v4.19.13 snapshot.
diff --git a/include/linux/edac.h b/include/linux/edac.h
new file mode 100644
index 0000000..bffb978
--- /dev/null
+++ b/include/linux/edac.h
@@ -0,0 +1,675 @@
+/*
+ * Generic EDAC defs
+ *
+ * Author: Dave Jiang <djiang@mvista.com>
+ *
+ * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
+ * the terms of the GNU General Public License version 2. This program
+ * is licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ *
+ */
+#ifndef _LINUX_EDAC_H_
+#define _LINUX_EDAC_H_
+
+#include <linux/atomic.h>
+#include <linux/device.h>
+#include <linux/completion.h>
+#include <linux/workqueue.h>
+#include <linux/debugfs.h>
+
+#define EDAC_DEVICE_NAME_LEN	31
+
+struct device;
+
+#define EDAC_OPSTATE_INVAL	-1
+#define EDAC_OPSTATE_POLL	0
+#define EDAC_OPSTATE_NMI	1
+#define EDAC_OPSTATE_INT	2
+
+extern int edac_op_state;
+
+struct bus_type *edac_get_sysfs_subsys(void);
+int edac_get_report_status(void);
+void edac_set_report_status(int new);
+
+enum {
+	EDAC_REPORTING_ENABLED,
+	EDAC_REPORTING_DISABLED,
+	EDAC_REPORTING_FORCE
+};
+
+static inline void opstate_init(void)
+{
+	switch (edac_op_state) {
+	case EDAC_OPSTATE_POLL:
+	case EDAC_OPSTATE_NMI:
+		break;
+	default:
+		edac_op_state = EDAC_OPSTATE_POLL;
+	}
+	return;
+}
+
+/* Max length of a DIMM label*/
+#define EDAC_MC_LABEL_LEN	31
+
+/* Maximum size of the location string */
+#define LOCATION_SIZE 256
+
+/* Defines the maximum number of labels that can be reported */
+#define EDAC_MAX_LABELS		8
+
+/* String used to join two or more labels */
+#define OTHER_LABEL " or "
+
+/**
+ * enum dev_type - describe the type of memory DRAM chips used at the stick
+ * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
+ * @DEV_X1:		1 bit for data
+ * @DEV_X2:		2 bits for data
+ * @DEV_X4:		4 bits for data
+ * @DEV_X8:		8 bits for data
+ * @DEV_X16:		16 bits for data
+ * @DEV_X32:		32 bits for data
+ * @DEV_X64:		64 bits for data
+ *
+ * Typical values are x4 and x8.
+ */
+enum dev_type {
+	DEV_UNKNOWN = 0,
+	DEV_X1,
+	DEV_X2,
+	DEV_X4,
+	DEV_X8,
+	DEV_X16,
+	DEV_X32,		/* Do these parts exist? */
+	DEV_X64			/* Do these parts exist? */
+};
+
+#define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
+#define DEV_FLAG_X1		BIT(DEV_X1)
+#define DEV_FLAG_X2		BIT(DEV_X2)
+#define DEV_FLAG_X4		BIT(DEV_X4)
+#define DEV_FLAG_X8		BIT(DEV_X8)
+#define DEV_FLAG_X16		BIT(DEV_X16)
+#define DEV_FLAG_X32		BIT(DEV_X32)
+#define DEV_FLAG_X64		BIT(DEV_X64)
+
+/**
+ * enum hw_event_mc_err_type - type of the detected error
+ *
+ * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
+ *				corrected error was detected
+ * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
+ *				can't be corrected by ECC, but it is not
+ *				fatal (maybe it is on an unused memory area,
+ *				or the memory controller could recover from
+ *				it for example, by re-trying the operation).
+ * @HW_EVENT_ERR_DEFERRED:	Deferred Error - Indicates an uncorrectable
+ *				error whose handling is not urgent. This could
+ *				be due to hardware data poisoning where the
+ *				system can continue operation until the poisoned
+ *				data is consumed. Preemptive measures may also
+ *				be taken, e.g. offlining pages, etc.
+ * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
+ *				be recovered.
+ * @HW_EVENT_ERR_INFO:		Informational - The CPER spec defines a forth
+ *				type of error: informational logs.
+ */
+enum hw_event_mc_err_type {
+	HW_EVENT_ERR_CORRECTED,
+	HW_EVENT_ERR_UNCORRECTED,
+	HW_EVENT_ERR_DEFERRED,
+	HW_EVENT_ERR_FATAL,
+	HW_EVENT_ERR_INFO,
+};
+
+static inline char *mc_event_error_type(const unsigned int err_type)
+{
+	switch (err_type) {
+	case HW_EVENT_ERR_CORRECTED:
+		return "Corrected";
+	case HW_EVENT_ERR_UNCORRECTED:
+		return "Uncorrected";
+	case HW_EVENT_ERR_DEFERRED:
+		return "Deferred";
+	case HW_EVENT_ERR_FATAL:
+		return "Fatal";
+	default:
+	case HW_EVENT_ERR_INFO:
+		return "Info";
+	}
+}
+
+/**
+ * enum mem_type - memory types. For a more detailed reference, please see
+ *			http://en.wikipedia.org/wiki/DRAM
+ *
+ * @MEM_EMPTY:		Empty csrow
+ * @MEM_RESERVED:	Reserved csrow type
+ * @MEM_UNKNOWN:	Unknown csrow type
+ * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
+ * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
+ * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
+ * @MEM_SDR:		SDR - Single data rate SDRAM
+ *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
+ *			They use 3 pins for chip select: Pins 0 and 2 are
+ *			for rank 0; pins 1 and 3 are for rank 1, if the memory
+ *			is dual-rank.
+ * @MEM_RDR:		Registered SDR SDRAM
+ * @MEM_DDR:		Double data rate SDRAM
+ *			http://en.wikipedia.org/wiki/DDR_SDRAM
+ * @MEM_RDDR:		Registered Double data rate SDRAM
+ *			This is a variant of the DDR memories.
+ *			A registered memory has a buffer inside it, hiding
+ *			part of the memory details to the memory controller.
+ * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
+ * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
+ *			Those memories are labeled as "PC2-" instead of "PC" to
+ *			differentiate from DDR.
+ * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
+ *			and JESD206.
+ *			Those memories are accessed per DIMM slot, and not by
+ *			a chip select signal.
+ * @MEM_RDDR2:		Registered DDR2 RAM
+ *			This is a variant of the DDR2 memories.
+ * @MEM_XDR:		Rambus XDR
+ *			It is an evolution of the original RAMBUS memories,
+ *			created to compete with DDR2. Weren't used on any
+ *			x86 arch, but cell_edac PPC memory controller uses it.
+ * @MEM_DDR3:		DDR3 RAM
+ * @MEM_RDDR3:		Registered DDR3 RAM
+ *			This is a variant of the DDR3 memories.
+ * @MEM_LRDDR3:		Load-Reduced DDR3 memory.
+ * @MEM_DDR4:		Unbuffered DDR4 RAM
+ * @MEM_RDDR4:		Registered DDR4 RAM
+ *			This is a variant of the DDR4 memories.
+ * @MEM_LRDDR4:		Load-Reduced DDR4 memory.
