v4.19.13 snapshot.
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
new file mode 100644
index 0000000..2954e4b
--- /dev/null
+++ b/kernel/bpf/verifier.c
@@ -0,0 +1,6039 @@
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ * Copyright (c) 2016 Facebook
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of version 2 of the GNU General Public
+ * License as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ */
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/bpf.h>
+#include <linux/bpf_verifier.h>
+#include <linux/filter.h>
+#include <net/netlink.h>
+#include <linux/file.h>
+#include <linux/vmalloc.h>
+#include <linux/stringify.h>
+#include <linux/bsearch.h>
+#include <linux/sort.h>
+#include <linux/perf_event.h>
+
+#include "disasm.h"
+
+static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
+#define BPF_PROG_TYPE(_id, _name) \
+	[_id] = & _name ## _verifier_ops,
+#define BPF_MAP_TYPE(_id, _ops)
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+#undef BPF_MAP_TYPE
+};
+
+/* bpf_check() is a static code analyzer that walks eBPF program
+ * instruction by instruction and updates register/stack state.
+ * All paths of conditional branches are analyzed until 'bpf_exit' insn.
+ *
+ * The first pass is depth-first-search to check that the program is a DAG.
+ * It rejects the following programs:
+ * - larger than BPF_MAXINSNS insns
+ * - if loop is present (detected via back-edge)
+ * - unreachable insns exist (shouldn't be a forest. program = one function)
+ * - out of bounds or malformed jumps
+ * The second pass is all possible path descent from the 1st insn.
+ * Since it's analyzing all pathes through the program, the length of the
+ * analysis is limited to 64k insn, which may be hit even if total number of
+ * insn is less then 4K, but there are too many branches that change stack/regs.
+ * Number of 'branches to be analyzed' is limited to 1k
+ *
+ * On entry to each instruction, each register has a type, and the instruction
+ * changes the types of the registers depending on instruction semantics.
+ * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
+ * copied to R1.
+ *
+ * All registers are 64-bit.
+ * R0 - return register
+ * R1-R5 argument passing registers
+ * R6-R9 callee saved registers
+ * R10 - frame pointer read-only
+ *
+ * At the start of BPF program the register R1 contains a pointer to bpf_context
+ * and has type PTR_TO_CTX.
+ *
+ * Verifier tracks arithmetic operations on pointers in case:
+ *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
+ *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
+ * 1st insn copies R10 (which has FRAME_PTR) type into R1
+ * and 2nd arithmetic instruction is pattern matched to recognize
+ * that it wants to construct a pointer to some element within stack.
+ * So after 2nd insn, the register R1 has type PTR_TO_STACK
+ * (and -20 constant is saved for further stack bounds checking).
+ * Meaning that this reg is a pointer to stack plus known immediate constant.
+ *
+ * Most of the time the registers have SCALAR_VALUE type, which
+ * means the register has some value, but it's not a valid pointer.
+ * (like pointer plus pointer becomes SCALAR_VALUE type)
+ *
+ * When verifier sees load or store instructions the type of base register
+ * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
+ * types recognized by check_mem_access() function.
+ *
+ * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
+ * and the range of [ptr, ptr + map's value_size) is accessible.
+ *
+ * registers used to pass values to function calls are checked against
+ * function argument constraints.
+ *
+ * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
+ * It means that the register type passed to this function must be
+ * PTR_TO_STACK and it will be used inside the function as
+ * 'pointer to map element key'
+ *
+ * For example the argument constraints for bpf_map_lookup_elem():
+ *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
+ *   .arg1_type = ARG_CONST_MAP_PTR,
+ *   .arg2_type = ARG_PTR_TO_MAP_KEY,
+ *
+ * ret_type says that this function returns 'pointer to map elem value or null'
+ * function expects 1st argument to be a const pointer to 'struct bpf_map' and
+ * 2nd argument should be a pointer to stack, which will be used inside
+ * the helper function as a pointer to map element key.
+ *
+ * On the kernel side the helper function looks like:
+ * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
+ * {
+ *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
+ *    void *key = (void *) (unsigned long) r2;
+ *    void *value;
+ *
+ *    here kernel can access 'key' and 'map' pointers safely, knowing that
+ *    [key, key + map->key_size) bytes are valid and were initialized on
+ *    the stack of eBPF program.
+ * }
+ *
+ * Corresponding eBPF program may look like:
+ *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
+ *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
+ *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
+ *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
+ * here verifier looks at prototype of map_lookup_elem() and sees:
+ * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
+ * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
+ *
+ * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
+ * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
+ * and were initialized prior to this call.
+ * If it's ok, then verifier allows this BPF_CALL insn and looks at
+ * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
+ * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
+ * returns ether pointer to map value or NULL.
+ *
+ * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
+ * insn, the register holding that pointer in the true branch changes state to
+ * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
+ * branch. See check_cond_jmp_op().
+ *
+ * After the call R0 is set to return type of the function and registers R1-R5
+ * are set to NOT_INIT to indicate that they are no longer readable.
+ */
+
+/* verifier_state + insn_idx are pushed to stack when branch is encountered */
+struct bpf_verifier_stack_elem {
+	/* verifer state is 'st'
+	 * before processing instruction 'insn_idx'
+	 * and after processing instruction 'prev_insn_idx'
+	 */
+	struct bpf_verifier_state st;
+	int insn_idx;
+	int prev_insn_idx;
+	struct bpf_verifier_stack_elem *next;
+};
+
+#define BPF_COMPLEXITY_LIMIT_INSNS	131072
+#define BPF_COMPLEXITY_LIMIT_STACK	1024
+
+#define BPF_MAP_PTR_UNPRIV	1UL
+#define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
+					  POISON_POINTER_DELTA))
+#define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
+
+static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
+{
+	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
+}
+
+static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
+{
+	return aux->map_state & BPF_MAP_PTR_UNPRIV;
+}
+
+static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
+			      const struct bpf_map *map, bool unpriv)
+{
+	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
+	unpriv |= bpf_map_ptr_unpriv(aux);
+	aux->map_state = (unsigned long)map |
+			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
+}
+
+struct bpf_call_arg_meta {
+	struct bpf_map *map_ptr;
+	bool raw_mode;
+	bool pkt_access;
+	int regno;
+	int access_size;
+	s64 msize_smax_value;
+	u64 msize_umax_value;
+};
+
+static DEFINE_MUTEX(bpf_verifier_lock);
+
+void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
+		       va_list args)
+{
+	unsigned int n;
+
+	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
+
+	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
+		  "verifier log line truncated - local buffer too short\n");
+
+	n = min(log->len_total - log->len_used - 1, n);
+	log->kbuf[n] = '\0';
+
+	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
+		log->len_used += n;
+	else
+		log->ubuf = NULL;
+}
+
+/* log_level controls verbosity level of eBPF verifier.
+ * bpf_verifier_log_write() is used to dump the verification trace to the log,
+ * so the user can figure out what's wrong with the program
+ */
+__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
+					   const char *fmt, ...)
+{
+	va_list args;
+
+	if (!bpf_verifier_log_needed(&env->log))
+		return;
+
+	va_start(args, fmt);
+	bpf_verifier_vlog(&env->log, fmt, args);
+	va_end(args);
+}
+EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
+
+__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
+{
+	struct bpf_verifier_env *env = private_data;
+	va_list args;
+
+	if (!bpf_verifier_log_needed(&env->log))
+		return;
+
+	va_start(args, fmt);
+	bpf_verifier_vlog(&env->log, fmt, args);
+	va_end(args);
+}
+
+static bool type_is_pkt_pointer(enum bpf_reg_type type)
+{
+	return type == PTR_TO_PACKET ||
+	       type == PTR_TO_PACKET_META;
+}
+
+/* string representation of 'enum bpf_reg_type' */
+static const char * const reg_type_str[] = {
+	[NOT_INIT]		= "?",
+	[SCALAR_VALUE]		= "inv",
+	[PTR_TO_CTX]		= "ctx",
+	[CONST_PTR_TO_MAP]	= "map_ptr",
+	[PTR_TO_MAP_VALUE]	= "map_value",
+	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
+	[PTR_TO_STACK]		= "fp",
+	[PTR_TO_PACKET]		= "pkt",
+	[PTR_TO_PACKET_META]	= "pkt_meta",
+	[PTR_TO_PACKET_END]	= "pkt_end",
+};
+
+static void print_liveness(struct bpf_verifier_env *env,
+			   enum bpf_reg_liveness live)
+{
+	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
+	    verbose(env, "_");
+	if (live & REG_LIVE_READ)
+		verbose(env, "r");
+	if (live & REG_LIVE_WRITTEN)
+		verbose(env, "w");
+}
+
+static struct bpf_func_state *func(struct bpf_verifier_env *env,
+				   const struct bpf_reg_state *reg)
+{
+	struct bpf_verifier_state *cur = env->cur_state;
+
+	return cur->frame[reg->frameno];
+}
+
+static void print_verifier_state(struct bpf_verifier_env *env,
+				 const struct bpf_func_state *state)
+{
+	const struct bpf_reg_state *reg;
+	enum bpf_reg_type t;
+	int i;
+
+	if (state->frameno)
+		verbose(env, " frame%d:", state->frameno);
+	for (i = 0; i < MAX_BPF_REG; i++) {
+		reg = &state->regs[i];
+		t = reg->type;
+		if (t == NOT_INIT)
+			continue;
+		verbose(env, " R%d", i);
+		print_liveness(env, reg->live);
+		verbose(env, "=%s", reg_type_str[t]);
+		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
+		    tnum_is_const(reg->var_off)) {
+			/* reg->off should be 0 for SCALAR_VALUE */
+			verbose(env, "%lld", reg->var_off.value + reg->off);
+			if (t == PTR_TO_STACK)
+				verbose(env, ",call_%d", func(env, reg)->callsite);
+		} else {
+			verbose(env, "(id=%d", reg->id);
+			if (t != SCALAR_VALUE)
+				verbose(env, ",off=%d", reg->off);
+			if (type_is_pkt_pointer(t))
+				verbose(env, ",r=%d", reg->range);
+			else if (t == CONST_PTR_TO_MAP ||
+				 t == PTR_TO_MAP_VALUE ||
+				 t == PTR_TO_MAP_VALUE_OR_NULL)
+				verbose(env, ",ks=%d,vs=%d",
+					reg->map_ptr->key_size,
+					reg->map_ptr->value_size);
+			if (tnum_is_const(reg->var_off)) {
+				/* Typically an immediate SCALAR_VALUE, but
+				 * could be a pointer whose offset is too big
+				 * for reg->off
+				 */
+				verbose(env, ",imm=%llx", reg->var_off.value);
+			} else {
+				if (reg->smin_value != reg->umin_value &&
+				    reg->smin_value != S64_MIN)
+					verbose(env, ",smin_value=%lld",
+						(long long)reg->smin_value);
+				if (reg->smax_value != reg->umax_value &&
+				    reg->smax_value != S64_MAX)
+					verbose(env, ",smax_value=%lld",
+						(long long)reg->smax_value);
+				if (reg->umin_value != 0)
+					verbose(env, ",umin_value=%llu",
+						(unsigned long long)reg->umin_value);
+				if (reg->umax_value != U64_MAX)
+					verbose(env, ",umax_value=%llu",
+						(unsigned long long)reg->umax_value);
+				if (!tnum_is_unknown(reg->var_off)) {
+					char tn_buf[48];
+
+					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+					verbose(env, ",var_off=%s", tn_buf);
+				}
+			}
+			verbose(env, ")");
+		}
+	}
+	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
+		if (state->stack[i].slot_type[0] == STACK_SPILL) {
+			verbose(env, " fp%d",
+				(-i - 1) * BPF_REG_SIZE);
+			print_liveness(env, state->stack[i].spilled_ptr.live);
+			verbose(env, "=%s",
+				reg_type_str[state->stack[i].spilled_ptr.type]);
+		}
+		if (state->stack[i].slot_type[0] == STACK_ZERO)
+			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
+	}
+	verbose(env, "\n");
+}
+
+static int copy_stack_state(struct bpf_func_state *dst,
+			    const struct bpf_func_state *src)
+{
+	if (!src->stack)
+		return 0;
+	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
+		/* internal bug, make state invalid to reject the program */
+		memset(dst, 0, sizeof(*dst));
+		return -EFAULT;
+	}
+	memcpy(dst->stack, src->stack,
+	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
+	return 0;
+}
+
+/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
+ * make it consume minimal amount of memory. check_stack_write() access from
+ * the program calls into realloc_func_state() to grow the stack size.
+ * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
+ * which this function copies over. It points to previous bpf_verifier_state
+ * which is never reallocated
+ */
+static int realloc_func_state(struct bpf_func_state *state, int size,
+			      bool copy_old)
+{
+	u32 old_size = state->allocated_stack;
+	struct bpf_stack_state *new_stack;
+	int slot = size / BPF_REG_SIZE;
+
+	if (size <= old_size || !size) {
+		if (copy_old)
+			return 0;
+		state->allocated_stack = slot * BPF_REG_SIZE;
+		if (!size && old_size) {
+			kfree(state->stack);
+			state->stack = NULL;
+		}
+		return 0;
+	}
+	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
+				  GFP_KERNEL);
+	if (!new_stack)
+		return -ENOMEM;
+	if (copy_old) {
+		if (state->stack)
+			memcpy(new_stack, state->stack,
+			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
+		memset(new_stack + old_size / BPF_REG_SIZE, 0,
+		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
+	}
+	state->allocated_stack = slot * BPF_REG_SIZE;
+	kfree(state->stack);
+	state->stack = new_stack;
+	return 0;
+}
+
+static void free_func_state(struct bpf_func_state *state)
+{
+	if (!state)
+		return;
+	kfree(state->stack);
+	kfree(state);
+}
+
+static void free_verifier_state(struct bpf_verifier_state *state,
+				bool free_self)
+{
+	int i;
+
+	for (i = 0; i <= state->curframe; i++) {
+		free_func_state(state->frame[i]);
+		state->frame[i] = NULL;
+	}
+	if (free_self)
+		kfree(state);
+}
+
+/* copy verifier state from src to dst growing dst stack space
+ * when necessary to accommodate larger src stack
+ */
+static int copy_func_state(struct bpf_func_state *dst,
+			   const struct bpf_func_state *src)
+{
+	int err;
+
+	err = realloc_func_state(dst, src->allocated_stack, false);
+	if (err)
+		return err;
+	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
+	return copy_stack_state(dst, src);
+}
+
+static int copy_verifier_state(struct bpf_verifier_state *dst_state,
+			       const struct bpf_verifier_state *src)
+{
+	struct bpf_func_state *dst;
+	int i, err;
+
+	/* if dst has more stack frames then src frame, free them */
+	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
+		free_func_state(dst_state->frame[i]);
+		dst_state->frame[i] = NULL;
+	}
+	dst_state->curframe = src->curframe;
+	dst_state->parent = src->parent;
+	for (i = 0; i <= src->curframe; i++) {
+		dst = dst_state->frame[i];
+		if (!dst) {
+			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
+			if (!dst)
+				return -ENOMEM;
+			dst_state->frame[i] = dst;
+		}
+		err = copy_func_state(dst, src->frame[i]);
+		if (err)
+			return err;
+	}
+	return 0;
+}
+
+static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
+		     int *insn_idx)
+{
+	struct bpf_verifier_state *cur = env->cur_state;
+	struct bpf_verifier_stack_elem *elem, *head = env->head;
+	int err;
+
+	if (env->head == NULL)
+		return -ENOENT;
+
+	if (cur) {
+		err = copy_verifier_state(cur, &head->st);
+		if (err)
+			return err;
+	}
+	if (insn_idx)
+		*insn_idx = head->insn_idx;
+	if (prev_insn_idx)
+		*prev_insn_idx = head->prev_insn_idx;
+	elem = head->next;
+	free_verifier_state(&head->st, false);
+	kfree(head);
+	env->head = elem;
+	env->stack_size--;
+	return 0;
+}
+
+static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
+					     int insn_idx, int prev_insn_idx)
+{
+	struct bpf_verifier_state *cur = env->cur_state;
+	struct bpf_verifier_stack_elem *elem;
+	int err;
+
+	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
+	if (!elem)
+		goto err;
+
+	elem->insn_idx = insn_idx;
+	elem->prev_insn_idx = prev_insn_idx;
+	elem->next = env->head;
+	env->head = elem;
+	env->stack_size++;
+	err = copy_verifier_state(&elem->st, cur);
+	if (err)
+		goto err;
+	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
+		verbose(env, "BPF program is too complex\n");
+		goto err;
+	}
+	return &elem->st;
+err:
+	free_verifier_state(env->cur_state, true);
+	env->cur_state = NULL;
+	/* pop all elements and return */
+	while (!pop_stack(env, NULL, NULL));
+	return NULL;
+}
+
+#define CALLER_SAVED_REGS 6
+static const int caller_saved[CALLER_SAVED_REGS] = {
+	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
+};
+
+static void __mark_reg_not_init(struct bpf_reg_state *reg);
+
+/* Mark the unknown part of a register (variable offset or scalar value) as
+ * known to have the value @imm.
+ */
+static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
+{
+	/* Clear id, off, and union(map_ptr, range) */
+	memset(((u8 *)reg) + sizeof(reg->type), 0,
+	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
+	reg->var_off = tnum_const(imm);
+	reg->smin_value = (s64)imm;
+	reg->smax_value = (s64)imm;
+	reg->umin_value = imm;
+	reg->umax_value = imm;
+}
+
+/* Mark the 'variable offset' part of a register as zero.  This should be
+ * used only on registers holding a pointer type.
+ */
+static void __mark_reg_known_zero(struct bpf_reg_state *reg)
+{
+	__mark_reg_known(reg, 0);
+}
+
+static void __mark_reg_const_zero(struct bpf_reg_state *reg)
+{
+	__mark_reg_known(reg, 0);
+	reg->type = SCALAR_VALUE;
+}
+
+static void mark_reg_known_zero(struct bpf_verifier_env *env,
+				struct bpf_reg_state *regs, u32 regno)
+{
+	if (WARN_ON(regno >= MAX_BPF_REG)) {
+		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
+		/* Something bad happened, let's kill all regs */
+		for (regno = 0; regno < MAX_BPF_REG; regno++)
+			__mark_reg_not_init(regs + regno);
+		return;
+	}
+	__mark_reg_known_zero(regs + regno);
+}
+
+static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
+{
+	return type_is_pkt_pointer(reg->type);
+}
+
+static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
+{
+	return reg_is_pkt_pointer(reg) ||
+	       reg->type == PTR_TO_PACKET_END;
+}
+
+/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
+static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
+				    enum bpf_reg_type which)
+{
+	/* The register can already have a range from prior markings.
+	 * This is fine as long as it hasn't been advanced from its
+	 * origin.
+	 */
+	return reg->type == which &&
+	       reg->id == 0 &&
+	       reg->off == 0 &&
+	       tnum_equals_const(reg->var_off, 0);
+}
+
+/* Attempts to improve min/max values based on var_off information */
+static void __update_reg_bounds(struct bpf_reg_state *reg)
+{
+	/* min signed is max(sign bit) | min(other bits) */
+	reg->smin_value = max_t(s64, reg->smin_value,
+				reg->var_off.value | (reg->var_off.mask & S64_MIN));
+	/* max signed is min(sign bit) | max(other bits) */
+	reg->smax_value = min_t(s64, reg->smax_value,
+				reg->var_off.value | (reg->var_off.mask & S64_MAX));
+	reg->umin_value = max(reg->umin_value, reg->var_off.value);
+	reg->umax_value = min(reg->umax_value,
+			      reg->var_off.value | reg->var_off.mask);
+}
+
+/* Uses signed min/max values to inform unsigned, and vice-versa */
+static void __reg_deduce_bounds(struct bpf_reg_state *reg)
+{
+	/* Learn sign from signed bounds.
+	 * If we cannot cross the sign boundary, then signed and unsigned bounds
+	 * are the same, so combine.  This works even in the negative case, e.g.
+	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
+	 */
+	if (reg->smin_value >= 0 || reg->smax_value < 0) {
+		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
+							  reg->umin_value);
+		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
+							  reg->umax_value);
+		return;
+	}
+	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
+	 * boundary, so we must be careful.
+	 */
+	if ((s64)reg->umax_value >= 0) {
+		/* Positive.  We can't learn anything from the smin, but smax
+		 * is positive, hence safe.
+		 */
+		reg->smin_value = reg->umin_value;
+		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
+							  reg->umax_value);
+	} else if ((s64)reg->umin_value < 0) {
+		/* Negative.  We can't learn anything from the smax, but smin
+		 * is negative, hence safe.
