v4.19.13 snapshot.
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
new file mode 100644
index 0000000..2e2955a
--- /dev/null
+++ b/kernel/sched/rt.c
@@ -0,0 +1,2731 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
+ * policies)
+ */
+#include "sched.h"
+
+#include "pelt.h"
+
+int sched_rr_timeslice = RR_TIMESLICE;
+int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
+
+struct rt_bandwidth def_rt_bandwidth;
+
+static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
+{
+	struct rt_bandwidth *rt_b =
+		container_of(timer, struct rt_bandwidth, rt_period_timer);
+	int idle = 0;
+	int overrun;
+
+	raw_spin_lock(&rt_b->rt_runtime_lock);
+	for (;;) {
+		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
+		if (!overrun)
+			break;
+
+		raw_spin_unlock(&rt_b->rt_runtime_lock);
+		idle = do_sched_rt_period_timer(rt_b, overrun);
+		raw_spin_lock(&rt_b->rt_runtime_lock);
+	}
+	if (idle)
+		rt_b->rt_period_active = 0;
+	raw_spin_unlock(&rt_b->rt_runtime_lock);
+
+	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
+}
+
+void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
+{
+	rt_b->rt_period = ns_to_ktime(period);
+	rt_b->rt_runtime = runtime;
+
+	raw_spin_lock_init(&rt_b->rt_runtime_lock);
+
+	hrtimer_init(&rt_b->rt_period_timer,
+			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+	rt_b->rt_period_timer.function = sched_rt_period_timer;
+}
+
+static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
+		return;
+
+	raw_spin_lock(&rt_b->rt_runtime_lock);
+	if (!rt_b->rt_period_active) {
+		rt_b->rt_period_active = 1;
+		/*
+		 * SCHED_DEADLINE updates the bandwidth, as a run away
+		 * RT task with a DL task could hog a CPU. But DL does
+		 * not reset the period. If a deadline task was running
+		 * without an RT task running, it can cause RT tasks to
+		 * throttle when they start up. Kick the timer right away
+		 * to update the period.
+		 */
+		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
+		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
+	}
+	raw_spin_unlock(&rt_b->rt_runtime_lock);
+}
+
+void init_rt_rq(struct rt_rq *rt_rq)
+{
+	struct rt_prio_array *array;
+	int i;
+
+	array = &rt_rq->active;
+	for (i = 0; i < MAX_RT_PRIO; i++) {
+		INIT_LIST_HEAD(array->queue + i);
+		__clear_bit(i, array->bitmap);
+	}
+	/* delimiter for bitsearch: */
+	__set_bit(MAX_RT_PRIO, array->bitmap);
+
+#if defined CONFIG_SMP
+	rt_rq->highest_prio.curr = MAX_RT_PRIO;
+	rt_rq->highest_prio.next = MAX_RT_PRIO;
+	rt_rq->rt_nr_migratory = 0;
+	rt_rq->overloaded = 0;
+	plist_head_init(&rt_rq->pushable_tasks);
+#endif /* CONFIG_SMP */
+	/* We start is dequeued state, because no RT tasks are queued */
+	rt_rq->rt_queued = 0;
+
+	rt_rq->rt_time = 0;
+	rt_rq->rt_throttled = 0;
+	rt_rq->rt_runtime = 0;
+	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+	hrtimer_cancel(&rt_b->rt_period_timer);
+}
+
+#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
+#endif
+	return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+	return rt_rq->rq;
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+	return rt_se->rt_rq;
+}
+
+static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
+{
+	struct rt_rq *rt_rq = rt_se->rt_rq;
+
+	return rt_rq->rq;
+}
+
+void free_rt_sched_group(struct task_group *tg)
+{
+	int i;
+
+	if (tg->rt_se)
+		destroy_rt_bandwidth(&tg->rt_bandwidth);
+
+	for_each_possible_cpu(i) {
+		if (tg->rt_rq)
+			kfree(tg->rt_rq[i]);
+		if (tg->rt_se)
+			kfree(tg->rt_se[i]);
+	}
+
+	kfree(tg->rt_rq);
+	kfree(tg->rt_se);
+}
+
+void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+		struct sched_rt_entity *rt_se, int cpu,
+		struct sched_rt_entity *parent)
+{
+	struct rq *rq = cpu_rq(cpu);
+
+	rt_rq->highest_prio.curr = MAX_RT_PRIO;
+	rt_rq->rt_nr_boosted = 0;
+	rt_rq->rq = rq;
+	rt_rq->tg = tg;
+
+	tg->rt_rq[cpu] = rt_rq;
+	tg->rt_se[cpu] = rt_se;
+
+	if (!rt_se)
+		return;
+
+	if (!parent)
+		rt_se->rt_rq = &rq->rt;
+	else
+		rt_se->rt_rq = parent->my_q;
+
+	rt_se->my_q = rt_rq;
+	rt_se->parent = parent;
+	INIT_LIST_HEAD(&rt_se->run_list);
+}
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+	struct rt_rq *rt_rq;
+	struct sched_rt_entity *rt_se;
+	int i;
+
+	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
+	if (!tg->rt_rq)
+		goto err;
+	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
+	if (!tg->rt_se)
+		goto err;
+
+	init_rt_bandwidth(&tg->rt_bandwidth,
+			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
+
+	for_each_possible_cpu(i) {
+		rt_rq = kzalloc_node(sizeof(struct rt_rq),
+				     GFP_KERNEL, cpu_to_node(i));
+		if (!rt_rq)
+			goto err;
+
+		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
+				     GFP_KERNEL, cpu_to_node(i));
+		if (!rt_se)
+			goto err_free_rq;
+
+		init_rt_rq(rt_rq);
+		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
+		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
+	}
+
+	return 1;
+
+err_free_rq:
+	kfree(rt_rq);
+err:
+	return 0;
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+#define rt_entity_is_task(rt_se) (1)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+	return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+	return container_of(rt_rq, struct rq, rt);
+}
+
+static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
+{
+	struct task_struct *p = rt_task_of(rt_se);
+
+	return task_rq(p);
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+	struct rq *rq = rq_of_rt_se(rt_se);
+
+	return &rq->rt;
+}
+
+void free_rt_sched_group(struct task_group *tg) { }
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+	return 1;
+}
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_SMP
+
+static void pull_rt_task(struct rq *this_rq);
+
+static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
+{
+	/* Try to pull RT tasks here if we lower this rq's prio */
+	return rq->rt.highest_prio.curr > prev->prio;
+}
+
+static inline int rt_overloaded(struct rq *rq)
+{
+	return atomic_read(&rq->rd->rto_count);
+}
+
+static inline void rt_set_overload(struct rq *rq)
+{
+	if (!rq->online)
+		return;
+
+	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
+	/*
+	 * Make sure the mask is visible before we set
+	 * the overload count. That is checked to determine
+	 * if we should look at the mask. It would be a shame
+	 * if we looked at the mask, but the mask was not
+	 * updated yet.
+	 *
+	 * Matched by the barrier in pull_rt_task().
