v4.19.13 snapshot.
diff --git a/kernel/locking/osq_lock.c b/kernel/locking/osq_lock.c
new file mode 100644
index 0000000..6ef600a
--- /dev/null
+++ b/kernel/locking/osq_lock.c
@@ -0,0 +1,231 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/percpu.h>
+#include <linux/sched.h>
+#include <linux/osq_lock.h>
+
+/*
+ * An MCS like lock especially tailored for optimistic spinning for sleeping
+ * lock implementations (mutex, rwsem, etc).
+ *
+ * Using a single mcs node per CPU is safe because sleeping locks should not be
+ * called from interrupt context and we have preemption disabled while
+ * spinning.
+ */
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
+
+/*
+ * We use the value 0 to represent "no CPU", thus the encoded value
+ * will be the CPU number incremented by 1.
+ */
+static inline int encode_cpu(int cpu_nr)
+{
+	return cpu_nr + 1;
+}
+
+static inline int node_cpu(struct optimistic_spin_node *node)
+{
+	return node->cpu - 1;
+}
+
+static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
+{
+	int cpu_nr = encoded_cpu_val - 1;
+
+	return per_cpu_ptr(&osq_node, cpu_nr);
+}
+
+/*
+ * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
+ * Can return NULL in case we were the last queued and we updated @lock instead.
+ */
+static inline struct optimistic_spin_node *
+osq_wait_next(struct optimistic_spin_queue *lock,
+	      struct optimistic_spin_node *node,
+	      struct optimistic_spin_node *prev)
+{
+	struct optimistic_spin_node *next = NULL;
+	int curr = encode_cpu(smp_processor_id());
+	int old;
+
+	/*
+	 * If there is a prev node in queue, then the 'old' value will be
+	 * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if
+	 * we're currently last in queue, then the queue will then become empty.
+	 */
+	old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;
+
+	for (;;) {
+		if (atomic_read(&lock->tail) == curr &&
+		    atomic_cmpxchg_acquire(&lock->tail, curr, old) == curr) {
+			/*
+			 * We were the last queued, we moved @lock back. @prev
+			 * will now observe @lock and will complete its
+			 * unlock()/unqueue().
+			 */
+			break;
+		}
+
+		/*
+		 * We must xchg() the @node->next value, because if we were to
+		 * leave it in, a concurrent unlock()/unqueue() from
+		 * @node->next might complete Step-A and think its @prev is
+		 * still valid.
+		 *
+		 * If the concurrent unlock()/unqueue() wins the race, we'll
+		 * wait for either @lock to point to us, through its Step-B, or
+		 * wait for a new @node->next from its Step-C.
+		 */
+		if (node->next) {
+			next = xchg(&node->next, NULL);
+			if (next)
+				break;
+		}
+
+		cpu_relax();
+	}
+
+	return next;
+}
+
+bool osq_lock(struct optimistic_spin_queue *lock)
+{
+	struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
+	struct optimistic_spin_node *prev, *next;
+	int curr = encode_cpu(smp_processor_id());
+	int old;
+
+	node->locked = 0;
+	node->next = NULL;
+	node->cpu = curr;
+
+	/*
+	 * We need both ACQUIRE (pairs with corresponding RELEASE in
+	 * unlock() uncontended, or fastpath) and RELEASE (to publish
+	 * the node fields we just initialised) semantics when updating
+	 * the lock tail.
+	 */
+	old = atomic_xchg(&lock->tail, curr);
+	if (old == OSQ_UNLOCKED_VAL)
+		return true;
+
+	prev = decode_cpu(old);
+	node->prev = prev;
+
+	/*
+	 * osq_lock()			unqueue
+	 *
+	 * node->prev = prev		osq_wait_next()
+	 * WMB				MB
+	 * prev->next = node		next->prev = prev // unqueue-C
+	 *
+	 * Here 'node->prev' and 'next->prev' are the same variable and we need
+	 * to ensure these stores happen in-order to avoid corrupting the list.
+	 */
+	smp_wmb();
+
+	WRITE_ONCE(prev->next, node);
+
+	/*
+	 * Normally @prev is untouchable after the above store; because at that
+	 * moment unlock can proceed and wipe the node element from stack.
+	 *
+	 * However, since our nodes are static per-cpu storage, we're
+	 * guaranteed their existence -- this allows us to apply
+	 * cmpxchg in an attempt to undo our queueing.
+	 */
+
+	while (!READ_ONCE(node->locked)) {
+		/*
+		 * If we need to reschedule bail... so we can block.
+		 * Use vcpu_is_preempted() to avoid waiting for a preempted
+		 * lock holder:
+		 */
+		if (need_resched() || vcpu_is_preempted(node_cpu(node->prev)))
+			goto unqueue;
+
+		cpu_relax();
+	}
+	return true;
+
+unqueue:
+	/*
+	 * Step - A  -- stabilize @prev
+	 *
+	 * Undo our @prev->next assignment; this will make @prev's
+	 * unlock()/unqueue() wait for a next pointer since @lock points to us
+	 * (or later).
+	 */
+
+	for (;;) {
+		if (prev->next == node &&
+		    cmpxchg(&prev->next, node, NULL) == node)
+			break;
+
+		/*
+		 * We can only fail the cmpxchg() racing against an unlock(),
+		 * in which case we should observe @node->locked becomming
+		 * true.
+		 */
+		if (smp_load_acquire(&node->locked))
+			return true;
+
+		cpu_relax();
+
+		/*
+		 * Or we race against a concurrent unqueue()'s step-B, in which
+		 * case its step-C will write us a new @node->prev pointer.
+		 */
+		prev = READ_ONCE(node->prev);
+	}
+
+	/*
+	 * Step - B -- stabilize @next
+	 *
+	 * Similar to unlock(), wait for @node->next or move @lock from @node
+	 * back to @prev.
+	 */
+
+	next = osq_wait_next(lock, node, prev);
+	if (!next)
+		return false;
+
+	/*
+	 * Step - C -- unlink
+	 *
+	 * @prev is stable because its still waiting for a new @prev->next
+	 * pointer, @next is stable because our @node->next pointer is NULL and
+	 * it will wait in Step-A.
+	 */
+
+	WRITE_ONCE(next->prev, prev);
+	WRITE_ONCE(prev->next, next);
+
+	return false;
+}
+
+void osq_unlock(struct optimistic_spin_queue *lock)
+{
+	struct optimistic_spin_node *node, *next;
+	int curr = encode_cpu(smp_processor_id());
+
+	/*
+	 * Fast path for the uncontended case.
+	 */
+	if (likely(atomic_cmpxchg_release(&lock->tail, curr,
+					  OSQ_UNLOCKED_VAL) == curr))
+		return;
+
+	/*
+	 * Second most likely case.
+	 */
+	node = this_cpu_ptr(&osq_node);
+	next = xchg(&node->next, NULL);
+	if (next) {
+		WRITE_ONCE(next->locked, 1);
+		return;
+	}
+
+	next = osq_wait_next(lock, node, NULL);
+	if (next)
+		WRITE_ONCE(next->locked, 1);
+}