+		 */
+		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
+							  reg->umin_value);
+		reg->smax_value = reg->umax_value;
+	}
+}
+
+/* Attempts to improve var_off based on unsigned min/max information */
+static void __reg_bound_offset(struct bpf_reg_state *reg)
+{
+	reg->var_off = tnum_intersect(reg->var_off,
+				      tnum_range(reg->umin_value,
+						 reg->umax_value));
+}
+
+/* Reset the min/max bounds of a register */
+static void __mark_reg_unbounded(struct bpf_reg_state *reg)
+{
+	reg->smin_value = S64_MIN;
+	reg->smax_value = S64_MAX;
+	reg->umin_value = 0;
+	reg->umax_value = U64_MAX;
+}
+
+/* Mark a register as having a completely unknown (scalar) value. */
+static void __mark_reg_unknown(struct bpf_reg_state *reg)
+{
+	/*
+	 * Clear type, id, off, and union(map_ptr, range) and
+	 * padding between 'type' and union
+	 */
+	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
+	reg->type = SCALAR_VALUE;
+	reg->var_off = tnum_unknown;
+	reg->frameno = 0;
+	__mark_reg_unbounded(reg);
+}
+
+static void mark_reg_unknown(struct bpf_verifier_env *env,
+			     struct bpf_reg_state *regs, u32 regno)
+{
+	if (WARN_ON(regno >= MAX_BPF_REG)) {
+		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
+		/* Something bad happened, let's kill all regs except FP */
+		for (regno = 0; regno < BPF_REG_FP; regno++)
+			__mark_reg_not_init(regs + regno);
+		return;
+	}
+	__mark_reg_unknown(regs + regno);
+}
+
+static void __mark_reg_not_init(struct bpf_reg_state *reg)
+{
+	__mark_reg_unknown(reg);
+	reg->type = NOT_INIT;
+}
+
+static void mark_reg_not_init(struct bpf_verifier_env *env,
+			      struct bpf_reg_state *regs, u32 regno)
+{
+	if (WARN_ON(regno >= MAX_BPF_REG)) {
+		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
+		/* Something bad happened, let's kill all regs except FP */
+		for (regno = 0; regno < BPF_REG_FP; regno++)
+			__mark_reg_not_init(regs + regno);
+		return;
+	}
+	__mark_reg_not_init(regs + regno);
+}
+
+static void init_reg_state(struct bpf_verifier_env *env,
+			   struct bpf_func_state *state)
+{
+	struct bpf_reg_state *regs = state->regs;
+	int i;
+
+	for (i = 0; i < MAX_BPF_REG; i++) {
+		mark_reg_not_init(env, regs, i);
+		regs[i].live = REG_LIVE_NONE;
+	}
+
+	/* frame pointer */
+	regs[BPF_REG_FP].type = PTR_TO_STACK;
+	mark_reg_known_zero(env, regs, BPF_REG_FP);
+	regs[BPF_REG_FP].frameno = state->frameno;
+
+	/* 1st arg to a function */
+	regs[BPF_REG_1].type = PTR_TO_CTX;
+	mark_reg_known_zero(env, regs, BPF_REG_1);
+}
+
+#define BPF_MAIN_FUNC (-1)
+static void init_func_state(struct bpf_verifier_env *env,
+			    struct bpf_func_state *state,
+			    int callsite, int frameno, int subprogno)
+{
+	state->callsite = callsite;
+	state->frameno = frameno;
+	state->subprogno = subprogno;
+	init_reg_state(env, state);
+}
+
+enum reg_arg_type {
+	SRC_OP,		/* register is used as source operand */
+	DST_OP,		/* register is used as destination operand */
+	DST_OP_NO_MARK	/* same as above, check only, don't mark */
+};
+
+static int cmp_subprogs(const void *a, const void *b)
+{
+	return ((struct bpf_subprog_info *)a)->start -
+	       ((struct bpf_subprog_info *)b)->start;
+}
+
+static int find_subprog(struct bpf_verifier_env *env, int off)
+{
+	struct bpf_subprog_info *p;
+
+	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
+		    sizeof(env->subprog_info[0]), cmp_subprogs);
+	if (!p)
+		return -ENOENT;
+	return p - env->subprog_info;
+
+}
+
+static int add_subprog(struct bpf_verifier_env *env, int off)
+{
+	int insn_cnt = env->prog->len;
+	int ret;
+
+	if (off >= insn_cnt || off < 0) {
+		verbose(env, "call to invalid destination\n");
+		return -EINVAL;
+	}
+	ret = find_subprog(env, off);
+	if (ret >= 0)
+		return 0;
+	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
+		verbose(env, "too many subprograms\n");
+		return -E2BIG;
+	}
+	env->subprog_info[env->subprog_cnt++].start = off;
+	sort(env->subprog_info, env->subprog_cnt,
+	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
+	return 0;
+}
+
+static int check_subprogs(struct bpf_verifier_env *env)
+{
+	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
+	struct bpf_subprog_info *subprog = env->subprog_info;
+	struct bpf_insn *insn = env->prog->insnsi;
+	int insn_cnt = env->prog->len;
+
+	/* Add entry function. */
+	ret = add_subprog(env, 0);
+	if (ret < 0)
+		return ret;
+
+	/* determine subprog starts. The end is one before the next starts */
+	for (i = 0; i < insn_cnt; i++) {
+		if (insn[i].code != (BPF_JMP | BPF_CALL))
+			continue;
+		if (insn[i].src_reg != BPF_PSEUDO_CALL)
+			continue;
+		if (!env->allow_ptr_leaks) {
+			verbose(env, "function calls to other bpf functions are allowed for root only\n");
+			return -EPERM;
+		}
+		if (bpf_prog_is_dev_bound(env->prog->aux)) {
+			verbose(env, "function calls in offloaded programs are not supported yet\n");
+			return -EINVAL;
+		}
+		ret = add_subprog(env, i + insn[i].imm + 1);
+		if (ret < 0)
+			return ret;
+	}
+
+	/* Add a fake 'exit' subprog which could simplify subprog iteration
+	 * logic. 'subprog_cnt' should not be increased.
+	 */
+	subprog[env->subprog_cnt].start = insn_cnt;
+
+	if (env->log.level > 1)
+		for (i = 0; i < env->subprog_cnt; i++)
+			verbose(env, "func#%d @%d\n", i, subprog[i].start);
+
+	/* now check that all jumps are within the same subprog */
+	subprog_start = subprog[cur_subprog].start;
+	subprog_end = subprog[cur_subprog + 1].start;
+	for (i = 0; i < insn_cnt; i++) {
+		u8 code = insn[i].code;
+
+		if (BPF_CLASS(code) != BPF_JMP)
+			goto next;
+		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
+			goto next;
+		off = i + insn[i].off + 1;
+		if (off < subprog_start || off >= subprog_end) {
+			verbose(env, "jump out of range from insn %d to %d\n", i, off);
+			return -EINVAL;
+		}
+next:
+		if (i == subprog_end - 1) {
+			/* to avoid fall-through from one subprog into another
+			 * the last insn of the subprog should be either exit
+			 * or unconditional jump back
+			 */
+			if (code != (BPF_JMP | BPF_EXIT) &&
+			    code != (BPF_JMP | BPF_JA)) {
+				verbose(env, "last insn is not an exit or jmp\n");
+				return -EINVAL;
+			}
+			subprog_start = subprog_end;
+			cur_subprog++;
+			if (cur_subprog < env->subprog_cnt)
+				subprog_end = subprog[cur_subprog + 1].start;
+		}
+	}
+	return 0;
+}
+
+static
+struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
+				       const struct bpf_verifier_state *state,
+				       struct bpf_verifier_state *parent,
+				       u32 regno)
+{
+	struct bpf_verifier_state *tmp = NULL;
+
+	/* 'parent' could be a state of caller and
+	 * 'state' could be a state of callee. In such case
+	 * parent->curframe < state->curframe
+	 * and it's ok for r1 - r5 registers
+	 *
+	 * 'parent' could be a callee's state after it bpf_exit-ed.
+	 * In such case parent->curframe > state->curframe
+	 * and it's ok for r0 only
+	 */
+	if (parent->curframe == state->curframe ||
+	    (parent->curframe < state->curframe &&
+	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
+	    (parent->curframe > state->curframe &&
+	       regno == BPF_REG_0))
+		return parent;
+
+	if (parent->curframe > state->curframe &&
+	    regno >= BPF_REG_6) {
+		/* for callee saved regs we have to skip the whole chain
+		 * of states that belong to callee and mark as LIVE_READ
+		 * the registers before the call
+		 */
+		tmp = parent;
+		while (tmp && tmp->curframe != state->curframe) {
+			tmp = tmp->parent;
+		}
+		if (!tmp)
+			goto bug;
+		parent = tmp;
+	} else {
+		goto bug;
+	}
+	return parent;
+bug:
+	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
+	verbose(env, "regno %d parent frame %d current frame %d\n",
+		regno, parent->curframe, state->curframe);
+	return NULL;
+}
+
+static int mark_reg_read(struct bpf_verifier_env *env,
+			 const struct bpf_verifier_state *state,
+			 struct bpf_verifier_state *parent,
+			 u32 regno)
+{
+	bool writes = parent == state->parent; /* Observe write marks */
+
+	if (regno == BPF_REG_FP)
+		/* We don't need to worry about FP liveness because it's read-only */
+		return 0;
+
+	while (parent) {
+		/* if read wasn't screened by an earlier write ... */
+		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
+			break;
+		parent = skip_callee(env, state, parent, regno);
+		if (!parent)
+			return -EFAULT;
+		/* ... then we depend on parent's value */
+		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
+		state = parent;
+		parent = state->parent;
+		writes = true;
+	}
+	return 0;
+}
+
+static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
+			 enum reg_arg_type t)
+{
+	struct bpf_verifier_state *vstate = env->cur_state;
+	struct bpf_func_state *state = vstate->frame[vstate->curframe];
+	struct bpf_reg_state *regs = state->regs;
+
+	if (regno >= MAX_BPF_REG) {
+		verbose(env, "R%d is invalid\n", regno);
+		return -EINVAL;
+	}
+
+	if (t == SRC_OP) {
+		/* check whether register used as source operand can be read */
+		if (regs[regno].type == NOT_INIT) {
+			verbose(env, "R%d !read_ok\n", regno);
+			return -EACCES;
+		}
+		return mark_reg_read(env, vstate, vstate->parent, regno);
+	} else {
+		/* check whether register used as dest operand can be written to */
+		if (regno == BPF_REG_FP) {
+			verbose(env, "frame pointer is read only\n");
+			return -EACCES;
+		}
+		regs[regno].live |= REG_LIVE_WRITTEN;
+		if (t == DST_OP)
+			mark_reg_unknown(env, regs, regno);
+	}
+	return 0;
+}
+
+static bool is_spillable_regtype(enum bpf_reg_type type)
+{
+	switch (type) {
+	case PTR_TO_MAP_VALUE:
+	case PTR_TO_MAP_VALUE_OR_NULL:
+	case PTR_TO_STACK:
+	case PTR_TO_CTX:
+	case PTR_TO_PACKET:
+	case PTR_TO_PACKET_META:
+	case PTR_TO_PACKET_END:
+	case CONST_PTR_TO_MAP:
+		return true;
+	default:
+		return false;
+	}
+}
+
+/* Does this register contain a constant zero? */
+static bool register_is_null(struct bpf_reg_state *reg)
+{
+	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
+}
+
+/* check_stack_read/write functions track spill/fill of registers,
+ * stack boundary and alignment are checked in check_mem_access()
+ */
+static int check_stack_write(struct bpf_verifier_env *env,
+			     struct bpf_func_state *state, /* func where register points to */
+			     int off, int size, int value_regno, int insn_idx)
+{
+	struct bpf_func_state *cur; /* state of the current function */
+	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
+	enum bpf_reg_type type;
+
+	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
+				 true);
+	if (err)
+		return err;
+	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
+	 * so it's aligned access and [off, off + size) are within stack limits
+	 */
+	if (!env->allow_ptr_leaks &&
+	    state->stack[spi].slot_type[0] == STACK_SPILL &&
+	    size != BPF_REG_SIZE) {
+		verbose(env, "attempt to corrupt spilled pointer on stack\n");
+		return -EACCES;
+	}
+
+	cur = env->cur_state->frame[env->cur_state->curframe];
+	if (value_regno >= 0 &&
+	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
+
+		/* register containing pointer is being spilled into stack */
+		if (size != BPF_REG_SIZE) {
+			verbose(env, "invalid size of register spill\n");
+			return -EACCES;
+		}
+
+		if (state != cur && type == PTR_TO_STACK) {
+			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
+			return -EINVAL;
+		}
+
+		/* save register state */
+		state->stack[spi].spilled_ptr = cur->regs[value_regno];
+		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
+
+		for (i = 0; i < BPF_REG_SIZE; i++) {
+			if (state->stack[spi].slot_type[i] == STACK_MISC &&
+			    !env->allow_ptr_leaks) {
+				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
+				int soff = (-spi - 1) * BPF_REG_SIZE;
+
+				/* detected reuse of integer stack slot with a pointer
+				 * which means either llvm is reusing stack slot or
+				 * an attacker is trying to exploit CVE-2018-3639
+				 * (speculative store bypass)
+				 * Have to sanitize that slot with preemptive
+				 * store of zero.
+				 */
+				if (*poff && *poff != soff) {
+					/* disallow programs where single insn stores
+					 * into two different stack slots, since verifier
+					 * cannot sanitize them
+					 */
+					verbose(env,
+						"insn %d cannot access two stack slots fp%d and fp%d",
+						insn_idx, *poff, soff);
+					return -EINVAL;
+				}
+				*poff = soff;
+			}
+			state->stack[spi].slot_type[i] = STACK_SPILL;
+		}
+	} else {
+		u8 type = STACK_MISC;
+
+		/* regular write of data into stack */
+		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
+
+		/* only mark the slot as written if all 8 bytes were written
+		 * otherwise read propagation may incorrectly stop too soon
+		 * when stack slots are partially written.
+		 * This heuristic means that read propagation will be
+		 * conservative, since it will add reg_live_read marks
+		 * to stack slots all the way to first state when programs
+		 * writes+reads less than 8 bytes
+		 */
+		if (size == BPF_REG_SIZE)
+			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
+
+		/* when we zero initialize stack slots mark them as such */
+		if (value_regno >= 0 &&
+		    register_is_null(&cur->regs[value_regno]))
+			type = STACK_ZERO;
+
+		for (i = 0; i < size; i++)
+			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
+				type;
+	}
+	return 0;
+}
+
+/* registers of every function are unique and mark_reg_read() propagates
+ * the liveness in the following cases:
+ * - from callee into caller for R1 - R5 that were used as arguments
+ * - from caller into callee for R0 that used as result of the call
+ * - from caller to the same caller skipping states of the callee for R6 - R9,
+ *   since R6 - R9 are callee saved by implicit function prologue and
+ *   caller's R6 != callee's R6, so when we propagate liveness up to
+ *   parent states we need to skip callee states for R6 - R9.
+ *
+ * stack slot marking is different, since stacks of caller and callee are
+ * accessible in both (since caller can pass a pointer to caller's stack to
+ * callee which can pass it to another function), hence mark_stack_slot_read()
+ * has to propagate the stack liveness to all parent states at given frame number.
+ * Consider code:
+ * f1() {
+ *   ptr = fp - 8;
+ *   *ptr = ctx;
+ *   call f2 {
+ *      .. = *ptr;
+ *   }
+ *   .. = *ptr;
+ * }
+ * First *ptr is reading from f1's stack and mark_stack_slot_read() has
+ * to mark liveness at the f1's frame and not f2's frame.
+ * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
+ * to propagate liveness to f2 states at f1's frame level and further into
+ * f1 states at f1's frame level until write into that stack slot
+ */
+static void mark_stack_slot_read(struct bpf_verifier_env *env,
+				 const struct bpf_verifier_state *state,
+				 struct bpf_verifier_state *parent,
+				 int slot, int frameno)
+{
+	bool writes = parent == state->parent; /* Observe write marks */
+
+	while (parent) {
+		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
+			/* since LIVE_WRITTEN mark is only done for full 8-byte
+			 * write the read marks are conservative and parent
+			 * state may not even have the stack allocated. In such case
+			 * end the propagation, since the loop reached beginning
+			 * of the function
+			 */
+			break;
+		/* if read wasn't screened by an earlier write ... */
+		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
+			break;
+		/* ... then we depend on parent's value */
+		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
+		state = parent;
+		parent = state->parent;
+		writes = true;
+	}
+}
+
+static int check_stack_read(struct bpf_verifier_env *env,
+			    struct bpf_func_state *reg_state /* func where register points to */,
+			    int off, int size, int value_regno)
+{
+	struct bpf_verifier_state *vstate = env->cur_state;
+	struct bpf_func_state *state = vstate->frame[vstate->curframe];
+	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
+	u8 *stype;
+
+	if (reg_state->allocated_stack <= slot) {
+		verbose(env, "invalid read from stack off %d+0 size %d\n",
+			off, size);
+		return -EACCES;
+	}
+	stype = reg_state->stack[spi].slot_type;
+
+	if (stype[0] == STACK_SPILL) {
+		if (size != BPF_REG_SIZE) {
+			verbose(env, "invalid size of register spill\n");
+			return -EACCES;
+		}
+		for (i = 1; i < BPF_REG_SIZE; i++) {
+			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
+				verbose(env, "corrupted spill memory\n");
+				return -EACCES;
+			}
+		}
+
+		if (value_regno >= 0) {
+			/* restore register state from stack */
+			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
+			/* mark reg as written since spilled pointer state likely
+			 * has its liveness marks cleared by is_state_visited()
+			 * which resets stack/reg liveness for state transitions
+			 */
+			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
+		}
+		mark_stack_slot_read(env, vstate, vstate->parent, spi,
+				     reg_state->frameno);
+		return 0;
+	} else {
+		int zeros = 0;
+
+		for (i = 0; i < size; i++) {
+			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
+				continue;
+			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
+				zeros++;
+				continue;
+			}
+			verbose(env, "invalid read from stack off %d+%d size %d\n",
+				off, i, size);
+			return -EACCES;
+		}
+		mark_stack_slot_read(env, vstate, vstate->parent, spi,
+				     reg_state->frameno);
+		if (value_regno >= 0) {
+			if (zeros == size) {
+				/* any size read into register is zero extended,
+				 * so the whole register == const_zero
+				 */
+				__mark_reg_const_zero(&state->regs[value_regno]);
+			} else {
+				/* have read misc data from the stack */
+				mark_reg_unknown(env, state->regs, value_regno);
+			}
+			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
+		}
+		return 0;
+	}
+}
+
+/* check read/write into map element returned by bpf_map_lookup_elem() */
+static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
+			      int size, bool zero_size_allowed)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	struct bpf_map *map = regs[regno].map_ptr;
+
+	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
+	    off + size > map->value_size) {
+		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
+			map->value_size, off, size);
+		return -EACCES;
+	}
+	return 0;
+}
+
+/* check read/write into a map element with possible variable offset */
+static int check_map_access(struct bpf_verifier_env *env, u32 regno,
+			    int off, int size, bool zero_size_allowed)
+{
+	struct bpf_verifier_state *vstate = env->cur_state;
+	struct bpf_func_state *state = vstate->frame[vstate->curframe];
+	struct bpf_reg_state *reg = &state->regs[regno];
+	int err;
+
+	/* We may have adjusted the register to this map value, so we
+	 * need to try adding each of min_value and max_value to off
+	 * to make sure our theoretical access will be safe.
+	 */
+	if (env->log.level)
+		print_verifier_state(env, state);
+	/* The minimum value is only important with signed
+	 * comparisons where we can't assume the floor of a
+	 * value is 0.  If we are using signed variables for our
+	 * index'es we need to make sure that whatever we use
+	 * will have a set floor within our range.
+	 */
+	if (reg->smin_value < 0) {
+		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
+			regno);
+		return -EACCES;
+	}
+	err = __check_map_access(env, regno, reg->smin_value + off, size,
+				 zero_size_allowed);
+	if (err) {
+		verbose(env, "R%d min value is outside of the array range\n",
+			regno);
+		return err;
+	}
+
+	/* If we haven't set a max value then we need to bail since we can't be
+	 * sure we won't do bad things.
+	 * If reg->umax_value + off could overflow, treat that as unbounded too.
+	 */
+	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
+		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
+			regno);
+		return -EACCES;
+	}
+	err = __check_map_access(env, regno, reg->umax_value + off, size,
+				 zero_size_allowed);
+	if (err)
+		verbose(env, "R%d max value is outside of the array range\n",
+			regno);
+	return err;
+}
+
+#define MAX_PACKET_OFF 0xffff
+
+static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
+				       const struct bpf_call_arg_meta *meta,
+				       enum bpf_access_type t)
+{
+	switch (env->prog->type) {
+	case BPF_PROG_TYPE_LWT_IN:
+	case BPF_PROG_TYPE_LWT_OUT:
+	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
+	case BPF_PROG_TYPE_SK_REUSEPORT:
+		/* dst_input() and dst_output() can't write for now */
+		if (t == BPF_WRITE)
+			return false;
+		/* fallthrough */
+	case BPF_PROG_TYPE_SCHED_CLS:
+	case BPF_PROG_TYPE_SCHED_ACT:
+	case BPF_PROG_TYPE_XDP:
+	case BPF_PROG_TYPE_LWT_XMIT:
+	case BPF_PROG_TYPE_SK_SKB:
+	case BPF_PROG_TYPE_SK_MSG:
+		if (meta)
+			return meta->pkt_access;
+
+		env->seen_direct_write = true;
+		return true;
+	default:
+		return false;
+	}
+}
+
+static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
+				 int off, int size, bool zero_size_allowed)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	struct bpf_reg_state *reg = &regs[regno];
+
+	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
+	    (u64)off + size > reg->range) {
+		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
+			off, size, regno, reg->id, reg->off, reg->range);
+		return -EACCES;
+	}
+	return 0;
+}
+
+static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
+			       int size, bool zero_size_allowed)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	struct bpf_reg_state *reg = &regs[regno];
+	int err;
+
+	/* We may have added a variable offset to the packet pointer; but any
+	 * reg->range we have comes after that.  We are only checking the fixed
+	 * offset.
+	 */
+
+	/* We don't allow negative numbers, because we aren't tracking enough
+	 * detail to prove they're safe.
+	 */
+	if (reg->smin_value < 0) {
+		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
+			regno);
+		return -EACCES;
+	}
+	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
+	if (err) {
+		verbose(env, "R%d offset is outside of the packet\n", regno);
+		return err;
+	}
+	return err;
+}
+
+/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
+static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
+			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
+{
+	struct bpf_insn_access_aux info = {
+		.reg_type = *reg_type,
+	};
+
+	if (env->ops->is_valid_access &&
+	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
+		/* A non zero info.ctx_field_size indicates that this field is a
+		 * candidate for later verifier transformation to load the whole
+		 * field and then apply a mask when accessed with a narrower
+		 * access than actual ctx access size. A zero info.ctx_field_size
+		 * will only allow for whole field access and rejects any other
+		 * type of narrower access.
+		 */
+		*reg_type = info.reg_type;
+
+		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
+		/* remember the offset of last byte accessed in ctx */
+		if (env->prog->aux->max_ctx_offset < off + size)
+			env->prog->aux->max_ctx_offset = off + size;
+		return 0;
+	}
+
+	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
+	return -EACCES;
+}
+
+static bool __is_pointer_value(bool allow_ptr_leaks,
+			       const struct bpf_reg_state *reg)
+{
+	if (allow_ptr_leaks)
+		return false;
+
+	return reg->type != SCALAR_VALUE;
+}
+
+static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
+{
+	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
+}
+
+static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
+{
+	const struct bpf_reg_state *reg = cur_regs(env) + regno;
+
+	return reg->type == PTR_TO_CTX;
+}
+
+static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
+{
+	const struct bpf_reg_state *reg = cur_regs(env) + regno;
+
+	return type_is_pkt_pointer(reg->type);
+}
+
+static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
+				   const struct bpf_reg_state *reg,
+				   int off, int size, bool strict)
+{
+	struct tnum reg_off;
+	int ip_align;
+
+	/* Byte size accesses are always allowed. */
+	if (!strict || size == 1)
+		return 0;
+
+	/* For platforms that do not have a Kconfig enabling
+	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
+	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
+	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
+	 * to this code only in strict mode where we want to emulate
+	 * the NET_IP_ALIGN==2 checking.  Therefore use an
+	 * unconditional IP align value of '2'.
+	 */
+	ip_align = 2;
+
+	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
+	if (!tnum_is_aligned(reg_off, size)) {
+		char tn_buf[48];
+
+		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+		verbose(env,
+			"misaligned packet access off %d+%s+%d+%d size %d\n",
+			ip_align, tn_buf, reg->off, off, size);
+		return -EACCES;
+	}
+
+	return 0;
+}
+
+static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
+				       const struct bpf_reg_state *reg,
+				       const char *pointer_desc,
+				       int off, int size, bool strict)
+{
+	struct tnum reg_off;
+
+	/* Byte size accesses are always allowed. */
+	if (!strict || size == 1)
+		return 0;
+
+	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
+	if (!tnum_is_aligned(reg_off, size)) {
+		char tn_buf[48];
+
+		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
+			pointer_desc, tn_buf, reg->off, off, size);
+		return -EACCES;
+	}
+
+	return 0;
+}
+
+static int check_ptr_alignment(struct bpf_verifier_env *env,
+			       const struct bpf_reg_state *reg, int off,
+			       int size, bool strict_alignment_once)
+{
+	bool strict = env->strict_alignment || strict_alignment_once;
+	const char *pointer_desc = "";
+
+	switch (reg->type) {
+	case PTR_TO_PACKET:
+	case PTR_TO_PACKET_META:
+		/* Special case, because of NET_IP_ALIGN. Given metadata sits
+		 * right in front, treat it the very same way.
