v4.19.13 snapshot.
diff --git a/include/linux/crypto.h b/include/linux/crypto.h
new file mode 100644
index 0000000..e8839d3
--- /dev/null
+++ b/include/linux/crypto.h
@@ -0,0 +1,1669 @@
+/*
+ * Scatterlist Cryptographic API.
+ *
+ * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
+ * Copyright (c) 2002 David S. Miller (davem@redhat.com)
+ * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
+ *
+ * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
+ * and Nettle, by Niels Möller.
+ * 
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the Free
+ * Software Foundation; either version 2 of the License, or (at your option) 
+ * any later version.
+ *
+ */
+#ifndef _LINUX_CRYPTO_H
+#define _LINUX_CRYPTO_H
+
+#include <linux/atomic.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/bug.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/completion.h>
+
+/*
+ * Autoloaded crypto modules should only use a prefixed name to avoid allowing
+ * arbitrary modules to be loaded. Loading from userspace may still need the
+ * unprefixed names, so retains those aliases as well.
+ * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
+ * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
+ * expands twice on the same line. Instead, use a separate base name for the
+ * alias.
+ */
+#define MODULE_ALIAS_CRYPTO(name)	\
+		__MODULE_INFO(alias, alias_userspace, name);	\
+		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
+
+/*
+ * Algorithm masks and types.
+ */
+#define CRYPTO_ALG_TYPE_MASK		0x0000000f
+#define CRYPTO_ALG_TYPE_CIPHER		0x00000001
+#define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
+#define CRYPTO_ALG_TYPE_AEAD		0x00000003
+#define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
+#define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
+#define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
+#define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
+#define CRYPTO_ALG_TYPE_KPP		0x00000008
+#define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
+#define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
+#define CRYPTO_ALG_TYPE_RNG		0x0000000c
+#define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
+#define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
+#define CRYPTO_ALG_TYPE_HASH		0x0000000e
+#define CRYPTO_ALG_TYPE_SHASH		0x0000000e
+#define CRYPTO_ALG_TYPE_AHASH		0x0000000f
+
+#define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
+#define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
+#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
+#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
+
+#define CRYPTO_ALG_LARVAL		0x00000010
+#define CRYPTO_ALG_DEAD			0x00000020
+#define CRYPTO_ALG_DYING		0x00000040
+#define CRYPTO_ALG_ASYNC		0x00000080
+
+/*
+ * Set this bit if and only if the algorithm requires another algorithm of
+ * the same type to handle corner cases.
+ */
+#define CRYPTO_ALG_NEED_FALLBACK	0x00000100
+
+/*
+ * This bit is set for symmetric key ciphers that have already been wrapped
+ * with a generic IV generator to prevent them from being wrapped again.
+ */
+#define CRYPTO_ALG_GENIV		0x00000200
+
+/*
+ * Set if the algorithm has passed automated run-time testing.  Note that
+ * if there is no run-time testing for a given algorithm it is considered
+ * to have passed.
+ */
+
+#define CRYPTO_ALG_TESTED		0x00000400
+
+/*
+ * Set if the algorithm is an instance that is built from templates.
+ */
+#define CRYPTO_ALG_INSTANCE		0x00000800
+
+/* Set this bit if the algorithm provided is hardware accelerated but
+ * not available to userspace via instruction set or so.
+ */
+#define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
+
+/*
+ * Mark a cipher as a service implementation only usable by another
+ * cipher and never by a normal user of the kernel crypto API
+ */
+#define CRYPTO_ALG_INTERNAL		0x00002000
+
+/*
+ * Set if the algorithm has a ->setkey() method but can be used without
+ * calling it first, i.e. there is a default key.
+ */
+#define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
+
+/*
+ * Don't trigger module loading
+ */
+#define CRYPTO_NOLOAD			0x00008000
+
+/*
+ * Transform masks and values (for crt_flags).
+ */
+#define CRYPTO_TFM_NEED_KEY		0x00000001
+
+#define CRYPTO_TFM_REQ_MASK		0x000fff00
+#define CRYPTO_TFM_RES_MASK		0xfff00000
+
+#define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
+#define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
+#define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
+#define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
+#define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
+#define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
+#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
+#define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
+
+/*
+ * Miscellaneous stuff.
+ */
+#define CRYPTO_MAX_ALG_NAME		128
+
+/*
+ * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
+ * declaration) is used to ensure that the crypto_tfm context structure is
+ * aligned correctly for the given architecture so that there are no alignment
+ * faults for C data types.  In particular, this is required on platforms such
+ * as arm where pointers are 32-bit aligned but there are data types such as
+ * u64 which require 64-bit alignment.
+ */
+#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
+
+#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
+
+struct scatterlist;
+struct crypto_ablkcipher;
+struct crypto_async_request;
+struct crypto_blkcipher;
+struct crypto_tfm;
+struct crypto_type;
+struct skcipher_givcrypt_request;
+
+typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
+
+/**
+ * DOC: Block Cipher Context Data Structures
+ *
+ * These data structures define the operating context for each block cipher
+ * type.
+ */
+
+struct crypto_async_request {
+	struct list_head list;
+	crypto_completion_t complete;
+	void *data;
+	struct crypto_tfm *tfm;
+
+	u32 flags;
+};
+
+struct ablkcipher_request {
+	struct crypto_async_request base;
+
+	unsigned int nbytes;
+
+	void *info;
+
+	struct scatterlist *src;
+	struct scatterlist *dst;
+
+	void *__ctx[] CRYPTO_MINALIGN_ATTR;
+};
+
+struct blkcipher_desc {
+	struct crypto_blkcipher *tfm;
+	void *info;
+	u32 flags;
+};
+
+struct cipher_desc {
+	struct crypto_tfm *tfm;
+	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
+	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
+			     const u8 *src, unsigned int nbytes);
+	void *info;
+};
+
+/**
+ * DOC: Block Cipher Algorithm Definitions
+ *
+ * These data structures define modular crypto algorithm implementations,
+ * managed via crypto_register_alg() and crypto_unregister_alg().
+ */
+
+/**
+ * struct ablkcipher_alg - asynchronous block cipher definition
+ * @min_keysize: Minimum key size supported by the transformation. This is the
+ *		 smallest key length supported by this transformation algorithm.
+ *		 This must be set to one of the pre-defined values as this is
+ *		 not hardware specific. Possible values for this field can be
+ *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
+ * @max_keysize: Maximum key size supported by the transformation. This is the
+ *		 largest key length supported by this transformation algorithm.
