v4.19.13 snapshot.
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
new file mode 100644
index 0000000..b2d1f04
--- /dev/null
+++ b/kernel/auditsc.c
@@ -0,0 +1,2529 @@
+/* auditsc.c -- System-call auditing support
+ * Handles all system-call specific auditing features.
+ *
+ * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
+ * Copyright 2005 Hewlett-Packard Development Company, L.P.
+ * Copyright (C) 2005, 2006 IBM Corporation
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *
+ * Written by Rickard E. (Rik) Faith <faith@redhat.com>
+ *
+ * Many of the ideas implemented here are from Stephen C. Tweedie,
+ * especially the idea of avoiding a copy by using getname.
+ *
+ * The method for actual interception of syscall entry and exit (not in
+ * this file -- see entry.S) is based on a GPL'd patch written by
+ * okir@suse.de and Copyright 2003 SuSE Linux AG.
+ *
+ * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
+ * 2006.
+ *
+ * The support of additional filter rules compares (>, <, >=, <=) was
+ * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
+ *
+ * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
+ * filesystem information.
+ *
+ * Subject and object context labeling support added by <danjones@us.ibm.com>
+ * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/init.h>
+#include <asm/types.h>
+#include <linux/atomic.h>
+#include <linux/fs.h>
+#include <linux/namei.h>
+#include <linux/mm.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/mount.h>
+#include <linux/socket.h>
+#include <linux/mqueue.h>
+#include <linux/audit.h>
+#include <linux/personality.h>
+#include <linux/time.h>
+#include <linux/netlink.h>
+#include <linux/compiler.h>
+#include <asm/unistd.h>
+#include <linux/security.h>
+#include <linux/list.h>
+#include <linux/binfmts.h>
+#include <linux/highmem.h>
+#include <linux/syscalls.h>
+#include <asm/syscall.h>
+#include <linux/capability.h>
+#include <linux/fs_struct.h>
+#include <linux/compat.h>
+#include <linux/ctype.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/fsnotify_backend.h>
+#include <uapi/linux/limits.h>
+
+#include "audit.h"
+
+/* flags stating the success for a syscall */
+#define AUDITSC_INVALID 0
+#define AUDITSC_SUCCESS 1
+#define AUDITSC_FAILURE 2
+
+/* no execve audit message should be longer than this (userspace limits),
+ * see the note near the top of audit_log_execve_info() about this value */
+#define MAX_EXECVE_AUDIT_LEN 7500
+
+/* max length to print of cmdline/proctitle value during audit */
+#define MAX_PROCTITLE_AUDIT_LEN 128
+
+/* number of audit rules */
+int audit_n_rules;
+
+/* determines whether we collect data for signals sent */
+int audit_signals;
+
+struct audit_aux_data {
+	struct audit_aux_data	*next;
+	int			type;
+};
+
+#define AUDIT_AUX_IPCPERM	0
+
+/* Number of target pids per aux struct. */
+#define AUDIT_AUX_PIDS	16
+
+struct audit_aux_data_pids {
+	struct audit_aux_data	d;
+	pid_t			target_pid[AUDIT_AUX_PIDS];
+	kuid_t			target_auid[AUDIT_AUX_PIDS];
+	kuid_t			target_uid[AUDIT_AUX_PIDS];
+	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
+	u32			target_sid[AUDIT_AUX_PIDS];
+	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
+	int			pid_count;
+};
+
+struct audit_aux_data_bprm_fcaps {
+	struct audit_aux_data	d;
+	struct audit_cap_data	fcap;
+	unsigned int		fcap_ver;
+	struct audit_cap_data	old_pcap;
+	struct audit_cap_data	new_pcap;
+};
+
+struct audit_tree_refs {
+	struct audit_tree_refs *next;
+	struct audit_chunk *c[31];
+};
+
+static int audit_match_perm(struct audit_context *ctx, int mask)
+{
+	unsigned n;
+	if (unlikely(!ctx))
+		return 0;
+	n = ctx->major;
+
+	switch (audit_classify_syscall(ctx->arch, n)) {
+	case 0:	/* native */
+		if ((mask & AUDIT_PERM_WRITE) &&
+		     audit_match_class(AUDIT_CLASS_WRITE, n))
+			return 1;
+		if ((mask & AUDIT_PERM_READ) &&
+		     audit_match_class(AUDIT_CLASS_READ, n))
+			return 1;
+		if ((mask & AUDIT_PERM_ATTR) &&
+		     audit_match_class(AUDIT_CLASS_CHATTR, n))
+			return 1;
+		return 0;
+	case 1: /* 32bit on biarch */
+		if ((mask & AUDIT_PERM_WRITE) &&
+		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
+			return 1;
+		if ((mask & AUDIT_PERM_READ) &&
+		     audit_match_class(AUDIT_CLASS_READ_32, n))
+			return 1;
+		if ((mask & AUDIT_PERM_ATTR) &&
+		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
+			return 1;
+		return 0;
+	case 2: /* open */
+		return mask & ACC_MODE(ctx->argv[1]);
+	case 3: /* openat */
+		return mask & ACC_MODE(ctx->argv[2]);
+	case 4: /* socketcall */
+		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
+	case 5: /* execve */
+		return mask & AUDIT_PERM_EXEC;
+	default:
+		return 0;
+	}
+}
+
+static int audit_match_filetype(struct audit_context *ctx, int val)
+{
+	struct audit_names *n;
+	umode_t mode = (umode_t)val;
+
+	if (unlikely(!ctx))
+		return 0;
+
+	list_for_each_entry(n, &ctx->names_list, list) {
+		if ((n->ino != AUDIT_INO_UNSET) &&
+		    ((n->mode & S_IFMT) == mode))
+			return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
+ * ->first_trees points to its beginning, ->trees - to the current end of data.
+ * ->tree_count is the number of free entries in array pointed to by ->trees.
+ * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
+ * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
+ * it's going to remain 1-element for almost any setup) until we free context itself.
+ * References in it _are_ dropped - at the same time we free/drop aux stuff.
+ */
+
+#ifdef CONFIG_AUDIT_TREE
+static void audit_set_auditable(struct audit_context *ctx)
+{
+	if (!ctx->prio) {
+		ctx->prio = 1;
+		ctx->current_state = AUDIT_RECORD_CONTEXT;
+	}
+}
+
+static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
+{
+	struct audit_tree_refs *p = ctx->trees;
+	int left = ctx->tree_count;
+	if (likely(left)) {
+		p->c[--left] = chunk;
+		ctx->tree_count = left;
+		return 1;
+	}
+	if (!p)
+		return 0;
+	p = p->next;
+	if (p) {
+		p->c[30] = chunk;
+		ctx->trees = p;
+		ctx->tree_count = 30;
+		return 1;
+	}
+	return 0;
+}
+
+static int grow_tree_refs(struct audit_context *ctx)
+{
+	struct audit_tree_refs *p = ctx->trees;
+	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
+	if (!ctx->trees) {
+		ctx->trees = p;
+		return 0;
+	}
+	if (p)
+		p->next = ctx->trees;
+	else
+		ctx->first_trees = ctx->trees;
+	ctx->tree_count = 31;
+	return 1;
+}
+#endif
+
+static void unroll_tree_refs(struct audit_context *ctx,
+		      struct audit_tree_refs *p, int count)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_tree_refs *q;
+	int n;
+	if (!p) {
+		/* we started with empty chain */
+		p = ctx->first_trees;
+		count = 31;
+		/* if the very first allocation has failed, nothing to do */
+		if (!p)
+			return;
+	}
+	n = count;
+	for (q = p; q != ctx->trees; q = q->next, n = 31) {
+		while (n--) {
+			audit_put_chunk(q->c[n]);
+			q->c[n] = NULL;
+		}
+	}
+	while (n-- > ctx->tree_count) {
+		audit_put_chunk(q->c[n]);
+		q->c[n] = NULL;
+	}
+	ctx->trees = p;
+	ctx->tree_count = count;
+#endif
+}
+
+static void free_tree_refs(struct audit_context *ctx)
+{
+	struct audit_tree_refs *p, *q;
+	for (p = ctx->first_trees; p; p = q) {
+		q = p->next;
+		kfree(p);
+	}
+}
+
+static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_tree_refs *p;
+	int n;
+	if (!tree)
+		return 0;
+	/* full ones */
+	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
+		for (n = 0; n < 31; n++)
+			if (audit_tree_match(p->c[n], tree))
+				return 1;
+	}
+	/* partial */
+	if (p) {
+		for (n = ctx->tree_count; n < 31; n++)
+			if (audit_tree_match(p->c[n], tree))
+				return 1;
+	}
+#endif
+	return 0;
+}
+
+static int audit_compare_uid(kuid_t uid,
+			     struct audit_names *name,
+			     struct audit_field *f,
+			     struct audit_context *ctx)
+{
+	struct audit_names *n;
+	int rc;
+ 
+	if (name) {
+		rc = audit_uid_comparator(uid, f->op, name->uid);
+		if (rc)
+			return rc;
+	}
+ 
+	if (ctx) {
+		list_for_each_entry(n, &ctx->names_list, list) {
+			rc = audit_uid_comparator(uid, f->op, n->uid);
+			if (rc)
+				return rc;
+		}
+	}
+	return 0;
+}
+
+static int audit_compare_gid(kgid_t gid,
+			     struct audit_names *name,
+			     struct audit_field *f,
+			     struct audit_context *ctx)
+{
+	struct audit_names *n;
+	int rc;
+ 
+	if (name) {
+		rc = audit_gid_comparator(gid, f->op, name->gid);
+		if (rc)
+			return rc;
+	}
+ 
+	if (ctx) {
+		list_for_each_entry(n, &ctx->names_list, list) {
+			rc = audit_gid_comparator(gid, f->op, n->gid);
+			if (rc)
+				return rc;
+		}
+	}
+	return 0;
+}
+
+static int audit_field_compare(struct task_struct *tsk,
+			       const struct cred *cred,
+			       struct audit_field *f,
+			       struct audit_context *ctx,
+			       struct audit_names *name)
+{
+	switch (f->val) {
+	/* process to file object comparisons */
+	case AUDIT_COMPARE_UID_TO_OBJ_UID:
+		return audit_compare_uid(cred->uid, name, f, ctx);
+	case AUDIT_COMPARE_GID_TO_OBJ_GID:
+		return audit_compare_gid(cred->gid, name, f, ctx);
+	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
+		return audit_compare_uid(cred->euid, name, f, ctx);
+	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
+		return audit_compare_gid(cred->egid, name, f, ctx);
+	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
+		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
+	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
+		return audit_compare_uid(cred->suid, name, f, ctx);
+	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
+		return audit_compare_gid(cred->sgid, name, f, ctx);