+		 */
+		return check_pkt_ptr_alignment(env, reg, off, size, strict);
+	case PTR_TO_MAP_VALUE:
+		pointer_desc = "value ";
+		break;
+	case PTR_TO_CTX:
+		pointer_desc = "context ";
+		break;
+	case PTR_TO_STACK:
+		pointer_desc = "stack ";
+		/* The stack spill tracking logic in check_stack_write()
+		 * and check_stack_read() relies on stack accesses being
+		 * aligned.
+		 */
+		strict = true;
+		break;
+	default:
+		break;
+	}
+	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
+					   strict);
+}
+
+static int update_stack_depth(struct bpf_verifier_env *env,
+			      const struct bpf_func_state *func,
+			      int off)
+{
+	u16 stack = env->subprog_info[func->subprogno].stack_depth;
+
+	if (stack >= -off)
+		return 0;
+
+	/* update known max for given subprogram */
+	env->subprog_info[func->subprogno].stack_depth = -off;
+	return 0;
+}
+
+/* starting from main bpf function walk all instructions of the function
+ * and recursively walk all callees that given function can call.
+ * Ignore jump and exit insns.
+ * Since recursion is prevented by check_cfg() this algorithm
+ * only needs a local stack of MAX_CALL_FRAMES to remember callsites
+ */
+static int check_max_stack_depth(struct bpf_verifier_env *env)
+{
+	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
+	struct bpf_subprog_info *subprog = env->subprog_info;
+	struct bpf_insn *insn = env->prog->insnsi;
+	int ret_insn[MAX_CALL_FRAMES];
+	int ret_prog[MAX_CALL_FRAMES];
+
+process_func:
+	/* round up to 32-bytes, since this is granularity
+	 * of interpreter stack size
+	 */
+	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
+	if (depth > MAX_BPF_STACK) {
+		verbose(env, "combined stack size of %d calls is %d. Too large\n",
+			frame + 1, depth);
+		return -EACCES;
+	}
+continue_func:
+	subprog_end = subprog[idx + 1].start;
+	for (; i < subprog_end; i++) {
+		if (insn[i].code != (BPF_JMP | BPF_CALL))
+			continue;
+		if (insn[i].src_reg != BPF_PSEUDO_CALL)
+			continue;
+		/* remember insn and function to return to */
+		ret_insn[frame] = i + 1;
+		ret_prog[frame] = idx;
+
+		/* find the callee */
+		i = i + insn[i].imm + 1;
+		idx = find_subprog(env, i);
+		if (idx < 0) {
+			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
+				  i);
+			return -EFAULT;
+		}
+		frame++;
+		if (frame >= MAX_CALL_FRAMES) {
+			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
+			return -EFAULT;
+		}
+		goto process_func;
+	}
+	/* end of for() loop means the last insn of the 'subprog'
+	 * was reached. Doesn't matter whether it was JA or EXIT
+	 */
+	if (frame == 0)
+		return 0;
+	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
+	frame--;
+	i = ret_insn[frame];
+	idx = ret_prog[frame];
+	goto continue_func;
+}
+
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+static int get_callee_stack_depth(struct bpf_verifier_env *env,
+				  const struct bpf_insn *insn, int idx)
+{
+	int start = idx + insn->imm + 1, subprog;
+
+	subprog = find_subprog(env, start);
+	if (subprog < 0) {
+		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
+			  start);
+		return -EFAULT;
+	}
+	return env->subprog_info[subprog].stack_depth;
+}
+#endif
+
+static int check_ctx_reg(struct bpf_verifier_env *env,
+			 const struct bpf_reg_state *reg, int regno)
+{
+	/* Access to ctx or passing it to a helper is only allowed in
+	 * its original, unmodified form.
+	 */
+
+	if (reg->off) {
+		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
+			regno, reg->off);
+		return -EACCES;
+	}
+
+	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
+		char tn_buf[48];
+
+		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
+		return -EACCES;
+	}
+
+	return 0;
+}
+
+/* truncate register to smaller size (in bytes)
+ * must be called with size < BPF_REG_SIZE
+ */
+static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
+{
+	u64 mask;
+
+	/* clear high bits in bit representation */
+	reg->var_off = tnum_cast(reg->var_off, size);
+
+	/* fix arithmetic bounds */
+	mask = ((u64)1 << (size * 8)) - 1;
+	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
+		reg->umin_value &= mask;
+		reg->umax_value &= mask;
+	} else {
+		reg->umin_value = 0;
+		reg->umax_value = mask;
+	}
+	reg->smin_value = reg->umin_value;
+	reg->smax_value = reg->umax_value;
+}
+
+/* check whether memory at (regno + off) is accessible for t = (read | write)
+ * if t==write, value_regno is a register which value is stored into memory
+ * if t==read, value_regno is a register which will receive the value from memory
+ * if t==write && value_regno==-1, some unknown value is stored into memory
+ * if t==read && value_regno==-1, don't care what we read from memory
+ */
+static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
+			    int off, int bpf_size, enum bpf_access_type t,
+			    int value_regno, bool strict_alignment_once)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	struct bpf_reg_state *reg = regs + regno;
+	struct bpf_func_state *state;
+	int size, err = 0;
+
+	size = bpf_size_to_bytes(bpf_size);
+	if (size < 0)
+		return size;
+
+	/* alignment checks will add in reg->off themselves */
+	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
+	if (err)
+		return err;
+
+	/* for access checks, reg->off is just part of off */
+	off += reg->off;
+
+	if (reg->type == PTR_TO_MAP_VALUE) {
+		if (t == BPF_WRITE && value_regno >= 0 &&
+		    is_pointer_value(env, value_regno)) {
+			verbose(env, "R%d leaks addr into map\n", value_regno);
+			return -EACCES;
+		}
+
+		err = check_map_access(env, regno, off, size, false);
+		if (!err && t == BPF_READ && value_regno >= 0)
+			mark_reg_unknown(env, regs, value_regno);
+
+	} else if (reg->type == PTR_TO_CTX) {
+		enum bpf_reg_type reg_type = SCALAR_VALUE;
+
+		if (t == BPF_WRITE && value_regno >= 0 &&
+		    is_pointer_value(env, value_regno)) {
+			verbose(env, "R%d leaks addr into ctx\n", value_regno);
+			return -EACCES;
+		}
+
+		err = check_ctx_reg(env, reg, regno);
+		if (err < 0)
+			return err;
+
+		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
+		if (!err && t == BPF_READ && value_regno >= 0) {
+			/* ctx access returns either a scalar, or a
+			 * PTR_TO_PACKET[_META,_END]. In the latter
+			 * case, we know the offset is zero.
+			 */
+			if (reg_type == SCALAR_VALUE)
+				mark_reg_unknown(env, regs, value_regno);
+			else
+				mark_reg_known_zero(env, regs,
+						    value_regno);
+			regs[value_regno].type = reg_type;
+		}
+
+	} else if (reg->type == PTR_TO_STACK) {
+		/* stack accesses must be at a fixed offset, so that we can
+		 * determine what type of data were returned.
+		 * See check_stack_read().
+		 */
+		if (!tnum_is_const(reg->var_off)) {
+			char tn_buf[48];
+
+			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+			verbose(env, "variable stack access var_off=%s off=%d size=%d",
+				tn_buf, off, size);
+			return -EACCES;
+		}
+		off += reg->var_off.value;
+		if (off >= 0 || off < -MAX_BPF_STACK) {
+			verbose(env, "invalid stack off=%d size=%d\n", off,
+				size);
+			return -EACCES;
+		}
+
+		state = func(env, reg);
+		err = update_stack_depth(env, state, off);
+		if (err)
+			return err;
+
+		if (t == BPF_WRITE)
+			err = check_stack_write(env, state, off, size,
+						value_regno, insn_idx);
+		else
+			err = check_stack_read(env, state, off, size,
+					       value_regno);
+	} else if (reg_is_pkt_pointer(reg)) {
+		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
+			verbose(env, "cannot write into packet\n");
+			return -EACCES;
+		}
+		if (t == BPF_WRITE && value_regno >= 0 &&
+		    is_pointer_value(env, value_regno)) {
+			verbose(env, "R%d leaks addr into packet\n",
+				value_regno);
+			return -EACCES;
+		}
+		err = check_packet_access(env, regno, off, size, false);
+		if (!err && t == BPF_READ && value_regno >= 0)
+			mark_reg_unknown(env, regs, value_regno);
+	} else {
+		verbose(env, "R%d invalid mem access '%s'\n", regno,
+			reg_type_str[reg->type]);
+		return -EACCES;
+	}
+
+	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
+	    regs[value_regno].type == SCALAR_VALUE) {
+		/* b/h/w load zero-extends, mark upper bits as known 0 */
+		coerce_reg_to_size(&regs[value_regno], size);
+	}
+	return err;
+}
+
+static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
+{
+	int err;
+
+	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
+	    insn->imm != 0) {
+		verbose(env, "BPF_XADD uses reserved fields\n");
+		return -EINVAL;
+	}
+
+	/* check src1 operand */
+	err = check_reg_arg(env, insn->src_reg, SRC_OP);
+	if (err)
+		return err;
+
+	/* check src2 operand */
+	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+	if (err)
+		return err;
+
+	if (is_pointer_value(env, insn->src_reg)) {
+		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
+		return -EACCES;
+	}
+
+	if (is_ctx_reg(env, insn->dst_reg) ||
+	    is_pkt_reg(env, insn->dst_reg)) {
+		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
+			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
+			"context" : "packet");
+		return -EACCES;
+	}
+
+	/* check whether atomic_add can read the memory */
+	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+			       BPF_SIZE(insn->code), BPF_READ, -1, true);
+	if (err)
+		return err;
+
+	/* check whether atomic_add can write into the same memory */
+	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
+}
+
+/* when register 'regno' is passed into function that will read 'access_size'
+ * bytes from that pointer, make sure that it's within stack boundary
+ * and all elements of stack are initialized.
+ * Unlike most pointer bounds-checking functions, this one doesn't take an
+ * 'off' argument, so it has to add in reg->off itself.
+ */
+static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
+				int access_size, bool zero_size_allowed,
+				struct bpf_call_arg_meta *meta)
+{
+	struct bpf_reg_state *reg = cur_regs(env) + regno;
+	struct bpf_func_state *state = func(env, reg);
+	int off, i, slot, spi;
+
+	if (reg->type != PTR_TO_STACK) {
+		/* Allow zero-byte read from NULL, regardless of pointer type */
+		if (zero_size_allowed && access_size == 0 &&
+		    register_is_null(reg))
+			return 0;
+
+		verbose(env, "R%d type=%s expected=%s\n", regno,
+			reg_type_str[reg->type],
+			reg_type_str[PTR_TO_STACK]);
+		return -EACCES;
+	}
+
+	/* Only allow fixed-offset stack reads */
+	if (!tnum_is_const(reg->var_off)) {
+		char tn_buf[48];
+
+		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+		verbose(env, "invalid variable stack read R%d var_off=%s\n",
+			regno, tn_buf);
+		return -EACCES;
+	}
+	off = reg->off + reg->var_off.value;
+	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
+	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
+		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
+			regno, off, access_size);
+		return -EACCES;
+	}
+
+	if (meta && meta->raw_mode) {
+		meta->access_size = access_size;
+		meta->regno = regno;
+		return 0;
+	}
+
+	for (i = 0; i < access_size; i++) {
+		u8 *stype;
+
+		slot = -(off + i) - 1;
+		spi = slot / BPF_REG_SIZE;
+		if (state->allocated_stack <= slot)
+			goto err;
+		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
+		if (*stype == STACK_MISC)
+			goto mark;
+		if (*stype == STACK_ZERO) {
+			/* helper can write anything into the stack */
+			*stype = STACK_MISC;
+			goto mark;
+		}
+err:
+		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
+			off, i, access_size);
+		return -EACCES;
+mark:
+		/* reading any byte out of 8-byte 'spill_slot' will cause
+		 * the whole slot to be marked as 'read'
+		 */
+		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
+				     spi, state->frameno);
+	}
+	return update_stack_depth(env, state, off);
+}
+
+static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
+				   int access_size, bool zero_size_allowed,
+				   struct bpf_call_arg_meta *meta)
+{
+	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+
+	switch (reg->type) {
+	case PTR_TO_PACKET:
+	case PTR_TO_PACKET_META:
+		return check_packet_access(env, regno, reg->off, access_size,
+					   zero_size_allowed);
+	case PTR_TO_MAP_VALUE:
+		return check_map_access(env, regno, reg->off, access_size,
+					zero_size_allowed);
+	default: /* scalar_value|ptr_to_stack or invalid ptr */
+		return check_stack_boundary(env, regno, access_size,
+					    zero_size_allowed, meta);
+	}
+}
+
+static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
+{
+	return type == ARG_PTR_TO_MEM ||
+	       type == ARG_PTR_TO_MEM_OR_NULL ||
+	       type == ARG_PTR_TO_UNINIT_MEM;
+}
+
+static bool arg_type_is_mem_size(enum bpf_arg_type type)
+{
+	return type == ARG_CONST_SIZE ||
+	       type == ARG_CONST_SIZE_OR_ZERO;
+}
+
+static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
+			  enum bpf_arg_type arg_type,
+			  struct bpf_call_arg_meta *meta)
+{
+	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+	enum bpf_reg_type expected_type, type = reg->type;
+	int err = 0;
+
+	if (arg_type == ARG_DONTCARE)
+		return 0;
+
+	err = check_reg_arg(env, regno, SRC_OP);
+	if (err)
+		return err;
+
+	if (arg_type == ARG_ANYTHING) {
+		if (is_pointer_value(env, regno)) {
+			verbose(env, "R%d leaks addr into helper function\n",
+				regno);
+			return -EACCES;
+		}
+		return 0;
+	}
+
+	if (type_is_pkt_pointer(type) &&
+	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
+		verbose(env, "helper access to the packet is not allowed\n");
+		return -EACCES;
+	}
+
+	if (arg_type == ARG_PTR_TO_MAP_KEY ||
+	    arg_type == ARG_PTR_TO_MAP_VALUE) {
+		expected_type = PTR_TO_STACK;
+		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
+		    type != expected_type)
+			goto err_type;
+	} else if (arg_type == ARG_CONST_SIZE ||
+		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
+		expected_type = SCALAR_VALUE;
+		if (type != expected_type)
+			goto err_type;
+	} else if (arg_type == ARG_CONST_MAP_PTR) {
+		expected_type = CONST_PTR_TO_MAP;
+		if (type != expected_type)
+			goto err_type;
+	} else if (arg_type == ARG_PTR_TO_CTX) {
+		expected_type = PTR_TO_CTX;
+		if (type != expected_type)
+			goto err_type;
+		err = check_ctx_reg(env, reg, regno);
+		if (err < 0)
+			return err;
+	} else if (arg_type_is_mem_ptr(arg_type)) {
+		expected_type = PTR_TO_STACK;
+		/* One exception here. In case function allows for NULL to be
+		 * passed in as argument, it's a SCALAR_VALUE type. Final test
+		 * happens during stack boundary checking.
+		 */
+		if (register_is_null(reg) &&
+		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
+			/* final test in check_stack_boundary() */;
+		else if (!type_is_pkt_pointer(type) &&
+			 type != PTR_TO_MAP_VALUE &&
+			 type != expected_type)
+			goto err_type;
+		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
+	} else {
+		verbose(env, "unsupported arg_type %d\n", arg_type);
+		return -EFAULT;
+	}
+
+	if (arg_type == ARG_CONST_MAP_PTR) {
+		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
+		meta->map_ptr = reg->map_ptr;
+	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
+		/* bpf_map_xxx(..., map_ptr, ..., key) call:
+		 * check that [key, key + map->key_size) are within
+		 * stack limits and initialized
+		 */
+		if (!meta->map_ptr) {
+			/* in function declaration map_ptr must come before
+			 * map_key, so that it's verified and known before
+			 * we have to check map_key here. Otherwise it means
+			 * that kernel subsystem misconfigured verifier
+			 */
+			verbose(env, "invalid map_ptr to access map->key\n");
+			return -EACCES;
+		}
+		err = check_helper_mem_access(env, regno,
+					      meta->map_ptr->key_size, false,
+					      NULL);
+	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
+		/* bpf_map_xxx(..., map_ptr, ..., value) call:
+		 * check [value, value + map->value_size) validity
+		 */
+		if (!meta->map_ptr) {
+			/* kernel subsystem misconfigured verifier */
+			verbose(env, "invalid map_ptr to access map->value\n");
+			return -EACCES;
+		}
+		err = check_helper_mem_access(env, regno,
+					      meta->map_ptr->value_size, false,
+					      NULL);
+	} else if (arg_type_is_mem_size(arg_type)) {
+		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
+
+		/* remember the mem_size which may be used later
+		 * to refine return values.
+		 */
+		meta->msize_smax_value = reg->smax_value;
+		meta->msize_umax_value = reg->umax_value;
+
+		/* The register is SCALAR_VALUE; the access check
+		 * happens using its boundaries.
+		 */
+		if (!tnum_is_const(reg->var_off))
+			/* For unprivileged variable accesses, disable raw
+			 * mode so that the program is required to
+			 * initialize all the memory that the helper could
+			 * just partially fill up.
+			 */
+			meta = NULL;
+
+		if (reg->smin_value < 0) {
+			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
+				regno);
+			return -EACCES;
+		}
+
+		if (reg->umin_value == 0) {
+			err = check_helper_mem_access(env, regno - 1, 0,
+						      zero_size_allowed,
+						      meta);
+			if (err)
+				return err;
+		}
+
+		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
+			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
+				regno);
+			return -EACCES;
+		}
+		err = check_helper_mem_access(env, regno - 1,
+					      reg->umax_value,
+					      zero_size_allowed, meta);
+	}
+
+	return err;
+err_type:
+	verbose(env, "R%d type=%s expected=%s\n", regno,
+		reg_type_str[type], reg_type_str[expected_type]);
+	return -EACCES;
+}
+
+static int check_map_func_compatibility(struct bpf_verifier_env *env,
+					struct bpf_map *map, int func_id)
+{
+	if (!map)
+		return 0;
+
+	/* We need a two way check, first is from map perspective ... */
+	switch (map->map_type) {
+	case BPF_MAP_TYPE_PROG_ARRAY:
+		if (func_id != BPF_FUNC_tail_call)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
+		if (func_id != BPF_FUNC_perf_event_read &&
+		    func_id != BPF_FUNC_perf_event_output &&
+		    func_id != BPF_FUNC_perf_event_read_value)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_STACK_TRACE:
+		if (func_id != BPF_FUNC_get_stackid)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_CGROUP_ARRAY:
+		if (func_id != BPF_FUNC_skb_under_cgroup &&
+		    func_id != BPF_FUNC_current_task_under_cgroup)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_CGROUP_STORAGE:
+		if (func_id != BPF_FUNC_get_local_storage)
+			goto error;
+		break;
+	/* devmap returns a pointer to a live net_device ifindex that we cannot
+	 * allow to be modified from bpf side. So do not allow lookup elements
+	 * for now.
+	 */
+	case BPF_MAP_TYPE_DEVMAP:
+		if (func_id != BPF_FUNC_redirect_map)
+			goto error;
+		break;
+	/* Restrict bpf side of cpumap and xskmap, open when use-cases
+	 * appear.
+	 */
+	case BPF_MAP_TYPE_CPUMAP:
+	case BPF_MAP_TYPE_XSKMAP:
+		if (func_id != BPF_FUNC_redirect_map)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
+	case BPF_MAP_TYPE_HASH_OF_MAPS:
+		if (func_id != BPF_FUNC_map_lookup_elem)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_SOCKMAP:
+		if (func_id != BPF_FUNC_sk_redirect_map &&
+		    func_id != BPF_FUNC_sock_map_update &&
+		    func_id != BPF_FUNC_map_delete_elem &&
+		    func_id != BPF_FUNC_msg_redirect_map)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_SOCKHASH:
+		if (func_id != BPF_FUNC_sk_redirect_hash &&
+		    func_id != BPF_FUNC_sock_hash_update &&
+		    func_id != BPF_FUNC_map_delete_elem &&
+		    func_id != BPF_FUNC_msg_redirect_hash)
+			goto error;
+		break;
+	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
+		if (func_id != BPF_FUNC_sk_select_reuseport)
+			goto error;
+		break;
+	default:
+		break;
+	}
+
+	/* ... and second from the function itself. */
+	switch (func_id) {
+	case BPF_FUNC_tail_call:
+		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
+			goto error;
+		if (env->subprog_cnt > 1) {
+			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
+			return -EINVAL;
+		}
+		break;
+	case BPF_FUNC_perf_event_read:
+	case BPF_FUNC_perf_event_output:
+	case BPF_FUNC_perf_event_read_value:
+		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
+			goto error;
+		break;
+	case BPF_FUNC_get_stackid:
+		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
+			goto error;
+		break;
+	case BPF_FUNC_current_task_under_cgroup:
+	case BPF_FUNC_skb_under_cgroup:
+		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
+			goto error;
+		break;
+	case BPF_FUNC_redirect_map:
+		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
+		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
+		    map->map_type != BPF_MAP_TYPE_XSKMAP)
+			goto error;
+		break;
+	case BPF_FUNC_sk_redirect_map:
+	case BPF_FUNC_msg_redirect_map:
+	case BPF_FUNC_sock_map_update:
+		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
+			goto error;
+		break;
+	case BPF_FUNC_sk_redirect_hash:
+	case BPF_FUNC_msg_redirect_hash:
+	case BPF_FUNC_sock_hash_update:
+		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
+			goto error;
+		break;
+	case BPF_FUNC_get_local_storage:
+		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE)
+			goto error;
+		break;
+	case BPF_FUNC_sk_select_reuseport:
+		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
+			goto error;
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+error:
+	verbose(env, "cannot pass map_type %d into func %s#%d\n",
+		map->map_type, func_id_name(func_id), func_id);
+	return -EINVAL;
+}
+
+static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
+{
+	int count = 0;
+
+	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
+		count++;
+	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
+		count++;
+	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
+		count++;
+	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
+		count++;
+	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
+		count++;
+
+	/* We only support one arg being in raw mode at the moment,
+	 * which is sufficient for the helper functions we have
+	 * right now.
+	 */
+	return count <= 1;
+}
+
+static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
+				    enum bpf_arg_type arg_next)
+{
+	return (arg_type_is_mem_ptr(arg_curr) &&
+	        !arg_type_is_mem_size(arg_next)) ||
+	       (!arg_type_is_mem_ptr(arg_curr) &&
+		arg_type_is_mem_size(arg_next));
+}
+
+static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
+{
+	/* bpf_xxx(..., buf, len) call will access 'len'
+	 * bytes from memory 'buf'. Both arg types need
+	 * to be paired, so make sure there's no buggy
+	 * helper function specification.