+	 */
+	smp_wmb();
+	atomic_inc(&rq->rd->rto_count);
+}
+
+static inline void rt_clear_overload(struct rq *rq)
+{
+	if (!rq->online)
+		return;
+
+	/* the order here really doesn't matter */
+	atomic_dec(&rq->rd->rto_count);
+	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
+}
+
+static void update_rt_migration(struct rt_rq *rt_rq)
+{
+	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
+		if (!rt_rq->overloaded) {
+			rt_set_overload(rq_of_rt_rq(rt_rq));
+			rt_rq->overloaded = 1;
+		}
+	} else if (rt_rq->overloaded) {
+		rt_clear_overload(rq_of_rt_rq(rt_rq));
+		rt_rq->overloaded = 0;
+	}
+}
+
+static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	struct task_struct *p;
+
+	if (!rt_entity_is_task(rt_se))
+		return;
+
+	p = rt_task_of(rt_se);
+	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+	rt_rq->rt_nr_total++;
+	if (p->nr_cpus_allowed > 1)
+		rt_rq->rt_nr_migratory++;
+
+	update_rt_migration(rt_rq);
+}
+
+static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	struct task_struct *p;
+
+	if (!rt_entity_is_task(rt_se))
+		return;
+
+	p = rt_task_of(rt_se);
+	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+	rt_rq->rt_nr_total--;
+	if (p->nr_cpus_allowed > 1)
+		rt_rq->rt_nr_migratory--;
+
+	update_rt_migration(rt_rq);
+}
+
+static inline int has_pushable_tasks(struct rq *rq)
+{
+	return !plist_head_empty(&rq->rt.pushable_tasks);
+}
+
+static DEFINE_PER_CPU(struct callback_head, rt_push_head);
+static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
+
+static void push_rt_tasks(struct rq *);
+static void pull_rt_task(struct rq *);
+
+static inline void rt_queue_push_tasks(struct rq *rq)
+{
+	if (!has_pushable_tasks(rq))
+		return;
+
+	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
+}
+
+static inline void rt_queue_pull_task(struct rq *rq)
+{
+	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
+}
+
+static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+	plist_node_init(&p->pushable_tasks, p->prio);
+	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+	/* Update the highest prio pushable task */
+	if (p->prio < rq->rt.highest_prio.next)
+		rq->rt.highest_prio.next = p->prio;
+}
+
+static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+	/* Update the new highest prio pushable task */
+	if (has_pushable_tasks(rq)) {
+		p = plist_first_entry(&rq->rt.pushable_tasks,
+				      struct task_struct, pushable_tasks);
+		rq->rt.highest_prio.next = p->prio;
+	} else
+		rq->rt.highest_prio.next = MAX_RT_PRIO;
+}
+
+#else
+
+static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+static inline
+void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
+{
+	return false;
+}
+
+static inline void pull_rt_task(struct rq *this_rq)
+{
+}
+
+static inline void rt_queue_push_tasks(struct rq *rq)
+{
+}
+#endif /* CONFIG_SMP */
+
+static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
+static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
+
+static inline int on_rt_rq(struct sched_rt_entity *rt_se)
+{
+	return rt_se->on_rq;
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+	if (!rt_rq->tg)
+		return RUNTIME_INF;
+
+	return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
+}
+
+typedef struct task_group *rt_rq_iter_t;
+
+static inline struct task_group *next_task_group(struct task_group *tg)
+{
+	do {
+		tg = list_entry_rcu(tg->list.next,
+			typeof(struct task_group), list);
+	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
+
+	if (&tg->list == &task_groups)
+		tg = NULL;
+
+	return tg;
+}
+
+#define for_each_rt_rq(rt_rq, iter, rq)					\
+	for (iter = container_of(&task_groups, typeof(*iter), list);	\
+		(iter = next_task_group(iter)) &&			\
+		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
+
+#define for_each_sched_rt_entity(rt_se) \
+	for (; rt_se; rt_se = rt_se->parent)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+	return rt_se->my_q;
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
+
+static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+	struct sched_rt_entity *rt_se;
+
+	int cpu = cpu_of(rq);
+
+	rt_se = rt_rq->tg->rt_se[cpu];
+
+	if (rt_rq->rt_nr_running) {
+		if (!rt_se)
+			enqueue_top_rt_rq(rt_rq);
+		else if (!on_rt_rq(rt_se))
+			enqueue_rt_entity(rt_se, 0);
+
+		if (rt_rq->highest_prio.curr < curr->prio)
+			resched_curr(rq);
+	}
+}
+
+static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+	struct sched_rt_entity *rt_se;
+	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
+
+	rt_se = rt_rq->tg->rt_se[cpu];
+
+	if (!rt_se) {
+		dequeue_top_rt_rq(rt_rq);
+		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
+		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
+	}
+	else if (on_rt_rq(rt_se))
+		dequeue_rt_entity(rt_se, 0);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
+}
+
+static int rt_se_boosted(struct sched_rt_entity *rt_se)
+{
+	struct rt_rq *rt_rq = group_rt_rq(rt_se);
+	struct task_struct *p;
+
+	if (rt_rq)
+		return !!rt_rq->rt_nr_boosted;
+
+	p = rt_task_of(rt_se);
+	return p->prio != p->normal_prio;
+}
+
+#ifdef CONFIG_SMP
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+	return this_rq()->rd->span;
+}
+#else
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+	return cpu_online_mask;
+}
+#endif
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+	return &rt_rq->tg->rt_bandwidth;
+}
+
+#else /* !CONFIG_RT_GROUP_SCHED */
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+	return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+	return ktime_to_ns(def_rt_bandwidth.rt_period);
+}
+
+typedef struct rt_rq *rt_rq_iter_t;
+
+#define for_each_rt_rq(rt_rq, iter, rq) \
+	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+#define for_each_sched_rt_entity(rt_se) \
+	for (; rt_se; rt_se = NULL)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+	return NULL;
+}
+
+static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+
+	if (!rt_rq->rt_nr_running)
+		return;
+
+	enqueue_top_rt_rq(rt_rq);
+	resched_curr(rq);
+}
+
+static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+	dequeue_top_rt_rq(rt_rq);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+	return rt_rq->rt_throttled;
+}
+
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+	return cpu_online_mask;
+}
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+	return &cpu_rq(cpu)->rt;
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+	return &def_rt_bandwidth;
+}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
+{
+	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+	return (hrtimer_active(&rt_b->rt_period_timer) ||
+		rt_rq->rt_time < rt_b->rt_runtime);
+}
+
+#ifdef CONFIG_SMP
+/*
+ * We ran out of runtime, see if we can borrow some from our neighbours.
+ */
+static void do_balance_runtime(struct rt_rq *rt_rq)
+{
+	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
+	int i, weight;
+	u64 rt_period;
+
+	weight = cpumask_weight(rd->span);
+
+	raw_spin_lock(&rt_b->rt_runtime_lock);
+	rt_period = ktime_to_ns(rt_b->rt_period);
+	for_each_cpu(i, rd->span) {
+		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+		s64 diff;
+
+		if (iter == rt_rq)
+			continue;
+
+		raw_spin_lock(&iter->rt_runtime_lock);
+		/*
+		 * Either all rqs have inf runtime and there's nothing to steal
+		 * or __disable_runtime() below sets a specific rq to inf to
+		 * indicate its been disabled and disalow stealing.
+		 */
+		if (iter->rt_runtime == RUNTIME_INF)
+			goto next;
+
+		/*
+		 * From runqueues with spare time, take 1/n part of their
+		 * spare time, but no more than our period.
+		 */
+		diff = iter->rt_runtime - iter->rt_time;
+		if (diff > 0) {
+			diff = div_u64((u64)diff, weight);
+			if (rt_rq->rt_runtime + diff > rt_period)
+				diff = rt_period - rt_rq->rt_runtime;
+			iter->rt_runtime -= diff;
+			rt_rq->rt_runtime += diff;
+			if (rt_rq->rt_runtime == rt_period) {
+				raw_spin_unlock(&iter->rt_runtime_lock);
+				break;
+			}
+		}
+next:
+		raw_spin_unlock(&iter->rt_runtime_lock);
+	}
+	raw_spin_unlock(&rt_b->rt_runtime_lock);
+}
+
+/*
+ * Ensure this RQ takes back all the runtime it lend to its neighbours.
+ */
+static void __disable_runtime(struct rq *rq)
+{
+	struct root_domain *rd = rq->rd;
+	rt_rq_iter_t iter;
+	struct rt_rq *rt_rq;
+
+	if (unlikely(!scheduler_running))
+		return;
+
+	for_each_rt_rq(rt_rq, iter, rq) {
+		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+		s64 want;
+		int i;
+
+		raw_spin_lock(&rt_b->rt_runtime_lock);
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		/*
+		 * Either we're all inf and nobody needs to borrow, or we're
+		 * already disabled and thus have nothing to do, or we have
+		 * exactly the right amount of runtime to take out.
+		 */
+		if (rt_rq->rt_runtime == RUNTIME_INF ||
+				rt_rq->rt_runtime == rt_b->rt_runtime)
+			goto balanced;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+
+		/*
+		 * Calculate the difference between what we started out with
+		 * and what we current have, that's the amount of runtime
+		 * we lend and now have to reclaim.
+		 */
+		want = rt_b->rt_runtime - rt_rq->rt_runtime;
+
+		/*
+		 * Greedy reclaim, take back as much as we can.
+		 */
+		for_each_cpu(i, rd->span) {
+			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+			s64 diff;
+
+			/*
+			 * Can't reclaim from ourselves or disabled runqueues.
+			 */
+			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
+				continue;
+
+			raw_spin_lock(&iter->rt_runtime_lock);
+			if (want > 0) {
+				diff = min_t(s64, iter->rt_runtime, want);
+				iter->rt_runtime -= diff;
+				want -= diff;
+			} else {
+				iter->rt_runtime -= want;
+				want -= want;
+			}
+			raw_spin_unlock(&iter->rt_runtime_lock);
+
+			if (!want)
+				break;
+		}
+
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		/*
+		 * We cannot be left wanting - that would mean some runtime
+		 * leaked out of the system.
+		 */
+		BUG_ON(want);
+balanced:
+		/*
+		 * Disable all the borrow logic by pretending we have inf
+		 * runtime - in which case borrowing doesn't make sense.