+	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
+		return audit_compare_uid(cred->fsuid, name, f, ctx);
+	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
+		return audit_compare_gid(cred->fsgid, name, f, ctx);
+	/* uid comparisons */
+	case AUDIT_COMPARE_UID_TO_AUID:
+		return audit_uid_comparator(cred->uid, f->op,
+					    audit_get_loginuid(tsk));
+	case AUDIT_COMPARE_UID_TO_EUID:
+		return audit_uid_comparator(cred->uid, f->op, cred->euid);
+	case AUDIT_COMPARE_UID_TO_SUID:
+		return audit_uid_comparator(cred->uid, f->op, cred->suid);
+	case AUDIT_COMPARE_UID_TO_FSUID:
+		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
+	/* auid comparisons */
+	case AUDIT_COMPARE_AUID_TO_EUID:
+		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
+					    cred->euid);
+	case AUDIT_COMPARE_AUID_TO_SUID:
+		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
+					    cred->suid);
+	case AUDIT_COMPARE_AUID_TO_FSUID:
+		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
+					    cred->fsuid);
+	/* euid comparisons */
+	case AUDIT_COMPARE_EUID_TO_SUID:
+		return audit_uid_comparator(cred->euid, f->op, cred->suid);
+	case AUDIT_COMPARE_EUID_TO_FSUID:
+		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
+	/* suid comparisons */
+	case AUDIT_COMPARE_SUID_TO_FSUID:
+		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
+	/* gid comparisons */
+	case AUDIT_COMPARE_GID_TO_EGID:
+		return audit_gid_comparator(cred->gid, f->op, cred->egid);
+	case AUDIT_COMPARE_GID_TO_SGID:
+		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
+	case AUDIT_COMPARE_GID_TO_FSGID:
+		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
+	/* egid comparisons */
+	case AUDIT_COMPARE_EGID_TO_SGID:
+		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
+	case AUDIT_COMPARE_EGID_TO_FSGID:
+		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
+	/* sgid comparison */
+	case AUDIT_COMPARE_SGID_TO_FSGID:
+		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
+	default:
+		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
+		return 0;
+	}
+	return 0;
+}
+
+/* Determine if any context name data matches a rule's watch data */
+/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
+ * otherwise.
+ *
+ * If task_creation is true, this is an explicit indication that we are
+ * filtering a task rule at task creation time.  This and tsk == current are
+ * the only situations where tsk->cred may be accessed without an rcu read lock.
+ */
+static int audit_filter_rules(struct task_struct *tsk,
+			      struct audit_krule *rule,
+			      struct audit_context *ctx,
+			      struct audit_names *name,
+			      enum audit_state *state,
+			      bool task_creation)
+{
+	const struct cred *cred;
+	int i, need_sid = 1;
+	u32 sid;
+	unsigned int sessionid;
+
+	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
+
+	for (i = 0; i < rule->field_count; i++) {
+		struct audit_field *f = &rule->fields[i];
+		struct audit_names *n;
+		int result = 0;
+		pid_t pid;
+
+		switch (f->type) {
+		case AUDIT_PID:
+			pid = task_tgid_nr(tsk);
+			result = audit_comparator(pid, f->op, f->val);
+			break;
+		case AUDIT_PPID:
+			if (ctx) {
+				if (!ctx->ppid)
+					ctx->ppid = task_ppid_nr(tsk);
+				result = audit_comparator(ctx->ppid, f->op, f->val);
+			}
+			break;
+		case AUDIT_EXE:
+			result = audit_exe_compare(tsk, rule->exe);
+			if (f->op == Audit_not_equal)
+				result = !result;
+			break;
+		case AUDIT_UID:
+			result = audit_uid_comparator(cred->uid, f->op, f->uid);
+			break;
+		case AUDIT_EUID:
+			result = audit_uid_comparator(cred->euid, f->op, f->uid);
+			break;
+		case AUDIT_SUID:
+			result = audit_uid_comparator(cred->suid, f->op, f->uid);
+			break;
+		case AUDIT_FSUID:
+			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
+			break;
+		case AUDIT_GID:
+			result = audit_gid_comparator(cred->gid, f->op, f->gid);
+			if (f->op == Audit_equal) {
+				if (!result)
+					result = groups_search(cred->group_info, f->gid);
+			} else if (f->op == Audit_not_equal) {
+				if (result)
+					result = !groups_search(cred->group_info, f->gid);
+			}
+			break;
+		case AUDIT_EGID:
+			result = audit_gid_comparator(cred->egid, f->op, f->gid);
+			if (f->op == Audit_equal) {
+				if (!result)
+					result = groups_search(cred->group_info, f->gid);
+			} else if (f->op == Audit_not_equal) {
+				if (result)
+					result = !groups_search(cred->group_info, f->gid);
+			}
+			break;
+		case AUDIT_SGID:
+			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
+			break;
+		case AUDIT_FSGID:
+			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
+			break;
+		case AUDIT_SESSIONID:
+			sessionid = audit_get_sessionid(tsk);
+			result = audit_comparator(sessionid, f->op, f->val);
+			break;
+		case AUDIT_PERS:
+			result = audit_comparator(tsk->personality, f->op, f->val);
+			break;
+		case AUDIT_ARCH:
+			if (ctx)
+				result = audit_comparator(ctx->arch, f->op, f->val);
+			break;
+
+		case AUDIT_EXIT:
+			if (ctx && ctx->return_valid)
+				result = audit_comparator(ctx->return_code, f->op, f->val);
+			break;
+		case AUDIT_SUCCESS:
+			if (ctx && ctx->return_valid) {
+				if (f->val)
+					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
+				else
+					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
+			}
+			break;
+		case AUDIT_DEVMAJOR:
+			if (name) {
+				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
+				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
+					++result;
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
+					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_DEVMINOR:
+			if (name) {
+				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
+				    audit_comparator(MINOR(name->rdev), f->op, f->val))
+					++result;
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
+					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_INODE:
+			if (name)
+				result = audit_comparator(name->ino, f->op, f->val);
+			else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(n->ino, f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_OBJ_UID:
+			if (name) {
+				result = audit_uid_comparator(name->uid, f->op, f->uid);
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_OBJ_GID:
+			if (name) {
+				result = audit_gid_comparator(name->gid, f->op, f->gid);
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_WATCH:
+			if (name)
+				result = audit_watch_compare(rule->watch, name->ino, name->dev);
+			break;
+		case AUDIT_DIR:
+			if (ctx)
+				result = match_tree_refs(ctx, rule->tree);
+			break;
+		case AUDIT_LOGINUID:
+			result = audit_uid_comparator(audit_get_loginuid(tsk),
+						      f->op, f->uid);
+			break;
+		case AUDIT_LOGINUID_SET:
+			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
+			break;
+		case AUDIT_SUBJ_USER:
+		case AUDIT_SUBJ_ROLE:
+		case AUDIT_SUBJ_TYPE:
+		case AUDIT_SUBJ_SEN:
+		case AUDIT_SUBJ_CLR:
+			/* NOTE: this may return negative values indicating
+			   a temporary error.  We simply treat this as a
+			   match for now to avoid losing information that
+			   may be wanted.   An error message will also be
+			   logged upon error */
+			if (f->lsm_rule) {
+				if (need_sid) {
+					security_task_getsecid(tsk, &sid);
+					need_sid = 0;
+				}
+				result = security_audit_rule_match(sid, f->type,
+				                                  f->op,
+				                                  f->lsm_rule,
+				                                  ctx);
+			}
+			break;
+		case AUDIT_OBJ_USER:
+		case AUDIT_OBJ_ROLE:
+		case AUDIT_OBJ_TYPE:
+		case AUDIT_OBJ_LEV_LOW:
+		case AUDIT_OBJ_LEV_HIGH:
+			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
+			   also applies here */
+			if (f->lsm_rule) {
+				/* Find files that match */
+				if (name) {
+					result = security_audit_rule_match(
+					           name->osid, f->type, f->op,
+					           f->lsm_rule, ctx);
+				} else if (ctx) {
+					list_for_each_entry(n, &ctx->names_list, list) {
+						if (security_audit_rule_match(n->osid, f->type,
+									      f->op, f->lsm_rule,
+									      ctx)) {
+							++result;
+							break;
+						}
+					}
+				}
+				/* Find ipc objects that match */
+				if (!ctx || ctx->type != AUDIT_IPC)
+					break;
+				if (security_audit_rule_match(ctx->ipc.osid,
+							      f->type, f->op,
+							      f->lsm_rule, ctx))
+					++result;
+			}
+			break;
+		case AUDIT_ARG0:
+		case AUDIT_ARG1:
+		case AUDIT_ARG2:
+		case AUDIT_ARG3:
+			if (ctx)
+				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
+			break;
+		case AUDIT_FILTERKEY:
+			/* ignore this field for filtering */
+			result = 1;
+			break;
+		case AUDIT_PERM:
+			result = audit_match_perm(ctx, f->val);
+			break;
+		case AUDIT_FILETYPE:
+			result = audit_match_filetype(ctx, f->val);
+			break;
+		case AUDIT_FIELD_COMPARE:
+			result = audit_field_compare(tsk, cred, f, ctx, name);
+			break;
+		}
+		if (!result)
+			return 0;
+	}
+
+	if (ctx) {
+		if (rule->prio <= ctx->prio)
+			return 0;
+		if (rule->filterkey) {
+			kfree(ctx->filterkey);
+			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
+		}
+		ctx->prio = rule->prio;
+	}
+	switch (rule->action) {
+	case AUDIT_NEVER:
+		*state = AUDIT_DISABLED;
+		break;
+	case AUDIT_ALWAYS:
+		*state = AUDIT_RECORD_CONTEXT;
+		break;
+	}
+	return 1;
+}
+
+/* At process creation time, we can determine if system-call auditing is
+ * completely disabled for this task.  Since we only have the task
+ * structure at this point, we can only check uid and gid.