+	 */
+	if (arg_type_is_mem_size(fn->arg1_type) ||
+	    arg_type_is_mem_ptr(fn->arg5_type)  ||
+	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
+	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
+	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
+	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
+		return false;
+
+	return true;
+}
+
+static int check_func_proto(const struct bpf_func_proto *fn)
+{
+	return check_raw_mode_ok(fn) &&
+	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
+}
+
+/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
+ * are now invalid, so turn them into unknown SCALAR_VALUE.
+ */
+static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
+				     struct bpf_func_state *state)
+{
+	struct bpf_reg_state *regs = state->regs, *reg;
+	int i;
+
+	for (i = 0; i < MAX_BPF_REG; i++)
+		if (reg_is_pkt_pointer_any(&regs[i]))
+			mark_reg_unknown(env, regs, i);
+
+	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
+		if (state->stack[i].slot_type[0] != STACK_SPILL)
+			continue;
+		reg = &state->stack[i].spilled_ptr;
+		if (reg_is_pkt_pointer_any(reg))
+			__mark_reg_unknown(reg);
+	}
+}
+
+static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
+{
+	struct bpf_verifier_state *vstate = env->cur_state;
+	int i;
+
+	for (i = 0; i <= vstate->curframe; i++)
+		__clear_all_pkt_pointers(env, vstate->frame[i]);
+}
+
+static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
+			   int *insn_idx)
+{
+	struct bpf_verifier_state *state = env->cur_state;
+	struct bpf_func_state *caller, *callee;
+	int i, subprog, target_insn;
+
+	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
+		verbose(env, "the call stack of %d frames is too deep\n",
+			state->curframe + 2);
+		return -E2BIG;
+	}
+
+	target_insn = *insn_idx + insn->imm;
+	subprog = find_subprog(env, target_insn + 1);
+	if (subprog < 0) {
+		verbose(env, "verifier bug. No program starts at insn %d\n",
+			target_insn + 1);
+		return -EFAULT;
+	}
+
+	caller = state->frame[state->curframe];
+	if (state->frame[state->curframe + 1]) {
+		verbose(env, "verifier bug. Frame %d already allocated\n",
+			state->curframe + 1);
+		return -EFAULT;
+	}
+
+	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
+	if (!callee)
+		return -ENOMEM;
+	state->frame[state->curframe + 1] = callee;
+
+	/* callee cannot access r0, r6 - r9 for reading and has to write
+	 * into its own stack before reading from it.
+	 * callee can read/write into caller's stack
+	 */
+	init_func_state(env, callee,
+			/* remember the callsite, it will be used by bpf_exit */
+			*insn_idx /* callsite */,
+			state->curframe + 1 /* frameno within this callchain */,
+			subprog /* subprog number within this prog */);
+
+	/* copy r1 - r5 args that callee can access */
+	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
+		callee->regs[i] = caller->regs[i];
+
+	/* after the call regsiters r0 - r5 were scratched */
+	for (i = 0; i < CALLER_SAVED_REGS; i++) {
+		mark_reg_not_init(env, caller->regs, caller_saved[i]);
+		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
+	}
+
+	/* only increment it after check_reg_arg() finished */
+	state->curframe++;
+
+	/* and go analyze first insn of the callee */
+	*insn_idx = target_insn;
+
+	if (env->log.level) {
+		verbose(env, "caller:\n");
+		print_verifier_state(env, caller);
+		verbose(env, "callee:\n");
+		print_verifier_state(env, callee);
+	}
+	return 0;
+}
+
+static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
+{
+	struct bpf_verifier_state *state = env->cur_state;
+	struct bpf_func_state *caller, *callee;
+	struct bpf_reg_state *r0;
+
+	callee = state->frame[state->curframe];
+	r0 = &callee->regs[BPF_REG_0];
+	if (r0->type == PTR_TO_STACK) {
+		/* technically it's ok to return caller's stack pointer
+		 * (or caller's caller's pointer) back to the caller,
+		 * since these pointers are valid. Only current stack
+		 * pointer will be invalid as soon as function exits,
+		 * but let's be conservative
+		 */
+		verbose(env, "cannot return stack pointer to the caller\n");
+		return -EINVAL;
+	}
+
+	state->curframe--;
+	caller = state->frame[state->curframe];
+	/* return to the caller whatever r0 had in the callee */
+	caller->regs[BPF_REG_0] = *r0;
+
+	*insn_idx = callee->callsite + 1;
+	if (env->log.level) {
+		verbose(env, "returning from callee:\n");
+		print_verifier_state(env, callee);
+		verbose(env, "to caller at %d:\n", *insn_idx);
+		print_verifier_state(env, caller);
+	}
+	/* clear everything in the callee */
+	free_func_state(callee);
+	state->frame[state->curframe + 1] = NULL;
+	return 0;
+}
+
+static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
+				   int func_id,
+				   struct bpf_call_arg_meta *meta)
+{
+	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
+
+	if (ret_type != RET_INTEGER ||
+	    (func_id != BPF_FUNC_get_stack &&
+	     func_id != BPF_FUNC_probe_read_str))
+		return;
+
+	ret_reg->smax_value = meta->msize_smax_value;
+	ret_reg->umax_value = meta->msize_umax_value;
+	__reg_deduce_bounds(ret_reg);
+	__reg_bound_offset(ret_reg);
+}
+
+static int
+record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
+		int func_id, int insn_idx)
+{
+	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
+
+	if (func_id != BPF_FUNC_tail_call &&
+	    func_id != BPF_FUNC_map_lookup_elem &&
+	    func_id != BPF_FUNC_map_update_elem &&
+	    func_id != BPF_FUNC_map_delete_elem)
+		return 0;
+
+	if (meta->map_ptr == NULL) {
+		verbose(env, "kernel subsystem misconfigured verifier\n");
+		return -EINVAL;
+	}
+
+	if (!BPF_MAP_PTR(aux->map_state))
+		bpf_map_ptr_store(aux, meta->map_ptr,
+				  meta->map_ptr->unpriv_array);
+	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
+		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
+				  meta->map_ptr->unpriv_array);
+	return 0;
+}
+
+static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
+{
+	const struct bpf_func_proto *fn = NULL;
+	struct bpf_reg_state *regs;
+	struct bpf_call_arg_meta meta;
+	bool changes_data;
+	int i, err;
+
+	/* find function prototype */
+	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
+		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
+			func_id);
+		return -EINVAL;
+	}
+
+	if (env->ops->get_func_proto)
+		fn = env->ops->get_func_proto(func_id, env->prog);
+	if (!fn) {
+		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
+			func_id);
+		return -EINVAL;
+	}
+
+	/* eBPF programs must be GPL compatible to use GPL-ed functions */
+	if (!env->prog->gpl_compatible && fn->gpl_only) {
+		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
+		return -EINVAL;
+	}
+
+	/* With LD_ABS/IND some JITs save/restore skb from r1. */
+	changes_data = bpf_helper_changes_pkt_data(fn->func);
+	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
+		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
+			func_id_name(func_id), func_id);
+		return -EINVAL;
+	}
+
+	memset(&meta, 0, sizeof(meta));
+	meta.pkt_access = fn->pkt_access;
+
+	err = check_func_proto(fn);
+	if (err) {
+		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
+			func_id_name(func_id), func_id);
+		return err;
+	}
+
+	/* check args */
+	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
+	if (err)
+		return err;
+	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
+	if (err)
+		return err;
+	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
+	if (err)
+		return err;
+	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
+	if (err)
+		return err;
+	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
+	if (err)
+		return err;
+
+	err = record_func_map(env, &meta, func_id, insn_idx);
+	if (err)
+		return err;
+
+	/* Mark slots with STACK_MISC in case of raw mode, stack offset
+	 * is inferred from register state.
+	 */
+	for (i = 0; i < meta.access_size; i++) {
+		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
+				       BPF_WRITE, -1, false);
+		if (err)
+			return err;
+	}
+
+	regs = cur_regs(env);
+
+	/* check that flags argument in get_local_storage(map, flags) is 0,
+	 * this is required because get_local_storage() can't return an error.
+	 */
+	if (func_id == BPF_FUNC_get_local_storage &&
+	    !register_is_null(&regs[BPF_REG_2])) {
+		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
+		return -EINVAL;
+	}
+
+	/* reset caller saved regs */
+	for (i = 0; i < CALLER_SAVED_REGS; i++) {
+		mark_reg_not_init(env, regs, caller_saved[i]);
+		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
+	}
+
+	/* update return register (already marked as written above) */
+	if (fn->ret_type == RET_INTEGER) {
+		/* sets type to SCALAR_VALUE */
+		mark_reg_unknown(env, regs, BPF_REG_0);
+	} else if (fn->ret_type == RET_VOID) {
+		regs[BPF_REG_0].type = NOT_INIT;
+	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
+		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
+		if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
+			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
+		else
+			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
+		/* There is no offset yet applied, variable or fixed */
+		mark_reg_known_zero(env, regs, BPF_REG_0);
+		/* remember map_ptr, so that check_map_access()
+		 * can check 'value_size' boundary of memory access
+		 * to map element returned from bpf_map_lookup_elem()
+		 */
+		if (meta.map_ptr == NULL) {
+			verbose(env,
+				"kernel subsystem misconfigured verifier\n");
+			return -EINVAL;
+		}
+		regs[BPF_REG_0].map_ptr = meta.map_ptr;
+		regs[BPF_REG_0].id = ++env->id_gen;
+	} else {
+		verbose(env, "unknown return type %d of func %s#%d\n",
+			fn->ret_type, func_id_name(func_id), func_id);
+		return -EINVAL;
+	}
+
+	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
+
+	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
+	if (err)
+		return err;
+
+	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
+		const char *err_str;
+
+#ifdef CONFIG_PERF_EVENTS
+		err = get_callchain_buffers(sysctl_perf_event_max_stack);
+		err_str = "cannot get callchain buffer for func %s#%d\n";
+#else
+		err = -ENOTSUPP;
+		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
+#endif
+		if (err) {
+			verbose(env, err_str, func_id_name(func_id), func_id);
+			return err;
+		}
+
+		env->prog->has_callchain_buf = true;
+	}
+
+	if (changes_data)
+		clear_all_pkt_pointers(env);
+	return 0;
+}
+
+static bool signed_add_overflows(s64 a, s64 b)
+{
+	/* Do the add in u64, where overflow is well-defined */
+	s64 res = (s64)((u64)a + (u64)b);
+
+	if (b < 0)
+		return res > a;
+	return res < a;
+}
+
+static bool signed_sub_overflows(s64 a, s64 b)
+{
+	/* Do the sub in u64, where overflow is well-defined */
+	s64 res = (s64)((u64)a - (u64)b);
+
+	if (b < 0)
+		return res < a;
+	return res > a;
+}
+
+static bool check_reg_sane_offset(struct bpf_verifier_env *env,
+				  const struct bpf_reg_state *reg,
+				  enum bpf_reg_type type)
+{
+	bool known = tnum_is_const(reg->var_off);
+	s64 val = reg->var_off.value;
+	s64 smin = reg->smin_value;
+
+	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
+		verbose(env, "math between %s pointer and %lld is not allowed\n",
+			reg_type_str[type], val);
+		return false;
+	}
+
+	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
+		verbose(env, "%s pointer offset %d is not allowed\n",
+			reg_type_str[type], reg->off);
+		return false;
+	}
+
+	if (smin == S64_MIN) {
+		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
+			reg_type_str[type]);
+		return false;
+	}
+
+	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
+		verbose(env, "value %lld makes %s pointer be out of bounds\n",
+			smin, reg_type_str[type]);
+		return false;
+	}
+
+	return true;
+}
+
+/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
+ * Caller should also handle BPF_MOV case separately.
+ * If we return -EACCES, caller may want to try again treating pointer as a
+ * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
+ */
+static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
+				   struct bpf_insn *insn,
+				   const struct bpf_reg_state *ptr_reg,
+				   const struct bpf_reg_state *off_reg)
+{
+	struct bpf_verifier_state *vstate = env->cur_state;
+	struct bpf_func_state *state = vstate->frame[vstate->curframe];
+	struct bpf_reg_state *regs = state->regs, *dst_reg;
+	bool known = tnum_is_const(off_reg->var_off);
+	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
+	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
+	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
+	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
+	u8 opcode = BPF_OP(insn->code);
+	u32 dst = insn->dst_reg;
+
+	dst_reg = &regs[dst];
+
+	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
+	    smin_val > smax_val || umin_val > umax_val) {
+		/* Taint dst register if offset had invalid bounds derived from
+		 * e.g. dead branches.
+		 */
+		__mark_reg_unknown(dst_reg);
+		return 0;
+	}
+
+	if (BPF_CLASS(insn->code) != BPF_ALU64) {
+		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
+		verbose(env,
+			"R%d 32-bit pointer arithmetic prohibited\n",
+			dst);
+		return -EACCES;
+	}
+
+	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
+		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
+			dst);
+		return -EACCES;
+	}
+	if (ptr_reg->type == CONST_PTR_TO_MAP) {
+		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
+			dst);
+		return -EACCES;
+	}
+	if (ptr_reg->type == PTR_TO_PACKET_END) {
+		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
+			dst);
+		return -EACCES;
+	}
+
+	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
+	 * The id may be overwritten later if we create a new variable offset.
+	 */
+	dst_reg->type = ptr_reg->type;
+	dst_reg->id = ptr_reg->id;
+
+	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
+	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
+		return -EINVAL;
+
+	switch (opcode) {
+	case BPF_ADD:
+		/* We can take a fixed offset as long as it doesn't overflow
+		 * the s32 'off' field
+		 */
+		if (known && (ptr_reg->off + smin_val ==
+			      (s64)(s32)(ptr_reg->off + smin_val))) {
+			/* pointer += K.  Accumulate it into fixed offset */
+			dst_reg->smin_value = smin_ptr;
+			dst_reg->smax_value = smax_ptr;
+			dst_reg->umin_value = umin_ptr;
+			dst_reg->umax_value = umax_ptr;
+			dst_reg->var_off = ptr_reg->var_off;
+			dst_reg->off = ptr_reg->off + smin_val;
+			dst_reg->raw = ptr_reg->raw;
+			break;
+		}
+		/* A new variable offset is created.  Note that off_reg->off
+		 * == 0, since it's a scalar.
+		 * dst_reg gets the pointer type and since some positive
+		 * integer value was added to the pointer, give it a new 'id'
+		 * if it's a PTR_TO_PACKET.
+		 * this creates a new 'base' pointer, off_reg (variable) gets
+		 * added into the variable offset, and we copy the fixed offset
+		 * from ptr_reg.
+		 */
+		if (signed_add_overflows(smin_ptr, smin_val) ||
+		    signed_add_overflows(smax_ptr, smax_val)) {
+			dst_reg->smin_value = S64_MIN;
+			dst_reg->smax_value = S64_MAX;
+		} else {
+			dst_reg->smin_value = smin_ptr + smin_val;
+			dst_reg->smax_value = smax_ptr + smax_val;
+		}
+		if (umin_ptr + umin_val < umin_ptr ||
+		    umax_ptr + umax_val < umax_ptr) {
+			dst_reg->umin_value = 0;
+			dst_reg->umax_value = U64_MAX;
+		} else {
+			dst_reg->umin_value = umin_ptr + umin_val;
+			dst_reg->umax_value = umax_ptr + umax_val;
+		}
+		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
+		dst_reg->off = ptr_reg->off;
+		dst_reg->raw = ptr_reg->raw;
+		if (reg_is_pkt_pointer(ptr_reg)) {
+			dst_reg->id = ++env->id_gen;
+			/* something was added to pkt_ptr, set range to zero */
+			dst_reg->raw = 0;
+		}
+		break;
+	case BPF_SUB:
+		if (dst_reg == off_reg) {
+			/* scalar -= pointer.  Creates an unknown scalar */
+			verbose(env, "R%d tried to subtract pointer from scalar\n",
+				dst);
+			return -EACCES;
+		}
+		/* We don't allow subtraction from FP, because (according to
+		 * test_verifier.c test "invalid fp arithmetic", JITs might not
+		 * be able to deal with it.
+		 */
+		if (ptr_reg->type == PTR_TO_STACK) {
+			verbose(env, "R%d subtraction from stack pointer prohibited\n",
+				dst);
+			return -EACCES;
+		}
+		if (known && (ptr_reg->off - smin_val ==
+			      (s64)(s32)(ptr_reg->off - smin_val))) {
+			/* pointer -= K.  Subtract it from fixed offset */
+			dst_reg->smin_value = smin_ptr;
+			dst_reg->smax_value = smax_ptr;
+			dst_reg->umin_value = umin_ptr;
+			dst_reg->umax_value = umax_ptr;
+			dst_reg->var_off = ptr_reg->var_off;
+			dst_reg->id = ptr_reg->id;
+			dst_reg->off = ptr_reg->off - smin_val;
+			dst_reg->raw = ptr_reg->raw;
+			break;
+		}
+		/* A new variable offset is created.  If the subtrahend is known
+		 * nonnegative, then any reg->range we had before is still good.
+		 */
+		if (signed_sub_overflows(smin_ptr, smax_val) ||
+		    signed_sub_overflows(smax_ptr, smin_val)) {
+			/* Overflow possible, we know nothing */
+			dst_reg->smin_value = S64_MIN;
+			dst_reg->smax_value = S64_MAX;
+		} else {
+			dst_reg->smin_value = smin_ptr - smax_val;
+			dst_reg->smax_value = smax_ptr - smin_val;
+		}
+		if (umin_ptr < umax_val) {
+			/* Overflow possible, we know nothing */
+			dst_reg->umin_value = 0;
+			dst_reg->umax_value = U64_MAX;
+		} else {
+			/* Cannot overflow (as long as bounds are consistent) */
+			dst_reg->umin_value = umin_ptr - umax_val;
+			dst_reg->umax_value = umax_ptr - umin_val;
+		}
+		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
+		dst_reg->off = ptr_reg->off;
+		dst_reg->raw = ptr_reg->raw;
+		if (reg_is_pkt_pointer(ptr_reg)) {
+			dst_reg->id = ++env->id_gen;
+			/* something was added to pkt_ptr, set range to zero */
+			if (smin_val < 0)
+				dst_reg->raw = 0;
+		}
+		break;
+	case BPF_AND:
+	case BPF_OR:
+	case BPF_XOR:
+		/* bitwise ops on pointers are troublesome, prohibit. */
+		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
+			dst, bpf_alu_string[opcode >> 4]);
+		return -EACCES;
+	default:
+		/* other operators (e.g. MUL,LSH) produce non-pointer results */
+		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
+			dst, bpf_alu_string[opcode >> 4]);
+		return -EACCES;
+	}
+
+	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
+		return -EINVAL;
+
+	__update_reg_bounds(dst_reg);
+	__reg_deduce_bounds(dst_reg);
+	__reg_bound_offset(dst_reg);
+	return 0;
+}
+
+/* WARNING: This function does calculations on 64-bit values, but the actual
+ * execution may occur on 32-bit values. Therefore, things like bitshifts
+ * need extra checks in the 32-bit case.
+ */
+static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
+				      struct bpf_insn *insn,
+				      struct bpf_reg_state *dst_reg,
+				      struct bpf_reg_state src_reg)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	u8 opcode = BPF_OP(insn->code);
+	bool src_known, dst_known;
+	s64 smin_val, smax_val;
+	u64 umin_val, umax_val;
+	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
+
+	if (insn_bitness == 32) {
+		/* Relevant for 32-bit RSH: Information can propagate towards
+		 * LSB, so it isn't sufficient to only truncate the output to
+		 * 32 bits.
+		 */
+		coerce_reg_to_size(dst_reg, 4);
+		coerce_reg_to_size(&src_reg, 4);
+	}
+
+	smin_val = src_reg.smin_value;
+	smax_val = src_reg.smax_value;
+	umin_val = src_reg.umin_value;
+	umax_val = src_reg.umax_value;
+	src_known = tnum_is_const(src_reg.var_off);
+	dst_known = tnum_is_const(dst_reg->var_off);
+
+	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
+	    smin_val > smax_val || umin_val > umax_val) {
+		/* Taint dst register if offset had invalid bounds derived from
+		 * e.g. dead branches.
+		 */
+		__mark_reg_unknown(dst_reg);
+		return 0;
+	}
+
+	if (!src_known &&
+	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
+		__mark_reg_unknown(dst_reg);
+		return 0;
+	}
+
+	switch (opcode) {
+	case BPF_ADD:
+		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
+		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
+			dst_reg->smin_value = S64_MIN;
+			dst_reg->smax_value = S64_MAX;
+		} else {
+			dst_reg->smin_value += smin_val;
+			dst_reg->smax_value += smax_val;
+		}
+		if (dst_reg->umin_value + umin_val < umin_val ||
+		    dst_reg->umax_value + umax_val < umax_val) {
+			dst_reg->umin_value = 0;
+			dst_reg->umax_value = U64_MAX;
+		} else {
+			dst_reg->umin_value += umin_val;
+			dst_reg->umax_value += umax_val;
+		}
+		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
+		break;
+	case BPF_SUB:
+		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
+		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
+			/* Overflow possible, we know nothing */
+			dst_reg->smin_value = S64_MIN;
+			dst_reg->smax_value = S64_MAX;
+		} else {
+			dst_reg->smin_value -= smax_val;
+			dst_reg->smax_value -= smin_val;
+		}
+		if (dst_reg->umin_value < umax_val) {
+			/* Overflow possible, we know nothing */
+			dst_reg->umin_value = 0;
+			dst_reg->umax_value = U64_MAX;
+		} else {
+			/* Cannot overflow (as long as bounds are consistent) */
+			dst_reg->umin_value -= umax_val;
+			dst_reg->umax_value -= umin_val;
+		}
+		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
+		break;
+	case BPF_MUL:
+		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
+		if (smin_val < 0 || dst_reg->smin_value < 0) {
+			/* Ain't nobody got time to multiply that sign */
+			__mark_reg_unbounded(dst_reg);
+			__update_reg_bounds(dst_reg);
+			break;
+		}
+		/* Both values are positive, so we can work with unsigned and
+		 * copy the result to signed (unless it exceeds S64_MAX).
+		 */
+		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
+			/* Potential overflow, we know nothing */
+			__mark_reg_unbounded(dst_reg);
+			/* (except what we can learn from the var_off) */
+			__update_reg_bounds(dst_reg);
+			break;
+		}
+		dst_reg->umin_value *= umin_val;
+		dst_reg->umax_value *= umax_val;
+		if (dst_reg->umax_value > S64_MAX) {
+			/* Overflow possible, we know nothing */
+			dst_reg->smin_value = S64_MIN;
+			dst_reg->smax_value = S64_MAX;
+		} else {
+			dst_reg->smin_value = dst_reg->umin_value;
+			dst_reg->smax_value = dst_reg->umax_value;
+		}
+		break;
+	case BPF_AND:
+		if (src_known && dst_known) {
+			__mark_reg_known(dst_reg, dst_reg->var_off.value &
+						  src_reg.var_off.value);
+			break;
+		}
+		/* We get our minimum from the var_off, since that's inherently
+		 * bitwise.  Our maximum is the minimum of the operands' maxima.