+ *		 This must be set to one of the pre-defined values as this is
+ *		 not hardware specific. Possible values for this field can be
+ *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
+ * @setkey: Set key for the transformation. This function is used to either
+ *	    program a supplied key into the hardware or store the key in the
+ *	    transformation context for programming it later. Note that this
+ *	    function does modify the transformation context. This function can
+ *	    be called multiple times during the existence of the transformation
+ *	    object, so one must make sure the key is properly reprogrammed into
+ *	    the hardware. This function is also responsible for checking the key
+ *	    length for validity. In case a software fallback was put in place in
+ *	    the @cra_init call, this function might need to use the fallback if
+ *	    the algorithm doesn't support all of the key sizes.
+ * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
+ *	     the supplied scatterlist containing the blocks of data. The crypto
+ *	     API consumer is responsible for aligning the entries of the
+ *	     scatterlist properly and making sure the chunks are correctly
+ *	     sized. In case a software fallback was put in place in the
+ *	     @cra_init call, this function might need to use the fallback if
+ *	     the algorithm doesn't support all of the key sizes. In case the
+ *	     key was stored in transformation context, the key might need to be
+ *	     re-programmed into the hardware in this function. This function
+ *	     shall not modify the transformation context, as this function may
+ *	     be called in parallel with the same transformation object.
+ * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
+ *	     and the conditions are exactly the same.
+ * @givencrypt: Update the IV for encryption. With this function, a cipher
+ *	        implementation may provide the function on how to update the IV
+ *	        for encryption.
+ * @givdecrypt: Update the IV for decryption. This is the reverse of
+ *	        @givencrypt .
+ * @geniv: The transformation implementation may use an "IV generator" provided
+ *	   by the kernel crypto API. Several use cases have a predefined
+ *	   approach how IVs are to be updated. For such use cases, the kernel
+ *	   crypto API provides ready-to-use implementations that can be
+ *	   referenced with this variable.
+ * @ivsize: IV size applicable for transformation. The consumer must provide an
+ *	    IV of exactly that size to perform the encrypt or decrypt operation.
+ *
+ * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
+ * mandatory and must be filled.
+ */
+struct ablkcipher_alg {
+	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
+	              unsigned int keylen);
+	int (*encrypt)(struct ablkcipher_request *req);
+	int (*decrypt)(struct ablkcipher_request *req);
+	int (*givencrypt)(struct skcipher_givcrypt_request *req);
+	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
+
+	const char *geniv;
+
+	unsigned int min_keysize;
+	unsigned int max_keysize;
+	unsigned int ivsize;
+};
+
+/**
+ * struct blkcipher_alg - synchronous block cipher definition
+ * @min_keysize: see struct ablkcipher_alg
+ * @max_keysize: see struct ablkcipher_alg
+ * @setkey: see struct ablkcipher_alg
+ * @encrypt: see struct ablkcipher_alg
+ * @decrypt: see struct ablkcipher_alg
+ * @geniv: see struct ablkcipher_alg
+ * @ivsize: see struct ablkcipher_alg
+ *
+ * All fields except @geniv and @ivsize are mandatory and must be filled.
+ */
+struct blkcipher_alg {
+	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
+	              unsigned int keylen);
+	int (*encrypt)(struct blkcipher_desc *desc,
+		       struct scatterlist *dst, struct scatterlist *src,
+		       unsigned int nbytes);
+	int (*decrypt)(struct blkcipher_desc *desc,
+		       struct scatterlist *dst, struct scatterlist *src,
+		       unsigned int nbytes);
+
+	const char *geniv;
+
+	unsigned int min_keysize;
+	unsigned int max_keysize;
+	unsigned int ivsize;
+};
+
+/**
+ * struct cipher_alg - single-block symmetric ciphers definition
+ * @cia_min_keysize: Minimum key size supported by the transformation. This is
+ *		     the smallest key length supported by this transformation
+ *		     algorithm. This must be set to one of the pre-defined
+ *		     values as this is not hardware specific. Possible values
+ *		     for this field can be found via git grep "_MIN_KEY_SIZE"
+ *		     include/crypto/
+ * @cia_max_keysize: Maximum key size supported by the transformation. This is
+ *		    the largest key length supported by this transformation
+ *		    algorithm. This must be set to one of the pre-defined values
+ *		    as this is not hardware specific. Possible values for this
+ *		    field can be found via git grep "_MAX_KEY_SIZE"
+ *		    include/crypto/
+ * @cia_setkey: Set key for the transformation. This function is used to either
+ *	        program a supplied key into the hardware or store the key in the
+ *	        transformation context for programming it later. Note that this
+ *	        function does modify the transformation context. This function
+ *	        can be called multiple times during the existence of the
+ *	        transformation object, so one must make sure the key is properly
+ *	        reprogrammed into the hardware. This function is also
+ *	        responsible for checking the key length for validity.
+ * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
+ *		 single block of data, which must be @cra_blocksize big. This
+ *		 always operates on a full @cra_blocksize and it is not possible
+ *		 to encrypt a block of smaller size. The supplied buffers must
+ *		 therefore also be at least of @cra_blocksize size. Both the
+ *		 input and output buffers are always aligned to @cra_alignmask.
+ *		 In case either of the input or output buffer supplied by user
+ *		 of the crypto API is not aligned to @cra_alignmask, the crypto
+ *		 API will re-align the buffers. The re-alignment means that a
+ *		 new buffer will be allocated, the data will be copied into the
+ *		 new buffer, then the processing will happen on the new buffer,
+ *		 then the data will be copied back into the original buffer and
+ *		 finally the new buffer will be freed. In case a software
+ *		 fallback was put in place in the @cra_init call, this function
+ *		 might need to use the fallback if the algorithm doesn't support
+ *		 all of the key sizes. In case the key was stored in
+ *		 transformation context, the key might need to be re-programmed
+ *		 into the hardware in this function. This function shall not
+ *		 modify the transformation context, as this function may be
+ *		 called in parallel with the same transformation object.
+ * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
+ *		 @cia_encrypt, and the conditions are exactly the same.
+ *
+ * All fields are mandatory and must be filled.