+ */
+static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
+{
+	struct audit_entry *e;
+	enum audit_state   state;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
+		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
+				       &state, true)) {
+			if (state == AUDIT_RECORD_CONTEXT)
+				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
+			rcu_read_unlock();
+			return state;
+		}
+	}
+	rcu_read_unlock();
+	return AUDIT_BUILD_CONTEXT;
+}
+
+static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
+{
+	int word, bit;
+
+	if (val > 0xffffffff)
+		return false;
+
+	word = AUDIT_WORD(val);
+	if (word >= AUDIT_BITMASK_SIZE)
+		return false;
+
+	bit = AUDIT_BIT(val);
+
+	return rule->mask[word] & bit;
+}
+
+/* At syscall entry and exit time, this filter is called if the
+ * audit_state is not low enough that auditing cannot take place, but is
+ * also not high enough that we already know we have to write an audit
+ * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
+ */
+static enum audit_state audit_filter_syscall(struct task_struct *tsk,
+					     struct audit_context *ctx,
+					     struct list_head *list)
+{
+	struct audit_entry *e;
+	enum audit_state state;
+
+	if (auditd_test_task(tsk))
+		return AUDIT_DISABLED;
+
+	rcu_read_lock();
+	if (!list_empty(list)) {
+		list_for_each_entry_rcu(e, list, list) {
+			if (audit_in_mask(&e->rule, ctx->major) &&
+			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
+					       &state, false)) {
+				rcu_read_unlock();
+				ctx->current_state = state;
+				return state;
+			}
+		}
+	}
+	rcu_read_unlock();
+	return AUDIT_BUILD_CONTEXT;
+}
+
+/*
+ * Given an audit_name check the inode hash table to see if they match.
+ * Called holding the rcu read lock to protect the use of audit_inode_hash
+ */
+static int audit_filter_inode_name(struct task_struct *tsk,
+				   struct audit_names *n,
+				   struct audit_context *ctx) {
+	int h = audit_hash_ino((u32)n->ino);
+	struct list_head *list = &audit_inode_hash[h];
+	struct audit_entry *e;
+	enum audit_state state;
+
+	if (list_empty(list))
+		return 0;
+
+	list_for_each_entry_rcu(e, list, list) {
+		if (audit_in_mask(&e->rule, ctx->major) &&
+		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
+			ctx->current_state = state;
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/* At syscall exit time, this filter is called if any audit_names have been
+ * collected during syscall processing.  We only check rules in sublists at hash
+ * buckets applicable to the inode numbers in audit_names.
+ * Regarding audit_state, same rules apply as for audit_filter_syscall().
+ */
+void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
+{
+	struct audit_names *n;
+
+	if (auditd_test_task(tsk))
+		return;
+
+	rcu_read_lock();
+
+	list_for_each_entry(n, &ctx->names_list, list) {
+		if (audit_filter_inode_name(tsk, n, ctx))
+			break;
+	}
+	rcu_read_unlock();
+}
+
+/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
+static inline struct audit_context *audit_take_context(struct task_struct *tsk,
+						      int return_valid,
+						      long return_code)
+{
+	struct audit_context *context = tsk->audit_context;
+
+	if (!context)
+		return NULL;
+	context->return_valid = return_valid;
+
+	/*
+	 * we need to fix up the return code in the audit logs if the actual
+	 * return codes are later going to be fixed up by the arch specific
+	 * signal handlers
+	 *
+	 * This is actually a test for:
+	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
+	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
+	 *
+	 * but is faster than a bunch of ||
+	 */
+	if (unlikely(return_code <= -ERESTARTSYS) &&
+	    (return_code >= -ERESTART_RESTARTBLOCK) &&
+	    (return_code != -ENOIOCTLCMD))
+		context->return_code = -EINTR;
+	else
+		context->return_code  = return_code;
+
+	if (context->in_syscall && !context->dummy) {
+		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
+		audit_filter_inodes(tsk, context);
+	}
+
+	audit_set_context(tsk, NULL);
+	return context;
+}
+
+static inline void audit_proctitle_free(struct audit_context *context)
+{
+	kfree(context->proctitle.value);
+	context->proctitle.value = NULL;
+	context->proctitle.len = 0;
+}
+
+static inline void audit_free_names(struct audit_context *context)
+{
+	struct audit_names *n, *next;
+
+	list_for_each_entry_safe(n, next, &context->names_list, list) {
+		list_del(&n->list);
+		if (n->name)
+			putname(n->name);
+		if (n->should_free)
+			kfree(n);
+	}
+	context->name_count = 0;
+	path_put(&context->pwd);
+	context->pwd.dentry = NULL;
+	context->pwd.mnt = NULL;
+}
+
+static inline void audit_free_aux(struct audit_context *context)
+{
+	struct audit_aux_data *aux;
+
+	while ((aux = context->aux)) {
+		context->aux = aux->next;
+		kfree(aux);
+	}
+	while ((aux = context->aux_pids)) {
+		context->aux_pids = aux->next;
+		kfree(aux);
+	}
+}
+
+static inline struct audit_context *audit_alloc_context(enum audit_state state)
+{
+	struct audit_context *context;
+
+	context = kzalloc(sizeof(*context), GFP_KERNEL);
+	if (!context)
+		return NULL;
+	context->state = state;
+	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
+	INIT_LIST_HEAD(&context->killed_trees);
+	INIT_LIST_HEAD(&context->names_list);
+	return context;
+}
+
+/**
+ * audit_alloc - allocate an audit context block for a task
+ * @tsk: task
+ *
+ * Filter on the task information and allocate a per-task audit context
+ * if necessary.  Doing so turns on system call auditing for the
+ * specified task.  This is called from copy_process, so no lock is
+ * needed.
