v4.19.13 snapshot.
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
new file mode 100644
index 0000000..f3b22f4
--- /dev/null
+++ b/kernel/time/timekeeping.c
@@ -0,0 +1,2422 @@
+/*
+ *  linux/kernel/time/timekeeping.c
+ *
+ *  Kernel timekeeping code and accessor functions
+ *
+ *  This code was moved from linux/kernel/timer.c.
+ *  Please see that file for copyright and history logs.
+ *
+ */
+
+#include <linux/timekeeper_internal.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/percpu.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/nmi.h>
+#include <linux/sched.h>
+#include <linux/sched/loadavg.h>
+#include <linux/sched/clock.h>
+#include <linux/syscore_ops.h>
+#include <linux/clocksource.h>
+#include <linux/jiffies.h>
+#include <linux/time.h>
+#include <linux/tick.h>
+#include <linux/stop_machine.h>
+#include <linux/pvclock_gtod.h>
+#include <linux/compiler.h>
+
+#include "tick-internal.h"
+#include "ntp_internal.h"
+#include "timekeeping_internal.h"
+
+#define TK_CLEAR_NTP		(1 << 0)
+#define TK_MIRROR		(1 << 1)
+#define TK_CLOCK_WAS_SET	(1 << 2)
+
+enum timekeeping_adv_mode {
+	/* Update timekeeper when a tick has passed */
+	TK_ADV_TICK,
+
+	/* Update timekeeper on a direct frequency change */
+	TK_ADV_FREQ
+};
+
+/*
+ * The most important data for readout fits into a single 64 byte
+ * cache line.
+ */
+static struct {
+	seqcount_t		seq;
+	struct timekeeper	timekeeper;
+} tk_core ____cacheline_aligned;
+
+static DEFINE_RAW_SPINLOCK(timekeeper_lock);
+static struct timekeeper shadow_timekeeper;
+
+/**
+ * struct tk_fast - NMI safe timekeeper
+ * @seq:	Sequence counter for protecting updates. The lowest bit
+ *		is the index for the tk_read_base array
+ * @base:	tk_read_base array. Access is indexed by the lowest bit of
+ *		@seq.
+ *
+ * See @update_fast_timekeeper() below.
+ */
+struct tk_fast {
+	seqcount_t		seq;
+	struct tk_read_base	base[2];
+};
+
+/* Suspend-time cycles value for halted fast timekeeper. */
+static u64 cycles_at_suspend;
+
+static u64 dummy_clock_read(struct clocksource *cs)
+{
+	return cycles_at_suspend;
+}
+
+static struct clocksource dummy_clock = {
+	.read = dummy_clock_read,
+};
+
+static struct tk_fast tk_fast_mono ____cacheline_aligned = {
+	.base[0] = { .clock = &dummy_clock, },
+	.base[1] = { .clock = &dummy_clock, },
+};
+
+static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
+	.base[0] = { .clock = &dummy_clock, },
+	.base[1] = { .clock = &dummy_clock, },
+};
+
+/* flag for if timekeeping is suspended */
+int __read_mostly timekeeping_suspended;
+
+static inline void tk_normalize_xtime(struct timekeeper *tk)
+{
+	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
+		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
+		tk->xtime_sec++;
+	}
+	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
+		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
+		tk->raw_sec++;
+	}
+}
+
+static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
+{
+	struct timespec64 ts;
+
+	ts.tv_sec = tk->xtime_sec;
+	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
+	return ts;
+}
+
+static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
+{
+	tk->xtime_sec = ts->tv_sec;
+	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
+}
+
+static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
+{
+	tk->xtime_sec += ts->tv_sec;
+	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
+	tk_normalize_xtime(tk);
+}
+
+static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
+{
+	struct timespec64 tmp;
+
+	/*
+	 * Verify consistency of: offset_real = -wall_to_monotonic
+	 * before modifying anything
+	 */
+	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
+					-tk->wall_to_monotonic.tv_nsec);
+	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
+	tk->wall_to_monotonic = wtm;
+	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
+	tk->offs_real = timespec64_to_ktime(tmp);
+	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
+}
+
+static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
+{
+	tk->offs_boot = ktime_add(tk->offs_boot, delta);
+}
+
+/*
+ * tk_clock_read - atomic clocksource read() helper
+ *
+ * This helper is necessary to use in the read paths because, while the
+ * seqlock ensures we don't return a bad value while structures are updated,
+ * it doesn't protect from potential crashes. There is the possibility that
+ * the tkr's clocksource may change between the read reference, and the
+ * clock reference passed to the read function.  This can cause crashes if
+ * the wrong clocksource is passed to the wrong read function.
+ * This isn't necessary to use when holding the timekeeper_lock or doing
+ * a read of the fast-timekeeper tkrs (which is protected by its own locking
+ * and update logic).
+ */
+static inline u64 tk_clock_read(const struct tk_read_base *tkr)
+{
+	struct clocksource *clock = READ_ONCE(tkr->clock);
+
+	return clock->read(clock);
+}
+
+#ifdef CONFIG_DEBUG_TIMEKEEPING
+#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
+
+static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
+{
+
+	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
+	const char *name = tk->tkr_mono.clock->name;
+
+	if (offset > max_cycles) {
+		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
+				offset, name, max_cycles);
+		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
+	} else {
+		if (offset > (max_cycles >> 1)) {
+			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
+					offset, name, max_cycles >> 1);
+			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
+		}
+	}
+
+	if (tk->underflow_seen) {
+		if (jiffies - tk->last_warning > WARNING_FREQ) {
+			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
+			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
+			printk_deferred("         Your kernel is probably still fine.\n");
+			tk->last_warning = jiffies;
+		}
+		tk->underflow_seen = 0;
+	}
+
+	if (tk->overflow_seen) {
+		if (jiffies - tk->last_warning > WARNING_FREQ) {
+			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
+			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
+			printk_deferred("         Your kernel is probably still fine.\n");
+			tk->last_warning = jiffies;
+		}
+		tk->overflow_seen = 0;
+	}
+}
+
+static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	u64 now, last, mask, max, delta;
+	unsigned int seq;
+
+	/*
+	 * Since we're called holding a seqlock, the data may shift
+	 * under us while we're doing the calculation. This can cause
+	 * false positives, since we'd note a problem but throw the
+	 * results away. So nest another seqlock here to atomically
+	 * grab the points we are checking with.
+	 */
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		now = tk_clock_read(tkr);
+		last = tkr->cycle_last;
+		mask = tkr->mask;
+		max = tkr->clock->max_cycles;
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	delta = clocksource_delta(now, last, mask);
+
+	/*
+	 * Try to catch underflows by checking if we are seeing small
+	 * mask-relative negative values.
+	 */
+	if (unlikely((~delta & mask) < (mask >> 3))) {
+		tk->underflow_seen = 1;
+		delta = 0;
+	}
+
+	/* Cap delta value to the max_cycles values to avoid mult overflows */
+	if (unlikely(delta > max)) {
+		tk->overflow_seen = 1;
+		delta = tkr->clock->max_cycles;
+	}
+
+	return delta;
+}
+#else
+static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
+{
+}
+static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
+{
+	u64 cycle_now, delta;
+
+	/* read clocksource */
+	cycle_now = tk_clock_read(tkr);
+
+	/* calculate the delta since the last update_wall_time */
+	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
+
+	return delta;
+}
+#endif
+
+/**
+ * tk_setup_internals - Set up internals to use clocksource clock.
+ *
+ * @tk:		The target timekeeper to setup.
+ * @clock:		Pointer to clocksource.
+ *
+ * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
+ * pair and interval request.
+ *
+ * Unless you're the timekeeping code, you should not be using this!