+ */
+struct cipher_alg {
+	unsigned int cia_min_keysize;
+	unsigned int cia_max_keysize;
+	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
+	                  unsigned int keylen);
+	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
+	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
+};
+
+struct compress_alg {
+	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
+			    unsigned int slen, u8 *dst, unsigned int *dlen);
+	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
+			      unsigned int slen, u8 *dst, unsigned int *dlen);
+};
+
+
+#define cra_ablkcipher	cra_u.ablkcipher
+#define cra_blkcipher	cra_u.blkcipher
+#define cra_cipher	cra_u.cipher
+#define cra_compress	cra_u.compress
+
+/**
+ * struct crypto_alg - definition of a cryptograpic cipher algorithm
+ * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
+ *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
+ *	       used for fine-tuning the description of the transformation
+ *	       algorithm.
+ * @cra_blocksize: Minimum block size of this transformation. The size in bytes
+ *		   of the smallest possible unit which can be transformed with
+ *		   this algorithm. The users must respect this value.
+ *		   In case of HASH transformation, it is possible for a smaller
+ *		   block than @cra_blocksize to be passed to the crypto API for
+ *		   transformation, in case of any other transformation type, an
+ * 		   error will be returned upon any attempt to transform smaller
+ *		   than @cra_blocksize chunks.
+ * @cra_ctxsize: Size of the operational context of the transformation. This
+ *		 value informs the kernel crypto API about the memory size
+ *		 needed to be allocated for the transformation context.
+ * @cra_alignmask: Alignment mask for the input and output data buffer. The data
+ *		   buffer containing the input data for the algorithm must be
+ *		   aligned to this alignment mask. The data buffer for the
+ *		   output data must be aligned to this alignment mask. Note that
+ *		   the Crypto API will do the re-alignment in software, but
+ *		   only under special conditions and there is a performance hit.
+ *		   The re-alignment happens at these occasions for different
+ *		   @cra_u types: cipher -- For both input data and output data
+ *		   buffer; ahash -- For output hash destination buf; shash --
+ *		   For output hash destination buf.
+ *		   This is needed on hardware which is flawed by design and
+ *		   cannot pick data from arbitrary addresses.
+ * @cra_priority: Priority of this transformation implementation. In case
+ *		  multiple transformations with same @cra_name are available to
+ *		  the Crypto API, the kernel will use the one with highest
+ *		  @cra_priority.
+ * @cra_name: Generic name (usable by multiple implementations) of the
+ *	      transformation algorithm. This is the name of the transformation
+ *	      itself. This field is used by the kernel when looking up the
+ *	      providers of particular transformation.
+ * @cra_driver_name: Unique name of the transformation provider. This is the
+ *		     name of the provider of the transformation. This can be any
+ *		     arbitrary value, but in the usual case, this contains the
+ *		     name of the chip or provider and the name of the
+ *		     transformation algorithm.
+ * @cra_type: Type of the cryptographic transformation. This is a pointer to
+ *	      struct crypto_type, which implements callbacks common for all
+ *	      transformation types. There are multiple options:
+ *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
+ *	      &crypto_ahash_type, &crypto_rng_type.
+ *	      This field might be empty. In that case, there are no common
+ *	      callbacks. This is the case for: cipher, compress, shash.
+ * @cra_u: Callbacks implementing the transformation. This is a union of
+ *	   multiple structures. Depending on the type of transformation selected
+ *	   by @cra_type and @cra_flags above, the associated structure must be
+ *	   filled with callbacks. This field might be empty. This is the case
+ *	   for ahash, shash.
+ * @cra_init: Initialize the cryptographic transformation object. This function
+ *	      is used to initialize the cryptographic transformation object.
+ *	      This function is called only once at the instantiation time, right
+ *	      after the transformation context was allocated. In case the
+ *	      cryptographic hardware has some special requirements which need to
+ *	      be handled by software, this function shall check for the precise
+ *	      requirement of the transformation and put any software fallbacks
+ *	      in place.
+ * @cra_exit: Deinitialize the cryptographic transformation object. This is a
+ *	      counterpart to @cra_init, used to remove various changes set in
+ *	      @cra_init.
+ * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
+ *		      definition. See @struct @ablkcipher_alg.
+ * @cra_u.blkcipher: Union member which contains a synchronous block cipher
+ * 		     definition See @struct @blkcipher_alg.
+ * @cra_u.cipher: Union member which contains a single-block symmetric cipher
+ *		  definition. See @struct @cipher_alg.
+ * @cra_u.compress: Union member which contains a (de)compression algorithm.
+ *		    See @struct @compress_alg.
+ * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
+ * @cra_list: internally used
+ * @cra_users: internally used
+ * @cra_refcnt: internally used
+ * @cra_destroy: internally used
+ *
+ * The struct crypto_alg describes a generic Crypto API algorithm and is common
+ * for all of the transformations. Any variable not documented here shall not
+ * be used by a cipher implementation as it is internal to the Crypto API.
+ */
+struct crypto_alg {
+	struct list_head cra_list;
+	struct list_head cra_users;
+
+	u32 cra_flags;
+	unsigned int cra_blocksize;
+	unsigned int cra_ctxsize;
+	unsigned int cra_alignmask;
+
+	int cra_priority;
+	refcount_t cra_refcnt;
+
+	char cra_name[CRYPTO_MAX_ALG_NAME];
+	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
+
+	const struct crypto_type *cra_type;
+
+	union {
+		struct ablkcipher_alg ablkcipher;
+		struct blkcipher_alg blkcipher;
+		struct cipher_alg cipher;
+		struct compress_alg compress;
+	} cra_u;
+
+	int (*cra_init)(struct crypto_tfm *tfm);
+	void (*cra_exit)(struct crypto_tfm *tfm);
+	void (*cra_destroy)(struct crypto_alg *alg);
+	
+	struct module *cra_module;
+} CRYPTO_MINALIGN_ATTR;
+
+/*
+ * A helper struct for waiting for completion of async crypto ops
+ */
+struct crypto_wait {
+	struct completion completion;
+	int err;
+};
+
+/*
+ * Macro for declaring a crypto op async wait object on stack
+ */
+#define DECLARE_CRYPTO_WAIT(_wait) \
+	struct crypto_wait _wait = { \
+		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
+
+/*
+ * Async ops completion helper functioons
+ */
+void crypto_req_done(struct crypto_async_request *req, int err);
+
+static inline int crypto_wait_req(int err, struct crypto_wait *wait)
+{
+	switch (err) {
+	case -EINPROGRESS:
+	case -EBUSY:
+		wait_for_completion(&wait->completion);
+		reinit_completion(&wait->completion);
+		err = wait->err;
+		break;
+	};
+
+	return err;
+}
+
+static inline void crypto_init_wait(struct crypto_wait *wait)
+{
+	init_completion(&wait->completion);
+}
+
+/*
+ * Algorithm registration interface.