+ */
+int audit_alloc(struct task_struct *tsk)
+{
+	struct audit_context *context;
+	enum audit_state     state;
+	char *key = NULL;
+
+	if (likely(!audit_ever_enabled))
+		return 0; /* Return if not auditing. */
+
+	state = audit_filter_task(tsk, &key);
+	if (state == AUDIT_DISABLED) {
+		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
+		return 0;
+	}
+
+	if (!(context = audit_alloc_context(state))) {
+		kfree(key);
+		audit_log_lost("out of memory in audit_alloc");
+		return -ENOMEM;
+	}
+	context->filterkey = key;
+
+	audit_set_context(tsk, context);
+	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
+	return 0;
+}
+
+static inline void audit_free_context(struct audit_context *context)
+{
+	audit_free_names(context);
+	unroll_tree_refs(context, NULL, 0);
+	free_tree_refs(context);
+	audit_free_aux(context);
+	kfree(context->filterkey);
+	kfree(context->sockaddr);
+	audit_proctitle_free(context);
+	kfree(context);
+}
+
+static int audit_log_pid_context(struct audit_context *context, pid_t pid,
+				 kuid_t auid, kuid_t uid, unsigned int sessionid,
+				 u32 sid, char *comm)
+{
+	struct audit_buffer *ab;
+	char *ctx = NULL;
+	u32 len;
+	int rc = 0;
+
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
+	if (!ab)
+		return rc;
+
+	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
+			 from_kuid(&init_user_ns, auid),
+			 from_kuid(&init_user_ns, uid), sessionid);
+	if (sid) {
+		if (security_secid_to_secctx(sid, &ctx, &len)) {
+			audit_log_format(ab, " obj=(none)");
+			rc = 1;
+		} else {
+			audit_log_format(ab, " obj=%s", ctx);
+			security_release_secctx(ctx, len);
+		}
+	}
+	audit_log_format(ab, " ocomm=");
+	audit_log_untrustedstring(ab, comm);
+	audit_log_end(ab);
+
+	return rc;
+}
+
+static void audit_log_execve_info(struct audit_context *context,
+				  struct audit_buffer **ab)
+{
+	long len_max;
+	long len_rem;
+	long len_full;
+	long len_buf;
+	long len_abuf = 0;
+	long len_tmp;
+	bool require_data;
+	bool encode;
+	unsigned int iter;
+	unsigned int arg;
+	char *buf_head;
+	char *buf;
+	const char __user *p = (const char __user *)current->mm->arg_start;
+
+	/* NOTE: this buffer needs to be large enough to hold all the non-arg
+	 *       data we put in the audit record for this argument (see the
+	 *       code below) ... at this point in time 96 is plenty */
+	char abuf[96];
+
+	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
+	 *       current value of 7500 is not as important as the fact that it
+	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
+	 *       room if we go over a little bit in the logging below */
+	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
+	len_max = MAX_EXECVE_AUDIT_LEN;
+
+	/* scratch buffer to hold the userspace args */
+	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
+	if (!buf_head) {
+		audit_panic("out of memory for argv string");
+		return;
+	}
+	buf = buf_head;
+
+	audit_log_format(*ab, "argc=%d", context->execve.argc);
+
+	len_rem = len_max;
+	len_buf = 0;
+	len_full = 0;
+	require_data = true;
+	encode = false;
+	iter = 0;
+	arg = 0;
+	do {
+		/* NOTE: we don't ever want to trust this value for anything
+		 *       serious, but the audit record format insists we
+		 *       provide an argument length for really long arguments,
+		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
+		 *       to use strncpy_from_user() to obtain this value for
+		 *       recording in the log, although we don't use it
+		 *       anywhere here to avoid a double-fetch problem */
+		if (len_full == 0)
+			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
+
+		/* read more data from userspace */
+		if (require_data) {
+			/* can we make more room in the buffer? */
+			if (buf != buf_head) {
+				memmove(buf_head, buf, len_buf);
+				buf = buf_head;
+			}
+
+			/* fetch as much as we can of the argument */
+			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
+						    len_max - len_buf);
+			if (len_tmp == -EFAULT) {
+				/* unable to copy from userspace */
+				send_sig(SIGKILL, current, 0);
+				goto out;
+			} else if (len_tmp == (len_max - len_buf)) {
+				/* buffer is not large enough */
+				require_data = true;
+				/* NOTE: if we are going to span multiple
+				 *       buffers force the encoding so we stand
+				 *       a chance at a sane len_full value and
+				 *       consistent record encoding */
+				encode = true;
+				len_full = len_full * 2;
+				p += len_tmp;
+			} else {
+				require_data = false;
+				if (!encode)
+					encode = audit_string_contains_control(
+								buf, len_tmp);
+				/* try to use a trusted value for len_full */
+				if (len_full < len_max)
+					len_full = (encode ?
+						    len_tmp * 2 : len_tmp);
+				p += len_tmp + 1;
+			}
+			len_buf += len_tmp;
+			buf_head[len_buf] = '\0';
+
+			/* length of the buffer in the audit record? */
+			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
+		}
+
+		/* write as much as we can to the audit log */
+		if (len_buf > 0) {
+			/* NOTE: some magic numbers here - basically if we
+			 *       can't fit a reasonable amount of data into the
+			 *       existing audit buffer, flush it and start with
+			 *       a new buffer */
+			if ((sizeof(abuf) + 8) > len_rem) {
+				len_rem = len_max;
+				audit_log_end(*ab);
+				*ab = audit_log_start(context,
+						      GFP_KERNEL, AUDIT_EXECVE);
+				if (!*ab)
+					goto out;
+			}
+
+			/* create the non-arg portion of the arg record */
+			len_tmp = 0;
+			if (require_data || (iter > 0) ||
+			    ((len_abuf + sizeof(abuf)) > len_rem)) {
+				if (iter == 0) {
+					len_tmp += snprintf(&abuf[len_tmp],
+							sizeof(abuf) - len_tmp,
+							" a%d_len=%lu",
+							arg, len_full);
+				}
+				len_tmp += snprintf(&abuf[len_tmp],
+						    sizeof(abuf) - len_tmp,
+						    " a%d[%d]=", arg, iter++);
+			} else
+				len_tmp += snprintf(&abuf[len_tmp],
+						    sizeof(abuf) - len_tmp,
+						    " a%d=", arg);
+			WARN_ON(len_tmp >= sizeof(abuf));
+			abuf[sizeof(abuf) - 1] = '\0';
+
+			/* log the arg in the audit record */
+			audit_log_format(*ab, "%s", abuf);
+			len_rem -= len_tmp;
+			len_tmp = len_buf;
+			if (encode) {
+				if (len_abuf > len_rem)
+					len_tmp = len_rem / 2; /* encoding */
+				audit_log_n_hex(*ab, buf, len_tmp);
+				len_rem -= len_tmp * 2;
+				len_abuf -= len_tmp * 2;
+			} else {
+				if (len_abuf > len_rem)
+					len_tmp = len_rem - 2; /* quotes */
+				audit_log_n_string(*ab, buf, len_tmp);
+				len_rem -= len_tmp + 2;
+				/* don't subtract the "2" because we still need
+				 * to add quotes to the remaining string */
+				len_abuf -= len_tmp;
+			}
+			len_buf -= len_tmp;
+			buf += len_tmp;
+		}
+
+		/* ready to move to the next argument? */
+		if ((len_buf == 0) && !require_data) {
+			arg++;
+			iter = 0;
+			len_full = 0;
+			require_data = true;
+			encode = false;
+		}
+	} while (arg < context->execve.argc);
+
+	/* NOTE: the caller handles the final audit_log_end() call */
+
+out:
+	kfree(buf_head);
+}
+
+static void show_special(struct audit_context *context, int *call_panic)
+{
+	struct audit_buffer *ab;
+	int i;
+
+	ab = audit_log_start(context, GFP_KERNEL, context->type);
+	if (!ab)
+		return;
+
+	switch (context->type) {
+	case AUDIT_SOCKETCALL: {
+		int nargs = context->socketcall.nargs;
+		audit_log_format(ab, "nargs=%d", nargs);
+		for (i = 0; i < nargs; i++)
+			audit_log_format(ab, " a%d=%lx", i,
+				context->socketcall.args[i]);
+		break; }
+	case AUDIT_IPC: {
+		u32 osid = context->ipc.osid;
+
+		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
+				 from_kuid(&init_user_ns, context->ipc.uid),
+				 from_kgid(&init_user_ns, context->ipc.gid),
+				 context->ipc.mode);
+		if (osid) {
+			char *ctx = NULL;
+			u32 len;
+			if (security_secid_to_secctx(osid, &ctx, &len)) {
+				audit_log_format(ab, " osid=%u", osid);
+				*call_panic = 1;
+			} else {
+				audit_log_format(ab, " obj=%s", ctx);
+				security_release_secctx(ctx, len);
+			}
+		}
+		if (context->ipc.has_perm) {
+			audit_log_end(ab);
+			ab = audit_log_start(context, GFP_KERNEL,
+					     AUDIT_IPC_SET_PERM);
+			if (unlikely(!ab))
+				return;
+			audit_log_format(ab,
+				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
+				context->ipc.qbytes,
+				context->ipc.perm_uid,
+				context->ipc.perm_gid,
+				context->ipc.perm_mode);
+		}
+		break; }
+	case AUDIT_MQ_OPEN:
+		audit_log_format(ab,
+			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
+			"mq_msgsize=%ld mq_curmsgs=%ld",
+			context->mq_open.oflag, context->mq_open.mode,
+			context->mq_open.attr.mq_flags,
+			context->mq_open.attr.mq_maxmsg,
+			context->mq_open.attr.mq_msgsize,
+			context->mq_open.attr.mq_curmsgs);
+		break;
+	case AUDIT_MQ_SENDRECV:
+		audit_log_format(ab,
+			"mqdes=%d msg_len=%zd msg_prio=%u "
+			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
+			context->mq_sendrecv.mqdes,
+			context->mq_sendrecv.msg_len,
+			context->mq_sendrecv.msg_prio,
+			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
+			context->mq_sendrecv.abs_timeout.tv_nsec);
+		break;
+	case AUDIT_MQ_NOTIFY:
+		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