+		 */
+		rt_rq->rt_runtime = RUNTIME_INF;
+		rt_rq->rt_throttled = 0;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		raw_spin_unlock(&rt_b->rt_runtime_lock);
+
+		/* Make rt_rq available for pick_next_task() */
+		sched_rt_rq_enqueue(rt_rq);
+	}
+}
+
+static void __enable_runtime(struct rq *rq)
+{
+	rt_rq_iter_t iter;
+	struct rt_rq *rt_rq;
+
+	if (unlikely(!scheduler_running))
+		return;
+
+	/*
+	 * Reset each runqueue's bandwidth settings
+	 */
+	for_each_rt_rq(rt_rq, iter, rq) {
+		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+		raw_spin_lock(&rt_b->rt_runtime_lock);
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		rt_rq->rt_runtime = rt_b->rt_runtime;
+		rt_rq->rt_time = 0;
+		rt_rq->rt_throttled = 0;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		raw_spin_unlock(&rt_b->rt_runtime_lock);
+	}
+}
+
+static void balance_runtime(struct rt_rq *rt_rq)
+{
+	if (!sched_feat(RT_RUNTIME_SHARE))
+		return;
+
+	if (rt_rq->rt_time > rt_rq->rt_runtime) {
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		do_balance_runtime(rt_rq);
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+	}
+}
+#else /* !CONFIG_SMP */
+static inline void balance_runtime(struct rt_rq *rt_rq) {}
+#endif /* CONFIG_SMP */
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
+{
+	int i, idle = 1, throttled = 0;
+	const struct cpumask *span;
+
+	span = sched_rt_period_mask();
+#ifdef CONFIG_RT_GROUP_SCHED
+	/*
+	 * FIXME: isolated CPUs should really leave the root task group,
+	 * whether they are isolcpus or were isolated via cpusets, lest
+	 * the timer run on a CPU which does not service all runqueues,
+	 * potentially leaving other CPUs indefinitely throttled.  If
+	 * isolation is really required, the user will turn the throttle
+	 * off to kill the perturbations it causes anyway.  Meanwhile,
+	 * this maintains functionality for boot and/or troubleshooting.
+	 */
+	if (rt_b == &root_task_group.rt_bandwidth)
+		span = cpu_online_mask;
+#endif
+	for_each_cpu(i, span) {
+		int enqueue = 0;
+		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
+		struct rq *rq = rq_of_rt_rq(rt_rq);
+		int skip;
+
+		/*
+		 * When span == cpu_online_mask, taking each rq->lock
+		 * can be time-consuming. Try to avoid it when possible.
+		 */
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
+			rt_rq->rt_runtime = rt_b->rt_runtime;
+		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		if (skip)
+			continue;
+
+		raw_spin_lock(&rq->lock);
+		update_rq_clock(rq);
+
+		if (rt_rq->rt_time) {
+			u64 runtime;
+
+			raw_spin_lock(&rt_rq->rt_runtime_lock);
+			if (rt_rq->rt_throttled)
+				balance_runtime(rt_rq);
+			runtime = rt_rq->rt_runtime;
+			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
+			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
+				rt_rq->rt_throttled = 0;
+				enqueue = 1;
+
+				/*
+				 * When we're idle and a woken (rt) task is
+				 * throttled check_preempt_curr() will set
+				 * skip_update and the time between the wakeup
+				 * and this unthrottle will get accounted as
+				 * 'runtime'.
+				 */
+				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
+					rq_clock_cancel_skipupdate(rq);
+			}
+			if (rt_rq->rt_time || rt_rq->rt_nr_running)
+				idle = 0;
+			raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		} else if (rt_rq->rt_nr_running) {
+			idle = 0;
+			if (!rt_rq_throttled(rt_rq))
+				enqueue = 1;
+		}
+		if (rt_rq->rt_throttled)
+			throttled = 1;
+
+		if (enqueue)
+			sched_rt_rq_enqueue(rt_rq);
+		raw_spin_unlock(&rq->lock);
+	}
+
+	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
+		return 1;
+
+	return idle;
+}
+
+static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+	struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+	if (rt_rq)
+		return rt_rq->highest_prio.curr;
+#endif
+
+	return rt_task_of(rt_se)->prio;
+}
+
+static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
+{
+	u64 runtime = sched_rt_runtime(rt_rq);
+
+	if (rt_rq->rt_throttled)
+		return rt_rq_throttled(rt_rq);
+
+	if (runtime >= sched_rt_period(rt_rq))
+		return 0;
+
+	balance_runtime(rt_rq);
+	runtime = sched_rt_runtime(rt_rq);
+	if (runtime == RUNTIME_INF)
+		return 0;
+
+	if (rt_rq->rt_time > runtime) {
+		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+		/*
+		 * Don't actually throttle groups that have no runtime assigned
+		 * but accrue some time due to boosting.
+		 */
+		if (likely(rt_b->rt_runtime)) {
+			rt_rq->rt_throttled = 1;
+			printk_deferred_once("sched: RT throttling activated\n");
+		} else {
+			/*
+			 * In case we did anyway, make it go away,
+			 * replenishment is a joke, since it will replenish us
+			 * with exactly 0 ns.
+			 */
+			rt_rq->rt_time = 0;
+		}
+
+		if (rt_rq_throttled(rt_rq)) {
+			sched_rt_rq_dequeue(rt_rq);
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static void update_curr_rt(struct rq *rq)
+{
+	struct task_struct *curr = rq->curr;
+	struct sched_rt_entity *rt_se = &curr->rt;
+	u64 delta_exec;
+	u64 now;
+
+	if (curr->sched_class != &rt_sched_class)
+		return;
+
+	now = rq_clock_task(rq);
+	delta_exec = now - curr->se.exec_start;
+	if (unlikely((s64)delta_exec <= 0))
+		return;
+
+	schedstat_set(curr->se.statistics.exec_max,
+		      max(curr->se.statistics.exec_max, delta_exec));
+
+	curr->se.sum_exec_runtime += delta_exec;
+	account_group_exec_runtime(curr, delta_exec);
+
+	curr->se.exec_start = now;
+	cgroup_account_cputime(curr, delta_exec);
+
+	if (!rt_bandwidth_enabled())
+		return;
+
+	for_each_sched_rt_entity(rt_se) {
+		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+
+		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
+			raw_spin_lock(&rt_rq->rt_runtime_lock);
+			rt_rq->rt_time += delta_exec;
+			if (sched_rt_runtime_exceeded(rt_rq))
+				resched_curr(rq);
+			raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		}
+	}
+}
+
+static void
+dequeue_top_rt_rq(struct rt_rq *rt_rq)
+{
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+
+	BUG_ON(&rq->rt != rt_rq);
+
+	if (!rt_rq->rt_queued)
+		return;
+
+	BUG_ON(!rq->nr_running);
+
+	sub_nr_running(rq, rt_rq->rt_nr_running);
+	rt_rq->rt_queued = 0;
+
+}
+
+static void
+enqueue_top_rt_rq(struct rt_rq *rt_rq)
+{
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+
+	BUG_ON(&rq->rt != rt_rq);
+
+	if (rt_rq->rt_queued)
+		return;
+
+	if (rt_rq_throttled(rt_rq))
+		return;
+
+	if (rt_rq->rt_nr_running) {
+		add_nr_running(rq, rt_rq->rt_nr_running);
+		rt_rq->rt_queued = 1;
+	}
+
+	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
+	cpufreq_update_util(rq, 0);
+}
+
+#if defined CONFIG_SMP
+
+static void
+inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+
+#ifdef CONFIG_RT_GROUP_SCHED
+	/*
+	 * Change rq's cpupri only if rt_rq is the top queue.
+	 */
+	if (&rq->rt != rt_rq)
+		return;
+#endif
+	if (rq->online && prio < prev_prio)
+		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
+}
+
+static void
+dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+
+#ifdef CONFIG_RT_GROUP_SCHED
+	/*
+	 * Change rq's cpupri only if rt_rq is the top queue.
