v4.19.13 snapshot.
diff --git a/include/linux/dma-buf.h b/include/linux/dma-buf.h
new file mode 100644
index 0000000..58725f8
--- /dev/null
+++ b/include/linux/dma-buf.h
@@ -0,0 +1,402 @@
+/*
+ * Header file for dma buffer sharing framework.
+ *
+ * Copyright(C) 2011 Linaro Limited. All rights reserved.
+ * Author: Sumit Semwal <sumit.semwal@ti.com>
+ *
+ * Many thanks to linaro-mm-sig list, and specially
+ * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
+ * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
+ * refining of this idea.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+#ifndef __DMA_BUF_H__
+#define __DMA_BUF_H__
+
+#include <linux/file.h>
+#include <linux/err.h>
+#include <linux/scatterlist.h>
+#include <linux/list.h>
+#include <linux/dma-mapping.h>
+#include <linux/fs.h>
+#include <linux/dma-fence.h>
+#include <linux/wait.h>
+
+struct device;
+struct dma_buf;
+struct dma_buf_attachment;
+
+/**
+ * struct dma_buf_ops - operations possible on struct dma_buf
+ * @map_atomic: [optional] maps a page from the buffer into kernel address
+ *		space, users may not block until the subsequent unmap call.
+ *		This callback must not sleep.
+ * @unmap_atomic: [optional] unmaps a atomically mapped page from the buffer.
+ *		  This Callback must not sleep.
+ * @map: [optional] maps a page from the buffer into kernel address space.
+ * @unmap: [optional] unmaps a page from the buffer.
+ * @vmap: [optional] creates a virtual mapping for the buffer into kernel
+ *	  address space. Same restrictions as for vmap and friends apply.
+ * @vunmap: [optional] unmaps a vmap from the buffer
+ */
+struct dma_buf_ops {
+	/**
+	 * @attach:
+	 *
+	 * This is called from dma_buf_attach() to make sure that a given
+	 * &dma_buf_attachment.dev can access the provided &dma_buf. Exporters
+	 * which support buffer objects in special locations like VRAM or
+	 * device-specific carveout areas should check whether the buffer could
+	 * be move to system memory (or directly accessed by the provided
+	 * device), and otherwise need to fail the attach operation.
+	 *
+	 * The exporter should also in general check whether the current
+	 * allocation fullfills the DMA constraints of the new device. If this
+	 * is not the case, and the allocation cannot be moved, it should also
+	 * fail the attach operation.
+	 *
+	 * Any exporter-private housekeeping data can be stored in the
+	 * &dma_buf_attachment.priv pointer.
+	 *
+	 * This callback is optional.
+	 *
+	 * Returns:
+	 *
+	 * 0 on success, negative error code on failure. It might return -EBUSY
+	 * to signal that backing storage is already allocated and incompatible
+	 * with the requirements of requesting device.
+	 */
+	int (*attach)(struct dma_buf *, struct dma_buf_attachment *);
+
+	/**
+	 * @detach:
+	 *
+	 * This is called by dma_buf_detach() to release a &dma_buf_attachment.
+	 * Provided so that exporters can clean up any housekeeping for an
+	 * &dma_buf_attachment.
+	 *
+	 * This callback is optional.
+	 */
+	void (*detach)(struct dma_buf *, struct dma_buf_attachment *);
+
+	/**
+	 * @map_dma_buf:
+	 *
+	 * This is called by dma_buf_map_attachment() and is used to map a
+	 * shared &dma_buf into device address space, and it is mandatory. It
+	 * can only be called if @attach has been called successfully. This
+	 * essentially pins the DMA buffer into place, and it cannot be moved
+	 * any more
+	 *
+	 * This call may sleep, e.g. when the backing storage first needs to be
+	 * allocated, or moved to a location suitable for all currently attached
+	 * devices.
