v4.19.13 snapshot.
diff --git a/include/linux/pm.h b/include/linux/pm.h
new file mode 100644
index 0000000..e723b78
--- /dev/null
+++ b/include/linux/pm.h
@@ -0,0 +1,830 @@
+/*
+ *  pm.h - Power management interface
+ *
+ *  Copyright (C) 2000 Andrew Henroid
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#ifndef _LINUX_PM_H
+#define _LINUX_PM_H
+
+#include <linux/list.h>
+#include <linux/workqueue.h>
+#include <linux/spinlock.h>
+#include <linux/wait.h>
+#include <linux/timer.h>
+#include <linux/completion.h>
+
+/*
+ * Callbacks for platform drivers to implement.
+ */
+extern void (*pm_power_off)(void);
+extern void (*pm_power_off_prepare)(void);
+
+struct device; /* we have a circular dep with device.h */
+#ifdef CONFIG_VT_CONSOLE_SLEEP
+extern void pm_vt_switch_required(struct device *dev, bool required);
+extern void pm_vt_switch_unregister(struct device *dev);
+#else
+static inline void pm_vt_switch_required(struct device *dev, bool required)
+{
+}
+static inline void pm_vt_switch_unregister(struct device *dev)
+{
+}
+#endif /* CONFIG_VT_CONSOLE_SLEEP */
+
+/*
+ * Device power management
+ */
+
+struct device;
+
+#ifdef CONFIG_PM
+extern const char power_group_name[];		/* = "power" */
+#else
+#define power_group_name	NULL
+#endif
+
+typedef struct pm_message {
+	int event;
+} pm_message_t;
+
+/**
+ * struct dev_pm_ops - device PM callbacks.
+ *
+ * @prepare: The principal role of this callback is to prevent new children of
+ *	the device from being registered after it has returned (the driver's
+ *	subsystem and generally the rest of the kernel is supposed to prevent
+ *	new calls to the probe method from being made too once @prepare() has
+ *	succeeded).  If @prepare() detects a situation it cannot handle (e.g.
+ *	registration of a child already in progress), it may return -EAGAIN, so
+ *	that the PM core can execute it once again (e.g. after a new child has
+ *	been registered) to recover from the race condition.
+ *	This method is executed for all kinds of suspend transitions and is
+ *	followed by one of the suspend callbacks: @suspend(), @freeze(), or
+ *	@poweroff().  If the transition is a suspend to memory or standby (that
+ *	is, not related to hibernation), the return value of @prepare() may be
+ *	used to indicate to the PM core to leave the device in runtime suspend
+ *	if applicable.  Namely, if @prepare() returns a positive number, the PM
+ *	core will understand that as a declaration that the device appears to be
+ *	runtime-suspended and it may be left in that state during the entire
+ *	transition and during the subsequent resume if all of its descendants
+ *	are left in runtime suspend too.  If that happens, @complete() will be
+ *	executed directly after @prepare() and it must ensure the proper
+ *	functioning of the device after the system resume.
+ *	The PM core executes subsystem-level @prepare() for all devices before
+ *	starting to invoke suspend callbacks for any of them, so generally
+ *	devices may be assumed to be functional or to respond to runtime resume
+ *	requests while @prepare() is being executed.  However, device drivers
+ *	may NOT assume anything about the availability of user space at that
+ *	time and it is NOT valid to request firmware from within @prepare()
+ *	(it's too late to do that).  It also is NOT valid to allocate
+ *	substantial amounts of memory from @prepare() in the GFP_KERNEL mode.
+ *	[To work around these limitations, drivers may register suspend and
+ *	hibernation notifiers to be executed before the freezing of tasks.]
+ *
+ * @complete: Undo the changes made by @prepare().  This method is executed for
+ *	all kinds of resume transitions, following one of the resume callbacks:
+ *	@resume(), @thaw(), @restore().  Also called if the state transition
+ *	fails before the driver's suspend callback: @suspend(), @freeze() or
+ *	@poweroff(), can be executed (e.g. if the suspend callback fails for one
+ *	of the other devices that the PM core has unsuccessfully attempted to
+ *	suspend earlier).
+ *	The PM core executes subsystem-level @complete() after it has executed
+ *	the appropriate resume callbacks for all devices.  If the corresponding
+ *	@prepare() at the beginning of the suspend transition returned a
+ *	positive number and the device was left in runtime suspend (without
+ *	executing any suspend and resume callbacks for it), @complete() will be
+ *	the only callback executed for the device during resume.  In that case,
+ *	@complete() must be prepared to do whatever is necessary to ensure the
+ *	proper functioning of the device after the system resume.  To this end,
+ *	@complete() can check the power.direct_complete flag of the device to
+ *	learn whether (unset) or not (set) the previous suspend and resume
+ *	callbacks have been executed for it.