+	 */
+	if (&rq->rt != rt_rq)
+		return;
+#endif
+	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
+		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
+}
+
+#else /* CONFIG_SMP */
+
+static inline
+void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+static inline
+void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+
+#endif /* CONFIG_SMP */
+
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+static void
+inc_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+	int prev_prio = rt_rq->highest_prio.curr;
+
+	if (prio < prev_prio)
+		rt_rq->highest_prio.curr = prio;
+
+	inc_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+static void
+dec_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+	int prev_prio = rt_rq->highest_prio.curr;
+
+	if (rt_rq->rt_nr_running) {
+
+		WARN_ON(prio < prev_prio);
+
+		/*
+		 * This may have been our highest task, and therefore
+		 * we may have some recomputation to do
+		 */
+		if (prio == prev_prio) {
+			struct rt_prio_array *array = &rt_rq->active;
+
+			rt_rq->highest_prio.curr =
+				sched_find_first_bit(array->bitmap);
+		}
+
+	} else
+		rt_rq->highest_prio.curr = MAX_RT_PRIO;
+
+	dec_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+#else
+
+static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
+static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
+
+#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	if (rt_se_boosted(rt_se))
+		rt_rq->rt_nr_boosted++;
+
+	if (rt_rq->tg)
+		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
+}
+
+static void
+dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	if (rt_se_boosted(rt_se))
+		rt_rq->rt_nr_boosted--;
+
+	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	start_rt_bandwidth(&def_rt_bandwidth);
+}
+
+static inline
+void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+static inline
+unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
+{
+	struct rt_rq *group_rq = group_rt_rq(rt_se);
+
+	if (group_rq)
+		return group_rq->rt_nr_running;
+	else
+		return 1;
+}
+
+static inline
+unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
+{
+	struct rt_rq *group_rq = group_rt_rq(rt_se);
+	struct task_struct *tsk;
+
+	if (group_rq)
+		return group_rq->rr_nr_running;
+
+	tsk = rt_task_of(rt_se);
+
+	return (tsk->policy == SCHED_RR) ? 1 : 0;
+}
+
+static inline
+void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	int prio = rt_se_prio(rt_se);
+
+	WARN_ON(!rt_prio(prio));
+	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
+	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
+
+	inc_rt_prio(rt_rq, prio);
+	inc_rt_migration(rt_se, rt_rq);
+	inc_rt_group(rt_se, rt_rq);
+}
+
+static inline
+void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
+	WARN_ON(!rt_rq->rt_nr_running);
+	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
+	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
+
+	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
+	dec_rt_migration(rt_se, rt_rq);
+	dec_rt_group(rt_se, rt_rq);
+}
+
+/*
+ * Change rt_se->run_list location unless SAVE && !MOVE
+ *
+ * assumes ENQUEUE/DEQUEUE flags match
+ */
+static inline bool move_entity(unsigned int flags)
+{
+	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
+		return false;
+
+	return true;
+}
+
+static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
+{
+	list_del_init(&rt_se->run_list);
+
+	if (list_empty(array->queue + rt_se_prio(rt_se)))
+		__clear_bit(rt_se_prio(rt_se), array->bitmap);
+
+	rt_se->on_list = 0;
+}
+
+static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
+{
+	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+	struct rt_prio_array *array = &rt_rq->active;
+	struct rt_rq *group_rq = group_rt_rq(rt_se);
+	struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+	/*
+	 * Don't enqueue the group if its throttled, or when empty.
+	 * The latter is a consequence of the former when a child group
+	 * get throttled and the current group doesn't have any other
+	 * active members.
+	 */
+	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
+		if (rt_se->on_list)
+			__delist_rt_entity(rt_se, array);
+		return;
+	}
+
+	if (move_entity(flags)) {
+		WARN_ON_ONCE(rt_se->on_list);
+		if (flags & ENQUEUE_HEAD)
+			list_add(&rt_se->run_list, queue);
+		else
+			list_add_tail(&rt_se->run_list, queue);
+
+		__set_bit(rt_se_prio(rt_se), array->bitmap);
+		rt_se->on_list = 1;
+	}
+	rt_se->on_rq = 1;
+
+	inc_rt_tasks(rt_se, rt_rq);
+}
+
+static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
+{
+	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+	struct rt_prio_array *array = &rt_rq->active;
+
+	if (move_entity(flags)) {
+		WARN_ON_ONCE(!rt_se->on_list);
+		__delist_rt_entity(rt_se, array);
+	}
+	rt_se->on_rq = 0;
+
+	dec_rt_tasks(rt_se, rt_rq);
+}
+
+/*
+ * Because the prio of an upper entry depends on the lower
+ * entries, we must remove entries top - down.
+ */
+static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
+{
+	struct sched_rt_entity *back = NULL;
+
+	for_each_sched_rt_entity(rt_se) {
+		rt_se->back = back;
+		back = rt_se;
+	}
+
+	dequeue_top_rt_rq(rt_rq_of_se(back));
+
+	for (rt_se = back; rt_se; rt_se = rt_se->back) {
+		if (on_rt_rq(rt_se))
+			__dequeue_rt_entity(rt_se, flags);
+	}
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
+{
+	struct rq *rq = rq_of_rt_se(rt_se);
+
+	dequeue_rt_stack(rt_se, flags);
+	for_each_sched_rt_entity(rt_se)
+		__enqueue_rt_entity(rt_se, flags);
+	enqueue_top_rt_rq(&rq->rt);
+}
+
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
+{
+	struct rq *rq = rq_of_rt_se(rt_se);
+
+	dequeue_rt_stack(rt_se, flags);
+
+	for_each_sched_rt_entity(rt_se) {
+		struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+		if (rt_rq && rt_rq->rt_nr_running)
+			__enqueue_rt_entity(rt_se, flags);
+	}
+	enqueue_top_rt_rq(&rq->rt);
+}
+
+/*
+ * Adding/removing a task to/from a priority array:
+ */
+static void
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+
+	if (flags & ENQUEUE_WAKEUP)
+		rt_se->timeout = 0;
+
+	enqueue_rt_entity(rt_se, flags);
+
+	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
+		enqueue_pushable_task(rq, p);
+}
+
+static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+
+	update_curr_rt(rq);
+	dequeue_rt_entity(rt_se, flags);
+
+	dequeue_pushable_task(rq, p);
+}
+
+/*
+ * Put task to the head or the end of the run list without the overhead of
+ * dequeue followed by enqueue.
+ */
+static void
+requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
+{
+	if (on_rt_rq(rt_se)) {
+		struct rt_prio_array *array = &rt_rq->active;
+		struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+		if (head)
+			list_move(&rt_se->run_list, queue);
+		else
+			list_move_tail(&rt_se->run_list, queue);
+	}
+}
+
+static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+	struct rt_rq *rt_rq;
+
+	for_each_sched_rt_entity(rt_se) {
+		rt_rq = rt_rq_of_se(rt_se);
+		requeue_rt_entity(rt_rq, rt_se, head);
+	}
+}
+
+static void yield_task_rt(struct rq *rq)
+{
+	requeue_task_rt(rq, rq->curr, 0);
+}
+
+#ifdef CONFIG_SMP
+static int find_lowest_rq(struct task_struct *task);
+
+static int
+select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
+{
+	struct task_struct *curr;
+	struct rq *rq;
+
+	/* For anything but wake ups, just return the task_cpu */
+	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
+		goto out;
+
+	rq = cpu_rq(cpu);
+
+	rcu_read_lock();
+	curr = READ_ONCE(rq->curr); /* unlocked access */
+
+	/*
+	 * If the current task on @p's runqueue is an RT task, then
+	 * try to see if we can wake this RT task up on another
+	 * runqueue. Otherwise simply start this RT task
+	 * on its current runqueue.
+	 *
+	 * We want to avoid overloading runqueues. If the woken
+	 * task is a higher priority, then it will stay on this CPU
+	 * and the lower prio task should be moved to another CPU.
+	 * Even though this will probably make the lower prio task
+	 * lose its cache, we do not want to bounce a higher task
+	 * around just because it gave up its CPU, perhaps for a
+	 * lock?
+	 *
+	 * For equal prio tasks, we just let the scheduler sort it out.
+	 *
+	 * Otherwise, just let it ride on the affined RQ and the
+	 * post-schedule router will push the preempted task away
+	 *
+	 * This test is optimistic, if we get it wrong the load-balancer
+	 * will have to sort it out.
+	 */
+	if (curr && unlikely(rt_task(curr)) &&
+	    (curr->nr_cpus_allowed < 2 ||
+	     curr->prio <= p->prio)) {
+		int target = find_lowest_rq(p);
+
+		/*
+		 * Don't bother moving it if the destination CPU is
+		 * not running a lower priority task.
+		 */
+		if (target != -1 &&
+		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
+			cpu = target;
+	}
+	rcu_read_unlock();
+
+out:
+	return cpu;
+}
+
+static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
+{
+	/*
+	 * Current can't be migrated, useless to reschedule,
+	 * let's hope p can move out.
+	 */
+	if (rq->curr->nr_cpus_allowed == 1 ||
+	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
+		return;
+
+	/*
+	 * p is migratable, so let's not schedule it and
+	 * see if it is pushed or pulled somewhere else.