+		 */
+		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
+		dst_reg->umin_value = dst_reg->var_off.value;
+		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
+		if (dst_reg->smin_value < 0 || smin_val < 0) {
+			/* Lose signed bounds when ANDing negative numbers,
+			 * ain't nobody got time for that.
+			 */
+			dst_reg->smin_value = S64_MIN;
+			dst_reg->smax_value = S64_MAX;
+		} else {
+			/* ANDing two positives gives a positive, so safe to
+			 * cast result into s64.
+			 */
+			dst_reg->smin_value = dst_reg->umin_value;
+			dst_reg->smax_value = dst_reg->umax_value;
+		}
+		/* We may learn something more from the var_off */
+		__update_reg_bounds(dst_reg);
+		break;
+	case BPF_OR:
+		if (src_known && dst_known) {
+			__mark_reg_known(dst_reg, dst_reg->var_off.value |
+						  src_reg.var_off.value);
+			break;
+		}
+		/* We get our maximum from the var_off, and our minimum is the
+		 * maximum of the operands' minima
+		 */
+		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
+		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
+		dst_reg->umax_value = dst_reg->var_off.value |
+				      dst_reg->var_off.mask;
+		if (dst_reg->smin_value < 0 || smin_val < 0) {
+			/* Lose signed bounds when ORing negative numbers,
+			 * ain't nobody got time for that.
+			 */
+			dst_reg->smin_value = S64_MIN;
+			dst_reg->smax_value = S64_MAX;
+		} else {
+			/* ORing two positives gives a positive, so safe to
+			 * cast result into s64.
+			 */
+			dst_reg->smin_value = dst_reg->umin_value;
+			dst_reg->smax_value = dst_reg->umax_value;
+		}
+		/* We may learn something more from the var_off */
+		__update_reg_bounds(dst_reg);
+		break;
+	case BPF_LSH:
+		if (umax_val >= insn_bitness) {
+			/* Shifts greater than 31 or 63 are undefined.
+			 * This includes shifts by a negative number.
+			 */
+			mark_reg_unknown(env, regs, insn->dst_reg);
+			break;
+		}
+		/* We lose all sign bit information (except what we can pick
+		 * up from var_off)
+		 */
+		dst_reg->smin_value = S64_MIN;
+		dst_reg->smax_value = S64_MAX;
+		/* If we might shift our top bit out, then we know nothing */
+		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
+			dst_reg->umin_value = 0;
+			dst_reg->umax_value = U64_MAX;
+		} else {
+			dst_reg->umin_value <<= umin_val;
+			dst_reg->umax_value <<= umax_val;
+		}
+		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
+		/* We may learn something more from the var_off */
+		__update_reg_bounds(dst_reg);
+		break;
+	case BPF_RSH:
+		if (umax_val >= insn_bitness) {
+			/* Shifts greater than 31 or 63 are undefined.
+			 * This includes shifts by a negative number.
+			 */
+			mark_reg_unknown(env, regs, insn->dst_reg);
+			break;
+		}
+		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
+		 * be negative, then either:
+		 * 1) src_reg might be zero, so the sign bit of the result is
+		 *    unknown, so we lose our signed bounds
+		 * 2) it's known negative, thus the unsigned bounds capture the
+		 *    signed bounds
+		 * 3) the signed bounds cross zero, so they tell us nothing
+		 *    about the result
+		 * If the value in dst_reg is known nonnegative, then again the
+		 * unsigned bounts capture the signed bounds.
+		 * Thus, in all cases it suffices to blow away our signed bounds
+		 * and rely on inferring new ones from the unsigned bounds and
+		 * var_off of the result.
+		 */
+		dst_reg->smin_value = S64_MIN;
+		dst_reg->smax_value = S64_MAX;
+		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
+		dst_reg->umin_value >>= umax_val;
+		dst_reg->umax_value >>= umin_val;
+		/* We may learn something more from the var_off */
+		__update_reg_bounds(dst_reg);
+		break;
+	case BPF_ARSH:
+		if (umax_val >= insn_bitness) {
+			/* Shifts greater than 31 or 63 are undefined.
+			 * This includes shifts by a negative number.
+			 */
+			mark_reg_unknown(env, regs, insn->dst_reg);
+			break;
+		}
+
+		/* Upon reaching here, src_known is true and
+		 * umax_val is equal to umin_val.
+		 */
+		dst_reg->smin_value >>= umin_val;
+		dst_reg->smax_value >>= umin_val;
+		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
+
+		/* blow away the dst_reg umin_value/umax_value and rely on
+		 * dst_reg var_off to refine the result.
+		 */
+		dst_reg->umin_value = 0;
+		dst_reg->umax_value = U64_MAX;
+		__update_reg_bounds(dst_reg);
+		break;
+	default:
+		mark_reg_unknown(env, regs, insn->dst_reg);
+		break;
+	}
+
+	if (BPF_CLASS(insn->code) != BPF_ALU64) {
+		/* 32-bit ALU ops are (32,32)->32 */
+		coerce_reg_to_size(dst_reg, 4);
+	}
+
+	__reg_deduce_bounds(dst_reg);
+	__reg_bound_offset(dst_reg);
+	return 0;
+}
+
+/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
+ * and var_off.
+ */
+static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
+				   struct bpf_insn *insn)
+{
+	struct bpf_verifier_state *vstate = env->cur_state;
+	struct bpf_func_state *state = vstate->frame[vstate->curframe];
+	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
+	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
+	u8 opcode = BPF_OP(insn->code);
+
+	dst_reg = &regs[insn->dst_reg];
+	src_reg = NULL;
+	if (dst_reg->type != SCALAR_VALUE)
+		ptr_reg = dst_reg;
+	if (BPF_SRC(insn->code) == BPF_X) {
+		src_reg = &regs[insn->src_reg];
+		if (src_reg->type != SCALAR_VALUE) {
+			if (dst_reg->type != SCALAR_VALUE) {
+				/* Combining two pointers by any ALU op yields
+				 * an arbitrary scalar. Disallow all math except
+				 * pointer subtraction
+				 */
+				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
+					mark_reg_unknown(env, regs, insn->dst_reg);
+					return 0;
+				}
+				verbose(env, "R%d pointer %s pointer prohibited\n",
+					insn->dst_reg,
+					bpf_alu_string[opcode >> 4]);
+				return -EACCES;
+			} else {
+				/* scalar += pointer
+				 * This is legal, but we have to reverse our
+				 * src/dest handling in computing the range
+				 */
+				return adjust_ptr_min_max_vals(env, insn,
+							       src_reg, dst_reg);
+			}
+		} else if (ptr_reg) {
+			/* pointer += scalar */
+			return adjust_ptr_min_max_vals(env, insn,
+						       dst_reg, src_reg);
+		}
+	} else {
+		/* Pretend the src is a reg with a known value, since we only
+		 * need to be able to read from this state.
+		 */
+		off_reg.type = SCALAR_VALUE;
+		__mark_reg_known(&off_reg, insn->imm);
+		src_reg = &off_reg;
+		if (ptr_reg) /* pointer += K */
+			return adjust_ptr_min_max_vals(env, insn,
+						       ptr_reg, src_reg);
+	}
+
+	/* Got here implies adding two SCALAR_VALUEs */
+	if (WARN_ON_ONCE(ptr_reg)) {
+		print_verifier_state(env, state);
+		verbose(env, "verifier internal error: unexpected ptr_reg\n");
+		return -EINVAL;
+	}
+	if (WARN_ON(!src_reg)) {
+		print_verifier_state(env, state);
+		verbose(env, "verifier internal error: no src_reg\n");
+		return -EINVAL;
+	}
+	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
+}
+
+/* check validity of 32-bit and 64-bit arithmetic operations */
+static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	u8 opcode = BPF_OP(insn->code);
+	int err;
+
+	if (opcode == BPF_END || opcode == BPF_NEG) {
+		if (opcode == BPF_NEG) {
+			if (BPF_SRC(insn->code) != 0 ||
+			    insn->src_reg != BPF_REG_0 ||
+			    insn->off != 0 || insn->imm != 0) {
+				verbose(env, "BPF_NEG uses reserved fields\n");
+				return -EINVAL;
+			}
+		} else {
+			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
+			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
+			    BPF_CLASS(insn->code) == BPF_ALU64) {
+				verbose(env, "BPF_END uses reserved fields\n");
+				return -EINVAL;
+			}
+		}
+
+		/* check src operand */
+		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+		if (err)
+			return err;
+
+		if (is_pointer_value(env, insn->dst_reg)) {
+			verbose(env, "R%d pointer arithmetic prohibited\n",
+				insn->dst_reg);
+			return -EACCES;
+		}
+
+		/* check dest operand */
+		err = check_reg_arg(env, insn->dst_reg, DST_OP);
+		if (err)
+			return err;
+
+	} else if (opcode == BPF_MOV) {
+
+		if (BPF_SRC(insn->code) == BPF_X) {
+			if (insn->imm != 0 || insn->off != 0) {
+				verbose(env, "BPF_MOV uses reserved fields\n");
+				return -EINVAL;
+			}
+
+			/* check src operand */
+			err = check_reg_arg(env, insn->src_reg, SRC_OP);
+			if (err)
+				return err;
+		} else {
+			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
+				verbose(env, "BPF_MOV uses reserved fields\n");
+				return -EINVAL;
+			}
+		}
+
+		/* check dest operand, mark as required later */
+		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+		if (err)
+			return err;
+
+		if (BPF_SRC(insn->code) == BPF_X) {
+			if (BPF_CLASS(insn->code) == BPF_ALU64) {
+				/* case: R1 = R2
+				 * copy register state to dest reg
+				 */
+				regs[insn->dst_reg] = regs[insn->src_reg];
+				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
+			} else {
+				/* R1 = (u32) R2 */
+				if (is_pointer_value(env, insn->src_reg)) {
+					verbose(env,
+						"R%d partial copy of pointer\n",
+						insn->src_reg);
+					return -EACCES;
+				}
+				mark_reg_unknown(env, regs, insn->dst_reg);
+				coerce_reg_to_size(&regs[insn->dst_reg], 4);
+			}
+		} else {
+			/* case: R = imm
+			 * remember the value we stored into this reg
+			 */
+			/* clear any state __mark_reg_known doesn't set */
+			mark_reg_unknown(env, regs, insn->dst_reg);
+			regs[insn->dst_reg].type = SCALAR_VALUE;
+			if (BPF_CLASS(insn->code) == BPF_ALU64) {
+				__mark_reg_known(regs + insn->dst_reg,
+						 insn->imm);
+			} else {
+				__mark_reg_known(regs + insn->dst_reg,
+						 (u32)insn->imm);
+			}
+		}
+
+	} else if (opcode > BPF_END) {
+		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
+		return -EINVAL;
+
+	} else {	/* all other ALU ops: and, sub, xor, add, ... */
+
+		if (BPF_SRC(insn->code) == BPF_X) {
+			if (insn->imm != 0 || insn->off != 0) {
+				verbose(env, "BPF_ALU uses reserved fields\n");
+				return -EINVAL;
+			}
+			/* check src1 operand */
+			err = check_reg_arg(env, insn->src_reg, SRC_OP);
+			if (err)
+				return err;
+		} else {
+			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
+				verbose(env, "BPF_ALU uses reserved fields\n");
+				return -EINVAL;
+			}
+		}
+
+		/* check src2 operand */
+		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+		if (err)
+			return err;
+
+		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
+		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
+			verbose(env, "div by zero\n");
+			return -EINVAL;
+		}
+
+		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
+			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
+			return -EINVAL;
+		}
+
+		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
+		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
+			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
+
+			if (insn->imm < 0 || insn->imm >= size) {
+				verbose(env, "invalid shift %d\n", insn->imm);
+				return -EINVAL;
+			}
+		}
+
+		/* check dest operand */
+		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+		if (err)
+			return err;
+
+		return adjust_reg_min_max_vals(env, insn);
+	}
+
+	return 0;
+}
+
+static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
+				   struct bpf_reg_state *dst_reg,
+				   enum bpf_reg_type type,
+				   bool range_right_open)
+{
+	struct bpf_func_state *state = vstate->frame[vstate->curframe];
+	struct bpf_reg_state *regs = state->regs, *reg;
+	u16 new_range;
+	int i, j;
+
+	if (dst_reg->off < 0 ||
+	    (dst_reg->off == 0 && range_right_open))
+		/* This doesn't give us any range */
+		return;
+
+	if (dst_reg->umax_value > MAX_PACKET_OFF ||
+	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
+		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
+		 * than pkt_end, but that's because it's also less than pkt.
+		 */
+		return;
+
+	new_range = dst_reg->off;
+	if (range_right_open)
+		new_range--;
+
+	/* Examples for register markings:
+	 *
+	 * pkt_data in dst register:
+	 *
+	 *   r2 = r3;
+	 *   r2 += 8;
+	 *   if (r2 > pkt_end) goto <handle exception>
+	 *   <access okay>
+	 *
+	 *   r2 = r3;
+	 *   r2 += 8;
+	 *   if (r2 < pkt_end) goto <access okay>
+	 *   <handle exception>
+	 *
+	 *   Where:
+	 *     r2 == dst_reg, pkt_end == src_reg
+	 *     r2=pkt(id=n,off=8,r=0)
+	 *     r3=pkt(id=n,off=0,r=0)
+	 *
+	 * pkt_data in src register:
+	 *
+	 *   r2 = r3;
+	 *   r2 += 8;
+	 *   if (pkt_end >= r2) goto <access okay>
+	 *   <handle exception>
+	 *
+	 *   r2 = r3;
+	 *   r2 += 8;
+	 *   if (pkt_end <= r2) goto <handle exception>
+	 *   <access okay>
+	 *
+	 *   Where:
+	 *     pkt_end == dst_reg, r2 == src_reg
+	 *     r2=pkt(id=n,off=8,r=0)
+	 *     r3=pkt(id=n,off=0,r=0)
+	 *
+	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
+	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
+	 * and [r3, r3 + 8-1) respectively is safe to access depending on
+	 * the check.
+	 */
+
+	/* If our ids match, then we must have the same max_value.  And we
+	 * don't care about the other reg's fixed offset, since if it's too big
+	 * the range won't allow anything.
+	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
+	 */
+	for (i = 0; i < MAX_BPF_REG; i++)
+		if (regs[i].type == type && regs[i].id == dst_reg->id)
+			/* keep the maximum range already checked */
+			regs[i].range = max(regs[i].range, new_range);
+
+	for (j = 0; j <= vstate->curframe; j++) {
+		state = vstate->frame[j];
+		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
+			if (state->stack[i].slot_type[0] != STACK_SPILL)
+				continue;
+			reg = &state->stack[i].spilled_ptr;
+			if (reg->type == type && reg->id == dst_reg->id)
+				reg->range = max(reg->range, new_range);
+		}
+	}
+}
+
+/* Adjusts the register min/max values in the case that the dst_reg is the
+ * variable register that we are working on, and src_reg is a constant or we're
+ * simply doing a BPF_K check.
+ * In JEQ/JNE cases we also adjust the var_off values.
+ */
+static void reg_set_min_max(struct bpf_reg_state *true_reg,
+			    struct bpf_reg_state *false_reg, u64 val,
+			    u8 opcode)
+{
+	/* If the dst_reg is a pointer, we can't learn anything about its
+	 * variable offset from the compare (unless src_reg were a pointer into
+	 * the same object, but we don't bother with that.
+	 * Since false_reg and true_reg have the same type by construction, we
+	 * only need to check one of them for pointerness.
+	 */
+	if (__is_pointer_value(false, false_reg))
+		return;
+
+	switch (opcode) {
+	case BPF_JEQ:
+		/* If this is false then we know nothing Jon Snow, but if it is
+		 * true then we know for sure.
+		 */
+		__mark_reg_known(true_reg, val);
+		break;
+	case BPF_JNE:
+		/* If this is true we know nothing Jon Snow, but if it is false
+		 * we know the value for sure;
+		 */
+		__mark_reg_known(false_reg, val);
+		break;
+	case BPF_JGT:
+		false_reg->umax_value = min(false_reg->umax_value, val);
+		true_reg->umin_value = max(true_reg->umin_value, val + 1);
+		break;
+	case BPF_JSGT:
+		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
+		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
+		break;
+	case BPF_JLT:
+		false_reg->umin_value = max(false_reg->umin_value, val);
+		true_reg->umax_value = min(true_reg->umax_value, val - 1);
+		break;
+	case BPF_JSLT:
+		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
+		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
+		break;
+	case BPF_JGE:
+		false_reg->umax_value = min(false_reg->umax_value, val - 1);
+		true_reg->umin_value = max(true_reg->umin_value, val);
+		break;
+	case BPF_JSGE:
+		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
+		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
+		break;
+	case BPF_JLE:
+		false_reg->umin_value = max(false_reg->umin_value, val + 1);
+		true_reg->umax_value = min(true_reg->umax_value, val);
+		break;
+	case BPF_JSLE:
+		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
+		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
+		break;
+	default:
+		break;
+	}
+
+	__reg_deduce_bounds(false_reg);
+	__reg_deduce_bounds(true_reg);
+	/* We might have learned some bits from the bounds. */
+	__reg_bound_offset(false_reg);
+	__reg_bound_offset(true_reg);
+	/* Intersecting with the old var_off might have improved our bounds
+	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
+	 * then new var_off is (0; 0x7f...fc) which improves our umax.
+	 */
+	__update_reg_bounds(false_reg);
+	__update_reg_bounds(true_reg);
+}
+
+/* Same as above, but for the case that dst_reg holds a constant and src_reg is
+ * the variable reg.
+ */
+static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
+				struct bpf_reg_state *false_reg, u64 val,
+				u8 opcode)
+{
+	if (__is_pointer_value(false, false_reg))
+		return;
+
+	switch (opcode) {
+	case BPF_JEQ:
+		/* If this is false then we know nothing Jon Snow, but if it is
+		 * true then we know for sure.
+		 */
+		__mark_reg_known(true_reg, val);
+		break;
+	case BPF_JNE:
+		/* If this is true we know nothing Jon Snow, but if it is false
+		 * we know the value for sure;
+		 */
+		__mark_reg_known(false_reg, val);
+		break;
+	case BPF_JGT:
+		true_reg->umax_value = min(true_reg->umax_value, val - 1);
+		false_reg->umin_value = max(false_reg->umin_value, val);
+		break;
+	case BPF_JSGT:
+		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
+		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
+		break;
+	case BPF_JLT:
+		true_reg->umin_value = max(true_reg->umin_value, val + 1);
+		false_reg->umax_value = min(false_reg->umax_value, val);
+		break;
+	case BPF_JSLT:
+		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
+		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
+		break;
+	case BPF_JGE:
+		true_reg->umax_value = min(true_reg->umax_value, val);
+		false_reg->umin_value = max(false_reg->umin_value, val + 1);
+		break;
+	case BPF_JSGE:
+		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
+		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
+		break;
+	case BPF_JLE:
+		true_reg->umin_value = max(true_reg->umin_value, val);
+		false_reg->umax_value = min(false_reg->umax_value, val - 1);
+		break;
+	case BPF_JSLE:
+		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
+		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
+		break;
+	default:
+		break;
+	}
+
+	__reg_deduce_bounds(false_reg);
+	__reg_deduce_bounds(true_reg);
+	/* We might have learned some bits from the bounds. */
+	__reg_bound_offset(false_reg);
+	__reg_bound_offset(true_reg);
+	/* Intersecting with the old var_off might have improved our bounds
+	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
+	 * then new var_off is (0; 0x7f...fc) which improves our umax.
+	 */
+	__update_reg_bounds(false_reg);
+	__update_reg_bounds(true_reg);
+}
+
+/* Regs are known to be equal, so intersect their min/max/var_off */
+static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
+				  struct bpf_reg_state *dst_reg)
+{
+	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
+							dst_reg->umin_value);
+	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
+							dst_reg->umax_value);
+	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
+							dst_reg->smin_value);
+	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
+							dst_reg->smax_value);
+	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
+							     dst_reg->var_off);
+	/* We might have learned new bounds from the var_off. */
+	__update_reg_bounds(src_reg);
+	__update_reg_bounds(dst_reg);
+	/* We might have learned something about the sign bit. */
+	__reg_deduce_bounds(src_reg);
+	__reg_deduce_bounds(dst_reg);
+	/* We might have learned some bits from the bounds. */
+	__reg_bound_offset(src_reg);
+	__reg_bound_offset(dst_reg);
+	/* Intersecting with the old var_off might have improved our bounds
+	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
+	 * then new var_off is (0; 0x7f...fc) which improves our umax.
+	 */
+	__update_reg_bounds(src_reg);
+	__update_reg_bounds(dst_reg);
+}
+
+static void reg_combine_min_max(struct bpf_reg_state *true_src,
+				struct bpf_reg_state *true_dst,
+				struct bpf_reg_state *false_src,
+				struct bpf_reg_state *false_dst,
+				u8 opcode)
+{
+	switch (opcode) {
+	case BPF_JEQ:
+		__reg_combine_min_max(true_src, true_dst);
+		break;
+	case BPF_JNE:
+		__reg_combine_min_max(false_src, false_dst);
+		break;
+	}
+}
+
+static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
+			 bool is_null)
+{
+	struct bpf_reg_state *reg = &regs[regno];
+
+	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
+		/* Old offset (both fixed and variable parts) should
+		 * have been known-zero, because we don't allow pointer
+		 * arithmetic on pointers that might be NULL.
+		 */
+		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
+				 !tnum_equals_const(reg->var_off, 0) ||
+				 reg->off)) {
+			__mark_reg_known_zero(reg);
+			reg->off = 0;
+		}
+		if (is_null) {
+			reg->type = SCALAR_VALUE;
+		} else if (reg->map_ptr->inner_map_meta) {
+			reg->type = CONST_PTR_TO_MAP;
+			reg->map_ptr = reg->map_ptr->inner_map_meta;
+		} else {
+			reg->type = PTR_TO_MAP_VALUE;
+		}
+		/* We don't need id from this point onwards anymore, thus we
+		 * should better reset it, so that state pruning has chances
+		 * to take effect.
+		 */
+		reg->id = 0;
+	}
+}
+
+/* The logic is similar to find_good_pkt_pointers(), both could eventually
+ * be folded together at some point.
