 * Leave pmd empty until pte is filled note that it is fine to delay
+	 * notification until mmu_notifier_invalidate_range_end() as we are
+	 * replacing a zero pmd write protected page with a zero pte write
+	 * protected page.
+	 *
+	 * See Documentation/vm/mmu_notifier.rst
+	 */
+	pmdp_huge_clear_flush(vma, haddr, pmd);
+
+	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
+	pmd_populate(mm, &_pmd, pgtable);
+
+	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
+		pte_t *pte, entry;
+		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
+		entry = pte_mkspecial(entry);
+		pte = pte_offset_map(&_pmd, haddr);
+		VM_BUG_ON(!pte_none(*pte));
+		set_pte_at(mm, haddr, pte, entry);
+		pte_unmap(pte);
+	}
+	smp_wmb(); /* make pte visible before pmd */
+	pmd_populate(mm, pmd, pgtable);
+}
+
+static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
+		unsigned long haddr, bool freeze)
+{
+	struct mm_struct *mm = vma->vm_mm;
+	struct page *page;
+	pgtable_t pgtable;
+	pmd_t old_pmd, _pmd;
+	bool young, write, soft_dirty, pmd_migration = false;
+	unsigned long addr;
+	int i;
+
+	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
+	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
+	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
+	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
+				&& !pmd_devmap(*pmd));
+
+	count_vm_event(THP_SPLIT_PMD);
+
+	if (!vma_is_anonymous(vma)) {
+		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
+		/*
+		 * We are going to unmap this huge page. So
+		 * just go ahead and zap it
+		 */
+		if (arch_needs_pgtable_deposit())
+			zap_deposited_table(mm, pmd);
+		if (vma_is_dax(vma))
+			return;
+		page = pmd_page(_pmd);
+		if (!PageDirty(page) && pmd_dirty(_pmd))
+			set_page_dirty(page);
+		if (!PageReferenced(page) && pmd_young(_pmd))
+			SetPageReferenced(page);
+		page_remove_rmap(page, true);
+		put_page(page);
+		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
+		return;
+	} else if (is_huge_zero_pmd(*pmd)) {
+		/*
+		 * FIXME: Do we want to invalidate secondary mmu by calling
+		 * mmu_notifier_invalidate_range() see comments below inside
+		 * __split_huge_pmd() ?
+		 *
+		 * We are going from a zero huge page write protected to zero
+		 * small page also write protected so it does not seems useful
+		 * to invalidate secondary mmu at this time.
+		 */
+		return __split_huge_zero_page_pmd(vma, haddr, pmd);
+	}
+
+	/*
+	 * Up to this point the pmd is present and huge and userland has the
+	 * whole access to the hugepage during the split (which happens in
+	 * place). If we overwrite the pmd with the not-huge version pointing
+	 * to the pte here (which of course we could if all CPUs were bug
+	 * free), userland could trigger a small page size TLB miss on the
+	 * small sized TLB while the hugepage TLB entry is still established in
+	 * the huge TLB. Some CPU doesn't like that.
+	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
+	 * 383 on page 93. Intel should be safe but is also warns that it's
+	 * only safe if the permission and cache attributes of the two entries
+	 * loaded in the two TLB is identical (which should be the case here).
+	 * But it is generally safer to never allow small and huge TLB entries
+	 * for the same virtual address to be loaded simultaneously. So instead
+	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
+	 * current pmd notpresent (atomically because here the pmd_trans_huge
+	 * must remain set at all times on the pmd until the split is complete
+	 * for this pmd), then we flush the SMP TLB and finally we write the
+	 * non-huge version of the pmd entry with pmd_populate.
+	 */
+	old_pmd = pmdp_invalidate(vma, haddr, pmd);
+
+	pmd_migration = is_pmd_migration_entry(old_pmd);
+	if (unlikely(pmd_migration)) {
+		swp_entry_t entry;
+
+		entry = pmd_to_swp_entry(old_pmd);
+		page = pfn_to_page(swp_offset(entry));
+		write = is_write_migration_entry(entry);
+		young = false;
+		soft_dirty = pmd_swp_soft_dirty(old_pmd);
+	} else {
+		page = pmd_page(old_pmd);
+		if (pmd_dirty(old_pmd))
+			SetPageDirty(page);
+		write = pmd_write(old_pmd);
+		young = pmd_young(old_pmd);
+		soft_dirty = pmd_soft_dirty(old_pmd);
+	}
+	VM_BUG_ON_PAGE(!page_count(page), page);
+	page_ref_add(page, HPAGE_PMD_NR - 1);
+
+	/*
+	 * Withdraw the table only after we mark the pmd entry invalid.