+	 */
+	if (p->nr_cpus_allowed != 1
+	    && cpupri_find(&rq->rd->cpupri, p, NULL))
+		return;
+
+	/*
+	 * There appear to be other CPUs that can accept
+	 * the current task but none can run 'p', so lets reschedule
+	 * to try and push the current task away:
+	 */
+	requeue_task_rt(rq, p, 1);
+	resched_curr(rq);
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+	if (p->prio < rq->curr->prio) {
+		resched_curr(rq);
+		return;
+	}
+
+#ifdef CONFIG_SMP
+	/*
+	 * If:
+	 *
+	 * - the newly woken task is of equal priority to the current task
+	 * - the newly woken task is non-migratable while current is migratable
+	 * - current will be preempted on the next reschedule
+	 *
+	 * we should check to see if current can readily move to a different
+	 * cpu.  If so, we will reschedule to allow the push logic to try
+	 * to move current somewhere else, making room for our non-migratable
+	 * task.
+	 */
+	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
+		check_preempt_equal_prio(rq, p);
+#endif
+}
+
+static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
+						   struct rt_rq *rt_rq)
+{
+	struct rt_prio_array *array = &rt_rq->active;
+	struct sched_rt_entity *next = NULL;
+	struct list_head *queue;
+	int idx;
+
+	idx = sched_find_first_bit(array->bitmap);
+	BUG_ON(idx >= MAX_RT_PRIO);
+
+	queue = array->queue + idx;
+	next = list_entry(queue->next, struct sched_rt_entity, run_list);
+
+	return next;
+}
+
+static struct task_struct *_pick_next_task_rt(struct rq *rq)
+{
+	struct sched_rt_entity *rt_se;
+	struct task_struct *p;
+	struct rt_rq *rt_rq  = &rq->rt;
+
+	do {
+		rt_se = pick_next_rt_entity(rq, rt_rq);
+		BUG_ON(!rt_se);
+		rt_rq = group_rt_rq(rt_se);
+	} while (rt_rq);
+
+	p = rt_task_of(rt_se);
+	p->se.exec_start = rq_clock_task(rq);
+
+	return p;
+}
+
+static struct task_struct *
+pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+{
+	struct task_struct *p;
+	struct rt_rq *rt_rq = &rq->rt;
+
+	if (need_pull_rt_task(rq, prev)) {
+		/*
+		 * This is OK, because current is on_cpu, which avoids it being
+		 * picked for load-balance and preemption/IRQs are still
+		 * disabled avoiding further scheduler activity on it and we're
+		 * being very careful to re-start the picking loop.
+		 */
+		rq_unpin_lock(rq, rf);
+		pull_rt_task(rq);
+		rq_repin_lock(rq, rf);
+		/*
+		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
+		 * means a dl or stop task can slip in, in which case we need
+		 * to re-start task selection.
+		 */
+		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
+			     rq->dl.dl_nr_running))
+			return RETRY_TASK;
+	}
+
+	/*
+	 * We may dequeue prev's rt_rq in put_prev_task().
+	 * So, we update time before rt_nr_running check.
+	 */
+	if (prev->sched_class == &rt_sched_class)
+		update_curr_rt(rq);
+
+	if (!rt_rq->rt_queued)
+		return NULL;
+
+	put_prev_task(rq, prev);
+
+	p = _pick_next_task_rt(rq);
+
+	/* The running task is never eligible for pushing */
+	dequeue_pushable_task(rq, p);
+
+	rt_queue_push_tasks(rq);
+
+	/*
+	 * If prev task was rt, put_prev_task() has already updated the
+	 * utilization. We only care of the case where we start to schedule a
+	 * rt task
+	 */
+	if (rq->curr->sched_class != &rt_sched_class)
+		update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
+
+	return p;
+}
+
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
+{
+	update_curr_rt(rq);
+
+	update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
+
+	/*
+	 * The previous task needs to be made eligible for pushing
+	 * if it is still active
+	 */
+	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
+		enqueue_pushable_task(rq, p);
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define RT_MAX_TRIES 3
+
+static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+	if (!task_running(rq, p) &&
+	    cpumask_test_cpu(cpu, &p->cpus_allowed))
+		return 1;
+
+	return 0;
+}
+
+/*
+ * Return the highest pushable rq's task, which is suitable to be executed
+ * on the CPU, NULL otherwise
+ */
+static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
+{
+	struct plist_head *head = &rq->rt.pushable_tasks;
+	struct task_struct *p;
+
+	if (!has_pushable_tasks(rq))
+		return NULL;
+
+	plist_for_each_entry(p, head, pushable_tasks) {
+		if (pick_rt_task(rq, p, cpu))
+			return p;
+	}
+
+	return NULL;
+}
+
+static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
+
+static int find_lowest_rq(struct task_struct *task)
+{
+	struct sched_domain *sd;
+	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
+	int this_cpu = smp_processor_id();
+	int cpu      = task_cpu(task);
+
+	/* Make sure the mask is initialized first */
+	if (unlikely(!lowest_mask))
+		return -1;
+
+	if (task->nr_cpus_allowed == 1)
+		return -1; /* No other targets possible */
+
+	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
+		return -1; /* No targets found */
+
+	/*
+	 * At this point we have built a mask of CPUs representing the
+	 * lowest priority tasks in the system.  Now we want to elect
+	 * the best one based on our affinity and topology.
+	 *
+	 * We prioritize the last CPU that the task executed on since
+	 * it is most likely cache-hot in that location.
+	 */
+	if (cpumask_test_cpu(cpu, lowest_mask))
+		return cpu;
+
+	/*
+	 * Otherwise, we consult the sched_domains span maps to figure
+	 * out which CPU is logically closest to our hot cache data.
+	 */
+	if (!cpumask_test_cpu(this_cpu, lowest_mask))
+		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
+
+	rcu_read_lock();
+	for_each_domain(cpu, sd) {
+		if (sd->flags & SD_WAKE_AFFINE) {
+			int best_cpu;
+
+			/*
+			 * "this_cpu" is cheaper to preempt than a
+			 * remote processor.
+			 */
+			if (this_cpu != -1 &&
+			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
+				rcu_read_unlock();
+				return this_cpu;
+			}
+
+			best_cpu = cpumask_first_and(lowest_mask,
+						     sched_domain_span(sd));
+			if (best_cpu < nr_cpu_ids) {
+				rcu_read_unlock();
+				return best_cpu;
+			}
+		}
+	}
+	rcu_read_unlock();
+
+	/*
+	 * And finally, if there were no matches within the domains
+	 * just give the caller *something* to work with from the compatible
+	 * locations.
+	 */
+	if (this_cpu != -1)
+		return this_cpu;
+
+	cpu = cpumask_any(lowest_mask);
+	if (cpu < nr_cpu_ids)
+		return cpu;
+
+	return -1;
+}
+
+/* Will lock the rq it finds */
+static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
+{
+	struct rq *lowest_rq = NULL;
+	int tries;
+	int cpu;
+
+	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
+		cpu = find_lowest_rq(task);
+
+		if ((cpu == -1) || (cpu == rq->cpu))
+			break;
+
+		lowest_rq = cpu_rq(cpu);
+
+		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
+			/*
+			 * Target rq has tasks of equal or higher priority,
+			 * retrying does not release any lock and is unlikely
+			 * to yield a different result.
+			 */
+			lowest_rq = NULL;
+			break;
+		}
+
+		/* if the prio of this runqueue changed, try again */
+		if (double_lock_balance(rq, lowest_rq)) {
+			/*
+			 * We had to unlock the run queue. In
+			 * the mean time, task could have
+			 * migrated already or had its affinity changed.
+			 * Also make sure that it wasn't scheduled on its rq.
+			 */
+			if (unlikely(task_rq(task) != rq ||
+				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
+				     task_running(rq, task) ||
+				     !rt_task(task) ||
+				     !task_on_rq_queued(task))) {
+
+				double_unlock_balance(rq, lowest_rq);
+				lowest_rq = NULL;
+				break;
+			}
+		}
+
+		/* If this rq is still suitable use it. */
+		if (lowest_rq->rt.highest_prio.curr > task->prio)
+			break;
+
+		/* try again */
+		double_unlock_balance(rq, lowest_rq);
+		lowest_rq = NULL;
+	}
+
+	return lowest_rq;
+}
+
+static struct task_struct *pick_next_pushable_task(struct rq *rq)
+{
+	struct task_struct *p;
+
+	if (!has_pushable_tasks(rq))
+		return NULL;
+
+	p = plist_first_entry(&rq->rt.pushable_tasks,
+			      struct task_struct, pushable_tasks);
+
+	BUG_ON(rq->cpu != task_cpu(p));
+	BUG_ON(task_current(rq, p));
+	BUG_ON(p->nr_cpus_allowed <= 1);
+
+	BUG_ON(!task_on_rq_queued(p));
+	BUG_ON(!rt_task(p));
+
+	return p;
+}
+
+/*
+ * If the current CPU has more than one RT task, see if the non
+ * running task can migrate over to a CPU that is running a task
+ * of lesser priority.