+				context->mq_notify.mqdes,
+				context->mq_notify.sigev_signo);
+		break;
+	case AUDIT_MQ_GETSETATTR: {
+		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
+		audit_log_format(ab,
+			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
+			"mq_curmsgs=%ld ",
+			context->mq_getsetattr.mqdes,
+			attr->mq_flags, attr->mq_maxmsg,
+			attr->mq_msgsize, attr->mq_curmsgs);
+		break; }
+	case AUDIT_CAPSET:
+		audit_log_format(ab, "pid=%d", context->capset.pid);
+		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
+		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
+		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
+		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
+		break;
+	case AUDIT_MMAP:
+		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
+				 context->mmap.flags);
+		break;
+	case AUDIT_EXECVE:
+		audit_log_execve_info(context, &ab);
+		break;
+	case AUDIT_KERN_MODULE:
+		audit_log_format(ab, "name=");
+		if (context->module.name) {
+			audit_log_untrustedstring(ab, context->module.name);
+			kfree(context->module.name);
+		} else
+			audit_log_format(ab, "(null)");
+
+		break;
+	}
+	audit_log_end(ab);
+}
+
+static inline int audit_proctitle_rtrim(char *proctitle, int len)
+{
+	char *end = proctitle + len - 1;
+	while (end > proctitle && !isprint(*end))
+		end--;
+
+	/* catch the case where proctitle is only 1 non-print character */
+	len = end - proctitle + 1;
+	len -= isprint(proctitle[len-1]) == 0;
+	return len;
+}
+
+static void audit_log_proctitle(struct task_struct *tsk,
+			 struct audit_context *context)
+{
+	int res;
+	char *buf;
+	char *msg = "(null)";
+	int len = strlen(msg);
+	struct audit_buffer *ab;
+
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
+	if (!ab)
+		return;	/* audit_panic or being filtered */
+
+	audit_log_format(ab, "proctitle=");
+
+	/* Not  cached */
+	if (!context->proctitle.value) {
+		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
+		if (!buf)
+			goto out;
+		/* Historically called this from procfs naming */
+		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
+		if (res == 0) {
+			kfree(buf);
+			goto out;
+		}
+		res = audit_proctitle_rtrim(buf, res);
+		if (res == 0) {
+			kfree(buf);
+			goto out;
+		}
+		context->proctitle.value = buf;
+		context->proctitle.len = res;
+	}
+	msg = context->proctitle.value;
+	len = context->proctitle.len;
+out:
+	audit_log_n_untrustedstring(ab, msg, len);
+	audit_log_end(ab);
+}
+
+static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
+{
+	int i, call_panic = 0;
+	struct audit_buffer *ab;
+	struct audit_aux_data *aux;
+	struct audit_names *n;
+
+	/* tsk == current */
+	context->personality = tsk->personality;
+
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
+	if (!ab)
+		return;		/* audit_panic has been called */
+	audit_log_format(ab, "arch=%x syscall=%d",
+			 context->arch, context->major);
+	if (context->personality != PER_LINUX)
+		audit_log_format(ab, " per=%lx", context->personality);
+	if (context->return_valid)
+		audit_log_format(ab, " success=%s exit=%ld",
+				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
+				 context->return_code);
+
+	audit_log_format(ab,
+			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
+			 context->argv[0],
+			 context->argv[1],
+			 context->argv[2],
+			 context->argv[3],
+			 context->name_count);
+
+	audit_log_task_info(ab, tsk);
+	audit_log_key(ab, context->filterkey);
+	audit_log_end(ab);
+
+	for (aux = context->aux; aux; aux = aux->next) {
+
+		ab = audit_log_start(context, GFP_KERNEL, aux->type);
+		if (!ab)
+			continue; /* audit_panic has been called */
+
+		switch (aux->type) {
+
+		case AUDIT_BPRM_FCAPS: {
+			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
+			audit_log_format(ab, "fver=%x", axs->fcap_ver);
+			audit_log_cap(ab, "fp", &axs->fcap.permitted);
+			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
+			audit_log_format(ab, " fe=%d", axs->fcap.fE);
+			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
+			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
+			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
+			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
+			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
+			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
+			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
+			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
+			break; }
+
+		}
+		audit_log_end(ab);
+	}
+
+	if (context->type)
+		show_special(context, &call_panic);
+
+	if (context->fds[0] >= 0) {
+		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
+		if (ab) {
+			audit_log_format(ab, "fd0=%d fd1=%d",
+					context->fds[0], context->fds[1]);
+			audit_log_end(ab);
+		}
+	}
+
+	if (context->sockaddr_len) {
+		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
+		if (ab) {
+			audit_log_format(ab, "saddr=");
+			audit_log_n_hex(ab, (void *)context->sockaddr,
+					context->sockaddr_len);
+			audit_log_end(ab);
+		}
+	}
+
+	for (aux = context->aux_pids; aux; aux = aux->next) {
+		struct audit_aux_data_pids *axs = (void *)aux;
+
+		for (i = 0; i < axs->pid_count; i++)
+			if (audit_log_pid_context(context, axs->target_pid[i],
+						  axs->target_auid[i],
+						  axs->target_uid[i],
+						  axs->target_sessionid[i],
+						  axs->target_sid[i],
+						  axs->target_comm[i]))
+				call_panic = 1;
+	}
+
+	if (context->target_pid &&
+	    audit_log_pid_context(context, context->target_pid,
+				  context->target_auid, context->target_uid,
+				  context->target_sessionid,
+				  context->target_sid, context->target_comm))
+			call_panic = 1;
+
+	if (context->pwd.dentry && context->pwd.mnt) {
+		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
+		if (ab) {
+			audit_log_d_path(ab, "cwd=", &context->pwd);
+			audit_log_end(ab);
+		}
+	}
+
+	i = 0;
+	list_for_each_entry(n, &context->names_list, list) {
+		if (n->hidden)
+			continue;
+		audit_log_name(context, n, NULL, i++, &call_panic);
+	}
+
+	audit_log_proctitle(tsk, context);
+
+	/* Send end of event record to help user space know we are finished */
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
+	if (ab)
+		audit_log_end(ab);
+	if (call_panic)
+		audit_panic("error converting sid to string");
+}
+
+/**
+ * __audit_free - free a per-task audit context
+ * @tsk: task whose audit context block to free
+ *
+ * Called from copy_process and do_exit
+ */
+void __audit_free(struct task_struct *tsk)
+{
+	struct audit_context *context;
+
+	context = audit_take_context(tsk, 0, 0);
+	if (!context)
+		return;
+
+	/* Check for system calls that do not go through the exit
+	 * function (e.g., exit_group), then free context block.
+	 * We use GFP_ATOMIC here because we might be doing this
+	 * in the context of the idle thread */
+	/* that can happen only if we are called from do_exit() */
+	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
+		audit_log_exit(context, tsk);
+	if (!list_empty(&context->killed_trees))
+		audit_kill_trees(&context->killed_trees);
+
+	audit_free_context(context);
+}
+
+/**
+ * __audit_syscall_entry - fill in an audit record at syscall entry
+ * @major: major syscall type (function)
+ * @a1: additional syscall register 1
+ * @a2: additional syscall register 2
+ * @a3: additional syscall register 3
+ * @a4: additional syscall register 4
+ *
+ * Fill in audit context at syscall entry.  This only happens if the
+ * audit context was created when the task was created and the state or
+ * filters demand the audit context be built.  If the state from the
+ * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
+ * then the record will be written at syscall exit time (otherwise, it
+ * will only be written if another part of the kernel requests that it
+ * be written).
+ */
+void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
+			   unsigned long a3, unsigned long a4)
+{
+	struct audit_context *context = audit_context();
+	enum audit_state     state;
+
+	if (!audit_enabled || !context)
+		return;
+
+	BUG_ON(context->in_syscall || context->name_count);
+
+	state = context->state;
+	if (state == AUDIT_DISABLED)
+		return;
+
+	context->dummy = !audit_n_rules;
+	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
+		context->prio = 0;
+		if (auditd_test_task(current))
+			return;
+	}
+
+	context->arch	    = syscall_get_arch();
+	context->major      = major;
+	context->argv[0]    = a1;
+	context->argv[1]    = a2;
+	context->argv[2]    = a3;
+	context->argv[3]    = a4;
+	context->serial     = 0;
+	context->in_syscall = 1;
+	context->current_state  = state;
+	context->ppid       = 0;
+	ktime_get_coarse_real_ts64(&context->ctime);
+}
+
+/**
+ * __audit_syscall_exit - deallocate audit context after a system call
+ * @success: success value of the syscall
+ * @return_code: return value of the syscall
+ *
+ * Tear down after system call.  If the audit context has been marked as
+ * auditable (either because of the AUDIT_RECORD_CONTEXT state from
+ * filtering, or because some other part of the kernel wrote an audit
+ * message), then write out the syscall information.  In call cases,
+ * free the names stored from getname().