+ */
+static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
+{
+	u64 interval;
+	u64 tmp, ntpinterval;
+	struct clocksource *old_clock;
+
+	++tk->cs_was_changed_seq;
+	old_clock = tk->tkr_mono.clock;
+	tk->tkr_mono.clock = clock;
+	tk->tkr_mono.mask = clock->mask;
+	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
+
+	tk->tkr_raw.clock = clock;
+	tk->tkr_raw.mask = clock->mask;
+	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
+
+	/* Do the ns -> cycle conversion first, using original mult */
+	tmp = NTP_INTERVAL_LENGTH;
+	tmp <<= clock->shift;
+	ntpinterval = tmp;
+	tmp += clock->mult/2;
+	do_div(tmp, clock->mult);
+	if (tmp == 0)
+		tmp = 1;
+
+	interval = (u64) tmp;
+	tk->cycle_interval = interval;
+
+	/* Go back from cycles -> shifted ns */
+	tk->xtime_interval = interval * clock->mult;
+	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
+	tk->raw_interval = interval * clock->mult;
+
+	 /* if changing clocks, convert xtime_nsec shift units */
+	if (old_clock) {
+		int shift_change = clock->shift - old_clock->shift;
+		if (shift_change < 0) {
+			tk->tkr_mono.xtime_nsec >>= -shift_change;
+			tk->tkr_raw.xtime_nsec >>= -shift_change;
+		} else {
+			tk->tkr_mono.xtime_nsec <<= shift_change;
+			tk->tkr_raw.xtime_nsec <<= shift_change;
+		}
+	}
+
+	tk->tkr_mono.shift = clock->shift;
+	tk->tkr_raw.shift = clock->shift;
+
+	tk->ntp_error = 0;
+	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
+	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
+
+	/*
+	 * The timekeeper keeps its own mult values for the currently
+	 * active clocksource. These value will be adjusted via NTP
+	 * to counteract clock drifting.
+	 */
+	tk->tkr_mono.mult = clock->mult;
+	tk->tkr_raw.mult = clock->mult;
+	tk->ntp_err_mult = 0;
+	tk->skip_second_overflow = 0;
+}
+
+/* Timekeeper helper functions. */
+
+#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
+static u32 default_arch_gettimeoffset(void) { return 0; }
+u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
+#else
+static inline u32 arch_gettimeoffset(void) { return 0; }
+#endif
+
+static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
+{
+	u64 nsec;
+
+	nsec = delta * tkr->mult + tkr->xtime_nsec;
+	nsec >>= tkr->shift;
+
+	/* If arch requires, add in get_arch_timeoffset() */
+	return nsec + arch_gettimeoffset();
+}
+
+static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
+{
+	u64 delta;
+
+	delta = timekeeping_get_delta(tkr);
+	return timekeeping_delta_to_ns(tkr, delta);
+}
+
+static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
+{
+	u64 delta;
+
+	/* calculate the delta since the last update_wall_time */
+	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
+	return timekeeping_delta_to_ns(tkr, delta);
+}
+
+/**
+ * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
+ * @tkr: Timekeeping readout base from which we take the update
+ *
+ * We want to use this from any context including NMI and tracing /
+ * instrumenting the timekeeping code itself.
+ *
+ * Employ the latch technique; see @raw_write_seqcount_latch.
+ *
+ * So if a NMI hits the update of base[0] then it will use base[1]
+ * which is still consistent. In the worst case this can result is a
+ * slightly wrong timestamp (a few nanoseconds). See
+ * @ktime_get_mono_fast_ns.
+ */
+static void update_fast_timekeeper(const struct tk_read_base *tkr,
+				   struct tk_fast *tkf)
+{
+	struct tk_read_base *base = tkf->base;
+
+	/* Force readers off to base[1] */
+	raw_write_seqcount_latch(&tkf->seq);
+
+	/* Update base[0] */
+	memcpy(base, tkr, sizeof(*base));
+
+	/* Force readers back to base[0] */
+	raw_write_seqcount_latch(&tkf->seq);
+
+	/* Update base[1] */
+	memcpy(base + 1, base, sizeof(*base));
+}
+
+/**
+ * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
+ *
+ * This timestamp is not guaranteed to be monotonic across an update.
+ * The timestamp is calculated by:
+ *
+ *	now = base_mono + clock_delta * slope
+ *
+ * So if the update lowers the slope, readers who are forced to the
+ * not yet updated second array are still using the old steeper slope.
+ *
+ * tmono
+ * ^
+ * |    o  n
+ * |   o n
+ * |  u
+ * | o
+ * |o
+ * |12345678---> reader order
+ *
+ * o = old slope
+ * u = update
+ * n = new slope
+ *
+ * So reader 6 will observe time going backwards versus reader 5.
+ *
+ * While other CPUs are likely to be able observe that, the only way
+ * for a CPU local observation is when an NMI hits in the middle of
+ * the update. Timestamps taken from that NMI context might be ahead
+ * of the following timestamps. Callers need to be aware of that and
+ * deal with it.
+ */
+static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
+{
+	struct tk_read_base *tkr;
+	unsigned int seq;
+	u64 now;
+
+	do {
+		seq = raw_read_seqcount_latch(&tkf->seq);
+		tkr = tkf->base + (seq & 0x01);
+		now = ktime_to_ns(tkr->base);
+
+		now += timekeeping_delta_to_ns(tkr,
+				clocksource_delta(
+					tk_clock_read(tkr),
+					tkr->cycle_last,
+					tkr->mask));
+	} while (read_seqcount_retry(&tkf->seq, seq));
+
+	return now;
+}
+
+u64 ktime_get_mono_fast_ns(void)
+{
+	return __ktime_get_fast_ns(&tk_fast_mono);
+}
+EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
+
+u64 ktime_get_raw_fast_ns(void)
+{
+	return __ktime_get_fast_ns(&tk_fast_raw);
+}
+EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
+
+/**
+ * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
+ *
+ * To keep it NMI safe since we're accessing from tracing, we're not using a
+ * separate timekeeper with updates to monotonic clock and boot offset
+ * protected with seqlocks. This has the following minor side effects:
+ *
+ * (1) Its possible that a timestamp be taken after the boot offset is updated
+ * but before the timekeeper is updated. If this happens, the new boot offset
+ * is added to the old timekeeping making the clock appear to update slightly
+ * earlier:
+ *    CPU 0                                        CPU 1
+ *    timekeeping_inject_sleeptime64()
+ *    __timekeeping_inject_sleeptime(tk, delta);
+ *                                                 timestamp();
+ *    timekeeping_update(tk, TK_CLEAR_NTP...);
+ *
+ * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
+ * partially updated.  Since the tk->offs_boot update is a rare event, this
+ * should be a rare occurrence which postprocessing should be able to handle.
+ */
+u64 notrace ktime_get_boot_fast_ns(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+
+	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
+}
+EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
+
+
+/*
+ * See comment for __ktime_get_fast_ns() vs. timestamp ordering
+ */
+static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
+{
+	struct tk_read_base *tkr;
+	unsigned int seq;
+	u64 now;
+
+	do {
+		seq = raw_read_seqcount_latch(&tkf->seq);
+		tkr = tkf->base + (seq & 0x01);
+		now = ktime_to_ns(tkr->base_real);
+
+		now += timekeeping_delta_to_ns(tkr,
+				clocksource_delta(
+					tk_clock_read(tkr),
+					tkr->cycle_last,
+					tkr->mask));
+	} while (read_seqcount_retry(&tkf->seq, seq));
+
+	return now;
+}
+
+/**
+ * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
+ */
+u64 ktime_get_real_fast_ns(void)
+{
+	return __ktime_get_real_fast_ns(&tk_fast_mono);
+}
+EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
+
+/**
+ * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
+ * @tk: Timekeeper to snapshot.
+ *
+ * It generally is unsafe to access the clocksource after timekeeping has been
+ * suspended, so take a snapshot of the readout base of @tk and use it as the
+ * fast timekeeper's readout base while suspended.  It will return the same
+ * number of cycles every time until timekeeping is resumed at which time the
+ * proper readout base for the fast timekeeper will be restored automatically.