+ */
+static int push_rt_task(struct rq *rq)
+{
+	struct task_struct *next_task;
+	struct rq *lowest_rq;
+	int ret = 0;
+
+	if (!rq->rt.overloaded)
+		return 0;
+
+	next_task = pick_next_pushable_task(rq);
+	if (!next_task)
+		return 0;
+
+retry:
+	if (unlikely(next_task == rq->curr)) {
+		WARN_ON(1);
+		return 0;
+	}
+
+	/*
+	 * It's possible that the next_task slipped in of
+	 * higher priority than current. If that's the case
+	 * just reschedule current.
+	 */
+	if (unlikely(next_task->prio < rq->curr->prio)) {
+		resched_curr(rq);
+		return 0;
+	}
+
+	/* We might release rq lock */
+	get_task_struct(next_task);
+
+	/* find_lock_lowest_rq locks the rq if found */
+	lowest_rq = find_lock_lowest_rq(next_task, rq);
+	if (!lowest_rq) {
+		struct task_struct *task;
+		/*
+		 * find_lock_lowest_rq releases rq->lock
+		 * so it is possible that next_task has migrated.
+		 *
+		 * We need to make sure that the task is still on the same
+		 * run-queue and is also still the next task eligible for
+		 * pushing.
+		 */
+		task = pick_next_pushable_task(rq);
+		if (task == next_task) {
+			/*
+			 * The task hasn't migrated, and is still the next
+			 * eligible task, but we failed to find a run-queue
+			 * to push it to.  Do not retry in this case, since
+			 * other CPUs will pull from us when ready.
+			 */
+			goto out;
+		}
+
+		if (!task)
+			/* No more tasks, just exit */
+			goto out;
+
+		/*
+		 * Something has shifted, try again.
+		 */
+		put_task_struct(next_task);
+		next_task = task;
+		goto retry;
+	}
+
+	deactivate_task(rq, next_task, 0);
+	set_task_cpu(next_task, lowest_rq->cpu);
+	activate_task(lowest_rq, next_task, 0);
+	ret = 1;
+
+	resched_curr(lowest_rq);
+
+	double_unlock_balance(rq, lowest_rq);
+
+out:
+	put_task_struct(next_task);
+
+	return ret;
+}
+
+static void push_rt_tasks(struct rq *rq)
+{
+	/* push_rt_task will return true if it moved an RT */
+	while (push_rt_task(rq))
+		;
+}
+
+#ifdef HAVE_RT_PUSH_IPI
+
+/*
+ * When a high priority task schedules out from a CPU and a lower priority
+ * task is scheduled in, a check is made to see if there's any RT tasks
+ * on other CPUs that are waiting to run because a higher priority RT task
+ * is currently running on its CPU. In this case, the CPU with multiple RT
+ * tasks queued on it (overloaded) needs to be notified that a CPU has opened
+ * up that may be able to run one of its non-running queued RT tasks.
+ *
+ * All CPUs with overloaded RT tasks need to be notified as there is currently
+ * no way to know which of these CPUs have the highest priority task waiting
+ * to run. Instead of trying to take a spinlock on each of these CPUs,
+ * which has shown to cause large latency when done on machines with many
+ * CPUs, sending an IPI to the CPUs to have them push off the overloaded
+ * RT tasks waiting to run.
+ *
+ * Just sending an IPI to each of the CPUs is also an issue, as on large
+ * count CPU machines, this can cause an IPI storm on a CPU, especially
+ * if its the only CPU with multiple RT tasks queued, and a large number
+ * of CPUs scheduling a lower priority task at the same time.
+ *
+ * Each root domain has its own irq work function that can iterate over
+ * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
+ * tassk must be checked if there's one or many CPUs that are lowering
+ * their priority, there's a single irq work iterator that will try to
+ * push off RT tasks that are waiting to run.
+ *
+ * When a CPU schedules a lower priority task, it will kick off the
+ * irq work iterator that will jump to each CPU with overloaded RT tasks.
+ * As it only takes the first CPU that schedules a lower priority task
+ * to start the process, the rto_start variable is incremented and if
+ * the atomic result is one, then that CPU will try to take the rto_lock.
+ * This prevents high contention on the lock as the process handles all
+ * CPUs scheduling lower priority tasks.
+ *
+ * All CPUs that are scheduling a lower priority task will increment the
+ * rt_loop_next variable. This will make sure that the irq work iterator
+ * checks all RT overloaded CPUs whenever a CPU schedules a new lower
+ * priority task, even if the iterator is in the middle of a scan. Incrementing
+ * the rt_loop_next will cause the iterator to perform another scan.
+ *
+ */
+static int rto_next_cpu(struct root_domain *rd)
+{
+	int next;
+	int cpu;
+
+	/*
+	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
+	 * rt_next_cpu() will simply return the first CPU found in
+	 * the rto_mask.
+	 *
+	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
+	 * will return the next CPU found in the rto_mask.
+	 *
+	 * If there are no more CPUs left in the rto_mask, then a check is made
+	 * against rto_loop and rto_loop_next. rto_loop is only updated with
+	 * the rto_lock held, but any CPU may increment the rto_loop_next
+	 * without any locking.
+	 */
+	for (;;) {
+
+		/* When rto_cpu is -1 this acts like cpumask_first() */
+		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
+
+		rd->rto_cpu = cpu;
+
+		if (cpu < nr_cpu_ids)
+			return cpu;
+
+		rd->rto_cpu = -1;
+
+		/*
+		 * ACQUIRE ensures we see the @rto_mask changes
+		 * made prior to the @next value observed.
+		 *
+		 * Matches WMB in rt_set_overload().
+		 */
+		next = atomic_read_acquire(&rd->rto_loop_next);
+
+		if (rd->rto_loop == next)
+			break;
+
+		rd->rto_loop = next;
+	}
+
+	return -1;
+}
+
+static inline bool rto_start_trylock(atomic_t *v)
+{
+	return !atomic_cmpxchg_acquire(v, 0, 1);
+}
+
+static inline void rto_start_unlock(atomic_t *v)
+{
+	atomic_set_release(v, 0);
+}
+
+static void tell_cpu_to_push(struct rq *rq)
+{
+	int cpu = -1;
+
+	/* Keep the loop going if the IPI is currently active */
+	atomic_inc(&rq->rd->rto_loop_next);
+
+	/* Only one CPU can initiate a loop at a time */
+	if (!rto_start_trylock(&rq->rd->rto_loop_start))
+		return;
+
+	raw_spin_lock(&rq->rd->rto_lock);
+
+	/*
+	 * The rto_cpu is updated under the lock, if it has a valid CPU
+	 * then the IPI is still running and will continue due to the
+	 * update to loop_next, and nothing needs to be done here.
+	 * Otherwise it is finishing up and an ipi needs to be sent.
+	 */
+	if (rq->rd->rto_cpu < 0)
+		cpu = rto_next_cpu(rq->rd);
+
+	raw_spin_unlock(&rq->rd->rto_lock);
+
+	rto_start_unlock(&rq->rd->rto_loop_start);
+
+	if (cpu >= 0) {
+		/* Make sure the rd does not get freed while pushing */
+		sched_get_rd(rq->rd);
+		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
+	}
+}
+
+/* Called from hardirq context */
+void rto_push_irq_work_func(struct irq_work *work)
+{
+	struct root_domain *rd =
+		container_of(work, struct root_domain, rto_push_work);
+	struct rq *rq;
+	int cpu;
+
+	rq = this_rq();
+
+	/*
+	 * We do not need to grab the lock to check for has_pushable_tasks.
+	 * When it gets updated, a check is made if a push is possible.
+	 */
+	if (has_pushable_tasks(rq)) {
+		raw_spin_lock(&rq->lock);
+		push_rt_tasks(rq);
+		raw_spin_unlock(&rq->lock);
+	}
+
+	raw_spin_lock(&rd->rto_lock);
+
+	/* Pass the IPI to the next rt overloaded queue */
+	cpu = rto_next_cpu(rd);
+
+	raw_spin_unlock(&rd->rto_lock);
+
+	if (cpu < 0) {
+		sched_put_rd(rd);
+		return;
+	}
+
+	/* Try the next RT overloaded CPU */
+	irq_work_queue_on(&rd->rto_push_work, cpu);
+}
+#endif /* HAVE_RT_PUSH_IPI */
+
+static void pull_rt_task(struct rq *this_rq)
+{
+	int this_cpu = this_rq->cpu, cpu;
+	bool resched = false;
+	struct task_struct *p;
+	struct rq *src_rq;
+	int rt_overload_count = rt_overloaded(this_rq);
+
+	if (likely(!rt_overload_count))
+		return;
+
+	/*
+	 * Match the barrier from rt_set_overloaded; this guarantees that if we
+	 * see overloaded we must also see the rto_mask bit.