+ */
+void __audit_syscall_exit(int success, long return_code)
+{
+	struct audit_context *context;
+
+	if (success)
+		success = AUDITSC_SUCCESS;
+	else
+		success = AUDITSC_FAILURE;
+
+	context = audit_take_context(current, success, return_code);
+	if (!context)
+		return;
+
+	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
+		audit_log_exit(context, current);
+
+	context->in_syscall = 0;
+	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
+
+	if (!list_empty(&context->killed_trees))
+		audit_kill_trees(&context->killed_trees);
+
+	audit_free_names(context);
+	unroll_tree_refs(context, NULL, 0);
+	audit_free_aux(context);
+	context->aux = NULL;
+	context->aux_pids = NULL;
+	context->target_pid = 0;
+	context->target_sid = 0;
+	context->sockaddr_len = 0;
+	context->type = 0;
+	context->fds[0] = -1;
+	if (context->state != AUDIT_RECORD_CONTEXT) {
+		kfree(context->filterkey);
+		context->filterkey = NULL;
+	}
+	audit_set_context(current, context);
+}
+
+static inline void handle_one(const struct inode *inode)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_context *context;
+	struct audit_tree_refs *p;
+	struct audit_chunk *chunk;
+	int count;
+	if (likely(!inode->i_fsnotify_marks))
+		return;
+	context = audit_context();
+	p = context->trees;
+	count = context->tree_count;
+	rcu_read_lock();
+	chunk = audit_tree_lookup(inode);
+	rcu_read_unlock();
+	if (!chunk)
+		return;
+	if (likely(put_tree_ref(context, chunk)))
+		return;
+	if (unlikely(!grow_tree_refs(context))) {
+		pr_warn("out of memory, audit has lost a tree reference\n");
+		audit_set_auditable(context);
+		audit_put_chunk(chunk);
+		unroll_tree_refs(context, p, count);
+		return;
+	}
+	put_tree_ref(context, chunk);
+#endif
+}
+
+static void handle_path(const struct dentry *dentry)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_context *context;
+	struct audit_tree_refs *p;
+	const struct dentry *d, *parent;
+	struct audit_chunk *drop;
+	unsigned long seq;
+	int count;
+
+	context = audit_context();
+	p = context->trees;
+	count = context->tree_count;
+retry:
+	drop = NULL;
+	d = dentry;
+	rcu_read_lock();
+	seq = read_seqbegin(&rename_lock);
+	for(;;) {
+		struct inode *inode = d_backing_inode(d);
+		if (inode && unlikely(inode->i_fsnotify_marks)) {
+			struct audit_chunk *chunk;
+			chunk = audit_tree_lookup(inode);
+			if (chunk) {
+				if (unlikely(!put_tree_ref(context, chunk))) {
+					drop = chunk;
+					break;
+				}
+			}
+		}
+		parent = d->d_parent;
+		if (parent == d)
+			break;
+		d = parent;
+	}
+	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
+		rcu_read_unlock();
+		if (!drop) {
+			/* just a race with rename */
+			unroll_tree_refs(context, p, count);
+			goto retry;
+		}
+		audit_put_chunk(drop);
+		if (grow_tree_refs(context)) {
+			/* OK, got more space */
+			unroll_tree_refs(context, p, count);
+			goto retry;
+		}
+		/* too bad */
+		pr_warn("out of memory, audit has lost a tree reference\n");
+		unroll_tree_refs(context, p, count);
+		audit_set_auditable(context);
+		return;
+	}
+	rcu_read_unlock();
+#endif
+}
+
+static struct audit_names *audit_alloc_name(struct audit_context *context,
+						unsigned char type)
+{
+	struct audit_names *aname;
+
+	if (context->name_count < AUDIT_NAMES) {
+		aname = &context->preallocated_names[context->name_count];
+		memset(aname, 0, sizeof(*aname));
+	} else {
+		aname = kzalloc(sizeof(*aname), GFP_NOFS);
+		if (!aname)
+			return NULL;
+		aname->should_free = true;
+	}
+
+	aname->ino = AUDIT_INO_UNSET;
+	aname->type = type;
+	list_add_tail(&aname->list, &context->names_list);
+
+	context->name_count++;
+	return aname;
+}
+
+/**
+ * __audit_reusename - fill out filename with info from existing entry
+ * @uptr: userland ptr to pathname
+ *
+ * Search the audit_names list for the current audit context. If there is an
+ * existing entry with a matching "uptr" then return the filename
+ * associated with that audit_name. If not, return NULL.
+ */
+struct filename *
+__audit_reusename(const __user char *uptr)
+{
+	struct audit_context *context = audit_context();
+	struct audit_names *n;
+
+	list_for_each_entry(n, &context->names_list, list) {
+		if (!n->name)
+			continue;
+		if (n->name->uptr == uptr) {
+			n->name->refcnt++;
+			return n->name;
+		}
+	}
+	return NULL;
+}
+
+/**
+ * __audit_getname - add a name to the list
+ * @name: name to add
+ *
+ * Add a name to the list of audit names for this context.
+ * Called from fs/namei.c:getname().
+ */
+void __audit_getname(struct filename *name)
+{
+	struct audit_context *context = audit_context();
+	struct audit_names *n;
+
+	if (!context->in_syscall)
+		return;
+
+	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
+	if (!n)
+		return;
+
+	n->name = name;
+	n->name_len = AUDIT_NAME_FULL;
+	name->aname = n;
+	name->refcnt++;
+
+	if (!context->pwd.dentry)
+		get_fs_pwd(current->fs, &context->pwd);
+}
+
+/**
+ * __audit_inode - store the inode and device from a lookup
+ * @name: name being audited
+ * @dentry: dentry being audited
+ * @flags: attributes for this particular entry
+ */
+void __audit_inode(struct filename *name, const struct dentry *dentry,
+		   unsigned int flags)
+{
+	struct audit_context *context = audit_context();
+	struct inode *inode = d_backing_inode(dentry);
+	struct audit_names *n;
+	bool parent = flags & AUDIT_INODE_PARENT;
+
+	if (!context->in_syscall)
+		return;
+
+	if (!name)
+		goto out_alloc;
+
+	/*
+	 * If we have a pointer to an audit_names entry already, then we can
+	 * just use it directly if the type is correct.
+	 */
+	n = name->aname;
+	if (n) {
+		if (parent) {
+			if (n->type == AUDIT_TYPE_PARENT ||
+			    n->type == AUDIT_TYPE_UNKNOWN)
+				goto out;
+		} else {
+			if (n->type != AUDIT_TYPE_PARENT)
+				goto out;
+		}
+	}
+
+	list_for_each_entry_reverse(n, &context->names_list, list) {
+		if (n->ino) {
+			/* valid inode number, use that for the comparison */
+			if (n->ino != inode->i_ino ||
+			    n->dev != inode->i_sb->s_dev)
+				continue;
+		} else if (n->name) {
+			/* inode number has not been set, check the name */
+			if (strcmp(n->name->name, name->name))
+				continue;
+		} else
+			/* no inode and no name (?!) ... this is odd ... */
+			continue;
+
+		/* match the correct record type */
+		if (parent) {
+			if (n->type == AUDIT_TYPE_PARENT ||
+			    n->type == AUDIT_TYPE_UNKNOWN)
+				goto out;
+		} else {
+			if (n->type != AUDIT_TYPE_PARENT)
+				goto out;
+		}
+	}
+
+out_alloc:
+	/* unable to find an entry with both a matching name and type */
+	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
+	if (!n)
+		return;
+	if (name) {
+		n->name = name;
+		name->refcnt++;
+	}
+
+out:
+	if (parent) {
+		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
+		n->type = AUDIT_TYPE_PARENT;
+		if (flags & AUDIT_INODE_HIDDEN)
+			n->hidden = true;
+	} else {
+		n->name_len = AUDIT_NAME_FULL;
+		n->type = AUDIT_TYPE_NORMAL;
+	}
+	handle_path(dentry);
+	audit_copy_inode(n, dentry, inode);
+}
+
+void __audit_file(const struct file *file)
+{
+	__audit_inode(NULL, file->f_path.dentry, 0);
+}
+
+/**
+ * __audit_inode_child - collect inode info for created/removed objects
+ * @parent: inode of dentry parent
+ * @dentry: dentry being audited
+ * @type:   AUDIT_TYPE_* value that we're looking for
+ *
+ * For syscalls that create or remove filesystem objects, audit_inode
+ * can only collect information for the filesystem object's parent.
+ * This call updates the audit context with the child's information.
+ * Syscalls that create a new filesystem object must be hooked after
+ * the object is created.  Syscalls that remove a filesystem object
+ * must be hooked prior, in order to capture the target inode during
+ * unsuccessful attempts.
+ */
+void __audit_inode_child(struct inode *parent,
+			 const struct dentry *dentry,
+			 const unsigned char type)
+{
+	struct audit_context *context = audit_context();
+	struct inode *inode = d_backing_inode(dentry);
+	const char *dname = dentry->d_name.name;
+	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
+	struct audit_entry *e;
+	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
+	int i;
+
+	if (!context->in_syscall)
+		return;
+
+	rcu_read_lock();
+	if (!list_empty(list)) {
+		list_for_each_entry_rcu(e, list, list) {
+			for (i = 0; i < e->rule.field_count; i++) {
+				struct audit_field *f = &e->rule.fields[i];
+
+				if (f->type == AUDIT_FSTYPE) {
+					if (audit_comparator(parent->i_sb->s_magic,
+					    f->op, f->val)) {
+						if (e->rule.action == AUDIT_NEVER) {
+							rcu_read_unlock();
+							return;
+						}
+					}
+				}
+			}
+		}
+	}
+	rcu_read_unlock();
+
+	if (inode)
+		handle_one(inode);
+
+	/* look for a parent entry first */
+	list_for_each_entry(n, &context->names_list, list) {
+		if (!n->name ||
+		    (n->type != AUDIT_TYPE_PARENT &&
+		     n->type != AUDIT_TYPE_UNKNOWN))
+			continue;
+
+		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
+		    !audit_compare_dname_path(dname,
+					      n->name->name, n->name_len)) {
+			if (n->type == AUDIT_TYPE_UNKNOWN)
+				n->type = AUDIT_TYPE_PARENT;
+			found_parent = n;
+			break;
+		}
+	}
+
+	/* is there a matching child entry? */
+	list_for_each_entry(n, &context->names_list, list) {
+		/* can only match entries that have a name */
+		if (!n->name ||
+		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
+			continue;
+
+		if (!strcmp(dname, n->name->name) ||
+		    !audit_compare_dname_path(dname, n->name->name,
+						found_parent ?