+ * @MEM_NVDIMM:		Non-volatile RAM
+ */
+enum mem_type {
+	MEM_EMPTY = 0,
+	MEM_RESERVED,
+	MEM_UNKNOWN,
+	MEM_FPM,
+	MEM_EDO,
+	MEM_BEDO,
+	MEM_SDR,
+	MEM_RDR,
+	MEM_DDR,
+	MEM_RDDR,
+	MEM_RMBS,
+	MEM_DDR2,
+	MEM_FB_DDR2,
+	MEM_RDDR2,
+	MEM_XDR,
+	MEM_DDR3,
+	MEM_RDDR3,
+	MEM_LRDDR3,
+	MEM_DDR4,
+	MEM_RDDR4,
+	MEM_LRDDR4,
+	MEM_NVDIMM,
+};
+
+#define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
+#define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
+#define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
+#define MEM_FLAG_FPM		BIT(MEM_FPM)
+#define MEM_FLAG_EDO		BIT(MEM_EDO)
+#define MEM_FLAG_BEDO		BIT(MEM_BEDO)
+#define MEM_FLAG_SDR		BIT(MEM_SDR)
+#define MEM_FLAG_RDR		BIT(MEM_RDR)
+#define MEM_FLAG_DDR		BIT(MEM_DDR)
+#define MEM_FLAG_RDDR		BIT(MEM_RDDR)
+#define MEM_FLAG_RMBS		BIT(MEM_RMBS)
+#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
+#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
+#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
+#define MEM_FLAG_XDR            BIT(MEM_XDR)
+#define MEM_FLAG_DDR3           BIT(MEM_DDR3)
+#define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
+#define MEM_FLAG_DDR4           BIT(MEM_DDR4)
+#define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
+#define MEM_FLAG_LRDDR4         BIT(MEM_LRDDR4)
+#define MEM_FLAG_NVDIMM         BIT(MEM_NVDIMM)
+
+/**
+ * enum edac-type - Error Detection and Correction capabilities and mode
+ * @EDAC_UNKNOWN:	Unknown if ECC is available
+ * @EDAC_NONE:		Doesn't support ECC
+ * @EDAC_RESERVED:	Reserved ECC type
+ * @EDAC_PARITY:	Detects parity errors
+ * @EDAC_EC:		Error Checking - no correction
+ * @EDAC_SECDED:	Single bit error correction, Double detection
+ * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
+ * @EDAC_S4ECD4ED:	Chipkill x4 devices
+ * @EDAC_S8ECD8ED:	Chipkill x8 devices
+ * @EDAC_S16ECD16ED:	Chipkill x16 devices
+ */
+enum edac_type {
+	EDAC_UNKNOWN =	0,
+	EDAC_NONE,
+	EDAC_RESERVED,
+	EDAC_PARITY,
+	EDAC_EC,
+	EDAC_SECDED,
+	EDAC_S2ECD2ED,
+	EDAC_S4ECD4ED,
+	EDAC_S8ECD8ED,
+	EDAC_S16ECD16ED,
+};
+
+#define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
+#define EDAC_FLAG_NONE		BIT(EDAC_NONE)
+#define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
+#define EDAC_FLAG_EC		BIT(EDAC_EC)
+#define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
+#define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
+#define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
+#define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
+#define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
+
+/**
+ * enum scrub_type - scrubbing capabilities
+ * @SCRUB_UNKNOWN:		Unknown if scrubber is available
+ * @SCRUB_NONE:			No scrubber
+ * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
+ * @SCRUB_SW_SRC:		Software scrub only errors
+ * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
+ * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
+ * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
+ * @SCRUB_HW_SRC:		Hardware scrub only errors
+ * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
+ * @SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
+ */
+enum scrub_type {
+	SCRUB_UNKNOWN =	0,
+	SCRUB_NONE,
+	SCRUB_SW_PROG,
+	SCRUB_SW_SRC,
+	SCRUB_SW_PROG_SRC,
+	SCRUB_SW_TUNABLE,
+	SCRUB_HW_PROG,
+	SCRUB_HW_SRC,
+	SCRUB_HW_PROG_SRC,
+	SCRUB_HW_TUNABLE
+};
+
+#define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
+#define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
+#define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
+#define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
+#define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
+#define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
+#define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
+#define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
+
+/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
+
+/* EDAC internal operation states */
+#define	OP_ALLOC		0x100
+#define OP_RUNNING_POLL		0x201
+#define OP_RUNNING_INTERRUPT	0x202
+#define OP_RUNNING_POLL_INTR	0x203
+#define OP_OFFLINE		0x300
+
+/**
+ * enum edac_mc_layer - memory controller hierarchy layer
+ *
+ * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
+ * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
+ * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
+ * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
+ * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
+ *				as a single memory area. This is used when
+ *				retrieving errors from a firmware driven driver.