+ */
+static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
+			  bool is_null)
+{
+	struct bpf_func_state *state = vstate->frame[vstate->curframe];
+	struct bpf_reg_state *regs = state->regs;
+	u32 id = regs[regno].id;
+	int i, j;
+
+	for (i = 0; i < MAX_BPF_REG; i++)
+		mark_map_reg(regs, i, id, is_null);
+
+	for (j = 0; j <= vstate->curframe; j++) {
+		state = vstate->frame[j];
+		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
+			if (state->stack[i].slot_type[0] != STACK_SPILL)
+				continue;
+			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
+		}
+	}
+}
+
+static bool try_match_pkt_pointers(const struct bpf_insn *insn,
+				   struct bpf_reg_state *dst_reg,
+				   struct bpf_reg_state *src_reg,
+				   struct bpf_verifier_state *this_branch,
+				   struct bpf_verifier_state *other_branch)
+{
+	if (BPF_SRC(insn->code) != BPF_X)
+		return false;
+
+	switch (BPF_OP(insn->code)) {
+	case BPF_JGT:
+		if ((dst_reg->type == PTR_TO_PACKET &&
+		     src_reg->type == PTR_TO_PACKET_END) ||
+		    (dst_reg->type == PTR_TO_PACKET_META &&
+		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
+			find_good_pkt_pointers(this_branch, dst_reg,
+					       dst_reg->type, false);
+		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
+			    src_reg->type == PTR_TO_PACKET) ||
+			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+			    src_reg->type == PTR_TO_PACKET_META)) {
+			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
+			find_good_pkt_pointers(other_branch, src_reg,
+					       src_reg->type, true);
+		} else {
+			return false;
+		}
+		break;
+	case BPF_JLT:
+		if ((dst_reg->type == PTR_TO_PACKET &&
+		     src_reg->type == PTR_TO_PACKET_END) ||
+		    (dst_reg->type == PTR_TO_PACKET_META &&
+		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
+			find_good_pkt_pointers(other_branch, dst_reg,
+					       dst_reg->type, true);
+		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
+			    src_reg->type == PTR_TO_PACKET) ||
+			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+			    src_reg->type == PTR_TO_PACKET_META)) {
+			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
+			find_good_pkt_pointers(this_branch, src_reg,
+					       src_reg->type, false);
+		} else {
+			return false;
+		}
+		break;
+	case BPF_JGE:
+		if ((dst_reg->type == PTR_TO_PACKET &&
+		     src_reg->type == PTR_TO_PACKET_END) ||
+		    (dst_reg->type == PTR_TO_PACKET_META &&
+		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
+			find_good_pkt_pointers(this_branch, dst_reg,
+					       dst_reg->type, true);
+		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
+			    src_reg->type == PTR_TO_PACKET) ||
+			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+			    src_reg->type == PTR_TO_PACKET_META)) {
+			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
+			find_good_pkt_pointers(other_branch, src_reg,
+					       src_reg->type, false);
+		} else {
+			return false;
+		}
+		break;
+	case BPF_JLE:
+		if ((dst_reg->type == PTR_TO_PACKET &&
+		     src_reg->type == PTR_TO_PACKET_END) ||
+		    (dst_reg->type == PTR_TO_PACKET_META &&
+		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
+			find_good_pkt_pointers(other_branch, dst_reg,
+					       dst_reg->type, false);
+		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
+			    src_reg->type == PTR_TO_PACKET) ||
+			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+			    src_reg->type == PTR_TO_PACKET_META)) {
+			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
+			find_good_pkt_pointers(this_branch, src_reg,
+					       src_reg->type, true);
+		} else {
+			return false;
+		}
+		break;
+	default:
+		return false;
+	}
+
+	return true;
+}
+
+static int check_cond_jmp_op(struct bpf_verifier_env *env,
+			     struct bpf_insn *insn, int *insn_idx)
+{
+	struct bpf_verifier_state *this_branch = env->cur_state;
+	struct bpf_verifier_state *other_branch;
+	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
+	struct bpf_reg_state *dst_reg, *other_branch_regs;
+	u8 opcode = BPF_OP(insn->code);
+	int err;
+
+	if (opcode > BPF_JSLE) {
+		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
+		return -EINVAL;
+	}
+
+	if (BPF_SRC(insn->code) == BPF_X) {
+		if (insn->imm != 0) {
+			verbose(env, "BPF_JMP uses reserved fields\n");
+			return -EINVAL;
+		}
+
+		/* check src1 operand */
+		err = check_reg_arg(env, insn->src_reg, SRC_OP);
+		if (err)
+			return err;
+
+		if (is_pointer_value(env, insn->src_reg)) {
+			verbose(env, "R%d pointer comparison prohibited\n",
+				insn->src_reg);
+			return -EACCES;
+		}
+	} else {
+		if (insn->src_reg != BPF_REG_0) {
+			verbose(env, "BPF_JMP uses reserved fields\n");
+			return -EINVAL;
+		}
+	}
+
+	/* check src2 operand */
+	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+	if (err)
+		return err;
+
+	dst_reg = &regs[insn->dst_reg];
+
+	/* detect if R == 0 where R was initialized to zero earlier */
+	if (BPF_SRC(insn->code) == BPF_K &&
+	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
+	    dst_reg->type == SCALAR_VALUE &&
+	    tnum_is_const(dst_reg->var_off)) {
+		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
+		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
+			/* if (imm == imm) goto pc+off;
+			 * only follow the goto, ignore fall-through
+			 */
+			*insn_idx += insn->off;
+			return 0;
+		} else {
+			/* if (imm != imm) goto pc+off;
+			 * only follow fall-through branch, since
+			 * that's where the program will go
+			 */
+			return 0;
+		}
+	}
+
+	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
+	if (!other_branch)
+		return -EFAULT;
+	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
+
+	/* detect if we are comparing against a constant value so we can adjust
+	 * our min/max values for our dst register.
+	 * this is only legit if both are scalars (or pointers to the same
+	 * object, I suppose, but we don't support that right now), because
+	 * otherwise the different base pointers mean the offsets aren't
+	 * comparable.
+	 */
+	if (BPF_SRC(insn->code) == BPF_X) {
+		if (dst_reg->type == SCALAR_VALUE &&
+		    regs[insn->src_reg].type == SCALAR_VALUE) {
+			if (tnum_is_const(regs[insn->src_reg].var_off))
+				reg_set_min_max(&other_branch_regs[insn->dst_reg],
+						dst_reg, regs[insn->src_reg].var_off.value,
+						opcode);
+			else if (tnum_is_const(dst_reg->var_off))
+				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
+						    &regs[insn->src_reg],
+						    dst_reg->var_off.value, opcode);
+			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
+				/* Comparing for equality, we can combine knowledge */
+				reg_combine_min_max(&other_branch_regs[insn->src_reg],
+						    &other_branch_regs[insn->dst_reg],
+						    &regs[insn->src_reg],
+						    &regs[insn->dst_reg], opcode);
+		}
+	} else if (dst_reg->type == SCALAR_VALUE) {
+		reg_set_min_max(&other_branch_regs[insn->dst_reg],
+					dst_reg, insn->imm, opcode);
+	}
+
+	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
+	if (BPF_SRC(insn->code) == BPF_K &&
+	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
+	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
+		/* Mark all identical map registers in each branch as either
+		 * safe or unknown depending R == 0 or R != 0 conditional.
+		 */
+		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
+		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
+	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
+					   this_branch, other_branch) &&
+		   is_pointer_value(env, insn->dst_reg)) {
+		verbose(env, "R%d pointer comparison prohibited\n",
+			insn->dst_reg);
+		return -EACCES;
+	}
+	if (env->log.level)
+		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
+	return 0;
+}
+
+/* return the map pointer stored inside BPF_LD_IMM64 instruction */
+static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
+{
+	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
+
+	return (struct bpf_map *) (unsigned long) imm64;
+}
+
+/* verify BPF_LD_IMM64 instruction */
+static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	int err;
+
+	if (BPF_SIZE(insn->code) != BPF_DW) {
+		verbose(env, "invalid BPF_LD_IMM insn\n");
+		return -EINVAL;
+	}
+	if (insn->off != 0) {
+		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
+		return -EINVAL;
+	}
+
+	err = check_reg_arg(env, insn->dst_reg, DST_OP);
+	if (err)
+		return err;
+
+	if (insn->src_reg == 0) {
+		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
+
+		regs[insn->dst_reg].type = SCALAR_VALUE;
+		__mark_reg_known(&regs[insn->dst_reg], imm);
+		return 0;
+	}
+
+	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
+	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
+
+	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
+	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
+	return 0;
+}
+
+static bool may_access_skb(enum bpf_prog_type type)
+{
+	switch (type) {
+	case BPF_PROG_TYPE_SOCKET_FILTER:
+	case BPF_PROG_TYPE_SCHED_CLS:
+	case BPF_PROG_TYPE_SCHED_ACT:
+		return true;
+	default:
+		return false;
+	}
+}
+
+/* verify safety of LD_ABS|LD_IND instructions:
+ * - they can only appear in the programs where ctx == skb
+ * - since they are wrappers of function calls, they scratch R1-R5 registers,
+ *   preserve R6-R9, and store return value into R0
+ *
+ * Implicit input:
+ *   ctx == skb == R6 == CTX
+ *
+ * Explicit input:
+ *   SRC == any register
+ *   IMM == 32-bit immediate
+ *
+ * Output:
+ *   R0 - 8/16/32-bit skb data converted to cpu endianness
+ */
+static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+	struct bpf_reg_state *regs = cur_regs(env);
+	u8 mode = BPF_MODE(insn->code);
+	int i, err;
+
+	if (!may_access_skb(env->prog->type)) {
+		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
+		return -EINVAL;
+	}
+
+	if (!env->ops->gen_ld_abs) {
+		verbose(env, "bpf verifier is misconfigured\n");
+		return -EINVAL;
+	}
+
+	if (env->subprog_cnt > 1) {
+		/* when program has LD_ABS insn JITs and interpreter assume
+		 * that r1 == ctx == skb which is not the case for callees
+		 * that can have arbitrary arguments. It's problematic
+		 * for main prog as well since JITs would need to analyze
+		 * all functions in order to make proper register save/restore
+		 * decisions in the main prog. Hence disallow LD_ABS with calls
+		 */
+		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
+		return -EINVAL;
+	}
+
+	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
+	    BPF_SIZE(insn->code) == BPF_DW ||
+	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
+		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
+		return -EINVAL;
+	}
+
+	/* check whether implicit source operand (register R6) is readable */
+	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
+	if (err)
+		return err;
+
+	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
+		verbose(env,
+			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
+		return -EINVAL;
+	}
+
+	if (mode == BPF_IND) {
+		/* check explicit source operand */
+		err = check_reg_arg(env, insn->src_reg, SRC_OP);
+		if (err)
+			return err;
+	}
+
+	/* reset caller saved regs to unreadable */
+	for (i = 0; i < CALLER_SAVED_REGS; i++) {
+		mark_reg_not_init(env, regs, caller_saved[i]);
+		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
+	}
+
+	/* mark destination R0 register as readable, since it contains
+	 * the value fetched from the packet.
+	 * Already marked as written above.
+	 */
+	mark_reg_unknown(env, regs, BPF_REG_0);
+	return 0;
+}
+
+static int check_return_code(struct bpf_verifier_env *env)
+{
+	struct bpf_reg_state *reg;
+	struct tnum range = tnum_range(0, 1);
+
+	switch (env->prog->type) {
+	case BPF_PROG_TYPE_CGROUP_SKB:
+	case BPF_PROG_TYPE_CGROUP_SOCK:
+	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+	case BPF_PROG_TYPE_SOCK_OPS:
+	case BPF_PROG_TYPE_CGROUP_DEVICE:
+		break;
+	default:
+		return 0;
+	}
+
+	reg = cur_regs(env) + BPF_REG_0;
+	if (reg->type != SCALAR_VALUE) {
+		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
+			reg_type_str[reg->type]);
+		return -EINVAL;
+	}
+
+	if (!tnum_in(range, reg->var_off)) {
+		verbose(env, "At program exit the register R0 ");
+		if (!tnum_is_unknown(reg->var_off)) {
+			char tn_buf[48];
+
+			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+			verbose(env, "has value %s", tn_buf);
+		} else {
+			verbose(env, "has unknown scalar value");
+		}
+		verbose(env, " should have been 0 or 1\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+/* non-recursive DFS pseudo code
+ * 1  procedure DFS-iterative(G,v):
+ * 2      label v as discovered
+ * 3      let S be a stack
+ * 4      S.push(v)
+ * 5      while S is not empty
+ * 6            t <- S.pop()
+ * 7            if t is what we're looking for:
+ * 8                return t
+ * 9            for all edges e in G.adjacentEdges(t) do
+ * 10               if edge e is already labelled
+ * 11                   continue with the next edge
+ * 12               w <- G.adjacentVertex(t,e)
+ * 13               if vertex w is not discovered and not explored
+ * 14                   label e as tree-edge
+ * 15                   label w as discovered
+ * 16                   S.push(w)
+ * 17                   continue at 5
+ * 18               else if vertex w is discovered
+ * 19                   label e as back-edge
+ * 20               else
+ * 21                   // vertex w is explored
+ * 22                   label e as forward- or cross-edge
+ * 23           label t as explored
+ * 24           S.pop()
+ *
+ * convention:
+ * 0x10 - discovered
+ * 0x11 - discovered and fall-through edge labelled
+ * 0x12 - discovered and fall-through and branch edges labelled
+ * 0x20 - explored
+ */
+
+enum {
+	DISCOVERED = 0x10,
+	EXPLORED = 0x20,
+	FALLTHROUGH = 1,
+	BRANCH = 2,
+};
+
+#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
+
+static int *insn_stack;	/* stack of insns to process */
+static int cur_stack;	/* current stack index */
+static int *insn_state;
+
+/* t, w, e - match pseudo-code above:
+ * t - index of current instruction
+ * w - next instruction
+ * e - edge
+ */
+static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
+{
+	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
+		return 0;
+
+	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
+		return 0;
+
+	if (w < 0 || w >= env->prog->len) {
+		verbose(env, "jump out of range from insn %d to %d\n", t, w);
+		return -EINVAL;
+	}
+
+	if (e == BRANCH)
+		/* mark branch target for state pruning */
+		env->explored_states[w] = STATE_LIST_MARK;
+
+	if (insn_state[w] == 0) {
+		/* tree-edge */
+		insn_state[t] = DISCOVERED | e;
+		insn_state[w] = DISCOVERED;
+		if (cur_stack >= env->prog->len)
+			return -E2BIG;
+		insn_stack[cur_stack++] = w;
+		return 1;
+	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
+		verbose(env, "back-edge from insn %d to %d\n", t, w);
+		return -EINVAL;
+	} else if (insn_state[w] == EXPLORED) {
+		/* forward- or cross-edge */
+		insn_state[t] = DISCOVERED | e;
+	} else {
+		verbose(env, "insn state internal bug\n");
+		return -EFAULT;
+	}
+	return 0;
+}
+
+/* non-recursive depth-first-search to detect loops in BPF program
+ * loop == back-edge in directed graph
+ */
+static int check_cfg(struct bpf_verifier_env *env)
+{
+	struct bpf_insn *insns = env->prog->insnsi;
+	int insn_cnt = env->prog->len;
+	int ret = 0;
+	int i, t;
+
+	ret = check_subprogs(env);
+	if (ret < 0)
+		return ret;
+
+	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
+	if (!insn_state)
+		return -ENOMEM;
+
+	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
+	if (!insn_stack) {
+		kfree(insn_state);
+		return -ENOMEM;
+	}
+
+	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
+	insn_stack[0] = 0; /* 0 is the first instruction */
+	cur_stack = 1;
+
+peek_stack:
+	if (cur_stack == 0)
+		goto check_state;
+	t = insn_stack[cur_stack - 1];
+
+	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
+		u8 opcode = BPF_OP(insns[t].code);
+
+		if (opcode == BPF_EXIT) {
+			goto mark_explored;
+		} else if (opcode == BPF_CALL) {
+			ret = push_insn(t, t + 1, FALLTHROUGH, env);
+			if (ret == 1)
+				goto peek_stack;
+			else if (ret < 0)
+				goto err_free;
+			if (t + 1 < insn_cnt)
+				env->explored_states[t + 1] = STATE_LIST_MARK;
+			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
+				env->explored_states[t] = STATE_LIST_MARK;
+				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
+				if (ret == 1)
+					goto peek_stack;
+				else if (ret < 0)
+					goto err_free;
+			}
+		} else if (opcode == BPF_JA) {
+			if (BPF_SRC(insns[t].code) != BPF_K) {
+				ret = -EINVAL;
+				goto err_free;
+			}
+			/* unconditional jump with single edge */
+			ret = push_insn(t, t + insns[t].off + 1,
+					FALLTHROUGH, env);
+			if (ret == 1)
+				goto peek_stack;
+			else if (ret < 0)
+				goto err_free;
+			/* tell verifier to check for equivalent states
+			 * after every call and jump
+			 */
+			if (t + 1 < insn_cnt)
+				env->explored_states[t + 1] = STATE_LIST_MARK;
+		} else {
+			/* conditional jump with two edges */
+			env->explored_states[t] = STATE_LIST_MARK;
+			ret = push_insn(t, t + 1, FALLTHROUGH, env);
+			if (ret == 1)
+				goto peek_stack;
+			else if (ret < 0)
+				goto err_free;
+
+			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
+			if (ret == 1)
+				goto peek_stack;
+			else if (ret < 0)
+				goto err_free;
+		}
+	} else {
+		/* all other non-branch instructions with single
+		 * fall-through edge
+		 */
+		ret = push_insn(t, t + 1, FALLTHROUGH, env);
+		if (ret == 1)
+			goto peek_stack;
+		else if (ret < 0)
+			goto err_free;
+	}
+
+mark_explored:
+	insn_state[t] = EXPLORED;
+	if (cur_stack-- <= 0) {
+		verbose(env, "pop stack internal bug\n");
+		ret = -EFAULT;
+		goto err_free;
+	}
+	goto peek_stack;
+
+check_state:
+	for (i = 0; i < insn_cnt; i++) {
+		if (insn_state[i] != EXPLORED) {
+			verbose(env, "unreachable insn %d\n", i);
+			ret = -EINVAL;
+			goto err_free;
+		}
+	}
+	ret = 0; /* cfg looks good */
+
+err_free:
+	kfree(insn_state);
+	kfree(insn_stack);
+	return ret;
+}
+
+/* check %cur's range satisfies %old's */
+static bool range_within(struct bpf_reg_state *old,
+			 struct bpf_reg_state *cur)
+{
+	return old->umin_value <= cur->umin_value &&
+	       old->umax_value >= cur->umax_value &&
+	       old->smin_value <= cur->smin_value &&
+	       old->smax_value >= cur->smax_value;
+}
+
+/* Maximum number of register states that can exist at once */
+#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
+struct idpair {
+	u32 old;
+	u32 cur;
+};
+
+/* If in the old state two registers had the same id, then they need to have
+ * the same id in the new state as well.  But that id could be different from
+ * the old state, so we need to track the mapping from old to new ids.
+ * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
+ * regs with old id 5 must also have new id 9 for the new state to be safe.  But
+ * regs with a different old id could still have new id 9, we don't care about
+ * that.
+ * So we look through our idmap to see if this old id has been seen before.  If
+ * so, we require the new id to match; otherwise, we add the id pair to the map.
+ */
+static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
+{
+	unsigned int i;
+
+	for (i = 0; i < ID_MAP_SIZE; i++) {
+		if (!idmap[i].old) {
+			/* Reached an empty slot; haven't seen this id before */
+			idmap[i].old = old_id;
+			idmap[i].cur = cur_id;
+			return true;
+		}
+		if (idmap[i].old == old_id)
+			return idmap[i].cur == cur_id;
+	}
+	/* We ran out of idmap slots, which should be impossible */
+	WARN_ON_ONCE(1);
+	return false;
+}
+
+/* Returns true if (rold safe implies rcur safe) */
+static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
+		    struct idpair *idmap)
+{
+	bool equal;
+
+	if (!(rold->live & REG_LIVE_READ))
+		/* explored state didn't use this */
+		return true;
+
+	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
+
+	if (rold->type == PTR_TO_STACK)
+		/* two stack pointers are equal only if they're pointing to
+		 * the same stack frame, since fp-8 in foo != fp-8 in bar
+		 */
+		return equal && rold->frameno == rcur->frameno;
+
+	if (equal)
+		return true;
+
+	if (rold->type == NOT_INIT)
+		/* explored state can't have used this */
+		return true;
+	if (rcur->type == NOT_INIT)
+		return false;
+	switch (rold->type) {
+	case SCALAR_VALUE:
+		if (rcur->type == SCALAR_VALUE) {
+			/* new val must satisfy old val knowledge */
+			return range_within(rold, rcur) &&
+			       tnum_in(rold->var_off, rcur->var_off);
+		} else {
+			/* We're trying to use a pointer in place of a scalar.
+			 * Even if the scalar was unbounded, this could lead to
+			 * pointer leaks because scalars are allowed to leak
+			 * while pointers are not. We could make this safe in
+			 * special cases if root is calling us, but it's
+			 * probably not worth the hassle.
+			 */
+			return false;
+		}
+	case PTR_TO_MAP_VALUE:
+		/* If the new min/max/var_off satisfy the old ones and
+		 * everything else matches, we are OK.
+		 * We don't care about the 'id' value, because nothing
+		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
+		 */
+		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
+		       range_within(rold, rcur) &&
+		       tnum_in(rold->var_off, rcur->var_off);
+	case PTR_TO_MAP_VALUE_OR_NULL:
+		/* a PTR_TO_MAP_VALUE could be safe to use as a
+		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
+		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
+		 * checked, doing so could have affected others with the same
+		 * id, and we can't check for that because we lost the id when
+		 * we converted to a PTR_TO_MAP_VALUE.
+		 */
+		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
+			return false;
+		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
+			return false;
+		/* Check our ids match any regs they're supposed to */
+		return check_ids(rold->id, rcur->id, idmap);
+	case PTR_TO_PACKET_META:
+	case PTR_TO_PACKET:
+		if (rcur->type != rold->type)
+			return false;
+		/* We must have at least as much range as the old ptr
+		 * did, so that any accesses which were safe before are
+		 * still safe.  This is true even if old range < old off,
+		 * since someone could have accessed through (ptr - k), or
+		 * even done ptr -= k in a register, to get a safe access.
+		 */
+		if (rold->range > rcur->range)
+			return false;
+		/* If the offsets don't match, we can't trust our alignment;
+		 * nor can we be sure that we won't fall out of range.
+		 */
+		if (rold->off != rcur->off)
+			return false;
+		/* id relations must be preserved */
+		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
+			return false;
+		/* new val must satisfy old val knowledge */
+		return range_within(rold, rcur) &&
+		       tnum_in(rold->var_off, rcur->var_off);
+	case PTR_TO_CTX:
+	case CONST_PTR_TO_MAP:
+	case PTR_TO_PACKET_END:
+		/* Only valid matches are exact, which memcmp() above
+		 * would have accepted
+		 */
+	default:
+		/* Don't know what's going on, just say it's not safe */
+		return false;
+	}
+
+	/* Shouldn't get here; if we do, say it's not safe */
+	WARN_ON_ONCE(1);
+	return false;
+}
+
+static bool stacksafe(struct bpf_func_state *old,
+		      struct bpf_func_state *cur,
+		      struct idpair *idmap)
+{
+	int i, spi;
+
+	/* if explored stack has more populated slots than current stack
+	 * such stacks are not equivalent
+	 */
+	if (old->allocated_stack > cur->allocated_stack)
+		return false;
+
+	/* walk slots of the explored stack and ignore any additional
+	 * slots in the current stack, since explored(safe) state
+	 * didn't use them
+	 */
+	for (i = 0; i < old->allocated_stack; i++) {
+		spi = i / BPF_REG_SIZE;
+
+		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
+			/* explored state didn't use this */
+			continue;
+
+		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
+			continue;
+		/* if old state was safe with misc data in the stack
+		 * it will be safe with zero-initialized stack.