+ */
+static void halt_fast_timekeeper(const struct timekeeper *tk)
+{
+	static struct tk_read_base tkr_dummy;
+	const struct tk_read_base *tkr = &tk->tkr_mono;
+
+	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
+	cycles_at_suspend = tk_clock_read(tkr);
+	tkr_dummy.clock = &dummy_clock;
+	tkr_dummy.base_real = tkr->base + tk->offs_real;
+	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
+
+	tkr = &tk->tkr_raw;
+	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
+	tkr_dummy.clock = &dummy_clock;
+	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
+}
+
+static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
+
+static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
+{
+	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
+}
+
+/**
+ * pvclock_gtod_register_notifier - register a pvclock timedata update listener
+ */
+int pvclock_gtod_register_notifier(struct notifier_block *nb)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long flags;
+	int ret;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
+	update_pvclock_gtod(tk, true);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
+
+/**
+ * pvclock_gtod_unregister_notifier - unregister a pvclock
+ * timedata update listener
+ */
+int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
+{
+	unsigned long flags;
+	int ret;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
+
+/*
+ * tk_update_leap_state - helper to update the next_leap_ktime
+ */
+static inline void tk_update_leap_state(struct timekeeper *tk)
+{
+	tk->next_leap_ktime = ntp_get_next_leap();
+	if (tk->next_leap_ktime != KTIME_MAX)
+		/* Convert to monotonic time */
+		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
+}
+
+/*
+ * Update the ktime_t based scalar nsec members of the timekeeper
+ */
+static inline void tk_update_ktime_data(struct timekeeper *tk)
+{
+	u64 seconds;
+	u32 nsec;
+
+	/*
+	 * The xtime based monotonic readout is:
+	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
+	 * The ktime based monotonic readout is:
+	 *	nsec = base_mono + now();
+	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
+	 */
+	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
+	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
+	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
+
+	/*
+	 * The sum of the nanoseconds portions of xtime and
+	 * wall_to_monotonic can be greater/equal one second. Take
+	 * this into account before updating tk->ktime_sec.
+	 */
+	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
+	if (nsec >= NSEC_PER_SEC)
+		seconds++;
+	tk->ktime_sec = seconds;
+
+	/* Update the monotonic raw base */
+	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
+}
+
+/* must hold timekeeper_lock */
+static void timekeeping_update(struct timekeeper *tk, unsigned int action)
+{
+	if (action & TK_CLEAR_NTP) {
+		tk->ntp_error = 0;
+		ntp_clear();
+	}
+
+	tk_update_leap_state(tk);
+	tk_update_ktime_data(tk);
+
+	update_vsyscall(tk);
+	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
+
+	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
+	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
+	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
+
+	if (action & TK_CLOCK_WAS_SET)
+		tk->clock_was_set_seq++;
+	/*
+	 * The mirroring of the data to the shadow-timekeeper needs
+	 * to happen last here to ensure we don't over-write the
+	 * timekeeper structure on the next update with stale data
+	 */
+	if (action & TK_MIRROR)
+		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
+		       sizeof(tk_core.timekeeper));
+}
+
+/**
+ * timekeeping_forward_now - update clock to the current time
+ *
+ * Forward the current clock to update its state since the last call to
+ * update_wall_time(). This is useful before significant clock changes,
+ * as it avoids having to deal with this time offset explicitly.
+ */
+static void timekeeping_forward_now(struct timekeeper *tk)
+{
+	u64 cycle_now, delta;
+
+	cycle_now = tk_clock_read(&tk->tkr_mono);
+	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
+	tk->tkr_mono.cycle_last = cycle_now;
+	tk->tkr_raw.cycle_last  = cycle_now;
+
+	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
+
+	/* If arch requires, add in get_arch_timeoffset() */
+	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
+
+
+	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
+
+	/* If arch requires, add in get_arch_timeoffset() */
+	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
+
+	tk_normalize_xtime(tk);
+}
+
+/**
+ * ktime_get_real_ts64 - Returns the time of day in a timespec64.
+ * @ts:		pointer to the timespec to be set
+ *
+ * Returns the time of day in a timespec64 (WARN if suspended).
+ */
+void ktime_get_real_ts64(struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long seq;
+	u64 nsecs;
+
+	WARN_ON(timekeeping_suspended);
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+
+		ts->tv_sec = tk->xtime_sec;
+		nsecs = timekeeping_get_ns(&tk->tkr_mono);
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	ts->tv_nsec = 0;
+	timespec64_add_ns(ts, nsecs);
+}
+EXPORT_SYMBOL(ktime_get_real_ts64);
+
+ktime_t ktime_get(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned int seq;
+	ktime_t base;
+	u64 nsecs;
+
+	WARN_ON(timekeeping_suspended);
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		base = tk->tkr_mono.base;
+		nsecs = timekeeping_get_ns(&tk->tkr_mono);
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return ktime_add_ns(base, nsecs);
+}
+EXPORT_SYMBOL_GPL(ktime_get);
+
+u32 ktime_get_resolution_ns(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned int seq;
+	u32 nsecs;
+
+	WARN_ON(timekeeping_suspended);
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return nsecs;
+}
+EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
+
+static ktime_t *offsets[TK_OFFS_MAX] = {
+	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
+	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
+	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
+};
+
+ktime_t ktime_get_with_offset(enum tk_offsets offs)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned int seq;
+	ktime_t base, *offset = offsets[offs];
+	u64 nsecs;
+
+	WARN_ON(timekeeping_suspended);
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		base = ktime_add(tk->tkr_mono.base, *offset);
+		nsecs = timekeeping_get_ns(&tk->tkr_mono);
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return ktime_add_ns(base, nsecs);
+
+}
+EXPORT_SYMBOL_GPL(ktime_get_with_offset);
+
+ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned int seq;
+	ktime_t base, *offset = offsets[offs];
+
+	WARN_ON(timekeeping_suspended);
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		base = ktime_add(tk->tkr_mono.base, *offset);
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return base;
+
+}
+EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
+
+/**
+ * ktime_mono_to_any() - convert mononotic time to any other time
+ * @tmono:	time to convert.
+ * @offs:	which offset to use
+ */
+ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
+{
+	ktime_t *offset = offsets[offs];
+	unsigned long seq;
+	ktime_t tconv;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		tconv = ktime_add(tmono, *offset);
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return tconv;
+}
+EXPORT_SYMBOL_GPL(ktime_mono_to_any);
+
+/**
+ * ktime_get_raw - Returns the raw monotonic time in ktime_t format
+ */
+ktime_t ktime_get_raw(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned int seq;
+	ktime_t base;
+	u64 nsecs;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		base = tk->tkr_raw.base;
+		nsecs = timekeeping_get_ns(&tk->tkr_raw);
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return ktime_add_ns(base, nsecs);
+}
+EXPORT_SYMBOL_GPL(ktime_get_raw);
+
+/**
+ * ktime_get_ts64 - get the monotonic clock in timespec64 format
+ * @ts:		pointer to timespec variable
+ *
+ * The function calculates the monotonic clock from the realtime
+ * clock and the wall_to_monotonic offset and stores the result
+ * in normalized timespec64 format in the variable pointed to by @ts.
+ */
+void ktime_get_ts64(struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	struct timespec64 tomono;
+	unsigned int seq;
+	u64 nsec;
+
+	WARN_ON(timekeeping_suspended);
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		ts->tv_sec = tk->xtime_sec;
+		nsec = timekeeping_get_ns(&tk->tkr_mono);
+		tomono = tk->wall_to_monotonic;
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	ts->tv_sec += tomono.tv_sec;
+	ts->tv_nsec = 0;
+	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
+}
+EXPORT_SYMBOL_GPL(ktime_get_ts64);
+
+/**
+ * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
+ *
+ * Returns the seconds portion of CLOCK_MONOTONIC with a single non
+ * serialized read. tk->ktime_sec is of type 'unsigned long' so this
+ * works on both 32 and 64 bit systems. On 32 bit systems the readout
+ * covers ~136 years of uptime which should be enough to prevent
+ * premature wrap arounds.
+ */
+time64_t ktime_get_seconds(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+
+	WARN_ON(timekeeping_suspended);
+	return tk->ktime_sec;
+}
+EXPORT_SYMBOL_GPL(ktime_get_seconds);
+
+/**
+ * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
+ *
+ * Returns the wall clock seconds since 1970. This replaces the
+ * get_seconds() interface which is not y2038 safe on 32bit systems.
+ *
+ * For 64bit systems the fast access to tk->xtime_sec is preserved. On
+ * 32bit systems the access must be protected with the sequence
+ * counter to provide "atomic" access to the 64bit tk->xtime_sec
+ * value.
+ */
+time64_t ktime_get_real_seconds(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	time64_t seconds;
+	unsigned int seq;
+
+	if (IS_ENABLED(CONFIG_64BIT))
+		return tk->xtime_sec;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		seconds = tk->xtime_sec;
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return seconds;
+}
+EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
+
+/**
+ * __ktime_get_real_seconds - The same as ktime_get_real_seconds
+ * but without the sequence counter protect. This internal function
+ * is called just when timekeeping lock is already held.
