v4.19.13 snapshot.
diff --git a/kernel/profile.c b/kernel/profile.c
new file mode 100644
index 0000000..9aa2a44
--- /dev/null
+++ b/kernel/profile.c
@@ -0,0 +1,565 @@
+/*
+ *  linux/kernel/profile.c
+ *  Simple profiling. Manages a direct-mapped profile hit count buffer,
+ *  with configurable resolution, support for restricting the cpus on
+ *  which profiling is done, and switching between cpu time and
+ *  schedule() calls via kernel command line parameters passed at boot.
+ *
+ *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
+ *	Red Hat, July 2004
+ *  Consolidation of architecture support code for profiling,
+ *	Nadia Yvette Chambers, Oracle, July 2004
+ *  Amortized hit count accounting via per-cpu open-addressed hashtables
+ *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
+ *	Oracle, 2004
+ */
+
+#include <linux/export.h>
+#include <linux/profile.h>
+#include <linux/bootmem.h>
+#include <linux/notifier.h>
+#include <linux/mm.h>
+#include <linux/cpumask.h>
+#include <linux/cpu.h>
+#include <linux/highmem.h>
+#include <linux/mutex.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/sched/stat.h>
+
+#include <asm/sections.h>
+#include <asm/irq_regs.h>
+#include <asm/ptrace.h>
+
+struct profile_hit {
+	u32 pc, hits;
+};
+#define PROFILE_GRPSHIFT	3
+#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
+#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
+#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
+
+static atomic_t *prof_buffer;
+static unsigned long prof_len, prof_shift;
+
+int prof_on __read_mostly;
+EXPORT_SYMBOL_GPL(prof_on);
+
+static cpumask_var_t prof_cpu_mask;
+#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
+static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
+static DEFINE_PER_CPU(int, cpu_profile_flip);
+static DEFINE_MUTEX(profile_flip_mutex);
+#endif /* CONFIG_SMP */
+
+int profile_setup(char *str)
+{
+	static const char schedstr[] = "schedule";
+	static const char sleepstr[] = "sleep";
+	static const char kvmstr[] = "kvm";
+	int par;
+
+	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
+#ifdef CONFIG_SCHEDSTATS
+		force_schedstat_enabled();
+		prof_on = SLEEP_PROFILING;
+		if (str[strlen(sleepstr)] == ',')
+			str += strlen(sleepstr) + 1;
+		if (get_option(&str, &par))
+			prof_shift = par;
+		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
+			prof_shift);
+#else
+		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
+#endif /* CONFIG_SCHEDSTATS */
+	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
+		prof_on = SCHED_PROFILING;
+		if (str[strlen(schedstr)] == ',')
+			str += strlen(schedstr) + 1;
+		if (get_option(&str, &par))
+			prof_shift = par;
+		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
+			prof_shift);
+	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
+		prof_on = KVM_PROFILING;
+		if (str[strlen(kvmstr)] == ',')
+			str += strlen(kvmstr) + 1;
+		if (get_option(&str, &par))
+			prof_shift = par;
+		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
+			prof_shift);
+	} else if (get_option(&str, &par)) {
+		prof_shift = par;
+		prof_on = CPU_PROFILING;
+		pr_info("kernel profiling enabled (shift: %ld)\n",
+			prof_shift);
+	}
+	return 1;
+}
+__setup("profile=", profile_setup);
+
+
+int __ref profile_init(void)
+{
+	int buffer_bytes;
+	if (!prof_on)
+		return 0;
+
+	/* only text is profiled */
+	prof_len = (_etext - _stext) >> prof_shift;
+	buffer_bytes = prof_len*sizeof(atomic_t);
+
+	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
+		return -ENOMEM;
+
+	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
+
+	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
+	if (prof_buffer)
+		return 0;
+
+	prof_buffer = alloc_pages_exact(buffer_bytes,