+	 *
+	 * Note that any specific buffer attributes required for this function
+	 * should get added to device_dma_parameters accessible via
+	 * &device.dma_params from the &dma_buf_attachment. The @attach callback
+	 * should also check these constraints.
+	 *
+	 * If this is being called for the first time, the exporter can now
+	 * choose to scan through the list of attachments for this buffer,
+	 * collate the requirements of the attached devices, and choose an
+	 * appropriate backing storage for the buffer.
+	 *
+	 * Based on enum dma_data_direction, it might be possible to have
+	 * multiple users accessing at the same time (for reading, maybe), or
+	 * any other kind of sharing that the exporter might wish to make
+	 * available to buffer-users.
+	 *
+	 * Returns:
+	 *
+	 * A &sg_table scatter list of or the backing storage of the DMA buffer,
+	 * already mapped into the device address space of the &device attached
+	 * with the provided &dma_buf_attachment.
+	 *
+	 * On failure, returns a negative error value wrapped into a pointer.
+	 * May also return -EINTR when a signal was received while being
+	 * blocked.
+	 */
+	struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
+					 enum dma_data_direction);
+	/**
+	 * @unmap_dma_buf:
+	 *
+	 * This is called by dma_buf_unmap_attachment() and should unmap and
+	 * release the &sg_table allocated in @map_dma_buf, and it is mandatory.
+	 * It should also unpin the backing storage if this is the last mapping
+	 * of the DMA buffer, it the exporter supports backing storage
+	 * migration.
+	 */
+	void (*unmap_dma_buf)(struct dma_buf_attachment *,
+			      struct sg_table *,
+			      enum dma_data_direction);
+
+	/* TODO: Add try_map_dma_buf version, to return immed with -EBUSY
+	 * if the call would block.
+	 */
+
+	/**
+	 * @release:
+	 *
+	 * Called after the last dma_buf_put to release the &dma_buf, and
+	 * mandatory.
+	 */
+	void (*release)(struct dma_buf *);
+
+	/**
+	 * @begin_cpu_access:
+	 *
+	 * This is called from dma_buf_begin_cpu_access() and allows the
+	 * exporter to ensure that the memory is actually available for cpu
+	 * access - the exporter might need to allocate or swap-in and pin the
+	 * backing storage. The exporter also needs to ensure that cpu access is
+	 * coherent for the access direction. The direction can be used by the
+	 * exporter to optimize the cache flushing, i.e. access with a different
+	 * direction (read instead of write) might return stale or even bogus
+	 * data (e.g. when the exporter needs to copy the data to temporary
+	 * storage).
+	 *
+	 * This callback is optional.
+	 *
+	 * FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command
+	 * from userspace (where storage shouldn't be pinned to avoid handing
+	 * de-factor mlock rights to userspace) and for the kernel-internal
+	 * users of the various kmap interfaces, where the backing storage must
+	 * be pinned to guarantee that the atomic kmap calls can succeed. Since
+	 * there's no in-kernel users of the kmap interfaces yet this isn't a
+	 * real problem.
+	 *
+	 * Returns:
+	 *
+	 * 0 on success or a negative error code on failure. This can for
+	 * example fail when the backing storage can't be allocated. Can also
+	 * return -ERESTARTSYS or -EINTR when the call has been interrupted and
+	 * needs to be restarted.
+	 */
+	int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
+
+	/**
+	 * @end_cpu_access:
+	 *
+	 * This is called from dma_buf_end_cpu_access() when the importer is
+	 * done accessing the CPU. The exporter can use this to flush caches and
+	 * unpin any resources pinned in @begin_cpu_access.
+	 * The result of any dma_buf kmap calls after end_cpu_access is
+	 * undefined.
+	 *
+	 * This callback is optional.
+	 *
+	 * Returns:
+	 *
+	 * 0 on success or a negative error code on failure. Can return
+	 * -ERESTARTSYS or -EINTR when the call has been interrupted and needs
+	 * to be restarted.