+	 */
+	smp_rmb();
+
+	/* If we are the only overloaded CPU do nothing */
+	if (rt_overload_count == 1 &&
+	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
+		return;
+
+#ifdef HAVE_RT_PUSH_IPI
+	if (sched_feat(RT_PUSH_IPI)) {
+		tell_cpu_to_push(this_rq);
+		return;
+	}
+#endif
+
+	for_each_cpu(cpu, this_rq->rd->rto_mask) {
+		if (this_cpu == cpu)
+			continue;
+
+		src_rq = cpu_rq(cpu);
+
+		/*
+		 * Don't bother taking the src_rq->lock if the next highest
+		 * task is known to be lower-priority than our current task.
+		 * This may look racy, but if this value is about to go
+		 * logically higher, the src_rq will push this task away.
+		 * And if its going logically lower, we do not care
+		 */
+		if (src_rq->rt.highest_prio.next >=
+		    this_rq->rt.highest_prio.curr)
+			continue;
+
+		/*
+		 * We can potentially drop this_rq's lock in
+		 * double_lock_balance, and another CPU could
+		 * alter this_rq
+		 */
+		double_lock_balance(this_rq, src_rq);
+
+		/*
+		 * We can pull only a task, which is pushable
+		 * on its rq, and no others.
+		 */
+		p = pick_highest_pushable_task(src_rq, this_cpu);
+
+		/*
+		 * Do we have an RT task that preempts
+		 * the to-be-scheduled task?
+		 */
+		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
+			WARN_ON(p == src_rq->curr);
+			WARN_ON(!task_on_rq_queued(p));
+
+			/*
+			 * There's a chance that p is higher in priority
+			 * than what's currently running on its CPU.
+			 * This is just that p is wakeing up and hasn't
+			 * had a chance to schedule. We only pull
+			 * p if it is lower in priority than the
+			 * current task on the run queue
+			 */
+			if (p->prio < src_rq->curr->prio)
+				goto skip;
+
+			resched = true;
+
+			deactivate_task(src_rq, p, 0);
+			set_task_cpu(p, this_cpu);
+			activate_task(this_rq, p, 0);
+			/*
+			 * We continue with the search, just in
+			 * case there's an even higher prio task
+			 * in another runqueue. (low likelihood
+			 * but possible)
+			 */
+		}
+skip:
+		double_unlock_balance(this_rq, src_rq);
+	}
+
+	if (resched)
+		resched_curr(this_rq);
+}
+
+/*
+ * If we are not running and we are not going to reschedule soon, we should
+ * try to push tasks away now
+ */
+static void task_woken_rt(struct rq *rq, struct task_struct *p)
+{
+	if (!task_running(rq, p) &&
+	    !test_tsk_need_resched(rq->curr) &&
+	    p->nr_cpus_allowed > 1 &&
+	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
+	    (rq->curr->nr_cpus_allowed < 2 ||
+	     rq->curr->prio <= p->prio))
+		push_rt_tasks(rq);
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_rt(struct rq *rq)
+{
+	if (rq->rt.overloaded)
+		rt_set_overload(rq);
+
+	__enable_runtime(rq);
+
+	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_rt(struct rq *rq)
+{
+	if (rq->rt.overloaded)
+		rt_clear_overload(rq);
+
+	__disable_runtime(rq);
+
+	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
+}
+
+/*
+ * When switch from the rt queue, we bring ourselves to a position
+ * that we might want to pull RT tasks from other runqueues.
+ */
+static void switched_from_rt(struct rq *rq, struct task_struct *p)
+{
+	/*
+	 * If there are other RT tasks then we will reschedule
+	 * and the scheduling of the other RT tasks will handle
+	 * the balancing. But if we are the last RT task
+	 * we may need to handle the pulling of RT tasks
+	 * now.
+	 */
+	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
+		return;
+
+	rt_queue_pull_task(rq);
+}
+
+void __init init_sched_rt_class(void)
+{
+	unsigned int i;
+
+	for_each_possible_cpu(i) {
+		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
+					GFP_KERNEL, cpu_to_node(i));
+	}
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * When switching a task to RT, we may overload the runqueue
+ * with RT tasks. In this case we try to push them off to
+ * other runqueues.
+ */
+static void switched_to_rt(struct rq *rq, struct task_struct *p)
+{
+	/*
+	 * If we are already running, then there's nothing
+	 * that needs to be done. But if we are not running
+	 * we may need to preempt the current running task.
+	 * If that current running task is also an RT task
+	 * then see if we can move to another run queue.
+	 */
+	if (task_on_rq_queued(p) && rq->curr != p) {
+#ifdef CONFIG_SMP
+		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
+			rt_queue_push_tasks(rq);
+#endif /* CONFIG_SMP */
+		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
+			resched_curr(rq);
+	}
+}
+
+/*
+ * Priority of the task has changed. This may cause
+ * us to initiate a push or pull.
+ */
+static void
+prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
+{
+	if (!task_on_rq_queued(p))
+		return;
+
+	if (rq->curr == p) {
+#ifdef CONFIG_SMP
+		/*
+		 * If our priority decreases while running, we
+		 * may need to pull tasks to this runqueue.
+		 */
+		if (oldprio < p->prio)
+			rt_queue_pull_task(rq);
+
+		/*
+		 * If there's a higher priority task waiting to run
+		 * then reschedule.
+		 */
+		if (p->prio > rq->rt.highest_prio.curr)
+			resched_curr(rq);
+#else
+		/* For UP simply resched on drop of prio */
+		if (oldprio < p->prio)
+			resched_curr(rq);
+#endif /* CONFIG_SMP */
+	} else {
+		/*
+		 * This task is not running, but if it is
+		 * greater than the current running task
+		 * then reschedule.
+		 */
+		if (p->prio < rq->curr->prio)
+			resched_curr(rq);
+	}
+}
+
+#ifdef CONFIG_POSIX_TIMERS
+static void watchdog(struct rq *rq, struct task_struct *p)
+{
+	unsigned long soft, hard;
+
+	/* max may change after cur was read, this will be fixed next tick */
+	soft = task_rlimit(p, RLIMIT_RTTIME);
+	hard = task_rlimit_max(p, RLIMIT_RTTIME);
+
+	if (soft != RLIM_INFINITY) {
+		unsigned long next;
+
+		if (p->rt.watchdog_stamp != jiffies) {
+			p->rt.timeout++;
+			p->rt.watchdog_stamp = jiffies;
+		}
+
+		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
+		if (p->rt.timeout > next)
+			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
+	}
+}
+#else
+static inline void watchdog(struct rq *rq, struct task_struct *p) { }
+#endif
+
+/*
+ * scheduler tick hitting a task of our scheduling class.
+ *
+ * NOTE: This function can be called remotely by the tick offload that
+ * goes along full dynticks. Therefore no local assumption can be made
+ * and everything must be accessed through the @rq and @curr passed in
+ * parameters.
+ */
+static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+
+	update_curr_rt(rq);
+	update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
+
+	watchdog(rq, p);
+
+	/*
+	 * RR tasks need a special form of timeslice management.
+	 * FIFO tasks have no timeslices.
+	 */
+	if (p->policy != SCHED_RR)
+		return;
+
+	if (--p->rt.time_slice)
+		return;
+
+	p->rt.time_slice = sched_rr_timeslice;
+
+	/*
+	 * Requeue to the end of queue if we (and all of our ancestors) are not
+	 * the only element on the queue
+	 */
+	for_each_sched_rt_entity(rt_se) {
+		if (rt_se->run_list.prev != rt_se->run_list.next) {
+			requeue_task_rt(rq, p, 0);
+			resched_curr(rq);
+			return;
+		}
+	}
+}
+
+static void set_curr_task_rt(struct rq *rq)
+{
+	struct task_struct *p = rq->curr;
+
+	p->se.exec_start = rq_clock_task(rq);
+
+	/* The running task is never eligible for pushing */
+	dequeue_pushable_task(rq, p);
+}
+
+static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
+{
+	/*
+	 * Time slice is 0 for SCHED_FIFO tasks
+	 */
+	if (task->policy == SCHED_RR)
+		return sched_rr_timeslice;
+	else
+		return 0;
+}
+
+const struct sched_class rt_sched_class = {
+	.next			= &fair_sched_class,
+	.enqueue_task		= enqueue_task_rt,
+	.dequeue_task		= dequeue_task_rt,
+	.yield_task		= yield_task_rt,
+
+	.check_preempt_curr	= check_preempt_curr_rt,
+
+	.pick_next_task		= pick_next_task_rt,
+	.put_prev_task		= put_prev_task_rt,
+
+#ifdef CONFIG_SMP
+	.select_task_rq		= select_task_rq_rt,
+
+	.set_cpus_allowed       = set_cpus_allowed_common,
+	.rq_online              = rq_online_rt,
+	.rq_offline             = rq_offline_rt,
+	.task_woken		= task_woken_rt,
+	.switched_from		= switched_from_rt,
+#endif
+
+	.set_curr_task          = set_curr_task_rt,
+	.task_tick		= task_tick_rt,
+
+	.get_rr_interval	= get_rr_interval_rt,
+
+	.prio_changed		= prio_changed_rt,
+	.switched_to		= switched_to_rt,
+
+	.update_curr		= update_curr_rt,
+};
+
+#ifdef CONFIG_RT_GROUP_SCHED
+/*
+ * Ensure that the real time constraints are schedulable.