+ *
+ * @suspend: Executed before putting the system into a sleep state in which the
+ *	contents of main memory are preserved.  The exact action to perform
+ *	depends on the device's subsystem (PM domain, device type, class or bus
+ *	type), but generally the device must be quiescent after subsystem-level
+ *	@suspend() has returned, so that it doesn't do any I/O or DMA.
+ *	Subsystem-level @suspend() is executed for all devices after invoking
+ *	subsystem-level @prepare() for all of them.
+ *
+ * @suspend_late: Continue operations started by @suspend().  For a number of
+ *	devices @suspend_late() may point to the same callback routine as the
+ *	runtime suspend callback.
+ *
+ * @resume: Executed after waking the system up from a sleep state in which the
+ *	contents of main memory were preserved.  The exact action to perform
+ *	depends on the device's subsystem, but generally the driver is expected
+ *	to start working again, responding to hardware events and software
+ *	requests (the device itself may be left in a low-power state, waiting
+ *	for a runtime resume to occur).  The state of the device at the time its
+ *	driver's @resume() callback is run depends on the platform and subsystem
+ *	the device belongs to.  On most platforms, there are no restrictions on
+ *	availability of resources like clocks during @resume().
+ *	Subsystem-level @resume() is executed for all devices after invoking
+ *	subsystem-level @resume_noirq() for all of them.
+ *
+ * @resume_early: Prepare to execute @resume().  For a number of devices
+ *	@resume_early() may point to the same callback routine as the runtime
+ *	resume callback.
+ *
+ * @freeze: Hibernation-specific, executed before creating a hibernation image.
+ *	Analogous to @suspend(), but it should not enable the device to signal
+ *	wakeup events or change its power state.  The majority of subsystems
+ *	(with the notable exception of the PCI bus type) expect the driver-level
+ *	@freeze() to save the device settings in memory to be used by @restore()
+ *	during the subsequent resume from hibernation.
+ *	Subsystem-level @freeze() is executed for all devices after invoking
+ *	subsystem-level @prepare() for all of them.
+ *
+ * @freeze_late: Continue operations started by @freeze().  Analogous to
+ *	@suspend_late(), but it should not enable the device to signal wakeup
+ *	events or change its power state.
+ *
+ * @thaw: Hibernation-specific, executed after creating a hibernation image OR
+ *	if the creation of an image has failed.  Also executed after a failing
+ *	attempt to restore the contents of main memory from such an image.
+ *	Undo the changes made by the preceding @freeze(), so the device can be
+ *	operated in the same way as immediately before the call to @freeze().
+ *	Subsystem-level @thaw() is executed for all devices after invoking
+ *	subsystem-level @thaw_noirq() for all of them.  It also may be executed
+ *	directly after @freeze() in case of a transition error.
+ *
+ * @thaw_early: Prepare to execute @thaw().  Undo the changes made by the
+ *	preceding @freeze_late().
+ *
+ * @poweroff: Hibernation-specific, executed after saving a hibernation image.
+ *	Analogous to @suspend(), but it need not save the device's settings in
+ *	memory.
+ *	Subsystem-level @poweroff() is executed for all devices after invoking
+ *	subsystem-level @prepare() for all of them.
+ *
+ * @poweroff_late: Continue operations started by @poweroff().  Analogous to
+ *	@suspend_late(), but it need not save the device's settings in memory.
+ *
+ * @restore: Hibernation-specific, executed after restoring the contents of main
+ *	memory from a hibernation image, analogous to @resume().
+ *
+ * @restore_early: Prepare to execute @restore(), analogous to @resume_early().
+ *
+ * @suspend_noirq: Complete the actions started by @suspend().  Carry out any
+ *	additional operations required for suspending the device that might be
+ *	racing with its driver's interrupt handler, which is guaranteed not to
+ *	run while @suspend_noirq() is being executed.
+ *	It generally is expected that the device will be in a low-power state
+ *	(appropriate for the target system sleep state) after subsystem-level
+ *	@suspend_noirq() has returned successfully.  If the device can generate
+ *	system wakeup signals and is enabled to wake up the system, it should be
+ *	configured to do so at that time.  However, depending on the platform
+ *	and device's subsystem, @suspend() or @suspend_late() may be allowed to
+ *	put the device into the low-power state and configure it to generate
+ *	wakeup signals, in which case it generally is not necessary to define
+ *	@suspend_noirq().
+ *
+ * @resume_noirq: Prepare for the execution of @resume() by carrying out any
+ *	operations required for resuming the device that might be racing with
+ *	its driver's interrupt handler, which is guaranteed not to run while
+ *	@resume_noirq() is being executed.
+ *
+ * @freeze_noirq: Complete the actions started by @freeze().  Carry out any
+ *	additional operations required for freezing the device that might be
+ *	racing with its driver's interrupt handler, which is guaranteed not to
+ *	run while @freeze_noirq() is being executed.