+ */
+time64_t __ktime_get_real_seconds(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+
+	return tk->xtime_sec;
+}
+
+/**
+ * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
+ * @systime_snapshot:	pointer to struct receiving the system time snapshot
+ */
+void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long seq;
+	ktime_t base_raw;
+	ktime_t base_real;
+	u64 nsec_raw;
+	u64 nsec_real;
+	u64 now;
+
+	WARN_ON_ONCE(timekeeping_suspended);
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		now = tk_clock_read(&tk->tkr_mono);
+		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
+		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
+		base_real = ktime_add(tk->tkr_mono.base,
+				      tk_core.timekeeper.offs_real);
+		base_raw = tk->tkr_raw.base;
+		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
+		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	systime_snapshot->cycles = now;
+	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
+	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
+}
+EXPORT_SYMBOL_GPL(ktime_get_snapshot);
+
+/* Scale base by mult/div checking for overflow */
+static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
+{
+	u64 tmp, rem;
+
+	tmp = div64_u64_rem(*base, div, &rem);
+
+	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
+	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
+		return -EOVERFLOW;
+	tmp *= mult;
+	rem *= mult;
+
+	do_div(rem, div);
+	*base = tmp + rem;
+	return 0;
+}
+
+/**
+ * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
+ * @history:			Snapshot representing start of history
+ * @partial_history_cycles:	Cycle offset into history (fractional part)
+ * @total_history_cycles:	Total history length in cycles
+ * @discontinuity:		True indicates clock was set on history period
+ * @ts:				Cross timestamp that should be adjusted using
+ *	partial/total ratio
+ *
+ * Helper function used by get_device_system_crosststamp() to correct the
+ * crosstimestamp corresponding to the start of the current interval to the
+ * system counter value (timestamp point) provided by the driver. The
+ * total_history_* quantities are the total history starting at the provided
+ * reference point and ending at the start of the current interval. The cycle
+ * count between the driver timestamp point and the start of the current
+ * interval is partial_history_cycles.
+ */
+static int adjust_historical_crosststamp(struct system_time_snapshot *history,
+					 u64 partial_history_cycles,
+					 u64 total_history_cycles,
+					 bool discontinuity,
+					 struct system_device_crosststamp *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	u64 corr_raw, corr_real;
+	bool interp_forward;
+	int ret;
+
+	if (total_history_cycles == 0 || partial_history_cycles == 0)
+		return 0;
+
+	/* Interpolate shortest distance from beginning or end of history */
+	interp_forward = partial_history_cycles > total_history_cycles / 2;
+	partial_history_cycles = interp_forward ?
+		total_history_cycles - partial_history_cycles :
+		partial_history_cycles;
+
+	/*
+	 * Scale the monotonic raw time delta by:
+	 *	partial_history_cycles / total_history_cycles
+	 */
+	corr_raw = (u64)ktime_to_ns(
+		ktime_sub(ts->sys_monoraw, history->raw));
+	ret = scale64_check_overflow(partial_history_cycles,
+				     total_history_cycles, &corr_raw);
+	if (ret)
+		return ret;
+
+	/*
+	 * If there is a discontinuity in the history, scale monotonic raw
+	 *	correction by:
+	 *	mult(real)/mult(raw) yielding the realtime correction
+	 * Otherwise, calculate the realtime correction similar to monotonic
+	 *	raw calculation
+	 */
+	if (discontinuity) {
+		corr_real = mul_u64_u32_div
+			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
+	} else {
+		corr_real = (u64)ktime_to_ns(
+			ktime_sub(ts->sys_realtime, history->real));
+		ret = scale64_check_overflow(partial_history_cycles,
+					     total_history_cycles, &corr_real);
+		if (ret)
+			return ret;
+	}
+
+	/* Fixup monotonic raw and real time time values */
+	if (interp_forward) {
+		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
+		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
+	} else {
+		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
+		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
+	}
+
+	return 0;
+}
+
+/*
+ * cycle_between - true if test occurs chronologically between before and after
+ */
+static bool cycle_between(u64 before, u64 test, u64 after)
+{
+	if (test > before && test < after)
+		return true;
+	if (test < before && before > after)
+		return true;
+	return false;
+}
+
+/**
+ * get_device_system_crosststamp - Synchronously capture system/device timestamp
+ * @get_time_fn:	Callback to get simultaneous device time and
+ *	system counter from the device driver
+ * @ctx:		Context passed to get_time_fn()
+ * @history_begin:	Historical reference point used to interpolate system
+ *	time when counter provided by the driver is before the current interval
+ * @xtstamp:		Receives simultaneously captured system and device time
+ *
+ * Reads a timestamp from a device and correlates it to system time
+ */
+int get_device_system_crosststamp(int (*get_time_fn)
+				  (ktime_t *device_time,
+				   struct system_counterval_t *sys_counterval,
+				   void *ctx),
+				  void *ctx,
+				  struct system_time_snapshot *history_begin,
+				  struct system_device_crosststamp *xtstamp)
+{
+	struct system_counterval_t system_counterval;
+	struct timekeeper *tk = &tk_core.timekeeper;
+	u64 cycles, now, interval_start;
+	unsigned int clock_was_set_seq = 0;
+	ktime_t base_real, base_raw;
+	u64 nsec_real, nsec_raw;
+	u8 cs_was_changed_seq;
+	unsigned long seq;
+	bool do_interp;
+	int ret;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		/*
+		 * Try to synchronously capture device time and a system
+		 * counter value calling back into the device driver
+		 */
+		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
+		if (ret)
+			return ret;
+
+		/*
+		 * Verify that the clocksource associated with the captured
+		 * system counter value is the same as the currently installed
+		 * timekeeper clocksource
+		 */
+		if (tk->tkr_mono.clock != system_counterval.cs)
+			return -ENODEV;
+		cycles = system_counterval.cycles;
+
+		/*
+		 * Check whether the system counter value provided by the
+		 * device driver is on the current timekeeping interval.
+		 */
+		now = tk_clock_read(&tk->tkr_mono);
+		interval_start = tk->tkr_mono.cycle_last;
+		if (!cycle_between(interval_start, cycles, now)) {
+			clock_was_set_seq = tk->clock_was_set_seq;
+			cs_was_changed_seq = tk->cs_was_changed_seq;
+			cycles = interval_start;
+			do_interp = true;
+		} else {
+			do_interp = false;
+		}
+
+		base_real = ktime_add(tk->tkr_mono.base,
+				      tk_core.timekeeper.offs_real);
+		base_raw = tk->tkr_raw.base;
+
+		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
+						     system_counterval.cycles);
+		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
+						    system_counterval.cycles);
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
+	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
+
+	/*
+	 * Interpolate if necessary, adjusting back from the start of the
+	 * current interval
+	 */
+	if (do_interp) {
+		u64 partial_history_cycles, total_history_cycles;
+		bool discontinuity;
+
+		/*
+		 * Check that the counter value occurs after the provided
+		 * history reference and that the history doesn't cross a
+		 * clocksource change
+		 */
+		if (!history_begin ||
+		    !cycle_between(history_begin->cycles,
+				   system_counterval.cycles, cycles) ||
+		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
+			return -EINVAL;
+		partial_history_cycles = cycles - system_counterval.cycles;
+		total_history_cycles = cycles - history_begin->cycles;
+		discontinuity =
+			history_begin->clock_was_set_seq != clock_was_set_seq;
+
+		ret = adjust_historical_crosststamp(history_begin,
+						    partial_history_cycles,
+						    total_history_cycles,
+						    discontinuity, xtstamp);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
+
+/**
+ * do_gettimeofday - Returns the time of day in a timeval
+ * @tv:		pointer to the timeval to be set
+ *
+ * NOTE: Users should be converted to using getnstimeofday()
+ */
+void do_gettimeofday(struct timeval *tv)
+{
+	struct timespec64 now;
+
+	getnstimeofday64(&now);
+	tv->tv_sec = now.tv_sec;
+	tv->tv_usec = now.tv_nsec/1000;
+}
+EXPORT_SYMBOL(do_gettimeofday);
+
+/**
+ * do_settimeofday64 - Sets the time of day.