+		 * The opposite is not true
+		 */
+		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
+		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
+			continue;
+		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
+		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
+			/* Ex: old explored (safe) state has STACK_SPILL in
+			 * this stack slot, but current has has STACK_MISC ->
+			 * this verifier states are not equivalent,
+			 * return false to continue verification of this path
+			 */
+			return false;
+		if (i % BPF_REG_SIZE)
+			continue;
+		if (old->stack[spi].slot_type[0] != STACK_SPILL)
+			continue;
+		if (!regsafe(&old->stack[spi].spilled_ptr,
+			     &cur->stack[spi].spilled_ptr,
+			     idmap))
+			/* when explored and current stack slot are both storing
+			 * spilled registers, check that stored pointers types
+			 * are the same as well.
+			 * Ex: explored safe path could have stored
+			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
+			 * but current path has stored:
+			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
+			 * such verifier states are not equivalent.
+			 * return false to continue verification of this path
+			 */
+			return false;
+	}
+	return true;
+}
+
+/* compare two verifier states
+ *
+ * all states stored in state_list are known to be valid, since
+ * verifier reached 'bpf_exit' instruction through them
+ *
+ * this function is called when verifier exploring different branches of
+ * execution popped from the state stack. If it sees an old state that has
+ * more strict register state and more strict stack state then this execution
+ * branch doesn't need to be explored further, since verifier already
+ * concluded that more strict state leads to valid finish.
+ *
+ * Therefore two states are equivalent if register state is more conservative
+ * and explored stack state is more conservative than the current one.
+ * Example:
+ *       explored                   current
+ * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
+ * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
+ *
+ * In other words if current stack state (one being explored) has more
+ * valid slots than old one that already passed validation, it means
+ * the verifier can stop exploring and conclude that current state is valid too
+ *
+ * Similarly with registers. If explored state has register type as invalid
+ * whereas register type in current state is meaningful, it means that
+ * the current state will reach 'bpf_exit' instruction safely
+ */
+static bool func_states_equal(struct bpf_func_state *old,
+			      struct bpf_func_state *cur)
+{
+	struct idpair *idmap;
+	bool ret = false;
+	int i;
+
+	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
+	/* If we failed to allocate the idmap, just say it's not safe */
+	if (!idmap)
+		return false;
+
+	for (i = 0; i < MAX_BPF_REG; i++) {
+		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
+			goto out_free;
+	}
+
+	if (!stacksafe(old, cur, idmap))
+		goto out_free;
+	ret = true;
+out_free:
+	kfree(idmap);
+	return ret;
+}
+
+static bool states_equal(struct bpf_verifier_env *env,
+			 struct bpf_verifier_state *old,
+			 struct bpf_verifier_state *cur)
+{
+	int i;
+
+	if (old->curframe != cur->curframe)
+		return false;
+
+	/* for states to be equal callsites have to be the same
+	 * and all frame states need to be equivalent
+	 */
+	for (i = 0; i <= old->curframe; i++) {
+		if (old->frame[i]->callsite != cur->frame[i]->callsite)
+			return false;
+		if (!func_states_equal(old->frame[i], cur->frame[i]))
+			return false;
+	}
+	return true;
+}
+
+/* A write screens off any subsequent reads; but write marks come from the
+ * straight-line code between a state and its parent.  When we arrive at an
+ * equivalent state (jump target or such) we didn't arrive by the straight-line
+ * code, so read marks in the state must propagate to the parent regardless
+ * of the state's write marks. That's what 'parent == state->parent' comparison
+ * in mark_reg_read() and mark_stack_slot_read() is for.
+ */
+static int propagate_liveness(struct bpf_verifier_env *env,
+			      const struct bpf_verifier_state *vstate,
+			      struct bpf_verifier_state *vparent)
+{
+	int i, frame, err = 0;
+	struct bpf_func_state *state, *parent;
+
+	if (vparent->curframe != vstate->curframe) {
+		WARN(1, "propagate_live: parent frame %d current frame %d\n",
+		     vparent->curframe, vstate->curframe);
+		return -EFAULT;
+	}
+	/* Propagate read liveness of registers... */
+	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
+	/* We don't need to worry about FP liveness because it's read-only */
+	for (i = 0; i < BPF_REG_FP; i++) {
+		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
+			continue;
+		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
+			err = mark_reg_read(env, vstate, vparent, i);
+			if (err)
+				return err;
+		}
+	}
+
+	/* ... and stack slots */
+	for (frame = 0; frame <= vstate->curframe; frame++) {
+		state = vstate->frame[frame];
+		parent = vparent->frame[frame];
+		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
+			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
+			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
+				continue;
+			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
+				mark_stack_slot_read(env, vstate, vparent, i, frame);
+		}
+	}
+	return err;
+}
+
+static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
+{
+	struct bpf_verifier_state_list *new_sl;
+	struct bpf_verifier_state_list *sl;
+	struct bpf_verifier_state *cur = env->cur_state;
+	int i, j, err;
+
+	sl = env->explored_states[insn_idx];
+	if (!sl)
+		/* this 'insn_idx' instruction wasn't marked, so we will not
+		 * be doing state search here
+		 */
+		return 0;
+
+	while (sl != STATE_LIST_MARK) {
+		if (states_equal(env, &sl->state, cur)) {
+			/* reached equivalent register/stack state,
+			 * prune the search.
+			 * Registers read by the continuation are read by us.
+			 * If we have any write marks in env->cur_state, they
+			 * will prevent corresponding reads in the continuation
+			 * from reaching our parent (an explored_state).  Our
+			 * own state will get the read marks recorded, but
+			 * they'll be immediately forgotten as we're pruning
+			 * this state and will pop a new one.
+			 */
+			err = propagate_liveness(env, &sl->state, cur);
+			if (err)
+				return err;
+			return 1;
+		}
+		sl = sl->next;
+	}
+
+	/* there were no equivalent states, remember current one.
+	 * technically the current state is not proven to be safe yet,
+	 * but it will either reach outer most bpf_exit (which means it's safe)
+	 * or it will be rejected. Since there are no loops, we won't be
+	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
+	 * again on the way to bpf_exit
+	 */
+	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
+	if (!new_sl)
+		return -ENOMEM;
+
+	/* add new state to the head of linked list */
+	err = copy_verifier_state(&new_sl->state, cur);
+	if (err) {
+		free_verifier_state(&new_sl->state, false);
+		kfree(new_sl);
+		return err;
+	}
+	new_sl->next = env->explored_states[insn_idx];
+	env->explored_states[insn_idx] = new_sl;
+	/* connect new state to parentage chain */
+	cur->parent = &new_sl->state;
+	/* clear write marks in current state: the writes we did are not writes
+	 * our child did, so they don't screen off its reads from us.
+	 * (There are no read marks in current state, because reads always mark
+	 * their parent and current state never has children yet.  Only
+	 * explored_states can get read marks.)
+	 */
+	for (i = 0; i < BPF_REG_FP; i++)
+		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
+
+	/* all stack frames are accessible from callee, clear them all */
+	for (j = 0; j <= cur->curframe; j++) {
+		struct bpf_func_state *frame = cur->frame[j];
+
+		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
+			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
+	}
+	return 0;
+}
+
+static int do_check(struct bpf_verifier_env *env)
+{
+	struct bpf_verifier_state *state;
+	struct bpf_insn *insns = env->prog->insnsi;
+	struct bpf_reg_state *regs;
+	int insn_cnt = env->prog->len, i;
+	int insn_idx, prev_insn_idx = 0;
+	int insn_processed = 0;
+	bool do_print_state = false;
+
+	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
+	if (!state)
+		return -ENOMEM;
+	state->curframe = 0;
+	state->parent = NULL;
+	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
+	if (!state->frame[0]) {
+		kfree(state);
+		return -ENOMEM;
+	}
+	env->cur_state = state;
+	init_func_state(env, state->frame[0],
+			BPF_MAIN_FUNC /* callsite */,
+			0 /* frameno */,
+			0 /* subprogno, zero == main subprog */);
+	insn_idx = 0;
+	for (;;) {
+		struct bpf_insn *insn;
+		u8 class;
+		int err;
+
+		if (insn_idx >= insn_cnt) {
+			verbose(env, "invalid insn idx %d insn_cnt %d\n",
+				insn_idx, insn_cnt);
+			return -EFAULT;
+		}
+
+		insn = &insns[insn_idx];
+		class = BPF_CLASS(insn->code);
+
+		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
+			verbose(env,
+				"BPF program is too large. Processed %d insn\n",
+				insn_processed);
+			return -E2BIG;
+		}
+
+		err = is_state_visited(env, insn_idx);
+		if (err < 0)
+			return err;
+		if (err == 1) {
+			/* found equivalent state, can prune the search */
+			if (env->log.level) {
+				if (do_print_state)
+					verbose(env, "\nfrom %d to %d: safe\n",
+						prev_insn_idx, insn_idx);
+				else
+					verbose(env, "%d: safe\n", insn_idx);
+			}
+			goto process_bpf_exit;
+		}
+
+		if (signal_pending(current))
+			return -EAGAIN;
+
+		if (need_resched())
+			cond_resched();
+
+		if (env->log.level > 1 || (env->log.level && do_print_state)) {
+			if (env->log.level > 1)
+				verbose(env, "%d:", insn_idx);
+			else
+				verbose(env, "\nfrom %d to %d:",
+					prev_insn_idx, insn_idx);
+			print_verifier_state(env, state->frame[state->curframe]);
+			do_print_state = false;
+		}
+
+		if (env->log.level) {
+			const struct bpf_insn_cbs cbs = {
+				.cb_print	= verbose,
+				.private_data	= env,
+			};
+
+			verbose(env, "%d: ", insn_idx);
+			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
+		}
+
+		if (bpf_prog_is_dev_bound(env->prog->aux)) {
+			err = bpf_prog_offload_verify_insn(env, insn_idx,
+							   prev_insn_idx);
+			if (err)
+				return err;
+		}
+
+		regs = cur_regs(env);
+		env->insn_aux_data[insn_idx].seen = true;
+		if (class == BPF_ALU || class == BPF_ALU64) {
+			err = check_alu_op(env, insn);
+			if (err)
+				return err;
+
+		} else if (class == BPF_LDX) {
+			enum bpf_reg_type *prev_src_type, src_reg_type;
+
+			/* check for reserved fields is already done */
+
+			/* check src operand */
+			err = check_reg_arg(env, insn->src_reg, SRC_OP);
+			if (err)
+				return err;
+
+			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+			if (err)
+				return err;
+
+			src_reg_type = regs[insn->src_reg].type;
+
+			/* check that memory (src_reg + off) is readable,
+			 * the state of dst_reg will be updated by this func
+			 */
+			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
+					       BPF_SIZE(insn->code), BPF_READ,
+					       insn->dst_reg, false);
+			if (err)
+				return err;
+
+			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
+
+			if (*prev_src_type == NOT_INIT) {
+				/* saw a valid insn
+				 * dst_reg = *(u32 *)(src_reg + off)
+				 * save type to validate intersecting paths
+				 */
+				*prev_src_type = src_reg_type;
+
+			} else if (src_reg_type != *prev_src_type &&
+				   (src_reg_type == PTR_TO_CTX ||
+				    *prev_src_type == PTR_TO_CTX)) {
+				/* ABuser program is trying to use the same insn
+				 * dst_reg = *(u32*) (src_reg + off)
+				 * with different pointer types:
+				 * src_reg == ctx in one branch and
+				 * src_reg == stack|map in some other branch.
+				 * Reject it.
+				 */
+				verbose(env, "same insn cannot be used with different pointers\n");
+				return -EINVAL;
+			}
+
+		} else if (class == BPF_STX) {
+			enum bpf_reg_type *prev_dst_type, dst_reg_type;
+
+			if (BPF_MODE(insn->code) == BPF_XADD) {
+				err = check_xadd(env, insn_idx, insn);
+				if (err)
+					return err;
+				insn_idx++;
+				continue;
+			}
+
+			/* check src1 operand */
+			err = check_reg_arg(env, insn->src_reg, SRC_OP);
+			if (err)
+				return err;
+			/* check src2 operand */
+			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+			if (err)
+				return err;
+
+			dst_reg_type = regs[insn->dst_reg].type;
+
+			/* check that memory (dst_reg + off) is writeable */
+			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+					       BPF_SIZE(insn->code), BPF_WRITE,
+					       insn->src_reg, false);
+			if (err)
+				return err;
+
+			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
+
+			if (*prev_dst_type == NOT_INIT) {
+				*prev_dst_type = dst_reg_type;
+			} else if (dst_reg_type != *prev_dst_type &&
+				   (dst_reg_type == PTR_TO_CTX ||
+				    *prev_dst_type == PTR_TO_CTX)) {
+				verbose(env, "same insn cannot be used with different pointers\n");
+				return -EINVAL;
+			}
+
+		} else if (class == BPF_ST) {
+			if (BPF_MODE(insn->code) != BPF_MEM ||
+			    insn->src_reg != BPF_REG_0) {
+				verbose(env, "BPF_ST uses reserved fields\n");
+				return -EINVAL;
+			}
+			/* check src operand */
+			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+			if (err)
+				return err;
+
+			if (is_ctx_reg(env, insn->dst_reg)) {
+				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
+					insn->dst_reg);
+				return -EACCES;
+			}
+
+			/* check that memory (dst_reg + off) is writeable */
+			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+					       BPF_SIZE(insn->code), BPF_WRITE,
+					       -1, false);
+			if (err)
+				return err;
+
+		} else if (class == BPF_JMP) {
+			u8 opcode = BPF_OP(insn->code);
+
+			if (opcode == BPF_CALL) {
+				if (BPF_SRC(insn->code) != BPF_K ||
+				    insn->off != 0 ||
+				    (insn->src_reg != BPF_REG_0 &&
+				     insn->src_reg != BPF_PSEUDO_CALL) ||
+				    insn->dst_reg != BPF_REG_0) {
+					verbose(env, "BPF_CALL uses reserved fields\n");
+					return -EINVAL;
+				}
+
+				if (insn->src_reg == BPF_PSEUDO_CALL)
+					err = check_func_call(env, insn, &insn_idx);
+				else
+					err = check_helper_call(env, insn->imm, insn_idx);
+				if (err)
+					return err;
+
+			} else if (opcode == BPF_JA) {
+				if (BPF_SRC(insn->code) != BPF_K ||
+				    insn->imm != 0 ||
+				    insn->src_reg != BPF_REG_0 ||
+				    insn->dst_reg != BPF_REG_0) {
+					verbose(env, "BPF_JA uses reserved fields\n");
+					return -EINVAL;
+				}
+
+				insn_idx += insn->off + 1;
+				continue;
+
+			} else if (opcode == BPF_EXIT) {
+				if (BPF_SRC(insn->code) != BPF_K ||
+				    insn->imm != 0 ||
+				    insn->src_reg != BPF_REG_0 ||
+				    insn->dst_reg != BPF_REG_0) {
+					verbose(env, "BPF_EXIT uses reserved fields\n");
+					return -EINVAL;
+				}
+
+				if (state->curframe) {
+					/* exit from nested function */
+					prev_insn_idx = insn_idx;
+					err = prepare_func_exit(env, &insn_idx);
+					if (err)
+						return err;
+					do_print_state = true;
+					continue;
+				}
+
+				/* eBPF calling convetion is such that R0 is used
+				 * to return the value from eBPF program.
+				 * Make sure that it's readable at this time
+				 * of bpf_exit, which means that program wrote
+				 * something into it earlier
+				 */
+				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
+				if (err)
+					return err;
+
+				if (is_pointer_value(env, BPF_REG_0)) {
+					verbose(env, "R0 leaks addr as return value\n");
+					return -EACCES;
+				}
+
+				err = check_return_code(env);
+				if (err)
+					return err;
+process_bpf_exit:
+				err = pop_stack(env, &prev_insn_idx, &insn_idx);
+				if (err < 0) {
+					if (err != -ENOENT)
+						return err;
+					break;
+				} else {
+					do_print_state = true;
+					continue;
+				}
+			} else {
+				err = check_cond_jmp_op(env, insn, &insn_idx);
+				if (err)
+					return err;
+			}
+		} else if (class == BPF_LD) {
+			u8 mode = BPF_MODE(insn->code);
+
+			if (mode == BPF_ABS || mode == BPF_IND) {
+				err = check_ld_abs(env, insn);
+				if (err)
+					return err;
+
+			} else if (mode == BPF_IMM) {
+				err = check_ld_imm(env, insn);
+				if (err)
+					return err;
+
+				insn_idx++;
+				env->insn_aux_data[insn_idx].seen = true;
+			} else {
+				verbose(env, "invalid BPF_LD mode\n");
+				return -EINVAL;
+			}
+		} else {
+			verbose(env, "unknown insn class %d\n", class);
+			return -EINVAL;
+		}
+
+		insn_idx++;
+	}
+
+	verbose(env, "processed %d insns (limit %d), stack depth ",
+		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
+	for (i = 0; i < env->subprog_cnt; i++) {
+		u32 depth = env->subprog_info[i].stack_depth;
+
+		verbose(env, "%d", depth);
+		if (i + 1 < env->subprog_cnt)
+			verbose(env, "+");
+	}
+	verbose(env, "\n");
+	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
+	return 0;
+}
+
+static int check_map_prealloc(struct bpf_map *map)
+{
+	return (map->map_type != BPF_MAP_TYPE_HASH &&
+		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
+		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
+		!(map->map_flags & BPF_F_NO_PREALLOC);
+}
+
+static int check_map_prog_compatibility(struct bpf_verifier_env *env,
+					struct bpf_map *map,
+					struct bpf_prog *prog)
+
+{
+	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
+	 * preallocated hash maps, since doing memory allocation
+	 * in overflow_handler can crash depending on where nmi got
+	 * triggered.
+	 */
+	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
+		if (!check_map_prealloc(map)) {
+			verbose(env, "perf_event programs can only use preallocated hash map\n");
+			return -EINVAL;
+		}
+		if (map->inner_map_meta &&
+		    !check_map_prealloc(map->inner_map_meta)) {
+			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
+			return -EINVAL;
+		}
+	}
+
+	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
+	    !bpf_offload_prog_map_match(prog, map)) {
+		verbose(env, "offload device mismatch between prog and map\n");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/* look for pseudo eBPF instructions that access map FDs and
+ * replace them with actual map pointers
+ */
+static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
+{
+	struct bpf_insn *insn = env->prog->insnsi;
+	int insn_cnt = env->prog->len;
+	int i, j, err;
+
+	err = bpf_prog_calc_tag(env->prog);
+	if (err)
+		return err;
+
+	for (i = 0; i < insn_cnt; i++, insn++) {
+		if (BPF_CLASS(insn->code) == BPF_LDX &&
+		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
+			verbose(env, "BPF_LDX uses reserved fields\n");
+			return -EINVAL;
+		}
+
+		if (BPF_CLASS(insn->code) == BPF_STX &&
+		    ((BPF_MODE(insn->code) != BPF_MEM &&
+		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
+			verbose(env, "BPF_STX uses reserved fields\n");
+			return -EINVAL;
+		}
+
+		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
+			struct bpf_map *map;
+			struct fd f;
+
+			if (i == insn_cnt - 1 || insn[1].code != 0 ||
+			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
+			    insn[1].off != 0) {
+				verbose(env, "invalid bpf_ld_imm64 insn\n");
+				return -EINVAL;
+			}
+
+			if (insn->src_reg == 0)
+				/* valid generic load 64-bit imm */
+				goto next_insn;
+
+			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
+				verbose(env,
+					"unrecognized bpf_ld_imm64 insn\n");
+				return -EINVAL;
+			}
+
+			f = fdget(insn->imm);
+			map = __bpf_map_get(f);
+			if (IS_ERR(map)) {
+				verbose(env, "fd %d is not pointing to valid bpf_map\n",
+					insn->imm);
+				return PTR_ERR(map);
+			}
+
+			err = check_map_prog_compatibility(env, map, env->prog);
+			if (err) {
+				fdput(f);
+				return err;
+			}
+
+			/* store map pointer inside BPF_LD_IMM64 instruction */
+			insn[0].imm = (u32) (unsigned long) map;
+			insn[1].imm = ((u64) (unsigned long) map) >> 32;
+
+			/* check whether we recorded this map already */
+			for (j = 0; j < env->used_map_cnt; j++)
+				if (env->used_maps[j] == map) {
+					fdput(f);
+					goto next_insn;
+				}
+
+			if (env->used_map_cnt >= MAX_USED_MAPS) {
+				fdput(f);
+				return -E2BIG;
+			}
+
+			/* hold the map. If the program is rejected by verifier,
+			 * the map will be released by release_maps() or it
+			 * will be used by the valid program until it's unloaded
+			 * and all maps are released in free_used_maps()
+			 */
+			map = bpf_map_inc(map, false);
+			if (IS_ERR(map)) {
+				fdput(f);
+				return PTR_ERR(map);
+			}
+			env->used_maps[env->used_map_cnt++] = map;
+
+			if (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE &&
+			    bpf_cgroup_storage_assign(env->prog, map)) {
+				verbose(env,
+					"only one cgroup storage is allowed\n");
+				fdput(f);
+				return -EBUSY;
+			}
+
+			fdput(f);
+next_insn:
+			insn++;
+			i++;
+			continue;
+		}
+
+		/* Basic sanity check before we invest more work here. */
+		if (!bpf_opcode_in_insntable(insn->code)) {
+			verbose(env, "unknown opcode %02x\n", insn->code);
+			return -EINVAL;
+		}
+	}
+
+	/* now all pseudo BPF_LD_IMM64 instructions load valid
+	 * 'struct bpf_map *' into a register instead of user map_fd.
+	 * These pointers will be used later by verifier to validate map access.