+						found_parent->name_len :
+						AUDIT_NAME_FULL)) {
+			if (n->type == AUDIT_TYPE_UNKNOWN)
+				n->type = type;
+			found_child = n;
+			break;
+		}
+	}
+
+	if (!found_parent) {
+		/* create a new, "anonymous" parent record */
+		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
+		if (!n)
+			return;
+		audit_copy_inode(n, NULL, parent);
+	}
+
+	if (!found_child) {
+		found_child = audit_alloc_name(context, type);
+		if (!found_child)
+			return;
+
+		/* Re-use the name belonging to the slot for a matching parent
+		 * directory. All names for this context are relinquished in
+		 * audit_free_names() */
+		if (found_parent) {
+			found_child->name = found_parent->name;
+			found_child->name_len = AUDIT_NAME_FULL;
+			found_child->name->refcnt++;
+		}
+	}
+
+	if (inode)
+		audit_copy_inode(found_child, dentry, inode);
+	else
+		found_child->ino = AUDIT_INO_UNSET;
+}
+EXPORT_SYMBOL_GPL(__audit_inode_child);
+
+/**
+ * auditsc_get_stamp - get local copies of audit_context values
+ * @ctx: audit_context for the task
+ * @t: timespec64 to store time recorded in the audit_context
+ * @serial: serial value that is recorded in the audit_context
+ *
+ * Also sets the context as auditable.
+ */
+int auditsc_get_stamp(struct audit_context *ctx,
+		       struct timespec64 *t, unsigned int *serial)
+{
+	if (!ctx->in_syscall)
+		return 0;
+	if (!ctx->serial)
+		ctx->serial = audit_serial();
+	t->tv_sec  = ctx->ctime.tv_sec;
+	t->tv_nsec = ctx->ctime.tv_nsec;
+	*serial    = ctx->serial;
+	if (!ctx->prio) {
+		ctx->prio = 1;
+		ctx->current_state = AUDIT_RECORD_CONTEXT;
+	}
+	return 1;
+}
+
+/* global counter which is incremented every time something logs in */
+static atomic_t session_id = ATOMIC_INIT(0);
+
+static int audit_set_loginuid_perm(kuid_t loginuid)
+{
+	/* if we are unset, we don't need privs */
+	if (!audit_loginuid_set(current))
+		return 0;
+	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
+	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
+		return -EPERM;
+	/* it is set, you need permission */
+	if (!capable(CAP_AUDIT_CONTROL))
+		return -EPERM;
+	/* reject if this is not an unset and we don't allow that */
+	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
+		return -EPERM;
+	return 0;
+}
+
+static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
+				   unsigned int oldsessionid, unsigned int sessionid,
+				   int rc)
+{
+	struct audit_buffer *ab;
+	uid_t uid, oldloginuid, loginuid;
+	struct tty_struct *tty;
+
+	if (!audit_enabled)
+		return;
+
+	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
+	if (!ab)
+		return;
+
+	uid = from_kuid(&init_user_ns, task_uid(current));
+	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
+	loginuid = from_kuid(&init_user_ns, kloginuid),
+	tty = audit_get_tty(current);
+
+	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
+	audit_log_task_context(ab);
+	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
+			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
+			 oldsessionid, sessionid, !rc);
+	audit_put_tty(tty);
+	audit_log_end(ab);
+}
+
+/**
+ * audit_set_loginuid - set current task's audit_context loginuid
+ * @loginuid: loginuid value
+ *
+ * Returns 0.
+ *
+ * Called (set) from fs/proc/base.c::proc_loginuid_write().
+ */
+int audit_set_loginuid(kuid_t loginuid)
+{
+	struct task_struct *task = current;
+	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
+	kuid_t oldloginuid;
+	int rc;
+
+	oldloginuid = audit_get_loginuid(current);
+	oldsessionid = audit_get_sessionid(current);
+
+	rc = audit_set_loginuid_perm(loginuid);
+	if (rc)
+		goto out;
+
+	/* are we setting or clearing? */
+	if (uid_valid(loginuid)) {
+		sessionid = (unsigned int)atomic_inc_return(&session_id);
+		if (unlikely(sessionid == AUDIT_SID_UNSET))
+			sessionid = (unsigned int)atomic_inc_return(&session_id);
+	}
+
+	task->sessionid = sessionid;
+	task->loginuid = loginuid;
+out:
+	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
+	return rc;
+}
+
+/**
+ * __audit_mq_open - record audit data for a POSIX MQ open
+ * @oflag: open flag
+ * @mode: mode bits
+ * @attr: queue attributes
+ *
+ */
+void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
+{
+	struct audit_context *context = audit_context();
+
+	if (attr)
+		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
+	else
+		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
+
+	context->mq_open.oflag = oflag;
+	context->mq_open.mode = mode;
+
+	context->type = AUDIT_MQ_OPEN;
+}
+
+/**
+ * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
+ * @mqdes: MQ descriptor
+ * @msg_len: Message length
+ * @msg_prio: Message priority
+ * @abs_timeout: Message timeout in absolute time
+ *
+ */
+void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
+			const struct timespec64 *abs_timeout)
+{
+	struct audit_context *context = audit_context();
+	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
+
+	if (abs_timeout)
+		memcpy(p, abs_timeout, sizeof(*p));
+	else
+		memset(p, 0, sizeof(*p));
+
+	context->mq_sendrecv.mqdes = mqdes;
+	context->mq_sendrecv.msg_len = msg_len;
+	context->mq_sendrecv.msg_prio = msg_prio;
+
+	context->type = AUDIT_MQ_SENDRECV;
+}
+
+/**
+ * __audit_mq_notify - record audit data for a POSIX MQ notify
+ * @mqdes: MQ descriptor
+ * @notification: Notification event
+ *
+ */
+
+void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
+{
+	struct audit_context *context = audit_context();
+
+	if (notification)
+		context->mq_notify.sigev_signo = notification->sigev_signo;
+	else
+		context->mq_notify.sigev_signo = 0;
+
+	context->mq_notify.mqdes = mqdes;
+	context->type = AUDIT_MQ_NOTIFY;
+}
+
+/**
+ * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
+ * @mqdes: MQ descriptor
+ * @mqstat: MQ flags
+ *
+ */
+void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
+{
+	struct audit_context *context = audit_context();
+	context->mq_getsetattr.mqdes = mqdes;
+	context->mq_getsetattr.mqstat = *mqstat;
+	context->type = AUDIT_MQ_GETSETATTR;
+}
+
+/**
+ * __audit_ipc_obj - record audit data for ipc object
+ * @ipcp: ipc permissions
+ *
+ */
+void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
+{
+	struct audit_context *context = audit_context();
+	context->ipc.uid = ipcp->uid;
+	context->ipc.gid = ipcp->gid;
+	context->ipc.mode = ipcp->mode;
+	context->ipc.has_perm = 0;
+	security_ipc_getsecid(ipcp, &context->ipc.osid);
+	context->type = AUDIT_IPC;
+}
+
+/**
+ * __audit_ipc_set_perm - record audit data for new ipc permissions
+ * @qbytes: msgq bytes
+ * @uid: msgq user id
+ * @gid: msgq group id
+ * @mode: msgq mode (permissions)
+ *
+ * Called only after audit_ipc_obj().
+ */
+void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
+{
+	struct audit_context *context = audit_context();
+
+	context->ipc.qbytes = qbytes;
+	context->ipc.perm_uid = uid;
+	context->ipc.perm_gid = gid;
+	context->ipc.perm_mode = mode;
+	context->ipc.has_perm = 1;
+}
+
+void __audit_bprm(struct linux_binprm *bprm)
+{
+	struct audit_context *context = audit_context();
+
+	context->type = AUDIT_EXECVE;
+	context->execve.argc = bprm->argc;
+}
+
+
+/**
+ * __audit_socketcall - record audit data for sys_socketcall
+ * @nargs: number of args, which should not be more than AUDITSC_ARGS.