+	 * This's critical for some architectures (Power).
+	 */
+	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
+	pmd_populate(mm, &_pmd, pgtable);
+
+	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
+		pte_t entry, *pte;
+		/*
+		 * Note that NUMA hinting access restrictions are not
+		 * transferred to avoid any possibility of altering
+		 * permissions across VMAs.
+		 */
+		if (freeze || pmd_migration) {
+			swp_entry_t swp_entry;
+			swp_entry = make_migration_entry(page + i, write);
+			entry = swp_entry_to_pte(swp_entry);
+			if (soft_dirty)
+				entry = pte_swp_mksoft_dirty(entry);
+		} else {
+			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
+			entry = maybe_mkwrite(entry, vma);
+			if (!write)
+				entry = pte_wrprotect(entry);
+			if (!young)
+				entry = pte_mkold(entry);
+			if (soft_dirty)
+				entry = pte_mksoft_dirty(entry);
+		}
+		pte = pte_offset_map(&_pmd, addr);
+		BUG_ON(!pte_none(*pte));
+		set_pte_at(mm, addr, pte, entry);
+		atomic_inc(&page[i]._mapcount);
+		pte_unmap(pte);
+	}
+
+	/*
+	 * Set PG_double_map before dropping compound_mapcount to avoid
+	 * false-negative page_mapped().
+	 */
+	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
+		for (i = 0; i < HPAGE_PMD_NR; i++)
+			atomic_inc(&page[i]._mapcount);
+	}
+
+	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
+		/* Last compound_mapcount is gone. */
+		__dec_node_page_state(page, NR_ANON_THPS);
+		if (TestClearPageDoubleMap(page)) {
+			/* No need in mapcount reference anymore */
+			for (i = 0; i < HPAGE_PMD_NR; i++)
+				atomic_dec(&page[i]._mapcount);
+		}
+	}
+
+	smp_wmb(); /* make pte visible before pmd */
+	pmd_populate(mm, pmd, pgtable);
+
+	if (freeze) {
+		for (i = 0; i < HPAGE_PMD_NR; i++) {
+			page_remove_rmap(page + i, false);
+			put_page(page + i);
+		}
+	}
+}
+
+void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+		unsigned long address, bool freeze, struct page *page)
+{
+	spinlock_t *ptl;
+	struct mm_struct *mm = vma->vm_mm;
+	unsigned long haddr = address & HPAGE_PMD_MASK;
+
+	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
+	ptl = pmd_lock(mm, pmd);
+
+	/*
+	 * If caller asks to setup a migration entries, we need a page to check
+	 * pmd against. Otherwise we can end up replacing wrong page.
+	 */
+	VM_BUG_ON(freeze && !page);
+	if (page && page != pmd_page(*pmd))
+	        goto out;
+
+	if (pmd_trans_huge(*pmd)) {
+		page = pmd_page(*pmd);
+		if (PageMlocked(page))
+			clear_page_mlock(page);
+	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
+		goto out;
+	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
+out:
+	spin_unlock(ptl);
+	/*
+	 * No need to double call mmu_notifier->invalidate_range() callback.
+	 * They are 3 cases to consider inside __split_huge_pmd_locked():
+	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
+	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
+	 *    fault will trigger a flush_notify before pointing to a new page
+	 *    (it is fine if the secondary mmu keeps pointing to the old zero
+	 *    page in the meantime)
+	 *  3) Split a huge pmd into pte pointing to the same page. No need
+	 *     to invalidate secondary tlb entry they are all still valid.