+ *	The power state of the device should not be changed by either @freeze(),
+ *	or @freeze_late(), or @freeze_noirq() and it should not be configured to
+ *	signal system wakeup by any of these callbacks.
+ *
+ * @thaw_noirq: Prepare for the execution of @thaw() by carrying out any
+ *	operations required for thawing the device that might be racing with its
+ *	driver's interrupt handler, which is guaranteed not to run while
+ *	@thaw_noirq() is being executed.
+ *
+ * @poweroff_noirq: Complete the actions started by @poweroff().  Analogous to
+ *	@suspend_noirq(), but it need not save the device's settings in memory.
+ *
+ * @restore_noirq: Prepare for the execution of @restore() by carrying out any
+ *	operations required for thawing the device that might be racing with its
+ *	driver's interrupt handler, which is guaranteed not to run while
+ *	@restore_noirq() is being executed.  Analogous to @resume_noirq().
+ *
+ * @runtime_suspend: Prepare the device for a condition in which it won't be
+ *	able to communicate with the CPU(s) and RAM due to power management.
+ *	This need not mean that the device should be put into a low-power state.
+ *	For example, if the device is behind a link which is about to be turned
+ *	off, the device may remain at full power.  If the device does go to low
+ *	power and is capable of generating runtime wakeup events, remote wakeup
+ *	(i.e., a hardware mechanism allowing the device to request a change of
+ *	its power state via an interrupt) should be enabled for it.
+ *
+ * @runtime_resume: Put the device into the fully active state in response to a
+ *	wakeup event generated by hardware or at the request of software.  If
+ *	necessary, put the device into the full-power state and restore its
+ *	registers, so that it is fully operational.
+ *
+ * @runtime_idle: Device appears to be inactive and it might be put into a
+ *	low-power state if all of the necessary conditions are satisfied.
+ *	Check these conditions, and return 0 if it's appropriate to let the PM
+ *	core queue a suspend request for the device.
+ *
+ * Several device power state transitions are externally visible, affecting
+ * the state of pending I/O queues and (for drivers that touch hardware)
+ * interrupts, wakeups, DMA, and other hardware state.  There may also be
+ * internal transitions to various low-power modes which are transparent
+ * to the rest of the driver stack (such as a driver that's ON gating off
+ * clocks which are not in active use).
+ *
+ * The externally visible transitions are handled with the help of callbacks
+ * included in this structure in such a way that, typically, two levels of
+ * callbacks are involved.  First, the PM core executes callbacks provided by PM
+ * domains, device types, classes and bus types.  They are the subsystem-level
+ * callbacks expected to execute callbacks provided by device drivers, although
+ * they may choose not to do that.  If the driver callbacks are executed, they
+ * have to collaborate with the subsystem-level callbacks to achieve the goals
+ * appropriate for the given system transition, given transition phase and the
+ * subsystem the device belongs to.
+ *
+ * All of the above callbacks, except for @complete(), return error codes.
+ * However, the error codes returned by @resume(), @thaw(), @restore(),
+ * @resume_noirq(), @thaw_noirq(), and @restore_noirq(), do not cause the PM
+ * core to abort the resume transition during which they are returned.  The
+ * error codes returned in those cases are only printed to the system logs for
+ * debugging purposes.  Still, it is recommended that drivers only return error
+ * codes from their resume methods in case of an unrecoverable failure (i.e.
+ * when the device being handled refuses to resume and becomes unusable) to
+ * allow the PM core to be modified in the future, so that it can avoid
+ * attempting to handle devices that failed to resume and their children.
+ *
+ * It is allowed to unregister devices while the above callbacks are being
+ * executed.  However, a callback routine MUST NOT try to unregister the device
+ * it was called for, although it may unregister children of that device (for
+ * example, if it detects that a child was unplugged while the system was
+ * asleep).
+ *
+ * There also are callbacks related to runtime power management of devices.
+ * Again, as a rule these callbacks are executed by the PM core for subsystems
+ * (PM domains, device types, classes and bus types) and the subsystem-level
+ * callbacks are expected to invoke the driver callbacks.  Moreover, the exact
+ * actions to be performed by a device driver's callbacks generally depend on
+ * the platform and subsystem the device belongs to.
+ *
+ * Refer to Documentation/power/runtime_pm.txt for more information about the
+ * role of the @runtime_suspend(), @runtime_resume() and @runtime_idle()
+ * callbacks in device runtime power management.