+ * @ts:     pointer to the timespec64 variable containing the new time
+ *
+ * Sets the time of day to the new time and update NTP and notify hrtimers
+ */
+int do_settimeofday64(const struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	struct timespec64 ts_delta, xt;
+	unsigned long flags;
+	int ret = 0;
+
+	if (!timespec64_valid_strict(ts))
+		return -EINVAL;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+
+	timekeeping_forward_now(tk);
+
+	xt = tk_xtime(tk);
+	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
+	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
+
+	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
+		ret = -EINVAL;
+		goto out;
+	}
+
+	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
+
+	tk_set_xtime(tk, ts);
+out:
+	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	/* signal hrtimers about time change */
+	clock_was_set();
+
+	return ret;
+}
+EXPORT_SYMBOL(do_settimeofday64);
+
+/**
+ * timekeeping_inject_offset - Adds or subtracts from the current time.
+ * @tv:		pointer to the timespec variable containing the offset
+ *
+ * Adds or subtracts an offset value from the current time.
+ */
+static int timekeeping_inject_offset(const struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long flags;
+	struct timespec64 tmp;
+	int ret = 0;
+
+	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
+		return -EINVAL;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+
+	timekeeping_forward_now(tk);
+
+	/* Make sure the proposed value is valid */
+	tmp = timespec64_add(tk_xtime(tk), *ts);
+	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
+	    !timespec64_valid_strict(&tmp)) {
+		ret = -EINVAL;
+		goto error;
+	}
+
+	tk_xtime_add(tk, ts);
+	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
+
+error: /* even if we error out, we forwarded the time, so call update */
+	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	/* signal hrtimers about time change */
+	clock_was_set();
+
+	return ret;
+}
+
+/*
+ * Indicates if there is an offset between the system clock and the hardware
+ * clock/persistent clock/rtc.
+ */
+int persistent_clock_is_local;
+
+/*
+ * Adjust the time obtained from the CMOS to be UTC time instead of
+ * local time.
+ *
+ * This is ugly, but preferable to the alternatives.  Otherwise we
+ * would either need to write a program to do it in /etc/rc (and risk
+ * confusion if the program gets run more than once; it would also be
+ * hard to make the program warp the clock precisely n hours)  or
+ * compile in the timezone information into the kernel.  Bad, bad....
+ *
+ *						- TYT, 1992-01-01
+ *
+ * The best thing to do is to keep the CMOS clock in universal time (UTC)
+ * as real UNIX machines always do it. This avoids all headaches about
+ * daylight saving times and warping kernel clocks.
+ */
+void timekeeping_warp_clock(void)
+{
+	if (sys_tz.tz_minuteswest != 0) {
+		struct timespec64 adjust;
+
+		persistent_clock_is_local = 1;
+		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
+		adjust.tv_nsec = 0;
+		timekeeping_inject_offset(&adjust);
+	}
+}
+
+/**
+ * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
+ *
+ */
+static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
+{
+	tk->tai_offset = tai_offset;
+	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
+}
+
+/**
+ * change_clocksource - Swaps clocksources if a new one is available
+ *
+ * Accumulates current time interval and initializes new clocksource
+ */
+static int change_clocksource(void *data)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	struct clocksource *new, *old;
+	unsigned long flags;
+
+	new = (struct clocksource *) data;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+
+	timekeeping_forward_now(tk);
+	/*
+	 * If the cs is in module, get a module reference. Succeeds
+	 * for built-in code (owner == NULL) as well.
+	 */
+	if (try_module_get(new->owner)) {
+		if (!new->enable || new->enable(new) == 0) {
+			old = tk->tkr_mono.clock;
+			tk_setup_internals(tk, new);
+			if (old->disable)
+				old->disable(old);
+			module_put(old->owner);
+		} else {
+			module_put(new->owner);
+		}
+	}
+	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	return 0;
+}
+
+/**
+ * timekeeping_notify - Install a new clock source
+ * @clock:		pointer to the clock source
+ *
+ * This function is called from clocksource.c after a new, better clock
+ * source has been registered. The caller holds the clocksource_mutex.
+ */
+int timekeeping_notify(struct clocksource *clock)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+
+	if (tk->tkr_mono.clock == clock)
+		return 0;
+	stop_machine(change_clocksource, clock, NULL);
+	tick_clock_notify();
+	return tk->tkr_mono.clock == clock ? 0 : -1;
+}
+
+/**
+ * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
+ * @ts:		pointer to the timespec64 to be set
+ *
+ * Returns the raw monotonic time (completely un-modified by ntp)
+ */
+void ktime_get_raw_ts64(struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long seq;
+	u64 nsecs;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+		ts->tv_sec = tk->raw_sec;
+		nsecs = timekeeping_get_ns(&tk->tkr_raw);
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	ts->tv_nsec = 0;
+	timespec64_add_ns(ts, nsecs);
+}
+EXPORT_SYMBOL(ktime_get_raw_ts64);
+
+
+/**
+ * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
+ */
+int timekeeping_valid_for_hres(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long seq;
+	int ret;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+
+		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return ret;
+}
+
+/**
+ * timekeeping_max_deferment - Returns max time the clocksource can be deferred
+ */
+u64 timekeeping_max_deferment(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long seq;
+	u64 ret;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+
+		ret = tk->tkr_mono.clock->max_idle_ns;
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return ret;
+}
+
+/**
+ * read_persistent_clock -  Return time from the persistent clock.
+ *
+ * Weak dummy function for arches that do not yet support it.
+ * Reads the time from the battery backed persistent clock.
+ * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
+ *
+ *  XXX - Do be sure to remove it once all arches implement it.
+ */
+void __weak read_persistent_clock(struct timespec *ts)
+{
+	ts->tv_sec = 0;
+	ts->tv_nsec = 0;
+}
+
+void __weak read_persistent_clock64(struct timespec64 *ts64)
+{
+	struct timespec ts;
+
+	read_persistent_clock(&ts);
+	*ts64 = timespec_to_timespec64(ts);
+}
+
+/**
+ * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
+ *                                        from the boot.
+ *
+ * Weak dummy function for arches that do not yet support it.
+ * wall_time	- current time as returned by persistent clock
+ * boot_offset	- offset that is defined as wall_time - boot_time
+ * The default function calculates offset based on the current value of
+ * local_clock(). This way architectures that support sched_clock() but don't
+ * support dedicated boot time clock will provide the best estimate of the
+ * boot time.
+ */
+void __weak __init
+read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
+				     struct timespec64 *boot_offset)
+{
+	read_persistent_clock64(wall_time);
+	*boot_offset = ns_to_timespec64(local_clock());
+}
+
+/*
+ * Flag reflecting whether timekeeping_resume() has injected sleeptime.
+ *
+ * The flag starts of false and is only set when a suspend reaches
+ * timekeeping_suspend(), timekeeping_resume() sets it to false when the
+ * timekeeper clocksource is not stopping across suspend and has been
+ * used to update sleep time. If the timekeeper clocksource has stopped
+ * then the flag stays true and is used by the RTC resume code to decide
+ * whether sleeptime must be injected and if so the flag gets false then.
+ *
+ * If a suspend fails before reaching timekeeping_resume() then the flag
+ * stays false and prevents erroneous sleeptime injection.
+ */
+static bool suspend_timing_needed;
+
+/* Flag for if there is a persistent clock on this platform */
+static bool persistent_clock_exists;
+
+/*
+ * timekeeping_init - Initializes the clocksource and common timekeeping values
+ */
+void __init timekeeping_init(void)
+{
+	struct timespec64 wall_time, boot_offset, wall_to_mono;
+	struct timekeeper *tk = &tk_core.timekeeper;
+	struct clocksource *clock;
+	unsigned long flags;
+
+	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
+	if (timespec64_valid_strict(&wall_time) &&
+	    timespec64_to_ns(&wall_time) > 0) {
+		persistent_clock_exists = true;
+	} else if (timespec64_to_ns(&wall_time) != 0) {
+		pr_warn("Persistent clock returned invalid value");
+		wall_time = (struct timespec64){0};
+	}
+
+	if (timespec64_compare(&wall_time, &boot_offset) < 0)
+		boot_offset = (struct timespec64){0};
+
+	/*
+	 * We want set wall_to_mono, so the following is true:
+	 * wall time + wall_to_mono = boot time
+	 */
+	wall_to_mono = timespec64_sub(boot_offset, wall_time);
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+	ntp_init();
+
+	clock = clocksource_default_clock();
+	if (clock->enable)
+		clock->enable(clock);
+	tk_setup_internals(tk, clock);
+
+	tk_set_xtime(tk, &wall_time);
+	tk->raw_sec = 0;
+
+	tk_set_wall_to_mono(tk, wall_to_mono);
+
+	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
+
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+}
+
+/* time in seconds when suspend began for persistent clock */
+static struct timespec64 timekeeping_suspend_time;
+
+/**
+ * __timekeeping_inject_sleeptime - Internal function to add sleep interval
+ * @delta: pointer to a timespec delta value
+ *
+ * Takes a timespec offset measuring a suspend interval and properly
+ * adds the sleep offset to the timekeeping variables.