+	 *     any further changes to individual pte will notify. So no need
+	 *     to call mmu_notifier->invalidate_range()
+	 */
+	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
+					       HPAGE_PMD_SIZE);
+}
+
+void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
+		bool freeze, struct page *page)
+{
+	pgd_t *pgd;
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+
+	pgd = pgd_offset(vma->vm_mm, address);
+	if (!pgd_present(*pgd))
+		return;
+
+	p4d = p4d_offset(pgd, address);
+	if (!p4d_present(*p4d))
+		return;
+
+	pud = pud_offset(p4d, address);
+	if (!pud_present(*pud))
+		return;
+
+	pmd = pmd_offset(pud, address);
+
+	__split_huge_pmd(vma, pmd, address, freeze, page);
+}
+
+void vma_adjust_trans_huge(struct vm_area_struct *vma,
+			     unsigned long start,
+			     unsigned long end,
+			     long adjust_next)
+{
+	/*
+	 * If the new start address isn't hpage aligned and it could
+	 * previously contain an hugepage: check if we need to split
+	 * an huge pmd.
+	 */
+	if (start & ~HPAGE_PMD_MASK &&
+	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
+	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
+		split_huge_pmd_address(vma, start, false, NULL);
+
+	/*
+	 * If the new end address isn't hpage aligned and it could
+	 * previously contain an hugepage: check if we need to split
+	 * an huge pmd.
+	 */
+	if (end & ~HPAGE_PMD_MASK &&
+	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
+	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
+		split_huge_pmd_address(vma, end, false, NULL);
+
+	/*
+	 * If we're also updating the vma->vm_next->vm_start, if the new
+	 * vm_next->vm_start isn't page aligned and it could previously
+	 * contain an hugepage: check if we need to split an huge pmd.
+	 */
+	if (adjust_next > 0) {
+		struct vm_area_struct *next = vma->vm_next;
+		unsigned long nstart = next->vm_start;
+		nstart += adjust_next << PAGE_SHIFT;
+		if (nstart & ~HPAGE_PMD_MASK &&
+		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
+		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
+			split_huge_pmd_address(next, nstart, false, NULL);
+	}
+}
+
+static void unmap_page(struct page *page)
+{
+	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
+		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
+	bool unmap_success;
+
+	VM_BUG_ON_PAGE(!PageHead(page), page);
+
+	if (PageAnon(page))
+		ttu_flags |= TTU_SPLIT_FREEZE;
+
+	unmap_success = try_to_unmap(page, ttu_flags);
+	VM_BUG_ON_PAGE(!unmap_success, page);
+}
+
+static void remap_page(struct page *page)
+{
+	int i;
+	if (PageTransHuge(page)) {
+		remove_migration_ptes(page, page, true);
+	} else {
+		for (i = 0; i < HPAGE_PMD_NR; i++)
+			remove_migration_ptes(page + i, page + i, true);
+	}
+}
+
+static void __split_huge_page_tail(struct page *head, int tail,
+		struct lruvec *lruvec, struct list_head *list)
+{
+	struct page *page_tail = head + tail;
+
+	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
+
+	/*
+	 * Clone page flags before unfreezing refcount.
+	 *
+	 * After successful get_page_unless_zero() might follow flags change,
+	 * for exmaple lock_page() which set PG_waiters.
+	 */
+	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
+	page_tail->flags |= (head->flags &
+			((1L << PG_referenced) |
+			 (1L << PG_swapbacked) |
+			 (1L << PG_swapcache) |
+			 (1L << PG_mlocked) |
+			 (1L << PG_uptodate) |
+			 (1L << PG_active) |
+			 (1L << PG_locked) |
+			 (1L << PG_unevictable) |
+			 (1L << PG_dirty)));
+
+	/* ->mapping in first tail page is compound_mapcount */
+	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
+			page_tail);
+	page_tail->mapping = head->mapping;
+	page_tail->index = head->index + tail;
+
+	/* Page flags must be visible before we make the page non-compound. */
+	smp_wmb();
+
+	/*
+	 * Clear PageTail before unfreezing page refcount.
+	 *
+	 * After successful get_page_unless_zero() might follow put_page()
+	 * which needs correct compound_head().