+	 */
+	int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
+	void *(*map)(struct dma_buf *, unsigned long);
+	void (*unmap)(struct dma_buf *, unsigned long, void *);
+
+	/**
+	 * @mmap:
+	 *
+	 * This callback is used by the dma_buf_mmap() function
+	 *
+	 * Note that the mapping needs to be incoherent, userspace is expected
+	 * to braket CPU access using the DMA_BUF_IOCTL_SYNC interface.
+	 *
+	 * Because dma-buf buffers have invariant size over their lifetime, the
+	 * dma-buf core checks whether a vma is too large and rejects such
+	 * mappings. The exporter hence does not need to duplicate this check.
+	 * Drivers do not need to check this themselves.
+	 *
+	 * If an exporter needs to manually flush caches and hence needs to fake
+	 * coherency for mmap support, it needs to be able to zap all the ptes
+	 * pointing at the backing storage. Now linux mm needs a struct
+	 * address_space associated with the struct file stored in vma->vm_file
+	 * to do that with the function unmap_mapping_range. But the dma_buf
+	 * framework only backs every dma_buf fd with the anon_file struct file,
+	 * i.e. all dma_bufs share the same file.
+	 *
+	 * Hence exporters need to setup their own file (and address_space)
+	 * association by setting vma->vm_file and adjusting vma->vm_pgoff in
+	 * the dma_buf mmap callback. In the specific case of a gem driver the
+	 * exporter could use the shmem file already provided by gem (and set
+	 * vm_pgoff = 0). Exporters can then zap ptes by unmapping the
+	 * corresponding range of the struct address_space associated with their
+	 * own file.
+	 *
+	 * This callback is optional.
+	 *
+	 * Returns:
+	 *
+	 * 0 on success or a negative error code on failure.
+	 */
+	int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
+
+	void *(*vmap)(struct dma_buf *);
+	void (*vunmap)(struct dma_buf *, void *vaddr);
+};
+
+/**
+ * struct dma_buf - shared buffer object
+ * @size: size of the buffer
+ * @file: file pointer used for sharing buffers across, and for refcounting.
+ * @attachments: list of dma_buf_attachment that denotes all devices attached.
+ * @ops: dma_buf_ops associated with this buffer object.
+ * @lock: used internally to serialize list manipulation, attach/detach and vmap/unmap
+ * @vmapping_counter: used internally to refcnt the vmaps
+ * @vmap_ptr: the current vmap ptr if vmapping_counter > 0
+ * @exp_name: name of the exporter; useful for debugging.
+ * @owner: pointer to exporter module; used for refcounting when exporter is a
+ *         kernel module.
+ * @list_node: node for dma_buf accounting and debugging.
+ * @priv: exporter specific private data for this buffer object.
+ * @resv: reservation object linked to this dma-buf
+ * @poll: for userspace poll support
+ * @cb_excl: for userspace poll support
+ * @cb_shared: for userspace poll support
+ *
+ * This represents a shared buffer, created by calling dma_buf_export(). The
+ * userspace representation is a normal file descriptor, which can be created by
+ * calling dma_buf_fd().
+ *
+ * Shared dma buffers are reference counted using dma_buf_put() and
+ * get_dma_buf().
+ *
+ * Device DMA access is handled by the separate &struct dma_buf_attachment.
+ */
+struct dma_buf {
+	size_t size;
+	struct file *file;
+	struct list_head attachments;
+	const struct dma_buf_ops *ops;
+	struct mutex lock;
+	unsigned vmapping_counter;
+	void *vmap_ptr;
+	const char *exp_name;
+	struct module *owner;
+	struct list_head list_node;
+	void *priv;
+	struct reservation_object *resv;
+
+	/* poll support */
+	wait_queue_head_t poll;
+
+	struct dma_buf_poll_cb_t {
+		struct dma_fence_cb cb;
+		wait_queue_head_t *poll;
+
+		__poll_t active;
+	} cb_excl, cb_shared;
+};
+
+/**
+ * struct dma_buf_attachment - holds device-buffer attachment data
+ * @dmabuf: buffer for this attachment.