+ */
+static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
+					   const struct timespec64 *delta)
+{
+	if (!timespec64_valid_strict(delta)) {
+		printk_deferred(KERN_WARNING
+				"__timekeeping_inject_sleeptime: Invalid "
+				"sleep delta value!\n");
+		return;
+	}
+	tk_xtime_add(tk, delta);
+	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
+	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
+	tk_debug_account_sleep_time(delta);
+}
+
+#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
+/**
+ * We have three kinds of time sources to use for sleep time
+ * injection, the preference order is:
+ * 1) non-stop clocksource
+ * 2) persistent clock (ie: RTC accessible when irqs are off)
+ * 3) RTC
+ *
+ * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
+ * If system has neither 1) nor 2), 3) will be used finally.
+ *
+ *
+ * If timekeeping has injected sleeptime via either 1) or 2),
+ * 3) becomes needless, so in this case we don't need to call
+ * rtc_resume(), and this is what timekeeping_rtc_skipresume()
+ * means.
+ */
+bool timekeeping_rtc_skipresume(void)
+{
+	return !suspend_timing_needed;
+}
+
+/**
+ * 1) can be determined whether to use or not only when doing
+ * timekeeping_resume() which is invoked after rtc_suspend(),
+ * so we can't skip rtc_suspend() surely if system has 1).
+ *
+ * But if system has 2), 2) will definitely be used, so in this
+ * case we don't need to call rtc_suspend(), and this is what
+ * timekeeping_rtc_skipsuspend() means.
+ */
+bool timekeeping_rtc_skipsuspend(void)
+{
+	return persistent_clock_exists;
+}
+
+/**
+ * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
+ * @delta: pointer to a timespec64 delta value
+ *
+ * This hook is for architectures that cannot support read_persistent_clock64
+ * because their RTC/persistent clock is only accessible when irqs are enabled.
+ * and also don't have an effective nonstop clocksource.
+ *
+ * This function should only be called by rtc_resume(), and allows
+ * a suspend offset to be injected into the timekeeping values.
+ */
+void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+
+	suspend_timing_needed = false;
+
+	timekeeping_forward_now(tk);
+
+	__timekeeping_inject_sleeptime(tk, delta);
+
+	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	/* signal hrtimers about time change */
+	clock_was_set();
+}
+#endif
+
+/**
+ * timekeeping_resume - Resumes the generic timekeeping subsystem.
+ */
+void timekeeping_resume(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	struct clocksource *clock = tk->tkr_mono.clock;
+	unsigned long flags;
+	struct timespec64 ts_new, ts_delta;
+	u64 cycle_now, nsec;
+	bool inject_sleeptime = false;
+
+	read_persistent_clock64(&ts_new);
+
+	clockevents_resume();
+	clocksource_resume();
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+
+	/*
+	 * After system resumes, we need to calculate the suspended time and
+	 * compensate it for the OS time. There are 3 sources that could be
+	 * used: Nonstop clocksource during suspend, persistent clock and rtc
+	 * device.
+	 *
+	 * One specific platform may have 1 or 2 or all of them, and the
+	 * preference will be:
+	 *	suspend-nonstop clocksource -> persistent clock -> rtc
+	 * The less preferred source will only be tried if there is no better
+	 * usable source. The rtc part is handled separately in rtc core code.
+	 */
+	cycle_now = tk_clock_read(&tk->tkr_mono);
+	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
+	if (nsec > 0) {
+		ts_delta = ns_to_timespec64(nsec);
+		inject_sleeptime = true;
+	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
+		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
+		inject_sleeptime = true;
+	}
+
+	if (inject_sleeptime) {
+		suspend_timing_needed = false;
+		__timekeeping_inject_sleeptime(tk, &ts_delta);
+	}
+
+	/* Re-base the last cycle value */
+	tk->tkr_mono.cycle_last = cycle_now;
+	tk->tkr_raw.cycle_last  = cycle_now;
+
+	tk->ntp_error = 0;
+	timekeeping_suspended = 0;
+	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	touch_softlockup_watchdog();
+
+	tick_resume();
+	hrtimers_resume();
+}
+
+int timekeeping_suspend(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long flags;
+	struct timespec64		delta, delta_delta;
+	static struct timespec64	old_delta;
+	struct clocksource *curr_clock;
+	u64 cycle_now;
+
+	read_persistent_clock64(&timekeeping_suspend_time);
+
+	/*
+	 * On some systems the persistent_clock can not be detected at
+	 * timekeeping_init by its return value, so if we see a valid
+	 * value returned, update the persistent_clock_exists flag.
+	 */
+	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
+		persistent_clock_exists = true;
+
+	suspend_timing_needed = true;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+	timekeeping_forward_now(tk);
+	timekeeping_suspended = 1;
+
+	/*
+	 * Since we've called forward_now, cycle_last stores the value
+	 * just read from the current clocksource. Save this to potentially
+	 * use in suspend timing.
+	 */
+	curr_clock = tk->tkr_mono.clock;
+	cycle_now = tk->tkr_mono.cycle_last;
+	clocksource_start_suspend_timing(curr_clock, cycle_now);
+
+	if (persistent_clock_exists) {
+		/*
+		 * To avoid drift caused by repeated suspend/resumes,
+		 * which each can add ~1 second drift error,
+		 * try to compensate so the difference in system time
+		 * and persistent_clock time stays close to constant.
+		 */
+		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
+		delta_delta = timespec64_sub(delta, old_delta);
+		if (abs(delta_delta.tv_sec) >= 2) {
+			/*
+			 * if delta_delta is too large, assume time correction
+			 * has occurred and set old_delta to the current delta.
+			 */
+			old_delta = delta;
+		} else {
+			/* Otherwise try to adjust old_system to compensate */
+			timekeeping_suspend_time =
+				timespec64_add(timekeeping_suspend_time, delta_delta);
+		}
+	}
+
+	timekeeping_update(tk, TK_MIRROR);
+	halt_fast_timekeeper(tk);
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	tick_suspend();
+	clocksource_suspend();
+	clockevents_suspend();
+
+	return 0;
+}
+
+/* sysfs resume/suspend bits for timekeeping */
+static struct syscore_ops timekeeping_syscore_ops = {
+	.resume		= timekeeping_resume,
+	.suspend	= timekeeping_suspend,
+};
+
+static int __init timekeeping_init_ops(void)
+{
+	register_syscore_ops(&timekeeping_syscore_ops);
+	return 0;
+}
+device_initcall(timekeeping_init_ops);
+
+/*
+ * Apply a multiplier adjustment to the timekeeper
+ */
+static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
+							 s64 offset,
+							 s32 mult_adj)
+{
+	s64 interval = tk->cycle_interval;
+
+	if (mult_adj == 0) {
+		return;
+	} else if (mult_adj == -1) {
+		interval = -interval;
+		offset = -offset;
+	} else if (mult_adj != 1) {
+		interval *= mult_adj;
+		offset *= mult_adj;
+	}
+
+	/*
+	 * So the following can be confusing.
+	 *
+	 * To keep things simple, lets assume mult_adj == 1 for now.
+	 *
+	 * When mult_adj != 1, remember that the interval and offset values
+	 * have been appropriately scaled so the math is the same.