+	 */
+	clear_compound_head(page_tail);
+
+	/* Finally unfreeze refcount. Additional reference from page cache. */
+	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
+					  PageSwapCache(head)));
+
+	if (page_is_young(head))
+		set_page_young(page_tail);
+	if (page_is_idle(head))
+		set_page_idle(page_tail);
+
+	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
+
+	/*
+	 * always add to the tail because some iterators expect new
+	 * pages to show after the currently processed elements - e.g.
+	 * migrate_pages
+	 */
+	lru_add_page_tail(head, page_tail, lruvec, list);
+}
+
+static void __split_huge_page(struct page *page, struct list_head *list,
+		pgoff_t end, unsigned long flags)
+{
+	struct page *head = compound_head(page);
+	struct zone *zone = page_zone(head);
+	struct lruvec *lruvec;
+	int i;
+
+	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
+
+	/* complete memcg works before add pages to LRU */
+	mem_cgroup_split_huge_fixup(head);
+
+	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
+		__split_huge_page_tail(head, i, lruvec, list);
+		/* Some pages can be beyond i_size: drop them from page cache */
+		if (head[i].index >= end) {
+			ClearPageDirty(head + i);
+			__delete_from_page_cache(head + i, NULL);
+			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
+				shmem_uncharge(head->mapping->host, 1);
+			put_page(head + i);
+		}
+	}
+
+	ClearPageCompound(head);
+	/* See comment in __split_huge_page_tail() */
+	if (PageAnon(head)) {
+		/* Additional pin to radix tree of swap cache */
+		if (PageSwapCache(head))
+			page_ref_add(head, 2);
+		else
+			page_ref_inc(head);
+	} else {
+		/* Additional pin to radix tree */
+		page_ref_add(head, 2);
+		xa_unlock(&head->mapping->i_pages);
+	}
+
+	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
+
+	remap_page(head);
+
+	for (i = 0; i < HPAGE_PMD_NR; i++) {
+		struct page *subpage = head + i;
+		if (subpage == page)
+			continue;
+		unlock_page(subpage);
+
+		/*
+		 * Subpages may be freed if there wasn't any mapping
+		 * like if add_to_swap() is running on a lru page that
+		 * had its mapping zapped. And freeing these pages
+		 * requires taking the lru_lock so we do the put_page
+		 * of the tail pages after the split is complete.
+		 */
+		put_page(subpage);
+	}
+}
+
+int total_mapcount(struct page *page)
+{
+	int i, compound, ret;
+
+	VM_BUG_ON_PAGE(PageTail(page), page);
+
+	if (likely(!PageCompound(page)))
+		return atomic_read(&page->_mapcount) + 1;
+
+	compound = compound_mapcount(page);
+	if (PageHuge(page))
+		return compound;
+	ret = compound;
+	for (i = 0; i < HPAGE_PMD_NR; i++)
+		ret += atomic_read(&page[i]._mapcount) + 1;
+	/* File pages has compound_mapcount included in _mapcount */
+	if (!PageAnon(page))
+		return ret - compound * HPAGE_PMD_NR;
+	if (PageDoubleMap(page))
+		ret -= HPAGE_PMD_NR;
+	return ret;
+}
+
+/*
+ * This calculates accurately how many mappings a transparent hugepage
+ * has (unlike page_mapcount() which isn't fully accurate). This full
+ * accuracy is primarily needed to know if copy-on-write faults can
+ * reuse the page and change the mapping to read-write instead of
+ * copying them. At the same time this returns the total_mapcount too.
+ *
+ * The function returns the highest mapcount any one of the subpages
+ * has. If the return value is one, even if different processes are
+ * mapping different subpages of the transparent hugepage, they can
+ * all reuse it, because each process is reusing a different subpage.
+ *
+ * The total_mapcount is instead counting all virtual mappings of the
+ * subpages. If the total_mapcount is equal to "one", it tells the
+ * caller all mappings belong to the same "mm" and in turn the
+ * anon_vma of the transparent hugepage can become the vma->anon_vma
+ * local one as no other process may be mapping any of the subpages.
+ *
+ * It would be more accurate to replace page_mapcount() with
+ * page_trans_huge_mapcount(), however we only use
+ * page_trans_huge_mapcount() in the copy-on-write faults where we
+ * need full accuracy to avoid breaking page pinning, because
+ * page_trans_huge_mapcount() is slower than page_mapcount().