+ */
+int crypto_register_alg(struct crypto_alg *alg);
+int crypto_unregister_alg(struct crypto_alg *alg);
+int crypto_register_algs(struct crypto_alg *algs, int count);
+int crypto_unregister_algs(struct crypto_alg *algs, int count);
+
+/*
+ * Algorithm query interface.
+ */
+int crypto_has_alg(const char *name, u32 type, u32 mask);
+
+/*
+ * Transforms: user-instantiated objects which encapsulate algorithms
+ * and core processing logic.  Managed via crypto_alloc_*() and
+ * crypto_free_*(), as well as the various helpers below.
+ */
+
+struct ablkcipher_tfm {
+	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
+	              unsigned int keylen);
+	int (*encrypt)(struct ablkcipher_request *req);
+	int (*decrypt)(struct ablkcipher_request *req);
+
+	struct crypto_ablkcipher *base;
+
+	unsigned int ivsize;
+	unsigned int reqsize;
+};
+
+struct blkcipher_tfm {
+	void *iv;
+	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
+		      unsigned int keylen);
+	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
+		       struct scatterlist *src, unsigned int nbytes);
+	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
+		       struct scatterlist *src, unsigned int nbytes);
+};
+
+struct cipher_tfm {
+	int (*cit_setkey)(struct crypto_tfm *tfm,
+	                  const u8 *key, unsigned int keylen);
+	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
+	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
+};
+
+struct compress_tfm {
+	int (*cot_compress)(struct crypto_tfm *tfm,
+	                    const u8 *src, unsigned int slen,
+	                    u8 *dst, unsigned int *dlen);
+	int (*cot_decompress)(struct crypto_tfm *tfm,
+	                      const u8 *src, unsigned int slen,
+	                      u8 *dst, unsigned int *dlen);
+};
+
+#define crt_ablkcipher	crt_u.ablkcipher
+#define crt_blkcipher	crt_u.blkcipher
+#define crt_cipher	crt_u.cipher
+#define crt_compress	crt_u.compress
+
+struct crypto_tfm {
+
+	u32 crt_flags;
+	
+	union {
+		struct ablkcipher_tfm ablkcipher;
+		struct blkcipher_tfm blkcipher;
+		struct cipher_tfm cipher;
+		struct compress_tfm compress;
+	} crt_u;
+
+	void (*exit)(struct crypto_tfm *tfm);
+	
+	struct crypto_alg *__crt_alg;
+
+	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
+};
+
+struct crypto_ablkcipher {
+	struct crypto_tfm base;
+};
+
+struct crypto_blkcipher {
+	struct crypto_tfm base;
+};
+
+struct crypto_cipher {
+	struct crypto_tfm base;
+};
+
+struct crypto_comp {
+	struct crypto_tfm base;
+};
+
+enum {
+	CRYPTOA_UNSPEC,
+	CRYPTOA_ALG,
+	CRYPTOA_TYPE,
+	CRYPTOA_U32,
+	__CRYPTOA_MAX,
+};
+
+#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
+
+/* Maximum number of (rtattr) parameters for each template. */
+#define CRYPTO_MAX_ATTRS 32
+
+struct crypto_attr_alg {
+	char name[CRYPTO_MAX_ALG_NAME];
+};
+
+struct crypto_attr_type {
+	u32 type;
+	u32 mask;
+};
+
+struct crypto_attr_u32 {
+	u32 num;
+};
+
+/* 
+ * Transform user interface.
+ */
+ 
+struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
+void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
+
+static inline void crypto_free_tfm(struct crypto_tfm *tfm)
+{
+	return crypto_destroy_tfm(tfm, tfm);
+}
+
+int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
+
+/*
+ * Transform helpers which query the underlying algorithm.
+ */
+static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
+{
+	return tfm->__crt_alg->cra_name;
+}
+
+static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
+{
+	return tfm->__crt_alg->cra_driver_name;
+}
+
+static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
+{
+	return tfm->__crt_alg->cra_priority;
+}
+
+static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
+{
+	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
+}
+
+static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
+{
+	return tfm->__crt_alg->cra_blocksize;
+}
+
+static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
+{
+	return tfm->__crt_alg->cra_alignmask;
+}
+
+static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
+{
+	return tfm->crt_flags;
+}
+
+static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
+{
+	tfm->crt_flags |= flags;
+}
+
+static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
+{
+	tfm->crt_flags &= ~flags;
+}
+
+static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
+{
+	return tfm->__crt_ctx;
+}
+
+static inline unsigned int crypto_tfm_ctx_alignment(void)
+{
+	struct crypto_tfm *tfm;
+	return __alignof__(tfm->__crt_ctx);
+}
+
+/*
+ * API wrappers.
+ */
+static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
+	struct crypto_tfm *tfm)
+{
+	return (struct crypto_ablkcipher *)tfm;
+}
+
+static inline u32 crypto_skcipher_type(u32 type)
+{
+	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
+	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
+	return type;
+}
+
+static inline u32 crypto_skcipher_mask(u32 mask)
+{
+	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
+	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
+	return mask;
+}
+
+/**
+ * DOC: Asynchronous Block Cipher API
+ *
+ * Asynchronous block cipher API is used with the ciphers of type
+ * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
+ *
+ * Asynchronous cipher operations imply that the function invocation for a
+ * cipher request returns immediately before the completion of the operation.
+ * The cipher request is scheduled as a separate kernel thread and therefore
+ * load-balanced on the different CPUs via the process scheduler. To allow
+ * the kernel crypto API to inform the caller about the completion of a cipher
+ * request, the caller must provide a callback function. That function is
+ * invoked with the cipher handle when the request completes.
+ *
+ * To support the asynchronous operation, additional information than just the
+ * cipher handle must be supplied to the kernel crypto API. That additional
+ * information is given by filling in the ablkcipher_request data structure.
+ *
+ * For the asynchronous block cipher API, the state is maintained with the tfm
+ * cipher handle. A single tfm can be used across multiple calls and in
+ * parallel. For asynchronous block cipher calls, context data supplied and
+ * only used by the caller can be referenced the request data structure in
+ * addition to the IV used for the cipher request. The maintenance of such
+ * state information would be important for a crypto driver implementer to
+ * have, because when calling the callback function upon completion of the
+ * cipher operation, that callback function may need some information about
+ * which operation just finished if it invoked multiple in parallel. This
+ * state information is unused by the kernel crypto API.