+ */
+struct dev_pm_ops {
+	int (*prepare)(struct device *dev);
+	void (*complete)(struct device *dev);
+	int (*suspend)(struct device *dev);
+	int (*resume)(struct device *dev);
+	int (*freeze)(struct device *dev);
+	int (*thaw)(struct device *dev);
+	int (*poweroff)(struct device *dev);
+	int (*restore)(struct device *dev);
+	int (*suspend_late)(struct device *dev);
+	int (*resume_early)(struct device *dev);
+	int (*freeze_late)(struct device *dev);
+	int (*thaw_early)(struct device *dev);
+	int (*poweroff_late)(struct device *dev);
+	int (*restore_early)(struct device *dev);
+	int (*suspend_noirq)(struct device *dev);
+	int (*resume_noirq)(struct device *dev);
+	int (*freeze_noirq)(struct device *dev);
+	int (*thaw_noirq)(struct device *dev);
+	int (*poweroff_noirq)(struct device *dev);
+	int (*restore_noirq)(struct device *dev);
+	int (*runtime_suspend)(struct device *dev);
+	int (*runtime_resume)(struct device *dev);
+	int (*runtime_idle)(struct device *dev);
+};
+
+#ifdef CONFIG_PM_SLEEP
+#define SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \
+	.suspend = suspend_fn, \
+	.resume = resume_fn, \
+	.freeze = suspend_fn, \
+	.thaw = resume_fn, \
+	.poweroff = suspend_fn, \
+	.restore = resume_fn,
+#else
+#define SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn)
+#endif
+
+#ifdef CONFIG_PM_SLEEP
+#define SET_LATE_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \
+	.suspend_late = suspend_fn, \
+	.resume_early = resume_fn, \
+	.freeze_late = suspend_fn, \
+	.thaw_early = resume_fn, \
+	.poweroff_late = suspend_fn, \
+	.restore_early = resume_fn,
+#else
+#define SET_LATE_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn)
+#endif
+
+#ifdef CONFIG_PM_SLEEP
+#define SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \
+	.suspend_noirq = suspend_fn, \
+	.resume_noirq = resume_fn, \
+	.freeze_noirq = suspend_fn, \
+	.thaw_noirq = resume_fn, \
+	.poweroff_noirq = suspend_fn, \
+	.restore_noirq = resume_fn,
+#else
+#define SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn)
+#endif
+
+#ifdef CONFIG_PM
+#define SET_RUNTIME_PM_OPS(suspend_fn, resume_fn, idle_fn) \
+	.runtime_suspend = suspend_fn, \
+	.runtime_resume = resume_fn, \
+	.runtime_idle = idle_fn,
+#else
+#define SET_RUNTIME_PM_OPS(suspend_fn, resume_fn, idle_fn)
+#endif
+
+/*
+ * Use this if you want to use the same suspend and resume callbacks for suspend
+ * to RAM and hibernation.
+ */
+#define SIMPLE_DEV_PM_OPS(name, suspend_fn, resume_fn) \
+const struct dev_pm_ops name = { \
+	SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \
+}
+
+/*
+ * Use this for defining a set of PM operations to be used in all situations
+ * (system suspend, hibernation or runtime PM).
+ * NOTE: In general, system suspend callbacks, .suspend() and .resume(), should
+ * be different from the corresponding runtime PM callbacks, .runtime_suspend(),
+ * and .runtime_resume(), because .runtime_suspend() always works on an already
+ * quiescent device, while .suspend() should assume that the device may be doing
+ * something when it is called (it should ensure that the device will be
+ * quiescent after it has returned).  Therefore it's better to point the "late"
+ * suspend and "early" resume callback pointers, .suspend_late() and
+ * .resume_early(), to the same routines as .runtime_suspend() and
+ * .runtime_resume(), respectively (and analogously for hibernation).
+ */
+#define UNIVERSAL_DEV_PM_OPS(name, suspend_fn, resume_fn, idle_fn) \
+const struct dev_pm_ops name = { \
+	SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \
+	SET_RUNTIME_PM_OPS(suspend_fn, resume_fn, idle_fn) \
+}
+
+/*
+ * PM_EVENT_ messages
+ *
+ * The following PM_EVENT_ messages are defined for the internal use of the PM
+ * core, in order to provide a mechanism allowing the high level suspend and
+ * hibernation code to convey the necessary information to the device PM core
+ * code:
+ *
+ * ON		No transition.
+ *
+ * FREEZE	System is going to hibernate, call ->prepare() and ->freeze()
+ *		for all devices.
+ *
+ * SUSPEND	System is going to suspend, call ->prepare() and ->suspend()
+ *		for all devices.
+ *
+ * HIBERNATE	Hibernation image has been saved, call ->prepare() and
+ *		->poweroff() for all devices.
+ *
+ * QUIESCE	Contents of main memory are going to be restored from a (loaded)
+ *		hibernation image, call ->prepare() and ->freeze() for all
+ *		devices.
+ *
+ * RESUME	System is resuming, call ->resume() and ->complete() for all
+ *		devices.