+	 *
+	 * The basic idea here is that we're increasing the multiplier
+	 * by one, this causes the xtime_interval to be incremented by
+	 * one cycle_interval. This is because:
+	 *	xtime_interval = cycle_interval * mult
+	 * So if mult is being incremented by one:
+	 *	xtime_interval = cycle_interval * (mult + 1)
+	 * Its the same as:
+	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
+	 * Which can be shortened to:
+	 *	xtime_interval += cycle_interval
+	 *
+	 * So offset stores the non-accumulated cycles. Thus the current
+	 * time (in shifted nanoseconds) is:
+	 *	now = (offset * adj) + xtime_nsec
+	 * Now, even though we're adjusting the clock frequency, we have
+	 * to keep time consistent. In other words, we can't jump back
+	 * in time, and we also want to avoid jumping forward in time.
+	 *
+	 * So given the same offset value, we need the time to be the same
+	 * both before and after the freq adjustment.
+	 *	now = (offset * adj_1) + xtime_nsec_1
+	 *	now = (offset * adj_2) + xtime_nsec_2
+	 * So:
+	 *	(offset * adj_1) + xtime_nsec_1 =
+	 *		(offset * adj_2) + xtime_nsec_2
+	 * And we know:
+	 *	adj_2 = adj_1 + 1
+	 * So:
+	 *	(offset * adj_1) + xtime_nsec_1 =
+	 *		(offset * (adj_1+1)) + xtime_nsec_2
+	 *	(offset * adj_1) + xtime_nsec_1 =
+	 *		(offset * adj_1) + offset + xtime_nsec_2
+	 * Canceling the sides:
+	 *	xtime_nsec_1 = offset + xtime_nsec_2
+	 * Which gives us:
+	 *	xtime_nsec_2 = xtime_nsec_1 - offset
+	 * Which simplfies to:
+	 *	xtime_nsec -= offset
+	 */
+	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
+		/* NTP adjustment caused clocksource mult overflow */
+		WARN_ON_ONCE(1);
+		return;
+	}
+
+	tk->tkr_mono.mult += mult_adj;
+	tk->xtime_interval += interval;
+	tk->tkr_mono.xtime_nsec -= offset;
+}
+
+/*
+ * Adjust the timekeeper's multiplier to the correct frequency
+ * and also to reduce the accumulated error value.
+ */
+static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
+{
+	u32 mult;
+
+	/*
+	 * Determine the multiplier from the current NTP tick length.
+	 * Avoid expensive division when the tick length doesn't change.
+	 */
+	if (likely(tk->ntp_tick == ntp_tick_length())) {
+		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
+	} else {
+		tk->ntp_tick = ntp_tick_length();
+		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
+				 tk->xtime_remainder, tk->cycle_interval);
+	}
+
+	/*
+	 * If the clock is behind the NTP time, increase the multiplier by 1
+	 * to catch up with it. If it's ahead and there was a remainder in the
+	 * tick division, the clock will slow down. Otherwise it will stay
+	 * ahead until the tick length changes to a non-divisible value.
+	 */
+	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
+	mult += tk->ntp_err_mult;
+
+	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
+
+	if (unlikely(tk->tkr_mono.clock->maxadj &&
+		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
+			> tk->tkr_mono.clock->maxadj))) {
+		printk_once(KERN_WARNING
+			"Adjusting %s more than 11%% (%ld vs %ld)\n",
+			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
+			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
+	}
+
+	/*
+	 * It may be possible that when we entered this function, xtime_nsec
+	 * was very small.  Further, if we're slightly speeding the clocksource
+	 * in the code above, its possible the required corrective factor to
+	 * xtime_nsec could cause it to underflow.
+	 *
+	 * Now, since we have already accumulated the second and the NTP
+	 * subsystem has been notified via second_overflow(), we need to skip
+	 * the next update.
+	 */
+	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
+		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
+							tk->tkr_mono.shift;
+		tk->xtime_sec--;
+		tk->skip_second_overflow = 1;
+	}
+}
+
+/**
+ * accumulate_nsecs_to_secs - Accumulates nsecs into secs
+ *
+ * Helper function that accumulates the nsecs greater than a second
+ * from the xtime_nsec field to the xtime_secs field.
+ * It also calls into the NTP code to handle leapsecond processing.
+ *
+ */
+static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
+{
+	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
+	unsigned int clock_set = 0;
+
+	while (tk->tkr_mono.xtime_nsec >= nsecps) {
+		int leap;
+
+		tk->tkr_mono.xtime_nsec -= nsecps;
+		tk->xtime_sec++;
+
+		/*
+		 * Skip NTP update if this second was accumulated before,
+		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
+		 */
+		if (unlikely(tk->skip_second_overflow)) {
+			tk->skip_second_overflow = 0;
+			continue;
+		}
+
+		/* Figure out if its a leap sec and apply if needed */
+		leap = second_overflow(tk->xtime_sec);
+		if (unlikely(leap)) {
+			struct timespec64 ts;
+
+			tk->xtime_sec += leap;
+
+			ts.tv_sec = leap;
+			ts.tv_nsec = 0;
+			tk_set_wall_to_mono(tk,
+				timespec64_sub(tk->wall_to_monotonic, ts));
+
+			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
+
+			clock_set = TK_CLOCK_WAS_SET;
+		}
+	}
+	return clock_set;
+}
+
+/**
+ * logarithmic_accumulation - shifted accumulation of cycles
+ *
+ * This functions accumulates a shifted interval of cycles into
+ * into a shifted interval nanoseconds. Allows for O(log) accumulation
+ * loop.
+ *
+ * Returns the unconsumed cycles.
+ */
+static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
+				    u32 shift, unsigned int *clock_set)
+{
+	u64 interval = tk->cycle_interval << shift;
+	u64 snsec_per_sec;
+
+	/* If the offset is smaller than a shifted interval, do nothing */
+	if (offset < interval)
+		return offset;
+
+	/* Accumulate one shifted interval */
+	offset -= interval;
+	tk->tkr_mono.cycle_last += interval;
+	tk->tkr_raw.cycle_last  += interval;
+
+	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
+	*clock_set |= accumulate_nsecs_to_secs(tk);
+
+	/* Accumulate raw time */
+	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
+	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
+	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
+		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
+		tk->raw_sec++;
+	}
+
+	/* Accumulate error between NTP and clock interval */
+	tk->ntp_error += tk->ntp_tick << shift;
+	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
+						(tk->ntp_error_shift + shift);
+
+	return offset;
+}
+
+/*
+ * timekeeping_advance - Updates the timekeeper to the current time and
+ * current NTP tick length
+ */
+static void timekeeping_advance(enum timekeeping_adv_mode mode)
+{
+	struct timekeeper *real_tk = &tk_core.timekeeper;
+	struct timekeeper *tk = &shadow_timekeeper;
+	u64 offset;
+	int shift = 0, maxshift;
+	unsigned int clock_set = 0;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+
+	/* Make sure we're fully resumed: */
+	if (unlikely(timekeeping_suspended))
+		goto out;
+
+#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
+	offset = real_tk->cycle_interval;
+
+	if (mode != TK_ADV_TICK)
+		goto out;
+#else
+	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
+				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
+
+	/* Check if there's really nothing to do */
+	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
+		goto out;
+#endif
+
+	/* Do some additional sanity checking */
+	timekeeping_check_update(tk, offset);
+
+	/*
+	 * With NO_HZ we may have to accumulate many cycle_intervals
+	 * (think "ticks") worth of time at once. To do this efficiently,
+	 * we calculate the largest doubling multiple of cycle_intervals
+	 * that is smaller than the offset.  We then accumulate that
+	 * chunk in one go, and then try to consume the next smaller
+	 * doubled multiple.
+	 */
+	shift = ilog2(offset) - ilog2(tk->cycle_interval);
+	shift = max(0, shift);
+	/* Bound shift to one less than what overflows tick_length */
+	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
+	shift = min(shift, maxshift);
+	while (offset >= tk->cycle_interval) {
+		offset = logarithmic_accumulation(tk, offset, shift,
+							&clock_set);
+		if (offset < tk->cycle_interval<<shift)
+			shift--;
+	}
+
+	/* Adjust the multiplier to correct NTP error */
+	timekeeping_adjust(tk, offset);
+
+	/*
+	 * Finally, make sure that after the rounding
+	 * xtime_nsec isn't larger than NSEC_PER_SEC
+	 */
+	clock_set |= accumulate_nsecs_to_secs(tk);
+
+	write_seqcount_begin(&tk_core.seq);
+	/*
+	 * Update the real timekeeper.