+	 */
+	return 0;
+}
+
+/* drop refcnt of maps used by the rejected program */
+static void release_maps(struct bpf_verifier_env *env)
+{
+	int i;
+
+	if (env->prog->aux->cgroup_storage)
+		bpf_cgroup_storage_release(env->prog,
+					   env->prog->aux->cgroup_storage);
+
+	for (i = 0; i < env->used_map_cnt; i++)
+		bpf_map_put(env->used_maps[i]);
+}
+
+/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
+static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
+{
+	struct bpf_insn *insn = env->prog->insnsi;
+	int insn_cnt = env->prog->len;
+	int i;
+
+	for (i = 0; i < insn_cnt; i++, insn++)
+		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
+			insn->src_reg = 0;
+}
+
+/* single env->prog->insni[off] instruction was replaced with the range
+ * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
+ * [0, off) and [off, end) to new locations, so the patched range stays zero
+ */
+static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
+				u32 off, u32 cnt)
+{
+	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
+	int i;
+
+	if (cnt == 1)
+		return 0;
+	new_data = vzalloc(array_size(prog_len,
+				      sizeof(struct bpf_insn_aux_data)));
+	if (!new_data)
+		return -ENOMEM;
+	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
+	memcpy(new_data + off + cnt - 1, old_data + off,
+	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
+	for (i = off; i < off + cnt - 1; i++)
+		new_data[i].seen = true;
+	env->insn_aux_data = new_data;
+	vfree(old_data);
+	return 0;
+}
+
+static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
+{
+	int i;
+
+	if (len == 1)
+		return;
+	/* NOTE: fake 'exit' subprog should be updated as well. */
+	for (i = 0; i <= env->subprog_cnt; i++) {
+		if (env->subprog_info[i].start <= off)
+			continue;
+		env->subprog_info[i].start += len - 1;
+	}
+}
+
+static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
+					    const struct bpf_insn *patch, u32 len)
+{
+	struct bpf_prog *new_prog;
+
+	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
+	if (!new_prog)
+		return NULL;
+	if (adjust_insn_aux_data(env, new_prog->len, off, len))
+		return NULL;
+	adjust_subprog_starts(env, off, len);
+	return new_prog;
+}
+
+/* The verifier does more data flow analysis than llvm and will not
+ * explore branches that are dead at run time. Malicious programs can
+ * have dead code too. Therefore replace all dead at-run-time code
+ * with 'ja -1'.
+ *
+ * Just nops are not optimal, e.g. if they would sit at the end of the
+ * program and through another bug we would manage to jump there, then
+ * we'd execute beyond program memory otherwise. Returning exception
+ * code also wouldn't work since we can have subprogs where the dead
+ * code could be located.
+ */
+static void sanitize_dead_code(struct bpf_verifier_env *env)
+{
+	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
+	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
+	struct bpf_insn *insn = env->prog->insnsi;
+	const int insn_cnt = env->prog->len;
+	int i;
+
+	for (i = 0; i < insn_cnt; i++) {
+		if (aux_data[i].seen)
+			continue;
+		memcpy(insn + i, &trap, sizeof(trap));
+	}
+}
+
+/* convert load instructions that access fields of 'struct __sk_buff'
+ * into sequence of instructions that access fields of 'struct sk_buff'
+ */
+static int convert_ctx_accesses(struct bpf_verifier_env *env)
+{
+	const struct bpf_verifier_ops *ops = env->ops;
+	int i, cnt, size, ctx_field_size, delta = 0;
+	const int insn_cnt = env->prog->len;
+	struct bpf_insn insn_buf[16], *insn;
+	struct bpf_prog *new_prog;
+	enum bpf_access_type type;
+	bool is_narrower_load;
+	u32 target_size;
+
+	if (ops->gen_prologue) {
+		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
+					env->prog);
+		if (cnt >= ARRAY_SIZE(insn_buf)) {
+			verbose(env, "bpf verifier is misconfigured\n");
+			return -EINVAL;
+		} else if (cnt) {
+			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
+			if (!new_prog)
+				return -ENOMEM;
+
+			env->prog = new_prog;
+			delta += cnt - 1;
+		}
+	}
+
+	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
+		return 0;
+
+	insn = env->prog->insnsi + delta;
+
+	for (i = 0; i < insn_cnt; i++, insn++) {
+		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
+		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
+		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
+		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
+			type = BPF_READ;
+		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
+			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
+			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
+			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
+			type = BPF_WRITE;
+		else
+			continue;
+
+		if (type == BPF_WRITE &&
+		    env->insn_aux_data[i + delta].sanitize_stack_off) {
+			struct bpf_insn patch[] = {
+				/* Sanitize suspicious stack slot with zero.
+				 * There are no memory dependencies for this store,
+				 * since it's only using frame pointer and immediate
+				 * constant of zero
+				 */
+				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
+					   env->insn_aux_data[i + delta].sanitize_stack_off,
+					   0),
+				/* the original STX instruction will immediately
+				 * overwrite the same stack slot with appropriate value
+				 */
+				*insn,
+			};
+
+			cnt = ARRAY_SIZE(patch);
+			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
+			if (!new_prog)
+				return -ENOMEM;
+
+			delta    += cnt - 1;
+			env->prog = new_prog;
+			insn      = new_prog->insnsi + i + delta;
+			continue;
+		}
+
+		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
+			continue;
+
+		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
+		size = BPF_LDST_BYTES(insn);
+
+		/* If the read access is a narrower load of the field,
+		 * convert to a 4/8-byte load, to minimum program type specific
+		 * convert_ctx_access changes. If conversion is successful,
+		 * we will apply proper mask to the result.
+		 */
+		is_narrower_load = size < ctx_field_size;
+		if (is_narrower_load) {
+			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
+			u32 off = insn->off;
+			u8 size_code;
+
+			if (type == BPF_WRITE) {
+				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
+				return -EINVAL;
+			}
+
+			size_code = BPF_H;
+			if (ctx_field_size == 4)
+				size_code = BPF_W;
+			else if (ctx_field_size == 8)
+				size_code = BPF_DW;
+
+			insn->off = off & ~(size_default - 1);
+			insn->code = BPF_LDX | BPF_MEM | size_code;
+		}
+
+		target_size = 0;
+		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
+					      &target_size);
+		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
+		    (ctx_field_size && !target_size)) {
+			verbose(env, "bpf verifier is misconfigured\n");
+			return -EINVAL;
+		}
+
+		if (is_narrower_load && size < target_size) {
+			if (ctx_field_size <= 4)
+				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
+								(1 << size * 8) - 1);
+			else
+				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
+								(1 << size * 8) - 1);
+		}
+
+		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+		if (!new_prog)
+			return -ENOMEM;
+
+		delta += cnt - 1;
+
+		/* keep walking new program and skip insns we just inserted */
+		env->prog = new_prog;
+		insn      = new_prog->insnsi + i + delta;
+	}
+
+	return 0;
+}
+
+static int jit_subprogs(struct bpf_verifier_env *env)
+{
+	struct bpf_prog *prog = env->prog, **func, *tmp;
+	int i, j, subprog_start, subprog_end = 0, len, subprog;
+	struct bpf_insn *insn;
+	void *old_bpf_func;
+	int err = -ENOMEM;
+
+	if (env->subprog_cnt <= 1)
+		return 0;
+
+	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
+		if (insn->code != (BPF_JMP | BPF_CALL) ||
+		    insn->src_reg != BPF_PSEUDO_CALL)
+			continue;
+		/* Upon error here we cannot fall back to interpreter but
+		 * need a hard reject of the program. Thus -EFAULT is
+		 * propagated in any case.
+		 */
+		subprog = find_subprog(env, i + insn->imm + 1);
+		if (subprog < 0) {
+			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
+				  i + insn->imm + 1);
+			return -EFAULT;
+		}
+		/* temporarily remember subprog id inside insn instead of
+		 * aux_data, since next loop will split up all insns into funcs
+		 */
+		insn->off = subprog;
+		/* remember original imm in case JIT fails and fallback
+		 * to interpreter will be needed
+		 */
+		env->insn_aux_data[i].call_imm = insn->imm;
+		/* point imm to __bpf_call_base+1 from JITs point of view */
+		insn->imm = 1;
+	}
+
+	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
+	if (!func)
+		goto out_undo_insn;
+
+	for (i = 0; i < env->subprog_cnt; i++) {
+		subprog_start = subprog_end;
+		subprog_end = env->subprog_info[i + 1].start;
+
+		len = subprog_end - subprog_start;
+		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
+		if (!func[i])
+			goto out_free;
+		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
+		       len * sizeof(struct bpf_insn));
+		func[i]->type = prog->type;
+		func[i]->len = len;
+		if (bpf_prog_calc_tag(func[i]))
+			goto out_free;
+		func[i]->is_func = 1;
+		/* Use bpf_prog_F_tag to indicate functions in stack traces.
+		 * Long term would need debug info to populate names
+		 */
+		func[i]->aux->name[0] = 'F';
+		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
+		func[i]->jit_requested = 1;
+		func[i] = bpf_int_jit_compile(func[i]);
+		if (!func[i]->jited) {
+			err = -ENOTSUPP;
+			goto out_free;
+		}
+		cond_resched();
+	}
+	/* at this point all bpf functions were successfully JITed
+	 * now populate all bpf_calls with correct addresses and
+	 * run last pass of JIT
+	 */
+	for (i = 0; i < env->subprog_cnt; i++) {
+		insn = func[i]->insnsi;
+		for (j = 0; j < func[i]->len; j++, insn++) {
+			if (insn->code != (BPF_JMP | BPF_CALL) ||
+			    insn->src_reg != BPF_PSEUDO_CALL)
+				continue;
+			subprog = insn->off;
+			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
+				func[subprog]->bpf_func -
+				__bpf_call_base;
+		}
+
+		/* we use the aux data to keep a list of the start addresses
+		 * of the JITed images for each function in the program
+		 *
+		 * for some architectures, such as powerpc64, the imm field
+		 * might not be large enough to hold the offset of the start
+		 * address of the callee's JITed image from __bpf_call_base
+		 *
+		 * in such cases, we can lookup the start address of a callee
+		 * by using its subprog id, available from the off field of
+		 * the call instruction, as an index for this list
+		 */
+		func[i]->aux->func = func;
+		func[i]->aux->func_cnt = env->subprog_cnt;
+	}
+	for (i = 0; i < env->subprog_cnt; i++) {
+		old_bpf_func = func[i]->bpf_func;
+		tmp = bpf_int_jit_compile(func[i]);
+		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
+			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
+			err = -ENOTSUPP;
+			goto out_free;
+		}
+		cond_resched();
+	}
+
+	/* finally lock prog and jit images for all functions and
+	 * populate kallsysm
+	 */
+	for (i = 0; i < env->subprog_cnt; i++) {
+		bpf_prog_lock_ro(func[i]);
+		bpf_prog_kallsyms_add(func[i]);
+	}
+
+	/* Last step: make now unused interpreter insns from main
+	 * prog consistent for later dump requests, so they can
+	 * later look the same as if they were interpreted only.
+	 */
+	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
+		if (insn->code != (BPF_JMP | BPF_CALL) ||
+		    insn->src_reg != BPF_PSEUDO_CALL)
+			continue;
+		insn->off = env->insn_aux_data[i].call_imm;
+		subprog = find_subprog(env, i + insn->off + 1);
+		insn->imm = subprog;
+	}
+
+	prog->jited = 1;
+	prog->bpf_func = func[0]->bpf_func;
+	prog->aux->func = func;
+	prog->aux->func_cnt = env->subprog_cnt;
+	return 0;
+out_free:
+	for (i = 0; i < env->subprog_cnt; i++)
+		if (func[i])
+			bpf_jit_free(func[i]);
+	kfree(func);
+out_undo_insn:
+	/* cleanup main prog to be interpreted */
+	prog->jit_requested = 0;
+	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
+		if (insn->code != (BPF_JMP | BPF_CALL) ||
+		    insn->src_reg != BPF_PSEUDO_CALL)
+			continue;
+		insn->off = 0;
+		insn->imm = env->insn_aux_data[i].call_imm;
+	}
+	return err;
+}
+
+static int fixup_call_args(struct bpf_verifier_env *env)
+{
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+	struct bpf_prog *prog = env->prog;
+	struct bpf_insn *insn = prog->insnsi;
+	int i, depth;
+#endif
+	int err;
+
+	err = 0;
+	if (env->prog->jit_requested) {
+		err = jit_subprogs(env);
+		if (err == 0)
+			return 0;
+		if (err == -EFAULT)
+			return err;
+	}
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+	for (i = 0; i < prog->len; i++, insn++) {
+		if (insn->code != (BPF_JMP | BPF_CALL) ||
+		    insn->src_reg != BPF_PSEUDO_CALL)
+			continue;
+		depth = get_callee_stack_depth(env, insn, i);
+		if (depth < 0)
+			return depth;
+		bpf_patch_call_args(insn, depth);
+	}
+	err = 0;
+#endif
+	return err;
+}
+
+/* fixup insn->imm field of bpf_call instructions
+ * and inline eligible helpers as explicit sequence of BPF instructions
+ *
+ * this function is called after eBPF program passed verification
+ */
+static int fixup_bpf_calls(struct bpf_verifier_env *env)
+{
+	struct bpf_prog *prog = env->prog;
+	struct bpf_insn *insn = prog->insnsi;
+	const struct bpf_func_proto *fn;
+	const int insn_cnt = prog->len;
+	const struct bpf_map_ops *ops;
+	struct bpf_insn_aux_data *aux;
+	struct bpf_insn insn_buf[16];
+	struct bpf_prog *new_prog;
+	struct bpf_map *map_ptr;
+	int i, cnt, delta = 0;
+
+	for (i = 0; i < insn_cnt; i++, insn++) {
+		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
+		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
+		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
+		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
+			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
+			struct bpf_insn mask_and_div[] = {
+				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
+				/* Rx div 0 -> 0 */
+				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
+				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
+				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
+				*insn,
+			};
+			struct bpf_insn mask_and_mod[] = {
+				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
+				/* Rx mod 0 -> Rx */
+				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
+				*insn,
+			};
+			struct bpf_insn *patchlet;
+
+			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
+			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
+				patchlet = mask_and_div + (is64 ? 1 : 0);
+				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
+			} else {
+				patchlet = mask_and_mod + (is64 ? 1 : 0);
+				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
+			}
+
+			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
+			if (!new_prog)
+				return -ENOMEM;
+
+			delta    += cnt - 1;
+			env->prog = prog = new_prog;
+			insn      = new_prog->insnsi + i + delta;
+			continue;
+		}
+
+		if (BPF_CLASS(insn->code) == BPF_LD &&
+		    (BPF_MODE(insn->code) == BPF_ABS ||
+		     BPF_MODE(insn->code) == BPF_IND)) {
+			cnt = env->ops->gen_ld_abs(insn, insn_buf);
+			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
+				verbose(env, "bpf verifier is misconfigured\n");
+				return -EINVAL;
+			}
+
+			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+			if (!new_prog)
+				return -ENOMEM;
+
+			delta    += cnt - 1;
+			env->prog = prog = new_prog;
+			insn      = new_prog->insnsi + i + delta;
+			continue;
+		}
+
+		if (insn->code != (BPF_JMP | BPF_CALL))
+			continue;
+		if (insn->src_reg == BPF_PSEUDO_CALL)
+			continue;
+
+		if (insn->imm == BPF_FUNC_get_route_realm)
+			prog->dst_needed = 1;
+		if (insn->imm == BPF_FUNC_get_prandom_u32)
+			bpf_user_rnd_init_once();
+		if (insn->imm == BPF_FUNC_override_return)
+			prog->kprobe_override = 1;
+		if (insn->imm == BPF_FUNC_tail_call) {
+			/* If we tail call into other programs, we
+			 * cannot make any assumptions since they can
+			 * be replaced dynamically during runtime in
+			 * the program array.
+			 */
+			prog->cb_access = 1;
+			env->prog->aux->stack_depth = MAX_BPF_STACK;
+
+			/* mark bpf_tail_call as different opcode to avoid
+			 * conditional branch in the interpeter for every normal
+			 * call and to prevent accidental JITing by JIT compiler
+			 * that doesn't support bpf_tail_call yet
+			 */
+			insn->imm = 0;
+			insn->code = BPF_JMP | BPF_TAIL_CALL;
+
+			aux = &env->insn_aux_data[i + delta];
+			if (!bpf_map_ptr_unpriv(aux))
+				continue;
+
+			/* instead of changing every JIT dealing with tail_call
+			 * emit two extra insns:
+			 * if (index >= max_entries) goto out;
+			 * index &= array->index_mask;
+			 * to avoid out-of-bounds cpu speculation
+			 */
+			if (bpf_map_ptr_poisoned(aux)) {
+				verbose(env, "tail_call abusing map_ptr\n");
+				return -EINVAL;
+			}
+
+			map_ptr = BPF_MAP_PTR(aux->map_state);
+			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
+						  map_ptr->max_entries, 2);
+			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
+						    container_of(map_ptr,
+								 struct bpf_array,
+								 map)->index_mask);
+			insn_buf[2] = *insn;
+			cnt = 3;
+			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+			if (!new_prog)
+				return -ENOMEM;
+
+			delta    += cnt - 1;
+			env->prog = prog = new_prog;
+			insn      = new_prog->insnsi + i + delta;
+			continue;
+		}
+
+		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
+		 * and other inlining handlers are currently limited to 64 bit
+		 * only.
+		 */
+		if (prog->jit_requested && BITS_PER_LONG == 64 &&
+		    (insn->imm == BPF_FUNC_map_lookup_elem ||
+		     insn->imm == BPF_FUNC_map_update_elem ||
+		     insn->imm == BPF_FUNC_map_delete_elem)) {
+			aux = &env->insn_aux_data[i + delta];
+			if (bpf_map_ptr_poisoned(aux))
+				goto patch_call_imm;
+
+			map_ptr = BPF_MAP_PTR(aux->map_state);
+			ops = map_ptr->ops;
+			if (insn->imm == BPF_FUNC_map_lookup_elem &&
+			    ops->map_gen_lookup) {
+				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
+				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
+					verbose(env, "bpf verifier is misconfigured\n");
+					return -EINVAL;
+				}
+
+				new_prog = bpf_patch_insn_data(env, i + delta,
+							       insn_buf, cnt);
+				if (!new_prog)
+					return -ENOMEM;
+
+				delta    += cnt - 1;
+				env->prog = prog = new_prog;
+				insn      = new_prog->insnsi + i + delta;
+				continue;
+			}
+
+			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
+				     (void *(*)(struct bpf_map *map, void *key))NULL));
+			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
+				     (int (*)(struct bpf_map *map, void *key))NULL));
+			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
+				     (int (*)(struct bpf_map *map, void *key, void *value,
+					      u64 flags))NULL));
+			switch (insn->imm) {
+			case BPF_FUNC_map_lookup_elem:
+				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
+					    __bpf_call_base;
+				continue;
+			case BPF_FUNC_map_update_elem:
+				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
+					    __bpf_call_base;
+				continue;
+			case BPF_FUNC_map_delete_elem:
+				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
+					    __bpf_call_base;
+				continue;
+			}
+
+			goto patch_call_imm;
+		}
+
+patch_call_imm:
+		fn = env->ops->get_func_proto(insn->imm, env->prog);
+		/* all functions that have prototype and verifier allowed
+		 * programs to call them, must be real in-kernel functions
+		 */
+		if (!fn->func) {
+			verbose(env,
+				"kernel subsystem misconfigured func %s#%d\n",
+				func_id_name(insn->imm), insn->imm);
+			return -EFAULT;
+		}
+		insn->imm = fn->func - __bpf_call_base;
+	}
+
+	return 0;
+}
+
+static void free_states(struct bpf_verifier_env *env)
+{
+	struct bpf_verifier_state_list *sl, *sln;
+	int i;
+
+	if (!env->explored_states)
+		return;
+
+	for (i = 0; i < env->prog->len; i++) {
+		sl = env->explored_states[i];
+
+		if (sl)
+			while (sl != STATE_LIST_MARK) {
+				sln = sl->next;
+				free_verifier_state(&sl->state, false);
+				kfree(sl);
+				sl = sln;
+			}
+	}
+
+	kfree(env->explored_states);
+}
+
+int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
+{
+	struct bpf_verifier_env *env;
+	struct bpf_verifier_log *log;
+	int ret = -EINVAL;
+
+	/* no program is valid */
+	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
+		return -EINVAL;
+
+	/* 'struct bpf_verifier_env' can be global, but since it's not small,
+	 * allocate/free it every time bpf_check() is called
+	 */
+	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
+	if (!env)
+		return -ENOMEM;
+	log = &env->log;
+
+	env->insn_aux_data =
+		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
+				   (*prog)->len));
+	ret = -ENOMEM;
+	if (!env->insn_aux_data)
+		goto err_free_env;
+	env->prog = *prog;
+	env->ops = bpf_verifier_ops[env->prog->type];
+
+	/* grab the mutex to protect few globals used by verifier */
+	mutex_lock(&bpf_verifier_lock);
+
+	if (attr->log_level || attr->log_buf || attr->log_size) {
+		/* user requested verbose verifier output
+		 * and supplied buffer to store the verification trace
+		 */
+		log->level = attr->log_level;
+		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
+		log->len_total = attr->log_size;
+
+		ret = -EINVAL;
+		/* log attributes have to be sane */
+		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
+		    !log->level || !log->ubuf)
+			goto err_unlock;
+	}
+
+	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
+	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
+		env->strict_alignment = true;
+
+	ret = replace_map_fd_with_map_ptr(env);
+	if (ret < 0)
+		goto skip_full_check;
+
+	if (bpf_prog_is_dev_bound(env->prog->aux)) {
+		ret = bpf_prog_offload_verifier_prep(env);
+		if (ret)
+			goto skip_full_check;
+	}
+
+	env->explored_states = kcalloc(env->prog->len,
+				       sizeof(struct bpf_verifier_state_list *),
+				       GFP_USER);
+	ret = -ENOMEM;
+	if (!env->explored_states)
+		goto skip_full_check;
+
+	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
+
+	ret = check_cfg(env);
+	if (ret < 0)
+		goto skip_full_check;
+
+	ret = do_check(env);
+	if (env->cur_state) {
+		free_verifier_state(env->cur_state, true);
+		env->cur_state = NULL;
+	}
+
+skip_full_check:
+	while (!pop_stack(env, NULL, NULL));
+	free_states(env);
+
+	if (ret == 0)
+		sanitize_dead_code(env);
+
+	if (ret == 0)
+		ret = check_max_stack_depth(env);
+
+	if (ret == 0)
+		/* program is valid, convert *(u32*)(ctx + off) accesses */
+		ret = convert_ctx_accesses(env);
+
+	if (ret == 0)
+		ret = fixup_bpf_calls(env);
+
+	if (ret == 0)
+		ret = fixup_call_args(env);
+
+	if (log->level && bpf_verifier_log_full(log))
+		ret = -ENOSPC;
+	if (log->level && !log->ubuf) {
+		ret = -EFAULT;
+		goto err_release_maps;
+	}
+
+	if (ret == 0 && env->used_map_cnt) {
+		/* if program passed verifier, update used_maps in bpf_prog_info */
+		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
+							  sizeof(env->used_maps[0]),
+							  GFP_KERNEL);
+
+		if (!env->prog->aux->used_maps) {
+			ret = -ENOMEM;
+			goto err_release_maps;
+		}
+
+		memcpy(env->prog->aux->used_maps, env->used_maps,
+		       sizeof(env->used_maps[0]) * env->used_map_cnt);
+		env->prog->aux->used_map_cnt = env->used_map_cnt;
+
+		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
+		 * bpf_ld_imm64 instructions
+		 */
+		convert_pseudo_ld_imm64(env);
+	}
+
+err_release_maps:
+	if (!env->prog->aux->used_maps)
+		/* if we didn't copy map pointers into bpf_prog_info, release
+		 * them now. Otherwise free_used_maps() will release them.
+		 */
+		release_maps(env);
+	*prog = env->prog;
+err_unlock:
+	mutex_unlock(&bpf_verifier_lock);
+	vfree(env->insn_aux_data);
+err_free_env:
+	kfree(env);
+	return ret;
+}