+ *
+ * THAW		Hibernation image has been created, call ->thaw() and
+ *		->complete() for all devices.
+ *
+ * RESTORE	Contents of main memory have been restored from a hibernation
+ *		image, call ->restore() and ->complete() for all devices.
+ *
+ * RECOVER	Creation of a hibernation image or restoration of the main
+ *		memory contents from a hibernation image has failed, call
+ *		->thaw() and ->complete() for all devices.
+ *
+ * The following PM_EVENT_ messages are defined for internal use by
+ * kernel subsystems.  They are never issued by the PM core.
+ *
+ * USER_SUSPEND		Manual selective suspend was issued by userspace.
+ *
+ * USER_RESUME		Manual selective resume was issued by userspace.
+ *
+ * REMOTE_WAKEUP	Remote-wakeup request was received from the device.
+ *
+ * AUTO_SUSPEND		Automatic (device idle) runtime suspend was
+ *			initiated by the subsystem.
+ *
+ * AUTO_RESUME		Automatic (device needed) runtime resume was
+ *			requested by a driver.
+ */
+
+#define PM_EVENT_INVALID	(-1)
+#define PM_EVENT_ON		0x0000
+#define PM_EVENT_FREEZE		0x0001
+#define PM_EVENT_SUSPEND	0x0002
+#define PM_EVENT_HIBERNATE	0x0004
+#define PM_EVENT_QUIESCE	0x0008
+#define PM_EVENT_RESUME		0x0010
+#define PM_EVENT_THAW		0x0020
+#define PM_EVENT_RESTORE	0x0040
+#define PM_EVENT_RECOVER	0x0080
+#define PM_EVENT_USER		0x0100
+#define PM_EVENT_REMOTE		0x0200
+#define PM_EVENT_AUTO		0x0400
+
+#define PM_EVENT_SLEEP		(PM_EVENT_SUSPEND | PM_EVENT_HIBERNATE)
+#define PM_EVENT_USER_SUSPEND	(PM_EVENT_USER | PM_EVENT_SUSPEND)
+#define PM_EVENT_USER_RESUME	(PM_EVENT_USER | PM_EVENT_RESUME)
+#define PM_EVENT_REMOTE_RESUME	(PM_EVENT_REMOTE | PM_EVENT_RESUME)
+#define PM_EVENT_AUTO_SUSPEND	(PM_EVENT_AUTO | PM_EVENT_SUSPEND)
+#define PM_EVENT_AUTO_RESUME	(PM_EVENT_AUTO | PM_EVENT_RESUME)
+
+#define PMSG_INVALID	((struct pm_message){ .event = PM_EVENT_INVALID, })
+#define PMSG_ON		((struct pm_message){ .event = PM_EVENT_ON, })
+#define PMSG_FREEZE	((struct pm_message){ .event = PM_EVENT_FREEZE, })
+#define PMSG_QUIESCE	((struct pm_message){ .event = PM_EVENT_QUIESCE, })
+#define PMSG_SUSPEND	((struct pm_message){ .event = PM_EVENT_SUSPEND, })
+#define PMSG_HIBERNATE	((struct pm_message){ .event = PM_EVENT_HIBERNATE, })
+#define PMSG_RESUME	((struct pm_message){ .event = PM_EVENT_RESUME, })
+#define PMSG_THAW	((struct pm_message){ .event = PM_EVENT_THAW, })
+#define PMSG_RESTORE	((struct pm_message){ .event = PM_EVENT_RESTORE, })
+#define PMSG_RECOVER	((struct pm_message){ .event = PM_EVENT_RECOVER, })
+#define PMSG_USER_SUSPEND	((struct pm_message) \
+					{ .event = PM_EVENT_USER_SUSPEND, })
+#define PMSG_USER_RESUME	((struct pm_message) \
+					{ .event = PM_EVENT_USER_RESUME, })
+#define PMSG_REMOTE_RESUME	((struct pm_message) \
+					{ .event = PM_EVENT_REMOTE_RESUME, })
+#define PMSG_AUTO_SUSPEND	((struct pm_message) \
+					{ .event = PM_EVENT_AUTO_SUSPEND, })
+#define PMSG_AUTO_RESUME	((struct pm_message) \
+					{ .event = PM_EVENT_AUTO_RESUME, })
+
+#define PMSG_IS_AUTO(msg)	(((msg).event & PM_EVENT_AUTO) != 0)
+
+/*
+ * Device run-time power management status.
+ *
+ * These status labels are used internally by the PM core to indicate the
+ * current status of a device with respect to the PM core operations.  They do
+ * not reflect the actual power state of the device or its status as seen by the
+ * driver.
+ *
+ * RPM_ACTIVE		Device is fully operational.  Indicates that the device
+ *			bus type's ->runtime_resume() callback has completed
+ *			successfully.