+ */
+
+static inline struct crypto_tfm *crypto_ablkcipher_tfm(
+	struct crypto_ablkcipher *tfm)
+{
+	return &tfm->base;
+}
+
+/**
+ * crypto_free_ablkcipher() - zeroize and free cipher handle
+ * @tfm: cipher handle to be freed
+ */
+static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
+{
+	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
+}
+
+/**
+ * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
+ * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
+ *	      ablkcipher
+ * @type: specifies the type of the cipher
+ * @mask: specifies the mask for the cipher
+ *
+ * Return: true when the ablkcipher is known to the kernel crypto API; false
+ *	   otherwise
+ */
+static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
+					u32 mask)
+{
+	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
+			      crypto_skcipher_mask(mask));
+}
+
+static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
+	struct crypto_ablkcipher *tfm)
+{
+	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
+}
+
+/**
+ * crypto_ablkcipher_ivsize() - obtain IV size
+ * @tfm: cipher handle
+ *
+ * The size of the IV for the ablkcipher referenced by the cipher handle is
+ * returned. This IV size may be zero if the cipher does not need an IV.
+ *
+ * Return: IV size in bytes
+ */
+static inline unsigned int crypto_ablkcipher_ivsize(
+	struct crypto_ablkcipher *tfm)
+{
+	return crypto_ablkcipher_crt(tfm)->ivsize;
+}
+
+/**
+ * crypto_ablkcipher_blocksize() - obtain block size of cipher
+ * @tfm: cipher handle
+ *
+ * The block size for the ablkcipher referenced with the cipher handle is
+ * returned. The caller may use that information to allocate appropriate
+ * memory for the data returned by the encryption or decryption operation
+ *
+ * Return: block size of cipher
+ */
+static inline unsigned int crypto_ablkcipher_blocksize(
+	struct crypto_ablkcipher *tfm)
+{
+	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
+}
+
+static inline unsigned int crypto_ablkcipher_alignmask(
+	struct crypto_ablkcipher *tfm)
+{
+	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
+}
+
+static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
+{
+	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
+}
+
+static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
+					       u32 flags)
+{
+	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
+}
+
+static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
+						 u32 flags)
+{
+	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
+}
+
+/**
+ * crypto_ablkcipher_setkey() - set key for cipher
+ * @tfm: cipher handle
+ * @key: buffer holding the key
+ * @keylen: length of the key in bytes
+ *
+ * The caller provided key is set for the ablkcipher referenced by the cipher
+ * handle.
+ *
+ * Note, the key length determines the cipher type. Many block ciphers implement
+ * different cipher modes depending on the key size, such as AES-128 vs AES-192
+ * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
+ * is performed.
+ *
+ * Return: 0 if the setting of the key was successful; < 0 if an error occurred
+ */
+static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
+					   const u8 *key, unsigned int keylen)
+{
+	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
+
+	return crt->setkey(crt->base, key, keylen);
+}
+
+/**
+ * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
+ * @req: ablkcipher_request out of which the cipher handle is to be obtained
+ *
+ * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
+ * data structure.
+ *
+ * Return: crypto_ablkcipher handle
+ */
+static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
+	struct ablkcipher_request *req)
+{
+	return __crypto_ablkcipher_cast(req->base.tfm);
+}
+
+/**
+ * crypto_ablkcipher_encrypt() - encrypt plaintext
+ * @req: reference to the ablkcipher_request handle that holds all information
+ *	 needed to perform the cipher operation
+ *
+ * Encrypt plaintext data using the ablkcipher_request handle. That data
+ * structure and how it is filled with data is discussed with the
+ * ablkcipher_request_* functions.
+ *
+ * Return: 0 if the cipher operation was successful; < 0 if an error occurred
+ */
+static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
+{
+	struct ablkcipher_tfm *crt =
+		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
+	return crt->encrypt(req);
+}
+
+/**
+ * crypto_ablkcipher_decrypt() - decrypt ciphertext
+ * @req: reference to the ablkcipher_request handle that holds all information
+ *	 needed to perform the cipher operation
+ *
+ * Decrypt ciphertext data using the ablkcipher_request handle. That data
+ * structure and how it is filled with data is discussed with the
+ * ablkcipher_request_* functions.
+ *
+ * Return: 0 if the cipher operation was successful; < 0 if an error occurred
+ */
+static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
+{
+	struct ablkcipher_tfm *crt =
+		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
+	return crt->decrypt(req);
+}
+
+/**
+ * DOC: Asynchronous Cipher Request Handle
+ *
+ * The ablkcipher_request data structure contains all pointers to data
+ * required for the asynchronous cipher operation. This includes the cipher
+ * handle (which can be used by multiple ablkcipher_request instances), pointer
+ * to plaintext and ciphertext, asynchronous callback function, etc. It acts
+ * as a handle to the ablkcipher_request_* API calls in a similar way as
+ * ablkcipher handle to the crypto_ablkcipher_* API calls.
+ */
+
+/**
+ * crypto_ablkcipher_reqsize() - obtain size of the request data structure
+ * @tfm: cipher handle
+ *
+ * Return: number of bytes
+ */
+static inline unsigned int crypto_ablkcipher_reqsize(
+	struct crypto_ablkcipher *tfm)
+{
+	return crypto_ablkcipher_crt(tfm)->reqsize;
+}
+
+/**
+ * ablkcipher_request_set_tfm() - update cipher handle reference in request
+ * @req: request handle to be modified
+ * @tfm: cipher handle that shall be added to the request handle
+ *
+ * Allow the caller to replace the existing ablkcipher handle in the request
+ * data structure with a different one.
+ */
+static inline void ablkcipher_request_set_tfm(
+	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
+{
+	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
+}
+
+static inline struct ablkcipher_request *ablkcipher_request_cast(
+	struct crypto_async_request *req)
+{
+	return container_of(req, struct ablkcipher_request, base);
+}
+
+/**
+ * ablkcipher_request_alloc() - allocate request data structure
+ * @tfm: cipher handle to be registered with the request
+ * @gfp: memory allocation flag that is handed to kmalloc by the API call.
+ *
+ * Allocate the request data structure that must be used with the ablkcipher
+ * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
+ * handle is registered in the request data structure.