+ *
+ * This enum is used by the drivers to tell edac_mc_sysfs what name should
+ * be used when describing a memory stick location.
+ */
+enum edac_mc_layer_type {
+	EDAC_MC_LAYER_BRANCH,
+	EDAC_MC_LAYER_CHANNEL,
+	EDAC_MC_LAYER_SLOT,
+	EDAC_MC_LAYER_CHIP_SELECT,
+	EDAC_MC_LAYER_ALL_MEM,
+};
+
+/**
+ * struct edac_mc_layer - describes the memory controller hierarchy
+ * @type:		layer type
+ * @size:		number of components per layer. For example,
+ *			if the channel layer has two channels, size = 2
+ * @is_virt_csrow:	This layer is part of the "csrow" when old API
+ *			compatibility mode is enabled. Otherwise, it is
+ *			a channel
+ */
+struct edac_mc_layer {
+	enum edac_mc_layer_type	type;
+	unsigned		size;
+	bool			is_virt_csrow;
+};
+
+/*
+ * Maximum number of layers used by the memory controller to uniquely
+ * identify a single memory stick.
+ * NOTE: Changing this constant requires not only to change the constant
+ * below, but also to change the existing code at the core, as there are
+ * some code there that are optimized for 3 layers.
+ */
+#define EDAC_MAX_LAYERS		3
+
+/**
+ * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
+ *		   array for the element given by [layer0,layer1,layer2]
+ *		   position
+ *
+ * @layers:	a struct edac_mc_layer array, describing how many elements
+ *		were allocated for each layer
+ * @nlayers:	Number of layers at the @layers array
+ * @layer0:	layer0 position
+ * @layer1:	layer1 position. Unused if n_layers < 2
+ * @layer2:	layer2 position. Unused if n_layers < 3
+ *
+ * For 1 layer, this macro returns "var[layer0] - var";
+ *
+ * For 2 layers, this macro is similar to allocate a bi-dimensional array
+ * and to return "var[layer0][layer1] - var";
+ *
+ * For 3 layers, this macro is similar to allocate a tri-dimensional array
+ * and to return "var[layer0][layer1][layer2] - var".
+ *
+ * A loop could be used here to make it more generic, but, as we only have
+ * 3 layers, this is a little faster.
+ *
+ * By design, layers can never be 0 or more than 3. If that ever happens,
+ * a NULL is returned, causing an OOPS during the memory allocation routine,
+ * with would point to the developer that he's doing something wrong.
+ */
+#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
+	int __i;							\
+	if ((nlayers) == 1)						\
+		__i = layer0;						\
+	else if ((nlayers) == 2)					\
+		__i = (layer1) + ((layers[1]).size * (layer0));		\
+	else if ((nlayers) == 3)					\
+		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
+			    ((layers[1]).size * (layer0))));		\
+	else								\
+		__i = -EINVAL;						\
+	__i;								\
+})
+
+/**
+ * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
+ *		   for the element given by [layer0,layer1,layer2] position
+ *
+ * @layers:	a struct edac_mc_layer array, describing how many elements
+ *		were allocated for each layer
+ * @var:	name of the var where we want to get the pointer
+ *		(like mci->dimms)
+ * @nlayers:	Number of layers at the @layers array
+ * @layer0:	layer0 position
+ * @layer1:	layer1 position. Unused if n_layers < 2
+ * @layer2:	layer2 position. Unused if n_layers < 3
+ *
+ * For 1 layer, this macro returns "var[layer0]";
+ *
+ * For 2 layers, this macro is similar to allocate a bi-dimensional array
+ * and to return "var[layer0][layer1]";
+ *
+ * For 3 layers, this macro is similar to allocate a tri-dimensional array
+ * and to return "var[layer0][layer1][layer2]";
+ */
+#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
+	typeof(*var) __p;						\
+	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
+	if (___i < 0)							\
+		__p = NULL;						\
+	else								\
+		__p = (var)[___i];					\
+	__p;								\
+})
+
+struct dimm_info {
+	struct device dev;
+
+	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
+
+	/* Memory location data */
+	unsigned location[EDAC_MAX_LAYERS];
+
+	struct mem_ctl_info *mci;	/* the parent */
+
+	u32 grain;		/* granularity of reported error in bytes */
+	enum dev_type dtype;	/* memory device type */
+	enum mem_type mtype;	/* memory dimm type */
+	enum edac_type edac_mode;	/* EDAC mode for this dimm */
+
+	u32 nr_pages;			/* number of pages on this dimm */
+
+	unsigned csrow, cschannel;	/* Points to the old API data */
+};
+
+/**
+ * struct rank_info - contains the information for one DIMM rank
+ *
+ * @chan_idx:	channel number where the rank is (typically, 0 or 1)
+ * @ce_count:	number of correctable errors for this rank
+ * @csrow:	A pointer to the chip select row structure (the parent
+ *		structure). The location of the rank is given by
+ *		the (csrow->csrow_idx, chan_idx) vector.