+ *
+ * RPM_SUSPENDED	Device bus type's ->runtime_suspend() callback has
+ *			completed successfully.  The device is regarded as
+ *			suspended.
+ *
+ * RPM_RESUMING		Device bus type's ->runtime_resume() callback is being
+ *			executed.
+ *
+ * RPM_SUSPENDING	Device bus type's ->runtime_suspend() callback is being
+ *			executed.
+ */
+
+enum rpm_status {
+	RPM_ACTIVE = 0,
+	RPM_RESUMING,
+	RPM_SUSPENDED,
+	RPM_SUSPENDING,
+};
+
+/*
+ * Device run-time power management request types.
+ *
+ * RPM_REQ_NONE		Do nothing.
+ *
+ * RPM_REQ_IDLE		Run the device bus type's ->runtime_idle() callback
+ *
+ * RPM_REQ_SUSPEND	Run the device bus type's ->runtime_suspend() callback
+ *
+ * RPM_REQ_AUTOSUSPEND	Same as RPM_REQ_SUSPEND, but not until the device has
+ *			been inactive for as long as power.autosuspend_delay
+ *
+ * RPM_REQ_RESUME	Run the device bus type's ->runtime_resume() callback
+ */
+
+enum rpm_request {
+	RPM_REQ_NONE = 0,
+	RPM_REQ_IDLE,
+	RPM_REQ_SUSPEND,
+	RPM_REQ_AUTOSUSPEND,
+	RPM_REQ_RESUME,
+};
+
+struct wakeup_source;
+struct wake_irq;
+struct pm_domain_data;
+
+struct pm_subsys_data {
+	spinlock_t lock;
+	unsigned int refcount;
+#ifdef CONFIG_PM_CLK
+	struct list_head clock_list;
+#endif
+#ifdef CONFIG_PM_GENERIC_DOMAINS
+	struct pm_domain_data *domain_data;
+#endif
+};
+
+/*
+ * Driver flags to control system suspend/resume behavior.
+ *
+ * These flags can be set by device drivers at the probe time.  They need not be
+ * cleared by the drivers as the driver core will take care of that.
+ *
+ * NEVER_SKIP: Do not skip all system suspend/resume callbacks for the device.
+ * SMART_PREPARE: Check the return value of the driver's ->prepare callback.
+ * SMART_SUSPEND: No need to resume the device from runtime suspend.
+ * LEAVE_SUSPENDED: Avoid resuming the device during system resume if possible.
+ *
+ * Setting SMART_PREPARE instructs bus types and PM domains which may want
+ * system suspend/resume callbacks to be skipped for the device to return 0 from
+ * their ->prepare callbacks if the driver's ->prepare callback returns 0 (in
+ * other words, the system suspend/resume callbacks can only be skipped for the
+ * device if its driver doesn't object against that).  This flag has no effect
+ * if NEVER_SKIP is set.
+ *
+ * Setting SMART_SUSPEND instructs bus types and PM domains which may want to
+ * runtime resume the device upfront during system suspend that doing so is not
+ * necessary from the driver's perspective.  It also may cause them to skip
+ * invocations of the ->suspend_late and ->suspend_noirq callbacks provided by
+ * the driver if they decide to leave the device in runtime suspend.
+ *
+ * Setting LEAVE_SUSPENDED informs the PM core and middle-layer code that the
+ * driver prefers the device to be left in suspend after system resume.