+ *
+ * Return: allocated request handle in case of success, or NULL if out of memory
+ */
+static inline struct ablkcipher_request *ablkcipher_request_alloc(
+	struct crypto_ablkcipher *tfm, gfp_t gfp)
+{
+	struct ablkcipher_request *req;
+
+	req = kmalloc(sizeof(struct ablkcipher_request) +
+		      crypto_ablkcipher_reqsize(tfm), gfp);
+
+	if (likely(req))
+		ablkcipher_request_set_tfm(req, tfm);
+
+	return req;
+}
+
+/**
+ * ablkcipher_request_free() - zeroize and free request data structure
+ * @req: request data structure cipher handle to be freed
+ */
+static inline void ablkcipher_request_free(struct ablkcipher_request *req)
+{
+	kzfree(req);
+}
+
+/**
+ * ablkcipher_request_set_callback() - set asynchronous callback function
+ * @req: request handle
+ * @flags: specify zero or an ORing of the flags
+ *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
+ *	   increase the wait queue beyond the initial maximum size;
+ *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
+ * @compl: callback function pointer to be registered with the request handle
+ * @data: The data pointer refers to memory that is not used by the kernel
+ *	  crypto API, but provided to the callback function for it to use. Here,
+ *	  the caller can provide a reference to memory the callback function can
+ *	  operate on. As the callback function is invoked asynchronously to the
+ *	  related functionality, it may need to access data structures of the
+ *	  related functionality which can be referenced using this pointer. The
+ *	  callback function can access the memory via the "data" field in the
+ *	  crypto_async_request data structure provided to the callback function.
+ *
+ * This function allows setting the callback function that is triggered once the
+ * cipher operation completes.
+ *
+ * The callback function is registered with the ablkcipher_request handle and
+ * must comply with the following template::
+ *
+ *	void callback_function(struct crypto_async_request *req, int error)
+ */
+static inline void ablkcipher_request_set_callback(
+	struct ablkcipher_request *req,
+	u32 flags, crypto_completion_t compl, void *data)
+{
+	req->base.complete = compl;
+	req->base.data = data;
+	req->base.flags = flags;
+}
+
+/**
+ * ablkcipher_request_set_crypt() - set data buffers
+ * @req: request handle
+ * @src: source scatter / gather list
+ * @dst: destination scatter / gather list
+ * @nbytes: number of bytes to process from @src
+ * @iv: IV for the cipher operation which must comply with the IV size defined
+ *      by crypto_ablkcipher_ivsize
+ *
+ * This function allows setting of the source data and destination data
+ * scatter / gather lists.
+ *
+ * For encryption, the source is treated as the plaintext and the
+ * destination is the ciphertext. For a decryption operation, the use is
+ * reversed - the source is the ciphertext and the destination is the plaintext.
+ */
+static inline void ablkcipher_request_set_crypt(
+	struct ablkcipher_request *req,
+	struct scatterlist *src, struct scatterlist *dst,
+	unsigned int nbytes, void *iv)
+{
+	req->src = src;
+	req->dst = dst;
+	req->nbytes = nbytes;
+	req->info = iv;
+}
+
+/**
+ * DOC: Synchronous Block Cipher API
+ *
+ * The synchronous block cipher API is used with the ciphers of type
+ * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
+ *
+ * Synchronous calls, have a context in the tfm. But since a single tfm can be
+ * used in multiple calls and in parallel, this info should not be changeable
+ * (unless a lock is used). This applies, for example, to the symmetric key.
+ * However, the IV is changeable, so there is an iv field in blkcipher_tfm
+ * structure for synchronous blkcipher api. So, its the only state info that can
+ * be kept for synchronous calls without using a big lock across a tfm.
+ *
+ * The block cipher API allows the use of a complete cipher, i.e. a cipher
+ * consisting of a template (a block chaining mode) and a single block cipher
+ * primitive (e.g. AES).
+ *
+ * The plaintext data buffer and the ciphertext data buffer are pointed to
+ * by using scatter/gather lists. The cipher operation is performed
+ * on all segments of the provided scatter/gather lists.
+ *
+ * The kernel crypto API supports a cipher operation "in-place" which means that
+ * the caller may provide the same scatter/gather list for the plaintext and
+ * cipher text. After the completion of the cipher operation, the plaintext
+ * data is replaced with the ciphertext data in case of an encryption and vice
+ * versa for a decryption. The caller must ensure that the scatter/gather lists
+ * for the output data point to sufficiently large buffers, i.e. multiples of
+ * the block size of the cipher.
+ */
+
+static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
+	struct crypto_tfm *tfm)
+{
+	return (struct crypto_blkcipher *)tfm;
+}
+
+static inline struct crypto_blkcipher *crypto_blkcipher_cast(
+	struct crypto_tfm *tfm)
+{
+	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
+	return __crypto_blkcipher_cast(tfm);
+}
+
+/**
+ * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
+ * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
+ *	      blkcipher cipher
+ * @type: specifies the type of the cipher
+ * @mask: specifies the mask for the cipher
+ *
+ * Allocate a cipher handle for a block cipher. The returned struct
+ * crypto_blkcipher is the cipher handle that is required for any subsequent
+ * API invocation for that block cipher.
+ *
+ * Return: allocated cipher handle in case of success; IS_ERR() is true in case
+ *	   of an error, PTR_ERR() returns the error code.
+ */
+static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
+	const char *alg_name, u32 type, u32 mask)
+{
+	type &= ~CRYPTO_ALG_TYPE_MASK;
+	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
+	mask |= CRYPTO_ALG_TYPE_MASK;
+
+	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
+}
+
+static inline struct crypto_tfm *crypto_blkcipher_tfm(
+	struct crypto_blkcipher *tfm)
+{
+	return &tfm->base;
+}
+
+/**
+ * crypto_free_blkcipher() - zeroize and free the block cipher handle
+ * @tfm: cipher handle to be freed
+ */
+static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
+{
+	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
+}
+
+/**
+ * crypto_has_blkcipher() - Search for the availability of a block cipher
+ * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
+ *	      block cipher
+ * @type: specifies the type of the cipher
+ * @mask: specifies the mask for the cipher
+ *
+ * Return: true when the block cipher is known to the kernel crypto API; false
+ *	   otherwise
+ */
+static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
+{
+	type &= ~CRYPTO_ALG_TYPE_MASK;
+	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
+	mask |= CRYPTO_ALG_TYPE_MASK;
+
+	return crypto_has_alg(alg_name, type, mask);
+}
+
+/**
+ * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
+ * @tfm: cipher handle
+ *
+ * Return: The character string holding the name of the cipher
+ */
+static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
+{
+	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
+}
+
+static inline struct blkcipher_tfm *crypto_blkcipher_crt(
+	struct crypto_blkcipher *tfm)
+{
+	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
+}
+
+static inline struct blkcipher_alg *crypto_blkcipher_alg(
+	struct crypto_blkcipher *tfm)
+{
+	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
+}
+
+/**
+ * crypto_blkcipher_ivsize() - obtain IV size
+ * @tfm: cipher handle
+ *
+ * The size of the IV for the block cipher referenced by the cipher handle is
+ * returned. This IV size may be zero if the cipher does not need an IV.