+					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
+	if (prof_buffer)
+		return 0;
+
+	prof_buffer = vzalloc(buffer_bytes);
+	if (prof_buffer)
+		return 0;
+
+	free_cpumask_var(prof_cpu_mask);
+	return -ENOMEM;
+}
+
+/* Profile event notifications */
+
+static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
+static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
+static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
+
+void profile_task_exit(struct task_struct *task)
+{
+	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
+}
+
+int profile_handoff_task(struct task_struct *task)
+{
+	int ret;
+	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
+	return (ret == NOTIFY_OK) ? 1 : 0;
+}
+
+void profile_munmap(unsigned long addr)
+{
+	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
+}
+
+int task_handoff_register(struct notifier_block *n)
+{
+	return atomic_notifier_chain_register(&task_free_notifier, n);
+}
+EXPORT_SYMBOL_GPL(task_handoff_register);
+
+int task_handoff_unregister(struct notifier_block *n)
+{
+	return atomic_notifier_chain_unregister(&task_free_notifier, n);
+}
+EXPORT_SYMBOL_GPL(task_handoff_unregister);
+
+int profile_event_register(enum profile_type type, struct notifier_block *n)
+{
+	int err = -EINVAL;
+
+	switch (type) {
+	case PROFILE_TASK_EXIT:
+		err = blocking_notifier_chain_register(
+				&task_exit_notifier, n);
+		break;
+	case PROFILE_MUNMAP:
+		err = blocking_notifier_chain_register(
+				&munmap_notifier, n);
+		break;
+	}
+
+	return err;
+}
+EXPORT_SYMBOL_GPL(profile_event_register);
+
+int profile_event_unregister(enum profile_type type, struct notifier_block *n)
+{
+	int err = -EINVAL;
+
+	switch (type) {
+	case PROFILE_TASK_EXIT:
+		err = blocking_notifier_chain_unregister(
+				&task_exit_notifier, n);
+		break;
+	case PROFILE_MUNMAP:
+		err = blocking_notifier_chain_unregister(
+				&munmap_notifier, n);
+		break;
+	}
+
+	return err;
+}
+EXPORT_SYMBOL_GPL(profile_event_unregister);
+
+#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
+/*
+ * Each cpu has a pair of open-addressed hashtables for pending
+ * profile hits. read_profile() IPI's all cpus to request them
+ * to flip buffers and flushes their contents to prof_buffer itself.
+ * Flip requests are serialized by the profile_flip_mutex. The sole
+ * use of having a second hashtable is for avoiding cacheline
+ * contention that would otherwise happen during flushes of pending
+ * profile hits required for the accuracy of reported profile hits
+ * and so resurrect the interrupt livelock issue.
+ *
+ * The open-addressed hashtables are indexed by profile buffer slot
+ * and hold the number of pending hits to that profile buffer slot on
+ * a cpu in an entry. When the hashtable overflows, all pending hits
+ * are accounted to their corresponding profile buffer slots with
+ * atomic_add() and the hashtable emptied. As numerous pending hits
+ * may be accounted to a profile buffer slot in a hashtable entry,
+ * this amortizes a number of atomic profile buffer increments likely
+ * to be far larger than the number of entries in the hashtable,
+ * particularly given that the number of distinct profile buffer
+ * positions to which hits are accounted during short intervals (e.g.
+ * several seconds) is usually very small. Exclusion from buffer
+ * flipping is provided by interrupt disablement (note that for
+ * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
+ * process context).
+ * The hash function is meant to be lightweight as opposed to strong,
+ * and was vaguely inspired by ppc64 firmware-supported inverted
+ * pagetable hash functions, but uses a full hashtable full of finite
+ * collision chains, not just pairs of them.