+ */
+int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
+{
+	int i, ret, _total_mapcount, mapcount;
+
+	/* hugetlbfs shouldn't call it */
+	VM_BUG_ON_PAGE(PageHuge(page), page);
+
+	if (likely(!PageTransCompound(page))) {
+		mapcount = atomic_read(&page->_mapcount) + 1;
+		if (total_mapcount)
+			*total_mapcount = mapcount;
+		return mapcount;
+	}
+
+	page = compound_head(page);
+
+	_total_mapcount = ret = 0;
+	for (i = 0; i < HPAGE_PMD_NR; i++) {
+		mapcount = atomic_read(&page[i]._mapcount) + 1;
+		ret = max(ret, mapcount);
+		_total_mapcount += mapcount;
+	}
+	if (PageDoubleMap(page)) {
+		ret -= 1;
+		_total_mapcount -= HPAGE_PMD_NR;
+	}
+	mapcount = compound_mapcount(page);
+	ret += mapcount;
+	_total_mapcount += mapcount;
+	if (total_mapcount)
+		*total_mapcount = _total_mapcount;
+	return ret;
+}
+
+/* Racy check whether the huge page can be split */
+bool can_split_huge_page(struct page *page, int *pextra_pins)
+{
+	int extra_pins;
+
+	/* Additional pins from radix tree */
+	if (PageAnon(page))
+		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
+	else
+		extra_pins = HPAGE_PMD_NR;
+	if (pextra_pins)
+		*pextra_pins = extra_pins;
+	return total_mapcount(page) == page_count(page) - extra_pins - 1;
+}
+
+/*
+ * This function splits huge page into normal pages. @page can point to any
+ * subpage of huge page to split. Split doesn't change the position of @page.
+ *
+ * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
+ * The huge page must be locked.
+ *
+ * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
+ *
+ * Both head page and tail pages will inherit mapping, flags, and so on from
+ * the hugepage.
+ *
+ * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
+ * they are not mapped.
+ *
+ * Returns 0 if the hugepage is split successfully.
+ * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
+ * us.
+ */
+int split_huge_page_to_list(struct page *page, struct list_head *list)
+{
+	struct page *head = compound_head(page);
+	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
+	struct anon_vma *anon_vma = NULL;
+	struct address_space *mapping = NULL;
+	int count, mapcount, extra_pins, ret;
+	bool mlocked;
+	unsigned long flags;
+	pgoff_t end;
+
+	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
+	VM_BUG_ON_PAGE(!PageLocked(page), page);
+	VM_BUG_ON_PAGE(!PageCompound(page), page);
+
+	if (PageWriteback(page))
+		return -EBUSY;
+
+	if (PageAnon(head)) {
+		/*
+		 * The caller does not necessarily hold an mmap_sem that would
+		 * prevent the anon_vma disappearing so we first we take a
+		 * reference to it and then lock the anon_vma for write. This
+		 * is similar to page_lock_anon_vma_read except the write lock
+		 * is taken to serialise against parallel split or collapse
+		 * operations.
+		 */
+		anon_vma = page_get_anon_vma(head);
+		if (!anon_vma) {
+			ret = -EBUSY;
+			goto out;
+		}
+		end = -1;
+		mapping = NULL;
+		anon_vma_lock_write(anon_vma);
+	} else {
+		mapping = head->mapping;
+
+		/* Truncated ? */
+		if (!mapping) {
+			ret = -EBUSY;
+			goto out;
+		}
+
+		anon_vma = NULL;
+		i_mmap_lock_read(mapping);
+
+		/*
+		 *__split_huge_page() may need to trim off pages beyond EOF:
+		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
+		 * which cannot be nested inside the page tree lock. So note
+		 * end now: i_size itself may be changed at any moment, but
+		 * head page lock is good enough to serialize the trimming.