+	 *
+	 * We could avoid this memcpy by switching pointers, but that
+	 * requires changes to all other timekeeper usage sites as
+	 * well, i.e. move the timekeeper pointer getter into the
+	 * spinlocked/seqcount protected sections. And we trade this
+	 * memcpy under the tk_core.seq against one before we start
+	 * updating.
+	 */
+	timekeeping_update(tk, clock_set);
+	memcpy(real_tk, tk, sizeof(*tk));
+	/* The memcpy must come last. Do not put anything here! */
+	write_seqcount_end(&tk_core.seq);
+out:
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+	if (clock_set)
+		/* Have to call _delayed version, since in irq context*/
+		clock_was_set_delayed();
+}
+
+/**
+ * update_wall_time - Uses the current clocksource to increment the wall time
+ *
+ */
+void update_wall_time(void)
+{
+	timekeeping_advance(TK_ADV_TICK);
+}
+
+/**
+ * getboottime64 - Return the real time of system boot.
+ * @ts:		pointer to the timespec64 to be set
+ *
+ * Returns the wall-time of boot in a timespec64.
+ *
+ * This is based on the wall_to_monotonic offset and the total suspend
+ * time. Calls to settimeofday will affect the value returned (which
+ * basically means that however wrong your real time clock is at boot time,
+ * you get the right time here).
+ */
+void getboottime64(struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
+
+	*ts = ktime_to_timespec64(t);
+}
+EXPORT_SYMBOL_GPL(getboottime64);
+
+unsigned long get_seconds(void)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+
+	return tk->xtime_sec;
+}
+EXPORT_SYMBOL(get_seconds);
+
+void ktime_get_coarse_real_ts64(struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long seq;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+
+		*ts = tk_xtime(tk);
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+}
+EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
+
+void ktime_get_coarse_ts64(struct timespec64 *ts)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	struct timespec64 now, mono;
+	unsigned long seq;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+
+		now = tk_xtime(tk);
+		mono = tk->wall_to_monotonic;
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
+				now.tv_nsec + mono.tv_nsec);
+}
+EXPORT_SYMBOL(ktime_get_coarse_ts64);
+
+/*
+ * Must hold jiffies_lock
+ */
+void do_timer(unsigned long ticks)
+{
+	jiffies_64 += ticks;
+	calc_global_load(ticks);
+}
+
+/**
+ * ktime_get_update_offsets_now - hrtimer helper
+ * @cwsseq:	pointer to check and store the clock was set sequence number
+ * @offs_real:	pointer to storage for monotonic -> realtime offset
+ * @offs_boot:	pointer to storage for monotonic -> boottime offset
+ * @offs_tai:	pointer to storage for monotonic -> clock tai offset
+ *
+ * Returns current monotonic time and updates the offsets if the
+ * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
+ * different.
+ *
+ * Called from hrtimer_interrupt() or retrigger_next_event()
+ */
+ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
+				     ktime_t *offs_boot, ktime_t *offs_tai)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned int seq;
+	ktime_t base;
+	u64 nsecs;
+
+	do {
+		seq = read_seqcount_begin(&tk_core.seq);
+
+		base = tk->tkr_mono.base;
+		nsecs = timekeeping_get_ns(&tk->tkr_mono);
+		base = ktime_add_ns(base, nsecs);
+
+		if (*cwsseq != tk->clock_was_set_seq) {
+			*cwsseq = tk->clock_was_set_seq;
+			*offs_real = tk->offs_real;
+			*offs_boot = tk->offs_boot;
+			*offs_tai = tk->offs_tai;
+		}
+
+		/* Handle leapsecond insertion adjustments */
+		if (unlikely(base >= tk->next_leap_ktime))
+			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
+
+	} while (read_seqcount_retry(&tk_core.seq, seq));
+
+	return base;
+}
+
+/**
+ * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
+ */
+static int timekeeping_validate_timex(const struct timex *txc)
+{
+	if (txc->modes & ADJ_ADJTIME) {
+		/* singleshot must not be used with any other mode bits */
+		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
+			return -EINVAL;
+		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
+		    !capable(CAP_SYS_TIME))
+			return -EPERM;
+	} else {
+		/* In order to modify anything, you gotta be super-user! */
+		if (txc->modes && !capable(CAP_SYS_TIME))
+			return -EPERM;
+		/*
+		 * if the quartz is off by more than 10% then
+		 * something is VERY wrong!
+		 */
+		if (txc->modes & ADJ_TICK &&
+		    (txc->tick <  900000/USER_HZ ||
+		     txc->tick > 1100000/USER_HZ))
+			return -EINVAL;
+	}
+
+	if (txc->modes & ADJ_SETOFFSET) {
+		/* In order to inject time, you gotta be super-user! */
+		if (!capable(CAP_SYS_TIME))
+			return -EPERM;
+
+		/*
+		 * Validate if a timespec/timeval used to inject a time
+		 * offset is valid.  Offsets can be postive or negative, so
+		 * we don't check tv_sec. The value of the timeval/timespec
+		 * is the sum of its fields,but *NOTE*:
+		 * The field tv_usec/tv_nsec must always be non-negative and
+		 * we can't have more nanoseconds/microseconds than a second.
+		 */
+		if (txc->time.tv_usec < 0)
+			return -EINVAL;
+
+		if (txc->modes & ADJ_NANO) {
+			if (txc->time.tv_usec >= NSEC_PER_SEC)
+				return -EINVAL;
+		} else {
+			if (txc->time.tv_usec >= USEC_PER_SEC)
+				return -EINVAL;
+		}
+	}
+
+	/*
+	 * Check for potential multiplication overflows that can
+	 * only happen on 64-bit systems:
+	 */
+	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
+		if (LLONG_MIN / PPM_SCALE > txc->freq)
+			return -EINVAL;
+		if (LLONG_MAX / PPM_SCALE < txc->freq)
+			return -EINVAL;
+	}
+
+	return 0;
+}
+
+
+/**
+ * do_adjtimex() - Accessor function to NTP __do_adjtimex function
+ */
+int do_adjtimex(struct timex *txc)
+{
+	struct timekeeper *tk = &tk_core.timekeeper;
+	unsigned long flags;
+	struct timespec64 ts;
+	s32 orig_tai, tai;
+	int ret;
+
+	/* Validate the data before disabling interrupts */
+	ret = timekeeping_validate_timex(txc);
+	if (ret)
+		return ret;
+
+	if (txc->modes & ADJ_SETOFFSET) {
+		struct timespec64 delta;
+		delta.tv_sec  = txc->time.tv_sec;
+		delta.tv_nsec = txc->time.tv_usec;
+		if (!(txc->modes & ADJ_NANO))
+			delta.tv_nsec *= 1000;
+		ret = timekeeping_inject_offset(&delta);
+		if (ret)
+			return ret;
+	}
+
+	ktime_get_real_ts64(&ts);
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+
+	orig_tai = tai = tk->tai_offset;
+	ret = __do_adjtimex(txc, &ts, &tai);
+
+	if (tai != orig_tai) {
+		__timekeeping_set_tai_offset(tk, tai);
+		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
+	}
+	tk_update_leap_state(tk);
+
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+
+	/* Update the multiplier immediately if frequency was set directly */
+	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
+		timekeeping_advance(TK_ADV_FREQ);
+
+	if (tai != orig_tai)
+		clock_was_set();
+
+	ntp_notify_cmos_timer();
+
+	return ret;
+}
+
+#ifdef CONFIG_NTP_PPS
+/**
+ * hardpps() - Accessor function to NTP __hardpps function
+ */
+void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
+{
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&timekeeper_lock, flags);
+	write_seqcount_begin(&tk_core.seq);
+
+	__hardpps(phase_ts, raw_ts);
+
+	write_seqcount_end(&tk_core.seq);
+	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+}
+EXPORT_SYMBOL(hardpps);
+#endif /* CONFIG_NTP_PPS */
+
+/**
+ * xtime_update() - advances the timekeeping infrastructure
+ * @ticks:	number of ticks, that have elapsed since the last call.
+ *
+ * Must be called with interrupts disabled.
+ */
+void xtime_update(unsigned long ticks)
+{
+	write_seqlock(&jiffies_lock);
+	do_timer(ticks);
+	write_sequnlock(&jiffies_lock);
+	update_wall_time();
+}