+ *
+ * -- nyc
+ */
+static void __profile_flip_buffers(void *unused)
+{
+	int cpu = smp_processor_id();
+
+	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
+}
+
+static void profile_flip_buffers(void)
+{
+	int i, j, cpu;
+
+	mutex_lock(&profile_flip_mutex);
+	j = per_cpu(cpu_profile_flip, get_cpu());
+	put_cpu();
+	on_each_cpu(__profile_flip_buffers, NULL, 1);
+	for_each_online_cpu(cpu) {
+		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
+		for (i = 0; i < NR_PROFILE_HIT; ++i) {
+			if (!hits[i].hits) {
+				if (hits[i].pc)
+					hits[i].pc = 0;
+				continue;
+			}
+			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
+			hits[i].hits = hits[i].pc = 0;
+		}
+	}
+	mutex_unlock(&profile_flip_mutex);
+}
+
+static void profile_discard_flip_buffers(void)
+{
+	int i, cpu;
+
+	mutex_lock(&profile_flip_mutex);
+	i = per_cpu(cpu_profile_flip, get_cpu());
+	put_cpu();
+	on_each_cpu(__profile_flip_buffers, NULL, 1);
+	for_each_online_cpu(cpu) {
+		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
+		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
+	}
+	mutex_unlock(&profile_flip_mutex);
+}
+
+static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
+{
+	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
+	int i, j, cpu;
+	struct profile_hit *hits;
+
+	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
+	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
+	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
+	cpu = get_cpu();
+	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
+	if (!hits) {
+		put_cpu();
+		return;
+	}
+	/*
+	 * We buffer the global profiler buffer into a per-CPU
+	 * queue and thus reduce the number of global (and possibly
+	 * NUMA-alien) accesses. The write-queue is self-coalescing:
+	 */
+	local_irq_save(flags);
+	do {
+		for (j = 0; j < PROFILE_GRPSZ; ++j) {
+			if (hits[i + j].pc == pc) {
+				hits[i + j].hits += nr_hits;
+				goto out;
+			} else if (!hits[i + j].hits) {
+				hits[i + j].pc = pc;
+				hits[i + j].hits = nr_hits;
+				goto out;
+			}
+		}
+		i = (i + secondary) & (NR_PROFILE_HIT - 1);
+	} while (i != primary);
+
+	/*
+	 * Add the current hit(s) and flush the write-queue out
+	 * to the global buffer:
+	 */
+	atomic_add(nr_hits, &prof_buffer[pc]);
+	for (i = 0; i < NR_PROFILE_HIT; ++i) {
+		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
+		hits[i].pc = hits[i].hits = 0;
+	}
+out:
+	local_irq_restore(flags);
+	put_cpu();
+}
+
+static int profile_dead_cpu(unsigned int cpu)
+{
+	struct page *page;
+	int i;
+
+	if (prof_cpu_mask != NULL)
+		cpumask_clear_cpu(cpu, prof_cpu_mask);
+
+	for (i = 0; i < 2; i++) {
+		if (per_cpu(cpu_profile_hits, cpu)[i]) {
+			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
+			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
+			__free_page(page);
+		}
+	}
+	return 0;
+}
+
+static int profile_prepare_cpu(unsigned int cpu)
+{
+	int i, node = cpu_to_mem(cpu);
+	struct page *page;
+
+	per_cpu(cpu_profile_flip, cpu) = 0;
+
+	for (i = 0; i < 2; i++) {
+		if (per_cpu(cpu_profile_hits, cpu)[i])
+			continue;
+
+		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
+		if (!page) {
+			profile_dead_cpu(cpu);
+			return -ENOMEM;
+		}
+		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
+
+	}
+	return 0;
+}
+
+static int profile_online_cpu(unsigned int cpu)
+{
+	if (prof_cpu_mask != NULL)
+		cpumask_set_cpu(cpu, prof_cpu_mask);
+
+	return 0;
+}
+
+#else /* !CONFIG_SMP */
+#define profile_flip_buffers()		do { } while (0)
+#define profile_discard_flip_buffers()	do { } while (0)
+
+static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
+{
+	unsigned long pc;
+	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
+	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
+}
+#endif /* !CONFIG_SMP */
+
+void profile_hits(int type, void *__pc, unsigned int nr_hits)
+{
+	if (prof_on != type || !prof_buffer)
+		return;
+	do_profile_hits(type, __pc, nr_hits);
+}
+EXPORT_SYMBOL_GPL(profile_hits);
+
+void profile_tick(int type)
+{
+	struct pt_regs *regs = get_irq_regs();