+ * @args: args array
+ *
+ */
+int __audit_socketcall(int nargs, unsigned long *args)
+{
+	struct audit_context *context = audit_context();
+
+	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
+		return -EINVAL;
+	context->type = AUDIT_SOCKETCALL;
+	context->socketcall.nargs = nargs;
+	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
+	return 0;
+}
+
+/**
+ * __audit_fd_pair - record audit data for pipe and socketpair
+ * @fd1: the first file descriptor
+ * @fd2: the second file descriptor
+ *
+ */
+void __audit_fd_pair(int fd1, int fd2)
+{
+	struct audit_context *context = audit_context();
+	context->fds[0] = fd1;
+	context->fds[1] = fd2;
+}
+
+/**
+ * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
+ * @len: data length in user space
+ * @a: data address in kernel space
+ *
+ * Returns 0 for success or NULL context or < 0 on error.
+ */
+int __audit_sockaddr(int len, void *a)
+{
+	struct audit_context *context = audit_context();
+
+	if (!context->sockaddr) {
+		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
+		if (!p)
+			return -ENOMEM;
+		context->sockaddr = p;
+	}
+
+	context->sockaddr_len = len;
+	memcpy(context->sockaddr, a, len);
+	return 0;
+}
+
+void __audit_ptrace(struct task_struct *t)
+{
+	struct audit_context *context = audit_context();
+
+	context->target_pid = task_tgid_nr(t);
+	context->target_auid = audit_get_loginuid(t);
+	context->target_uid = task_uid(t);
+	context->target_sessionid = audit_get_sessionid(t);
+	security_task_getsecid(t, &context->target_sid);
+	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
+}
+
+/**
+ * audit_signal_info - record signal info for shutting down audit subsystem
+ * @sig: signal value
+ * @t: task being signaled
+ *
+ * If the audit subsystem is being terminated, record the task (pid)
+ * and uid that is doing that.
+ */
+int audit_signal_info(int sig, struct task_struct *t)
+{
+	struct audit_aux_data_pids *axp;
+	struct audit_context *ctx = audit_context();
+	kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
+
+	if (auditd_test_task(t) &&
+	    (sig == SIGTERM || sig == SIGHUP ||
+	     sig == SIGUSR1 || sig == SIGUSR2)) {
+		audit_sig_pid = task_tgid_nr(current);
+		auid = audit_get_loginuid(current);
+		if (uid_valid(auid))
+			audit_sig_uid = auid;
+		else
+			audit_sig_uid = uid;
+		security_task_getsecid(current, &audit_sig_sid);
+	}
+
+	if (!audit_signals || audit_dummy_context())
+		return 0;
+
+	/* optimize the common case by putting first signal recipient directly
+	 * in audit_context */
+	if (!ctx->target_pid) {
+		ctx->target_pid = task_tgid_nr(t);
+		ctx->target_auid = audit_get_loginuid(t);
+		ctx->target_uid = t_uid;
+		ctx->target_sessionid = audit_get_sessionid(t);
+		security_task_getsecid(t, &ctx->target_sid);
+		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
+		return 0;
+	}
+
+	axp = (void *)ctx->aux_pids;
+	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
+		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
+		if (!axp)
+			return -ENOMEM;
+
+		axp->d.type = AUDIT_OBJ_PID;
+		axp->d.next = ctx->aux_pids;
+		ctx->aux_pids = (void *)axp;
+	}
+	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
+
+	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
+	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
+	axp->target_uid[axp->pid_count] = t_uid;
+	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
+	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
+	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
+	axp->pid_count++;
+
+	return 0;
+}
+
+/**
+ * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
+ * @bprm: pointer to the bprm being processed
+ * @new: the proposed new credentials
+ * @old: the old credentials
+ *
+ * Simply check if the proc already has the caps given by the file and if not
+ * store the priv escalation info for later auditing at the end of the syscall
+ *
+ * -Eric
+ */
+int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
+			   const struct cred *new, const struct cred *old)
+{
+	struct audit_aux_data_bprm_fcaps *ax;
+	struct audit_context *context = audit_context();
+	struct cpu_vfs_cap_data vcaps;
+
+	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
+	if (!ax)
+		return -ENOMEM;
+
+	ax->d.type = AUDIT_BPRM_FCAPS;
+	ax->d.next = context->aux;
+	context->aux = (void *)ax;
+
+	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
+
+	ax->fcap.permitted = vcaps.permitted;
+	ax->fcap.inheritable = vcaps.inheritable;
+	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
+	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
+
+	ax->old_pcap.permitted   = old->cap_permitted;
+	ax->old_pcap.inheritable = old->cap_inheritable;
+	ax->old_pcap.effective   = old->cap_effective;
+	ax->old_pcap.ambient     = old->cap_ambient;
+
+	ax->new_pcap.permitted   = new->cap_permitted;
+	ax->new_pcap.inheritable = new->cap_inheritable;
+	ax->new_pcap.effective   = new->cap_effective;
+	ax->new_pcap.ambient     = new->cap_ambient;
+	return 0;
+}
+
+/**
+ * __audit_log_capset - store information about the arguments to the capset syscall
+ * @new: the new credentials
+ * @old: the old (current) credentials
+ *
+ * Record the arguments userspace sent to sys_capset for later printing by the
+ * audit system if applicable
+ */
+void __audit_log_capset(const struct cred *new, const struct cred *old)
+{
+	struct audit_context *context = audit_context();
+	context->capset.pid = task_tgid_nr(current);
+	context->capset.cap.effective   = new->cap_effective;
+	context->capset.cap.inheritable = new->cap_effective;
+	context->capset.cap.permitted   = new->cap_permitted;
+	context->capset.cap.ambient     = new->cap_ambient;
+	context->type = AUDIT_CAPSET;
+}
+
+void __audit_mmap_fd(int fd, int flags)
+{
+	struct audit_context *context = audit_context();
+	context->mmap.fd = fd;
+	context->mmap.flags = flags;
+	context->type = AUDIT_MMAP;
+}
+
+void __audit_log_kern_module(char *name)
+{
+	struct audit_context *context = audit_context();
+
+	context->module.name = kstrdup(name, GFP_KERNEL);
+	if (!context->module.name)
+		audit_log_lost("out of memory in __audit_log_kern_module");
+	context->type = AUDIT_KERN_MODULE;
+}
+
+void __audit_fanotify(unsigned int response)
+{
+	audit_log(audit_context(), GFP_KERNEL,
+		AUDIT_FANOTIFY,	"resp=%u", response);
+}
+
+static void audit_log_task(struct audit_buffer *ab)
+{
+	kuid_t auid, uid;
+	kgid_t gid;
+	unsigned int sessionid;
+	char comm[sizeof(current->comm)];
+
+	auid = audit_get_loginuid(current);
+	sessionid = audit_get_sessionid(current);
+	current_uid_gid(&uid, &gid);
+
+	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
+			 from_kuid(&init_user_ns, auid),
+			 from_kuid(&init_user_ns, uid),
+			 from_kgid(&init_user_ns, gid),
+			 sessionid);
+	audit_log_task_context(ab);
+	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
+	audit_log_untrustedstring(ab, get_task_comm(comm, current));
+	audit_log_d_path_exe(ab, current->mm);
+}
+
+/**
+ * audit_core_dumps - record information about processes that end abnormally
+ * @signr: signal value
+ *
+ * If a process ends with a core dump, something fishy is going on and we
+ * should record the event for investigation.
+ */
+void audit_core_dumps(long signr)
+{
+	struct audit_buffer *ab;
+
+	if (!audit_enabled)
+		return;
+
+	if (signr == SIGQUIT)	/* don't care for those */
+		return;
+
+	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
+	if (unlikely(!ab))
+		return;
+	audit_log_task(ab);
+	audit_log_format(ab, " sig=%ld res=1", signr);
+	audit_log_end(ab);
+}
+
+/**
+ * audit_seccomp - record information about a seccomp action
+ * @syscall: syscall number
+ * @signr: signal value
+ * @code: the seccomp action
+ *
+ * Record the information associated with a seccomp action. Event filtering for
+ * seccomp actions that are not to be logged is done in seccomp_log().
+ * Therefore, this function forces auditing independent of the audit_enabled
+ * and dummy context state because seccomp actions should be logged even when
+ * audit is not in use.
+ */
+void audit_seccomp(unsigned long syscall, long signr, int code)
+{
+	struct audit_buffer *ab;
+
+	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
+	if (unlikely(!ab))
+		return;
+	audit_log_task(ab);
+	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
+			 signr, syscall_get_arch(), syscall,
+			 in_compat_syscall(), KSTK_EIP(current), code);
+	audit_log_end(ab);
+}
+
+void audit_seccomp_actions_logged(const char *names, const char *old_names,
+				  int res)
+{
+	struct audit_buffer *ab;
+
+	if (!audit_enabled)
+		return;
+
+	ab = audit_log_start(audit_context(), GFP_KERNEL,
+			     AUDIT_CONFIG_CHANGE);
+	if (unlikely(!ab))
+		return;
+
+	audit_log_format(ab, "op=seccomp-logging");
+	audit_log_format(ab, " actions=%s", names);
+	audit_log_format(ab, " old-actions=%s", old_names);
+	audit_log_format(ab, " res=%d", res);
+	audit_log_end(ab);
+}
+
+struct list_head *audit_killed_trees(void)
+{
+	struct audit_context *ctx = audit_context();
+	if (likely(!ctx || !ctx->in_syscall))
+		return NULL;
+	return &ctx->killed_trees;
+}