+		 */
+		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
+	}
+
+	/*
+	 * Racy check if we can split the page, before unmap_page() will
+	 * split PMDs
+	 */
+	if (!can_split_huge_page(head, &extra_pins)) {
+		ret = -EBUSY;
+		goto out_unlock;
+	}
+
+	mlocked = PageMlocked(page);
+	unmap_page(head);
+	VM_BUG_ON_PAGE(compound_mapcount(head), head);
+
+	/* Make sure the page is not on per-CPU pagevec as it takes pin */
+	if (mlocked)
+		lru_add_drain();
+
+	/* prevent PageLRU to go away from under us, and freeze lru stats */
+	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
+
+	if (mapping) {
+		void **pslot;
+
+		xa_lock(&mapping->i_pages);
+		pslot = radix_tree_lookup_slot(&mapping->i_pages,
+				page_index(head));
+		/*
+		 * Check if the head page is present in radix tree.
+		 * We assume all tail are present too, if head is there.
+		 */
+		if (radix_tree_deref_slot_protected(pslot,
+					&mapping->i_pages.xa_lock) != head)
+			goto fail;
+	}
+
+	/* Prevent deferred_split_scan() touching ->_refcount */
+	spin_lock(&pgdata->split_queue_lock);
+	count = page_count(head);
+	mapcount = total_mapcount(head);
+	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
+		if (!list_empty(page_deferred_list(head))) {
+			pgdata->split_queue_len--;
+			list_del(page_deferred_list(head));
+		}
+		if (mapping)
+			__dec_node_page_state(page, NR_SHMEM_THPS);
+		spin_unlock(&pgdata->split_queue_lock);
+		__split_huge_page(page, list, end, flags);
+		if (PageSwapCache(head)) {
+			swp_entry_t entry = { .val = page_private(head) };
+
+			ret = split_swap_cluster(entry);
+		} else
+			ret = 0;
+	} else {
+		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
+			pr_alert("total_mapcount: %u, page_count(): %u\n",
+					mapcount, count);
+			if (PageTail(page))
+				dump_page(head, NULL);
+			dump_page(page, "total_mapcount(head) > 0");
+			BUG();
+		}
+		spin_unlock(&pgdata->split_queue_lock);
+fail:		if (mapping)
+			xa_unlock(&mapping->i_pages);
+		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
+		remap_page(head);
+		ret = -EBUSY;
+	}
+
+out_unlock:
+	if (anon_vma) {
+		anon_vma_unlock_write(anon_vma);
+		put_anon_vma(anon_vma);
+	}
+	if (mapping)
+		i_mmap_unlock_read(mapping);
+out:
+	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
+	return ret;
+}
+
+void free_transhuge_page(struct page *page)
+{
+	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
+	unsigned long flags;
+
+	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
+	if (!list_empty(page_deferred_list(page))) {
+		pgdata->split_queue_len--;
+		list_del(page_deferred_list(page));
+	}
+	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
+	free_compound_page(page);
+}
+
+void deferred_split_huge_page(struct page *page)
+{
+	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
+	unsigned long flags;
+
+	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+
+	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
+	if (list_empty(page_deferred_list(page))) {
+		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
+		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
+		pgdata->split_queue_len++;
+	}
+	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
+}
+
+static unsigned long deferred_split_count(struct shrinker *shrink,
+		struct shrink_control *sc)
+{
+	struct pglist_data *pgdata = NODE_DATA(sc->nid);
+	return READ_ONCE(pgdata->split_queue_len);
+}
+
+static unsigned long deferred_split_scan(struct shrinker *shrink,
+		struct shrink_control *sc)
+{
+	struct pglist_data *pgdata = NODE_DATA(sc->nid);
+	unsigned long flags;
+	LIST_HEAD(list), *pos, *next;
+	struct page *page;
+	int split = 0;
+
+	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
+	/* Take pin on all head pages to avoid freeing them under us */
+	list_for_each_safe(pos, next, &pgdata->split_queue) {
+		page = list_entry((void *)pos, struct page, mapping);
+		page = compound_head(page);
+		if (get_page_unless_zero(page)) {
+			list_move(page_deferred_list(page), &list);
+		} else {
+			/* We lost race with put_compound_page() */
+			list_del_init(page_deferred_list(page));
+			pgdata->split_queue_len--;
+		}
+		if (!--sc->nr_to_scan)
+			break;
+	}
+	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
+
+	list_for_each_safe(pos, next, &list) {
+		page = list_entry((void *)pos, struct page, mapping);
+		if (!trylock_page(page))
+			goto next;
+		/* split_huge_page() removes page from list on success */
+		if (!split_huge_page(page))
+			split++;
+		unlock_page(page);
+next:
+		put_page(page);
+	}
+
+	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
+	list_splice_tail(&list, &pgdata->split_queue);
+	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
+
+	/*
+	 * Stop shrinker if we didn't split any page, but the queue is empty.