+
+	if (!user_mode(regs) && prof_cpu_mask != NULL &&
+	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
+		profile_hit(type, (void *)profile_pc(regs));
+}
+
+#ifdef CONFIG_PROC_FS
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/uaccess.h>
+
+static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
+{
+	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
+	return 0;
+}
+
+static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, prof_cpu_mask_proc_show, NULL);
+}
+
+static ssize_t prof_cpu_mask_proc_write(struct file *file,
+	const char __user *buffer, size_t count, loff_t *pos)
+{
+	cpumask_var_t new_value;
+	int err;
+
+	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
+		return -ENOMEM;
+
+	err = cpumask_parse_user(buffer, count, new_value);
+	if (!err) {
+		cpumask_copy(prof_cpu_mask, new_value);
+		err = count;
+	}
+	free_cpumask_var(new_value);
+	return err;
+}
+
+static const struct file_operations prof_cpu_mask_proc_fops = {
+	.open		= prof_cpu_mask_proc_open,
+	.read		= seq_read,
+	.llseek		= seq_lseek,
+	.release	= single_release,
+	.write		= prof_cpu_mask_proc_write,
+};
+
+void create_prof_cpu_mask(void)
+{
+	/* create /proc/irq/prof_cpu_mask */
+	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
+}
+
+/*
+ * This function accesses profiling information. The returned data is
+ * binary: the sampling step and the actual contents of the profile
+ * buffer. Use of the program readprofile is recommended in order to
+ * get meaningful info out of these data.
+ */
+static ssize_t
+read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
+{
+	unsigned long p = *ppos;
+	ssize_t read;
+	char *pnt;
+	unsigned int sample_step = 1 << prof_shift;
+
+	profile_flip_buffers();
+	if (p >= (prof_len+1)*sizeof(unsigned int))
+		return 0;
+	if (count > (prof_len+1)*sizeof(unsigned int) - p)
+		count = (prof_len+1)*sizeof(unsigned int) - p;
+	read = 0;
+
+	while (p < sizeof(unsigned int) && count > 0) {
+		if (put_user(*((char *)(&sample_step)+p), buf))
+			return -EFAULT;
+		buf++; p++; count--; read++;
+	}
+	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
+	if (copy_to_user(buf, (void *)pnt, count))
+		return -EFAULT;
+	read += count;
+	*ppos += read;
+	return read;
+}
+
+/*
+ * Writing to /proc/profile resets the counters
+ *
+ * Writing a 'profiling multiplier' value into it also re-sets the profiling
+ * interrupt frequency, on architectures that support this.
+ */
+static ssize_t write_profile(struct file *file, const char __user *buf,
+			     size_t count, loff_t *ppos)
+{
+#ifdef CONFIG_SMP
+	extern int setup_profiling_timer(unsigned int multiplier);
+
+	if (count == sizeof(int)) {
+		unsigned int multiplier;
+
+		if (copy_from_user(&multiplier, buf, sizeof(int)))
+			return -EFAULT;
+
+		if (setup_profiling_timer(multiplier))
+			return -EINVAL;
+	}
+#endif
+	profile_discard_flip_buffers();
+	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
+	return count;
+}
+
+static const struct file_operations proc_profile_operations = {
+	.read		= read_profile,
+	.write		= write_profile,
+	.llseek		= default_llseek,
+};
+
+int __ref create_proc_profile(void)
+{
+	struct proc_dir_entry *entry;
+#ifdef CONFIG_SMP
+	enum cpuhp_state online_state;
+#endif
+
+	int err = 0;
+
+	if (!prof_on)
+		return 0;
+#ifdef CONFIG_SMP
+	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
+				profile_prepare_cpu, profile_dead_cpu);
+	if (err)
+		return err;
+
+	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
+				profile_online_cpu, NULL);
+	if (err < 0)
+		goto err_state_prep;
+	online_state = err;
+	err = 0;
+#endif
+	entry = proc_create("profile", S_IWUSR | S_IRUGO,
+			    NULL, &proc_profile_operations);
+	if (!entry)
+		goto err_state_onl;
+	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
+
+	return err;
+err_state_onl:
+#ifdef CONFIG_SMP
+	cpuhp_remove_state(online_state);
+err_state_prep:
+	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
+#endif
+	return err;
+}
+subsys_initcall(create_proc_profile);
+#endif /* CONFIG_PROC_FS */