+ * @dev: device attached to the buffer.
+ * @node: list of dma_buf_attachment.
+ * @priv: exporter specific attachment data.
+ *
+ * This structure holds the attachment information between the dma_buf buffer
+ * and its user device(s). The list contains one attachment struct per device
+ * attached to the buffer.
+ *
+ * An attachment is created by calling dma_buf_attach(), and released again by
+ * calling dma_buf_detach(). The DMA mapping itself needed to initiate a
+ * transfer is created by dma_buf_map_attachment() and freed again by calling
+ * dma_buf_unmap_attachment().
+ */
+struct dma_buf_attachment {
+	struct dma_buf *dmabuf;
+	struct device *dev;
+	struct list_head node;
+	void *priv;
+};
+
+/**
+ * struct dma_buf_export_info - holds information needed to export a dma_buf
+ * @exp_name:	name of the exporter - useful for debugging.
+ * @owner:	pointer to exporter module - used for refcounting kernel module
+ * @ops:	Attach allocator-defined dma buf ops to the new buffer
+ * @size:	Size of the buffer
+ * @flags:	mode flags for the file
+ * @resv:	reservation-object, NULL to allocate default one
+ * @priv:	Attach private data of allocator to this buffer
+ *
+ * This structure holds the information required to export the buffer. Used
+ * with dma_buf_export() only.
+ */
+struct dma_buf_export_info {
+	const char *exp_name;
+	struct module *owner;
+	const struct dma_buf_ops *ops;
+	size_t size;
+	int flags;
+	struct reservation_object *resv;
+	void *priv;
+};
+
+/**
+ * DEFINE_DMA_BUF_EXPORT_INFO - helper macro for exporters
+ * @name: export-info name
+ *
+ * DEFINE_DMA_BUF_EXPORT_INFO macro defines the &struct dma_buf_export_info,
+ * zeroes it out and pre-populates exp_name in it.
+ */
+#define DEFINE_DMA_BUF_EXPORT_INFO(name)	\
+	struct dma_buf_export_info name = { .exp_name = KBUILD_MODNAME, \
+					 .owner = THIS_MODULE }
+
+/**
+ * get_dma_buf - convenience wrapper for get_file.
+ * @dmabuf:	[in]	pointer to dma_buf
+ *
+ * Increments the reference count on the dma-buf, needed in case of drivers
+ * that either need to create additional references to the dmabuf on the
+ * kernel side.  For example, an exporter that needs to keep a dmabuf ptr
+ * so that subsequent exports don't create a new dmabuf.
+ */
+static inline void get_dma_buf(struct dma_buf *dmabuf)
+{
+	get_file(dmabuf->file);
+}
+
+struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
+							struct device *dev);
+void dma_buf_detach(struct dma_buf *dmabuf,
+				struct dma_buf_attachment *dmabuf_attach);
+
+struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info);
+
+int dma_buf_fd(struct dma_buf *dmabuf, int flags);
+struct dma_buf *dma_buf_get(int fd);
+void dma_buf_put(struct dma_buf *dmabuf);
+
+struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *,
+					enum dma_data_direction);
+void dma_buf_unmap_attachment(struct dma_buf_attachment *, struct sg_table *,
+				enum dma_data_direction);
+int dma_buf_begin_cpu_access(struct dma_buf *dma_buf,
+			     enum dma_data_direction dir);
+int dma_buf_end_cpu_access(struct dma_buf *dma_buf,
+			   enum dma_data_direction dir);
+void *dma_buf_kmap(struct dma_buf *, unsigned long);
+void dma_buf_kunmap(struct dma_buf *, unsigned long, void *);
+
+int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *,
+		 unsigned long);
+void *dma_buf_vmap(struct dma_buf *);
+void dma_buf_vunmap(struct dma_buf *, void *vaddr);
+#endif /* __DMA_BUF_H__ */