+ * @dimm:	A pointer to the DIMM structure, where the DIMM label
+ *		information is stored.
+ *
+ * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
+ *	  This is a bad assumption, but it makes this patch easier. Later
+ *	  patches in this series will fix this issue.
+ */
+struct rank_info {
+	int chan_idx;
+	struct csrow_info *csrow;
+	struct dimm_info *dimm;
+
+	u32 ce_count;		/* Correctable Errors for this csrow */
+};
+
+struct csrow_info {
+	struct device dev;
+
+	/* Used only by edac_mc_find_csrow_by_page() */
+	unsigned long first_page;	/* first page number in csrow */
+	unsigned long last_page;	/* last page number in csrow */
+	unsigned long page_mask;	/* used for interleaving -
+					 * 0UL for non intlv */
+
+	int csrow_idx;			/* the chip-select row */
+
+	u32 ue_count;		/* Uncorrectable Errors for this csrow */
+	u32 ce_count;		/* Correctable Errors for this csrow */
+
+	struct mem_ctl_info *mci;	/* the parent */
+
+	/* channel information for this csrow */
+	u32 nr_channels;
+	struct rank_info **channels;
+};
+
+/*
+ * struct errcount_attribute - used to store the several error counts
+ */
+struct errcount_attribute_data {
+	int n_layers;
+	int pos[EDAC_MAX_LAYERS];
+	int layer0, layer1, layer2;
+};
+
+/**
+ * struct edac_raw_error_desc - Raw error report structure
+ * @grain:			minimum granularity for an error report, in bytes
+ * @error_count:		number of errors of the same type
+ * @top_layer:			top layer of the error (layer[0])
+ * @mid_layer:			middle layer of the error (layer[1])
+ * @low_layer:			low layer of the error (layer[2])
+ * @page_frame_number:		page where the error happened
+ * @offset_in_page:		page offset
+ * @syndrome:			syndrome of the error (or 0 if unknown or if
+ * 				the syndrome is not applicable)
+ * @msg:			error message
+ * @location:			location of the error
+ * @label:			label of the affected DIMM(s)
+ * @other_detail:		other driver-specific detail about the error
+ * @enable_per_layer_report:	if false, the error affects all layers
+ *				(typically, a memory controller error)
+ */
+struct edac_raw_error_desc {
+	/*
+	 * NOTE: everything before grain won't be cleaned by
+	 * edac_raw_error_desc_clean()
+	 */
+	char location[LOCATION_SIZE];
+	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
+	long grain;
+
+	/* the vars below and grain will be cleaned on every new error report */
+	u16 error_count;
+	int top_layer;
+	int mid_layer;
+	int low_layer;
+	unsigned long page_frame_number;
+	unsigned long offset_in_page;
+	unsigned long syndrome;
+	const char *msg;
+	const char *other_detail;
+	bool enable_per_layer_report;
+};
+
+/* MEMORY controller information structure
+ */
+struct mem_ctl_info {
+	struct device			dev;
+	struct bus_type			*bus;
+
+	struct list_head link;	/* for global list of mem_ctl_info structs */
+
+	struct module *owner;	/* Module owner of this control struct */
+
+	unsigned long mtype_cap;	/* memory types supported by mc */
+	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
+	unsigned long edac_cap;	/* configuration capabilities - this is
+				 * closely related to edac_ctl_cap.  The
+				 * difference is that the controller may be
+				 * capable of s4ecd4ed which would be listed
+				 * in edac_ctl_cap, but if channels aren't
+				 * capable of s4ecd4ed then the edac_cap would
+				 * not have that capability.