+	 * This can happen if pages were freed under us.
+	 */
+	if (!split && list_empty(&pgdata->split_queue))
+		return SHRINK_STOP;
+	return split;
+}
+
+static struct shrinker deferred_split_shrinker = {
+	.count_objects = deferred_split_count,
+	.scan_objects = deferred_split_scan,
+	.seeks = DEFAULT_SEEKS,
+	.flags = SHRINKER_NUMA_AWARE,
+};
+
+#ifdef CONFIG_DEBUG_FS
+static int split_huge_pages_set(void *data, u64 val)
+{
+	struct zone *zone;
+	struct page *page;
+	unsigned long pfn, max_zone_pfn;
+	unsigned long total = 0, split = 0;
+
+	if (val != 1)
+		return -EINVAL;
+
+	for_each_populated_zone(zone) {
+		max_zone_pfn = zone_end_pfn(zone);
+		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
+			if (!pfn_valid(pfn))
+				continue;
+
+			page = pfn_to_page(pfn);
+			if (!get_page_unless_zero(page))
+				continue;
+
+			if (zone != page_zone(page))
+				goto next;
+
+			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
+				goto next;
+
+			total++;
+			lock_page(page);
+			if (!split_huge_page(page))
+				split++;
+			unlock_page(page);
+next:
+			put_page(page);
+		}
+	}
+
+	pr_info("%lu of %lu THP split\n", split, total);
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
+		"%llu\n");
+
+static int __init split_huge_pages_debugfs(void)
+{
+	void *ret;
+
+	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
+			&split_huge_pages_fops);
+	if (!ret)
+		pr_warn("Failed to create split_huge_pages in debugfs");
+	return 0;
+}
+late_initcall(split_huge_pages_debugfs);
+#endif
+
+#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
+void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
+		struct page *page)
+{
+	struct vm_area_struct *vma = pvmw->vma;
+	struct mm_struct *mm = vma->vm_mm;
+	unsigned long address = pvmw->address;
+	pmd_t pmdval;
+	swp_entry_t entry;
+	pmd_t pmdswp;
+
+	if (!(pvmw->pmd && !pvmw->pte))
+		return;
+
+	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
+	pmdval = *pvmw->pmd;
+	pmdp_invalidate(vma, address, pvmw->pmd);
+	if (pmd_dirty(pmdval))
+		set_page_dirty(page);
+	entry = make_migration_entry(page, pmd_write(pmdval));
+	pmdswp = swp_entry_to_pmd(entry);
+	if (pmd_soft_dirty(pmdval))
+		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
+	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
+	page_remove_rmap(page, true);
+	put_page(page);
+}
+
+void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
+{
+	struct vm_area_struct *vma = pvmw->vma;
+	struct mm_struct *mm = vma->vm_mm;
+	unsigned long address = pvmw->address;
+	unsigned long mmun_start = address & HPAGE_PMD_MASK;
+	pmd_t pmde;
+	swp_entry_t entry;
+
+	if (!(pvmw->pmd && !pvmw->pte))
+		return;
+
+	entry = pmd_to_swp_entry(*pvmw->pmd);
+	get_page(new);
+	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
+	if (pmd_swp_soft_dirty(*pvmw->pmd))
+		pmde = pmd_mksoft_dirty(pmde);
+	if (is_write_migration_entry(entry))
+		pmde = maybe_pmd_mkwrite(pmde, vma);
+
+	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
+	if (PageAnon(new))
+		page_add_anon_rmap(new, vma, mmun_start, true);
+	else
+		page_add_file_rmap(new, true);
+	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
+	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
+		mlock_vma_page(new);
+	update_mmu_cache_pmd(vma, address, pvmw->pmd);
+}
+#endif