+ */
+static DEFINE_MUTEX(rt_constraints_mutex);
+
+/* Must be called with tasklist_lock held */
+static inline int tg_has_rt_tasks(struct task_group *tg)
+{
+	struct task_struct *g, *p;
+
+	/*
+	 * Autogroups do not have RT tasks; see autogroup_create().
+	 */
+	if (task_group_is_autogroup(tg))
+		return 0;
+
+	for_each_process_thread(g, p) {
+		if (rt_task(p) && task_group(p) == tg)
+			return 1;
+	}
+
+	return 0;
+}
+
+struct rt_schedulable_data {
+	struct task_group *tg;
+	u64 rt_period;
+	u64 rt_runtime;
+};
+
+static int tg_rt_schedulable(struct task_group *tg, void *data)
+{
+	struct rt_schedulable_data *d = data;
+	struct task_group *child;
+	unsigned long total, sum = 0;
+	u64 period, runtime;
+
+	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
+	runtime = tg->rt_bandwidth.rt_runtime;
+
+	if (tg == d->tg) {
+		period = d->rt_period;
+		runtime = d->rt_runtime;
+	}
+
+	/*
+	 * Cannot have more runtime than the period.
+	 */
+	if (runtime > period && runtime != RUNTIME_INF)
+		return -EINVAL;
+
+	/*
+	 * Ensure we don't starve existing RT tasks.
+	 */
+	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
+		return -EBUSY;
+
+	total = to_ratio(period, runtime);
+
+	/*
+	 * Nobody can have more than the global setting allows.
+	 */
+	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
+		return -EINVAL;
+
+	/*
+	 * The sum of our children's runtime should not exceed our own.
+	 */
+	list_for_each_entry_rcu(child, &tg->children, siblings) {
+		period = ktime_to_ns(child->rt_bandwidth.rt_period);
+		runtime = child->rt_bandwidth.rt_runtime;
+
+		if (child == d->tg) {
+			period = d->rt_period;
+			runtime = d->rt_runtime;
+		}
+
+		sum += to_ratio(period, runtime);
+	}
+
+	if (sum > total)
+		return -EINVAL;
+
+	return 0;
+}
+
+static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
+{
+	int ret;
+
+	struct rt_schedulable_data data = {
+		.tg = tg,
+		.rt_period = period,
+		.rt_runtime = runtime,
+	};
+
+	rcu_read_lock();
+	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
+	rcu_read_unlock();
+
+	return ret;
+}
+
+static int tg_set_rt_bandwidth(struct task_group *tg,
+		u64 rt_period, u64 rt_runtime)
+{
+	int i, err = 0;
+
+	/*
+	 * Disallowing the root group RT runtime is BAD, it would disallow the
+	 * kernel creating (and or operating) RT threads.
+	 */
+	if (tg == &root_task_group && rt_runtime == 0)
+		return -EINVAL;
+
+	/* No period doesn't make any sense. */
+	if (rt_period == 0)
+		return -EINVAL;
+
+	mutex_lock(&rt_constraints_mutex);
+	read_lock(&tasklist_lock);
+	err = __rt_schedulable(tg, rt_period, rt_runtime);
+	if (err)
+		goto unlock;
+
+	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
+	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
+	tg->rt_bandwidth.rt_runtime = rt_runtime;
+
+	for_each_possible_cpu(i) {
+		struct rt_rq *rt_rq = tg->rt_rq[i];
+
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		rt_rq->rt_runtime = rt_runtime;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+	}
+	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
+unlock:
+	read_unlock(&tasklist_lock);
+	mutex_unlock(&rt_constraints_mutex);
+
+	return err;
+}
+
+int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
+{
+	u64 rt_runtime, rt_period;
+
+	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
+	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
+	if (rt_runtime_us < 0)
+		rt_runtime = RUNTIME_INF;
+
+	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
+}
+
+long sched_group_rt_runtime(struct task_group *tg)
+{
+	u64 rt_runtime_us;
+
+	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
+		return -1;
+
+	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
+	do_div(rt_runtime_us, NSEC_PER_USEC);
+	return rt_runtime_us;
+}
+
+int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
+{
+	u64 rt_runtime, rt_period;
+
+	rt_period = rt_period_us * NSEC_PER_USEC;
+	rt_runtime = tg->rt_bandwidth.rt_runtime;
+
+	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
+}
+
+long sched_group_rt_period(struct task_group *tg)
+{
+	u64 rt_period_us;
+
+	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
+	do_div(rt_period_us, NSEC_PER_USEC);
+	return rt_period_us;
+}
+
+static int sched_rt_global_constraints(void)
+{
+	int ret = 0;
+
+	mutex_lock(&rt_constraints_mutex);
+	read_lock(&tasklist_lock);
+	ret = __rt_schedulable(NULL, 0, 0);
+	read_unlock(&tasklist_lock);
+	mutex_unlock(&rt_constraints_mutex);
+
+	return ret;
+}
+
+int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
+{
+	/* Don't accept realtime tasks when there is no way for them to run */
+	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
+		return 0;
+
+	return 1;
+}
+
+#else /* !CONFIG_RT_GROUP_SCHED */
+static int sched_rt_global_constraints(void)
+{
+	unsigned long flags;
+	int i;
+
+	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
+	for_each_possible_cpu(i) {
+		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
+
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		rt_rq->rt_runtime = global_rt_runtime();
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+	}
+	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
+
+	return 0;
+}
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+static int sched_rt_global_validate(void)
+{
+	if (sysctl_sched_rt_period <= 0)
+		return -EINVAL;
+
+	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
+		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
+		return -EINVAL;
+
+	return 0;
+}
+
+static void sched_rt_do_global(void)
+{
+	def_rt_bandwidth.rt_runtime = global_rt_runtime();
+	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
+}
+
+int sched_rt_handler(struct ctl_table *table, int write,
+		void __user *buffer, size_t *lenp,
+		loff_t *ppos)
+{
+	int old_period, old_runtime;
+	static DEFINE_MUTEX(mutex);
+	int ret;
+
+	mutex_lock(&mutex);
+	old_period = sysctl_sched_rt_period;
+	old_runtime = sysctl_sched_rt_runtime;
+
+	ret = proc_dointvec(table, write, buffer, lenp, ppos);
+
+	if (!ret && write) {
+		ret = sched_rt_global_validate();
+		if (ret)
+			goto undo;
+
+		ret = sched_dl_global_validate();
+		if (ret)
+			goto undo;
+
+		ret = sched_rt_global_constraints();
+		if (ret)
+			goto undo;
+
+		sched_rt_do_global();
+		sched_dl_do_global();
+	}
+	if (0) {
+undo:
+		sysctl_sched_rt_period = old_period;
+		sysctl_sched_rt_runtime = old_runtime;
+	}
+	mutex_unlock(&mutex);
+
+	return ret;
+}
+
+int sched_rr_handler(struct ctl_table *table, int write,
+		void __user *buffer, size_t *lenp,
+		loff_t *ppos)
+{
+	int ret;
+	static DEFINE_MUTEX(mutex);
+
+	mutex_lock(&mutex);
+	ret = proc_dointvec(table, write, buffer, lenp, ppos);
+	/*
+	 * Make sure that internally we keep jiffies.
+	 * Also, writing zero resets the timeslice to default:
+	 */
+	if (!ret && write) {
+		sched_rr_timeslice =
+			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
+			msecs_to_jiffies(sysctl_sched_rr_timeslice);
+	}
+	mutex_unlock(&mutex);
+
+	return ret;
+}
+
+#ifdef CONFIG_SCHED_DEBUG
+void print_rt_stats(struct seq_file *m, int cpu)
+{
+	rt_rq_iter_t iter;
+	struct rt_rq *rt_rq;
+
+	rcu_read_lock();
+	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
+		print_rt_rq(m, cpu, rt_rq);
+	rcu_read_unlock();
+}
+#endif /* CONFIG_SCHED_DEBUG */