+ *
+ * Return: IV size in bytes
+ */
+static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
+{
+	return crypto_blkcipher_alg(tfm)->ivsize;
+}
+
+/**
+ * crypto_blkcipher_blocksize() - obtain block size of cipher
+ * @tfm: cipher handle
+ *
+ * The block size for the block cipher referenced with the cipher handle is
+ * returned. The caller may use that information to allocate appropriate
+ * memory for the data returned by the encryption or decryption operation.
+ *
+ * Return: block size of cipher
+ */
+static inline unsigned int crypto_blkcipher_blocksize(
+	struct crypto_blkcipher *tfm)
+{
+	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
+}
+
+static inline unsigned int crypto_blkcipher_alignmask(
+	struct crypto_blkcipher *tfm)
+{
+	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
+}
+
+static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
+{
+	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
+}
+
+static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
+					      u32 flags)
+{
+	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
+}
+
+static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
+						u32 flags)
+{
+	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
+}
+
+/**
+ * crypto_blkcipher_setkey() - set key for cipher
+ * @tfm: cipher handle
+ * @key: buffer holding the key
+ * @keylen: length of the key in bytes
+ *
+ * The caller provided key is set for the block cipher referenced by the cipher
+ * handle.
+ *
+ * Note, the key length determines the cipher type. Many block ciphers implement
+ * different cipher modes depending on the key size, such as AES-128 vs AES-192
+ * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
+ * is performed.
+ *
+ * Return: 0 if the setting of the key was successful; < 0 if an error occurred
+ */
+static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
+					  const u8 *key, unsigned int keylen)
+{
+	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
+						 key, keylen);
+}
+
+/**
+ * crypto_blkcipher_encrypt() - encrypt plaintext
+ * @desc: reference to the block cipher handle with meta data
+ * @dst: scatter/gather list that is filled by the cipher operation with the
+ *	ciphertext
+ * @src: scatter/gather list that holds the plaintext
+ * @nbytes: number of bytes of the plaintext to encrypt.
+ *
+ * Encrypt plaintext data using the IV set by the caller with a preceding
+ * call of crypto_blkcipher_set_iv.
+ *
+ * The blkcipher_desc data structure must be filled by the caller and can
+ * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
+ * with the block cipher handle; desc.flags is filled with either
+ * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
+ *
+ * Return: 0 if the cipher operation was successful; < 0 if an error occurred
+ */
+static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
+					   struct scatterlist *dst,
+					   struct scatterlist *src,
+					   unsigned int nbytes)
+{
+	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
+	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
+}
+
+/**
+ * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
+ * @desc: reference to the block cipher handle with meta data
+ * @dst: scatter/gather list that is filled by the cipher operation with the
+ *	ciphertext
+ * @src: scatter/gather list that holds the plaintext
+ * @nbytes: number of bytes of the plaintext to encrypt.
+ *
+ * Encrypt plaintext data with the use of an IV that is solely used for this
+ * cipher operation. Any previously set IV is not used.
+ *
+ * The blkcipher_desc data structure must be filled by the caller and can
+ * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
+ * with the block cipher handle; desc.info is filled with the IV to be used for
+ * the current operation; desc.flags is filled with either
+ * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
+ *
+ * Return: 0 if the cipher operation was successful; < 0 if an error occurred
+ */
+static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
+					      struct scatterlist *dst,
+					      struct scatterlist *src,
+					      unsigned int nbytes)
+{
+	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
+}
+
+/**
+ * crypto_blkcipher_decrypt() - decrypt ciphertext
+ * @desc: reference to the block cipher handle with meta data
+ * @dst: scatter/gather list that is filled by the cipher operation with the
+ *	plaintext
+ * @src: scatter/gather list that holds the ciphertext
+ * @nbytes: number of bytes of the ciphertext to decrypt.
+ *
+ * Decrypt ciphertext data using the IV set by the caller with a preceding
+ * call of crypto_blkcipher_set_iv.
+ *
+ * The blkcipher_desc data structure must be filled by the caller as documented
+ * for the crypto_blkcipher_encrypt call above.
+ *
+ * Return: 0 if the cipher operation was successful; < 0 if an error occurred
+ *
+ */
+static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
+					   struct scatterlist *dst,
+					   struct scatterlist *src,
+					   unsigned int nbytes)
+{
+	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
+	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
+}
+
+/**
+ * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
+ * @desc: reference to the block cipher handle with meta data
+ * @dst: scatter/gather list that is filled by the cipher operation with the
+ *	plaintext
+ * @src: scatter/gather list that holds the ciphertext
+ * @nbytes: number of bytes of the ciphertext to decrypt.
+ *
+ * Decrypt ciphertext data with the use of an IV that is solely used for this
+ * cipher operation. Any previously set IV is not used.
+ *
+ * The blkcipher_desc data structure must be filled by the caller as documented
+ * for the crypto_blkcipher_encrypt_iv call above.
+ *
+ * Return: 0 if the cipher operation was successful; < 0 if an error occurred
+ */
+static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
+					      struct scatterlist *dst,
+					      struct scatterlist *src,
+					      unsigned int nbytes)
+{
+	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
+}
+
+/**
+ * crypto_blkcipher_set_iv() - set IV for cipher
+ * @tfm: cipher handle
+ * @src: buffer holding the IV
+ * @len: length of the IV in bytes
+ *
+ * The caller provided IV is set for the block cipher referenced by the cipher
+ * handle.
+ */
+static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
+					   const u8 *src, unsigned int len)
+{
+	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
+}
+
+/**
+ * crypto_blkcipher_get_iv() - obtain IV from cipher
+ * @tfm: cipher handle
+ * @dst: buffer filled with the IV
+ * @len: length of the buffer dst
+ *
+ * The caller can obtain the IV set for the block cipher referenced by the
+ * cipher handle and store it into the user-provided buffer. If the buffer
+ * has an insufficient space, the IV is truncated to fit the buffer.
+ */
+static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
+					   u8 *dst, unsigned int len)
+{
+	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
+}
+
+/**
+ * DOC: Single Block Cipher API
+ *
+ * The single block cipher API is used with the ciphers of type
+ * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
+ *
+ * Using the single block cipher API calls, operations with the basic cipher
+ * primitive can be implemented. These cipher primitives exclude any block
+ * chaining operations including IV handling.