+ */
+#define DPM_FLAG_NEVER_SKIP		BIT(0)
+#define DPM_FLAG_SMART_PREPARE		BIT(1)
+#define DPM_FLAG_SMART_SUSPEND		BIT(2)
+#define DPM_FLAG_LEAVE_SUSPENDED	BIT(3)
+
+struct dev_pm_info {
+	pm_message_t		power_state;
+	unsigned int		can_wakeup:1;
+	unsigned int		async_suspend:1;
+	bool			in_dpm_list:1;	/* Owned by the PM core */
+	bool			is_prepared:1;	/* Owned by the PM core */
+	bool			is_suspended:1;	/* Ditto */
+	bool			is_noirq_suspended:1;
+	bool			is_late_suspended:1;
+	bool			early_init:1;	/* Owned by the PM core */
+	bool			direct_complete:1;	/* Owned by the PM core */
+	u32			driver_flags;
+	spinlock_t		lock;
+#ifdef CONFIG_PM_SLEEP
+	struct list_head	entry;
+	struct completion	completion;
+	struct wakeup_source	*wakeup;
+	bool			wakeup_path:1;
+	bool			syscore:1;
+	bool			no_pm_callbacks:1;	/* Owned by the PM core */
+	unsigned int		must_resume:1;	/* Owned by the PM core */
+	unsigned int		may_skip_resume:1;	/* Set by subsystems */
+#else
+	unsigned int		should_wakeup:1;
+#endif
+#ifdef CONFIG_PM
+	struct timer_list	suspend_timer;
+	unsigned long		timer_expires;
+	struct work_struct	work;
+	wait_queue_head_t	wait_queue;
+	struct wake_irq		*wakeirq;
+	atomic_t		usage_count;
+	atomic_t		child_count;
+	unsigned int		disable_depth:3;
+	unsigned int		idle_notification:1;
+	unsigned int		request_pending:1;
+	unsigned int		deferred_resume:1;
+	unsigned int		runtime_auto:1;
+	bool			ignore_children:1;
+	unsigned int		no_callbacks:1;
+	unsigned int		irq_safe:1;
+	unsigned int		use_autosuspend:1;
+	unsigned int		timer_autosuspends:1;
+	unsigned int		memalloc_noio:1;
+	unsigned int		links_count;
+	enum rpm_request	request;
+	enum rpm_status		runtime_status;
+	int			runtime_error;
+	int			autosuspend_delay;
+	unsigned long		last_busy;
+	unsigned long		active_jiffies;
+	unsigned long		suspended_jiffies;
+	unsigned long		accounting_timestamp;
+#endif
+	struct pm_subsys_data	*subsys_data;  /* Owned by the subsystem. */
+	void (*set_latency_tolerance)(struct device *, s32);
+	struct dev_pm_qos	*qos;
+};
+
+extern void update_pm_runtime_accounting(struct device *dev);
+extern int dev_pm_get_subsys_data(struct device *dev);
+extern void dev_pm_put_subsys_data(struct device *dev);
+
+/**
+ * struct dev_pm_domain - power management domain representation.
+ *
+ * @ops: Power management operations associated with this domain.
+ * @detach: Called when removing a device from the domain.
+ * @activate: Called before executing probe routines for bus types and drivers.
+ * @sync: Called after successful driver probe.
+ * @dismiss: Called after unsuccessful driver probe and after driver removal.
+ *
+ * Power domains provide callbacks that are executed during system suspend,
+ * hibernation, system resume and during runtime PM transitions instead of
+ * subsystem-level and driver-level callbacks.
+ */
+struct dev_pm_domain {
+	struct dev_pm_ops	ops;
+	void (*detach)(struct device *dev, bool power_off);
+	int (*activate)(struct device *dev);
+	void (*sync)(struct device *dev);
+	void (*dismiss)(struct device *dev);
+};
+
+/*
+ * The PM_EVENT_ messages are also used by drivers implementing the legacy
+ * suspend framework, based on the ->suspend() and ->resume() callbacks common
+ * for suspend and hibernation transitions, according to the rules below.
+ */
+
+/* Necessary, because several drivers use PM_EVENT_PRETHAW */
+#define PM_EVENT_PRETHAW PM_EVENT_QUIESCE
+
+/*
+ * One transition is triggered by resume(), after a suspend() call; the
+ * message is implicit:
+ *
+ * ON		Driver starts working again, responding to hardware events
+ *		and software requests.  The hardware may have gone through
+ *		a power-off reset, or it may have maintained state from the
+ *		previous suspend() which the driver will rely on while
+ *		resuming.  On most platforms, there are no restrictions on
+ *		availability of resources like clocks during resume().
+ *
+ * Other transitions are triggered by messages sent using suspend().  All
+ * these transitions quiesce the driver, so that I/O queues are inactive.
+ * That commonly entails turning off IRQs and DMA; there may be rules
+ * about how to quiesce that are specific to the bus or the device's type.
+ * (For example, network drivers mark the link state.)  Other details may
+ * differ according to the message:
+ *
+ * SUSPEND	Quiesce, enter a low power device state appropriate for
+ *		the upcoming system state (such as PCI_D3hot), and enable
+ *		wakeup events as appropriate.
+ *
+ * HIBERNATE	Enter a low power device state appropriate for the hibernation
+ *		state (eg. ACPI S4) and enable wakeup events as appropriate.
+ *
+ * FREEZE	Quiesce operations so that a consistent image can be saved;
+ *		but do NOT otherwise enter a low power device state, and do
+ *		NOT emit system wakeup events.
+ *
+ * PRETHAW	Quiesce as if for FREEZE; additionally, prepare for restoring
+ *		the system from a snapshot taken after an earlier FREEZE.
+ *		Some drivers will need to reset their hardware state instead
+ *		of preserving it, to ensure that it's never mistaken for the
+ *		state which that earlier snapshot had set up.
+ *
+ * A minimally power-aware driver treats all messages as SUSPEND, fully
+ * reinitializes its device during resume() -- whether or not it was reset
+ * during the suspend/resume cycle -- and can't issue wakeup events.