+				 */
+	unsigned long scrub_cap;	/* chipset scrub capabilities */
+	enum scrub_type scrub_mode;	/* current scrub mode */
+
+	/* Translates sdram memory scrub rate given in bytes/sec to the
+	   internal representation and configures whatever else needs
+	   to be configured.
+	 */
+	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
+
+	/* Get the current sdram memory scrub rate from the internal
+	   representation and converts it to the closest matching
+	   bandwidth in bytes/sec.
+	 */
+	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
+
+
+	/* pointer to edac checking routine */
+	void (*edac_check) (struct mem_ctl_info * mci);
+
+	/*
+	 * Remaps memory pages: controller pages to physical pages.
+	 * For most MC's, this will be NULL.
+	 */
+	/* FIXME - why not send the phys page to begin with? */
+	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
+					   unsigned long page);
+	int mc_idx;
+	struct csrow_info **csrows;
+	unsigned nr_csrows, num_cschannel;
+
+	/*
+	 * Memory Controller hierarchy
+	 *
+	 * There are basically two types of memory controller: the ones that
+	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
+	 * All old memory controllers enumerate memories per rank, but most
+	 * of the recent drivers enumerate memories per DIMM, instead.
+	 * When the memory controller is per rank, csbased is true.
+	 */
+	unsigned n_layers;
+	struct edac_mc_layer *layers;
+	bool csbased;
+
+	/*
+	 * DIMM info. Will eventually remove the entire csrows_info some day
+	 */
+	unsigned tot_dimms;
+	struct dimm_info **dimms;
+
+	/*
+	 * FIXME - what about controllers on other busses? - IDs must be
+	 * unique.  dev pointer should be sufficiently unique, but
+	 * BUS:SLOT.FUNC numbers may not be unique.
+	 */
+	struct device *pdev;
+	const char *mod_name;
+	const char *ctl_name;
+	const char *dev_name;
+	void *pvt_info;
+	unsigned long start_time;	/* mci load start time (in jiffies) */
+
+	/*
+	 * drivers shouldn't access those fields directly, as the core
+	 * already handles that.
+	 */
+	u32 ce_noinfo_count, ue_noinfo_count;
+	u32 ue_mc, ce_mc;
+	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
+
+	struct completion complete;
+
+	/* Additional top controller level attributes, but specified
+	 * by the low level driver.
+	 *
+	 * Set by the low level driver to provide attributes at the
+	 * controller level.
+	 * An array of structures, NULL terminated
+	 *
+	 * If attributes are desired, then set to array of attributes
+	 * If no attributes are desired, leave NULL
+	 */
+	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
+
+	/* work struct for this MC */
+	struct delayed_work work;
+
+	/*
+	 * Used to report an error - by being at the global struct
+	 * makes the memory allocated by the EDAC core
+	 */
+	struct edac_raw_error_desc error_desc;
+
+	/* the internal state of this controller instance */
+	int op_state;
+
+	struct dentry *debugfs;
+	u8 fake_inject_layer[EDAC_MAX_LAYERS];
+	bool fake_inject_ue;
+	u16 fake_inject_count;
+};
+
+/*
+ * Maximum number of memory controllers in the coherent fabric.
+ */
+#define EDAC_MAX_MCS	16
+
+#endif