+ *
+ * The purpose of this single block cipher API is to support the implementation
+ * of templates or other concepts that only need to perform the cipher operation
+ * on one block at a time. Templates invoke the underlying cipher primitive
+ * block-wise and process either the input or the output data of these cipher
+ * operations.
+ */
+
+static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
+{
+	return (struct crypto_cipher *)tfm;
+}
+
+static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
+{
+	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
+	return __crypto_cipher_cast(tfm);
+}
+
+/**
+ * crypto_alloc_cipher() - allocate single block cipher handle
+ * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
+ *	     single block cipher
+ * @type: specifies the type of the cipher
+ * @mask: specifies the mask for the cipher
+ *
+ * Allocate a cipher handle for a single block cipher. The returned struct
+ * crypto_cipher is the cipher handle that is required for any subsequent API
+ * invocation for that single block cipher.
+ *
+ * Return: allocated cipher handle in case of success; IS_ERR() is true in case
+ *	   of an error, PTR_ERR() returns the error code.
+ */
+static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
+							u32 type, u32 mask)
+{
+	type &= ~CRYPTO_ALG_TYPE_MASK;
+	type |= CRYPTO_ALG_TYPE_CIPHER;
+	mask |= CRYPTO_ALG_TYPE_MASK;
+
+	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
+}
+
+static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
+{
+	return &tfm->base;
+}
+
+/**
+ * crypto_free_cipher() - zeroize and free the single block cipher handle
+ * @tfm: cipher handle to be freed
+ */
+static inline void crypto_free_cipher(struct crypto_cipher *tfm)
+{
+	crypto_free_tfm(crypto_cipher_tfm(tfm));
+}
+
+/**
+ * crypto_has_cipher() - Search for the availability of a single block cipher
+ * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
+ *	     single block cipher
+ * @type: specifies the type of the cipher
+ * @mask: specifies the mask for the cipher
+ *
+ * Return: true when the single block cipher is known to the kernel crypto API;
+ *	   false otherwise
+ */
+static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
+{
+	type &= ~CRYPTO_ALG_TYPE_MASK;
+	type |= CRYPTO_ALG_TYPE_CIPHER;
+	mask |= CRYPTO_ALG_TYPE_MASK;
+
+	return crypto_has_alg(alg_name, type, mask);
+}
+
+static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
+{
+	return &crypto_cipher_tfm(tfm)->crt_cipher;
+}
+
+/**
+ * crypto_cipher_blocksize() - obtain block size for cipher
+ * @tfm: cipher handle
+ *
+ * The block size for the single block cipher referenced with the cipher handle
+ * tfm is returned. The caller may use that information to allocate appropriate
+ * memory for the data returned by the encryption or decryption operation
+ *
+ * Return: block size of cipher
+ */
+static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
+{
+	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
+}
+
+static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
+{
+	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
+}
+
+static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
+{
+	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
+}
+
+static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
+					   u32 flags)
+{
+	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
+}
+
+static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
+					     u32 flags)
+{
+	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
+}
+
+/**
+ * crypto_cipher_setkey() - set key for cipher
+ * @tfm: cipher handle
+ * @key: buffer holding the key
+ * @keylen: length of the key in bytes
+ *
+ * The caller provided key is set for the single block cipher referenced by the
+ * cipher handle.
+ *
+ * Note, the key length determines the cipher type. Many block ciphers implement
+ * different cipher modes depending on the key size, such as AES-128 vs AES-192
+ * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
+ * is performed.
+ *
+ * Return: 0 if the setting of the key was successful; < 0 if an error occurred
+ */
+static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
+                                       const u8 *key, unsigned int keylen)
+{
+	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
+						  key, keylen);
+}
+
+/**
+ * crypto_cipher_encrypt_one() - encrypt one block of plaintext
+ * @tfm: cipher handle
+ * @dst: points to the buffer that will be filled with the ciphertext
+ * @src: buffer holding the plaintext to be encrypted
+ *
+ * Invoke the encryption operation of one block. The caller must ensure that
+ * the plaintext and ciphertext buffers are at least one block in size.
+ */
+static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
+					     u8 *dst, const u8 *src)
+{
+	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
+						dst, src);
+}
+
+/**
+ * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
+ * @tfm: cipher handle
+ * @dst: points to the buffer that will be filled with the plaintext
+ * @src: buffer holding the ciphertext to be decrypted
+ *
+ * Invoke the decryption operation of one block. The caller must ensure that
+ * the plaintext and ciphertext buffers are at least one block in size.
+ */
+static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
+					     u8 *dst, const u8 *src)
+{
+	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
+						dst, src);
+}
+
+static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
+{
+	return (struct crypto_comp *)tfm;
+}
+
+static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
+{
+	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
+	       CRYPTO_ALG_TYPE_MASK);
+	return __crypto_comp_cast(tfm);
+}
+
+static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
+						    u32 type, u32 mask)
+{
+	type &= ~CRYPTO_ALG_TYPE_MASK;
+	type |= CRYPTO_ALG_TYPE_COMPRESS;
+	mask |= CRYPTO_ALG_TYPE_MASK;
+
+	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
+}
+
+static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
+{
+	return &tfm->base;
+}
+
+static inline void crypto_free_comp(struct crypto_comp *tfm)
+{
+	crypto_free_tfm(crypto_comp_tfm(tfm));
+}
+
+static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
+{
+	type &= ~CRYPTO_ALG_TYPE_MASK;
+	type |= CRYPTO_ALG_TYPE_COMPRESS;
+	mask |= CRYPTO_ALG_TYPE_MASK;
+
+	return crypto_has_alg(alg_name, type, mask);
+}
+
+static inline const char *crypto_comp_name(struct crypto_comp *tfm)
+{
+	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
+}
+
+static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
+{
+	return &crypto_comp_tfm(tfm)->crt_compress;
+}
+
+static inline int crypto_comp_compress(struct crypto_comp *tfm,
+                                       const u8 *src, unsigned int slen,
+                                       u8 *dst, unsigned int *dlen)
+{
+	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
+						  src, slen, dst, dlen);
+}
+
+static inline int crypto_comp_decompress(struct crypto_comp *tfm,
+                                         const u8 *src, unsigned int slen,
+                                         u8 *dst, unsigned int *dlen)
+{
+	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
+						    src, slen, dst, dlen);
+}
+
+#endif	/* _LINUX_CRYPTO_H */
+