+ *
+ * More power-aware drivers may also use low power states at runtime as
+ * well as during system sleep states like PM_SUSPEND_STANDBY.  They may
+ * be able to use wakeup events to exit from runtime low-power states,
+ * or from system low-power states such as standby or suspend-to-RAM.
+ */
+
+#ifdef CONFIG_PM_SLEEP
+extern void device_pm_lock(void);
+extern void dpm_resume_start(pm_message_t state);
+extern void dpm_resume_end(pm_message_t state);
+extern void dpm_noirq_resume_devices(pm_message_t state);
+extern void dpm_noirq_end(void);
+extern void dpm_resume_noirq(pm_message_t state);
+extern void dpm_resume_early(pm_message_t state);
+extern void dpm_resume(pm_message_t state);
+extern void dpm_complete(pm_message_t state);
+
+extern void device_pm_unlock(void);
+extern int dpm_suspend_end(pm_message_t state);
+extern int dpm_suspend_start(pm_message_t state);
+extern void dpm_noirq_begin(void);
+extern int dpm_noirq_suspend_devices(pm_message_t state);
+extern int dpm_suspend_noirq(pm_message_t state);
+extern int dpm_suspend_late(pm_message_t state);
+extern int dpm_suspend(pm_message_t state);
+extern int dpm_prepare(pm_message_t state);
+
+extern void __suspend_report_result(const char *function, void *fn, int ret);
+
+#define suspend_report_result(fn, ret)					\
+	do {								\
+		__suspend_report_result(__func__, fn, ret);		\
+	} while (0)
+
+extern int device_pm_wait_for_dev(struct device *sub, struct device *dev);
+extern void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *));
+
+extern int pm_generic_prepare(struct device *dev);
+extern int pm_generic_suspend_late(struct device *dev);
+extern int pm_generic_suspend_noirq(struct device *dev);
+extern int pm_generic_suspend(struct device *dev);
+extern int pm_generic_resume_early(struct device *dev);
+extern int pm_generic_resume_noirq(struct device *dev);
+extern int pm_generic_resume(struct device *dev);
+extern int pm_generic_freeze_noirq(struct device *dev);
+extern int pm_generic_freeze_late(struct device *dev);
+extern int pm_generic_freeze(struct device *dev);
+extern int pm_generic_thaw_noirq(struct device *dev);
+extern int pm_generic_thaw_early(struct device *dev);
+extern int pm_generic_thaw(struct device *dev);
+extern int pm_generic_restore_noirq(struct device *dev);
+extern int pm_generic_restore_early(struct device *dev);
+extern int pm_generic_restore(struct device *dev);
+extern int pm_generic_poweroff_noirq(struct device *dev);
+extern int pm_generic_poweroff_late(struct device *dev);
+extern int pm_generic_poweroff(struct device *dev);
+extern void pm_generic_complete(struct device *dev);
+
+extern void dev_pm_skip_next_resume_phases(struct device *dev);
+extern bool dev_pm_may_skip_resume(struct device *dev);
+extern bool dev_pm_smart_suspend_and_suspended(struct device *dev);
+
+#else /* !CONFIG_PM_SLEEP */
+
+#define device_pm_lock() do {} while (0)
+#define device_pm_unlock() do {} while (0)
+
+static inline int dpm_suspend_start(pm_message_t state)
+{
+	return 0;
+}
+
+#define suspend_report_result(fn, ret)		do {} while (0)
+
+static inline int device_pm_wait_for_dev(struct device *a, struct device *b)
+{
+	return 0;
+}
+
+static inline void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
+{
+}
+
+#define pm_generic_prepare		NULL
+#define pm_generic_suspend_late		NULL
+#define pm_generic_suspend_noirq	NULL
+#define pm_generic_suspend		NULL
+#define pm_generic_resume_early		NULL
+#define pm_generic_resume_noirq		NULL
+#define pm_generic_resume		NULL
+#define pm_generic_freeze_noirq		NULL
+#define pm_generic_freeze_late		NULL
+#define pm_generic_freeze		NULL
+#define pm_generic_thaw_noirq		NULL
+#define pm_generic_thaw_early		NULL
+#define pm_generic_thaw			NULL
+#define pm_generic_restore_noirq	NULL
+#define pm_generic_restore_early	NULL
+#define pm_generic_restore		NULL
+#define pm_generic_poweroff_noirq	NULL
+#define pm_generic_poweroff_late	NULL
+#define pm_generic_poweroff		NULL
+#define pm_generic_complete		NULL
+#endif /* !CONFIG_PM_SLEEP */
+
+/* How to reorder dpm_list after device_move() */
+enum dpm_order {
+	DPM_ORDER_NONE,
+	DPM_ORDER_DEV_AFTER_PARENT,
+	DPM_ORDER_PARENT_BEFORE_DEV,
+	DPM_ORDER_DEV_LAST,
+};
+
+#endif /* _LINUX_PM_H */