v4.19.13 snapshot.
diff --git a/fs/xfs/xfs_trans_buf.c b/fs/xfs/xfs_trans_buf.c
new file mode 100644
index 0000000..286a287
--- /dev/null
+++ b/fs/xfs/xfs_trans_buf.c
@@ -0,0 +1,765 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_buf_item.h"
+#include "xfs_trans_priv.h"
+#include "xfs_error.h"
+#include "xfs_trace.h"
+
+/*
+ * Check to see if a buffer matching the given parameters is already
+ * a part of the given transaction.
+ */
+STATIC struct xfs_buf *
+xfs_trans_buf_item_match(
+	struct xfs_trans	*tp,
+	struct xfs_buftarg	*target,
+	struct xfs_buf_map	*map,
+	int			nmaps)
+{
+	struct xfs_log_item	*lip;
+	struct xfs_buf_log_item	*blip;
+	int			len = 0;
+	int			i;
+
+	for (i = 0; i < nmaps; i++)
+		len += map[i].bm_len;
+
+	list_for_each_entry(lip, &tp->t_items, li_trans) {
+		blip = (struct xfs_buf_log_item *)lip;
+		if (blip->bli_item.li_type == XFS_LI_BUF &&
+		    blip->bli_buf->b_target == target &&
+		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
+		    blip->bli_buf->b_length == len) {
+			ASSERT(blip->bli_buf->b_map_count == nmaps);
+			return blip->bli_buf;
+		}
+	}
+
+	return NULL;
+}
+
+/*
+ * Add the locked buffer to the transaction.
+ *
+ * The buffer must be locked, and it cannot be associated with any
+ * transaction.
+ *
+ * If the buffer does not yet have a buf log item associated with it,
+ * then allocate one for it.  Then add the buf item to the transaction.
+ */
+STATIC void
+_xfs_trans_bjoin(
+	struct xfs_trans	*tp,
+	struct xfs_buf		*bp,
+	int			reset_recur)
+{
+	struct xfs_buf_log_item	*bip;
+
+	ASSERT(bp->b_transp == NULL);
+
+	/*
+	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
+	 * it doesn't have one yet, then allocate one and initialize it.
+	 * The checks to see if one is there are in xfs_buf_item_init().
+	 */
+	xfs_buf_item_init(bp, tp->t_mountp);
+	bip = bp->b_log_item;
+	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
+	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
+	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
+	if (reset_recur)
+		bip->bli_recur = 0;
+
+	/*
+	 * Take a reference for this transaction on the buf item.
+	 */
+	atomic_inc(&bip->bli_refcount);
+
+	/*
+	 * Attach the item to the transaction so we can find it in
+	 * xfs_trans_get_buf() and friends.
+	 */
+	xfs_trans_add_item(tp, &bip->bli_item);
+	bp->b_transp = tp;
+
+}
+
+void
+xfs_trans_bjoin(
+	struct xfs_trans	*tp,
+	struct xfs_buf		*bp)
+{
+	_xfs_trans_bjoin(tp, bp, 0);
+	trace_xfs_trans_bjoin(bp->b_log_item);
+}
+
+/*
+ * Get and lock the buffer for the caller if it is not already
+ * locked within the given transaction.  If it is already locked
+ * within the transaction, just increment its lock recursion count
+ * and return a pointer to it.
+ *
+ * If the transaction pointer is NULL, make this just a normal
+ * get_buf() call.
+ */
+struct xfs_buf *
+xfs_trans_get_buf_map(
+	struct xfs_trans	*tp,
+	struct xfs_buftarg	*target,
+	struct xfs_buf_map	*map,
+	int			nmaps,
+	xfs_buf_flags_t		flags)
+{
+	xfs_buf_t		*bp;
+	struct xfs_buf_log_item	*bip;
+
+	if (!tp)
+		return xfs_buf_get_map(target, map, nmaps, flags);
+
+	/*
+	 * If we find the buffer in the cache with this transaction
+	 * pointer in its b_fsprivate2 field, then we know we already
+	 * have it locked.  In this case we just increment the lock
+	 * recursion count and return the buffer to the caller.
+	 */
+	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
+	if (bp != NULL) {
+		ASSERT(xfs_buf_islocked(bp));
+		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
+			xfs_buf_stale(bp);
+			bp->b_flags |= XBF_DONE;
+		}
+
+		ASSERT(bp->b_transp == tp);
+		bip = bp->b_log_item;
+		ASSERT(bip != NULL);
+		ASSERT(atomic_read(&bip->bli_refcount) > 0);
+		bip->bli_recur++;
+		trace_xfs_trans_get_buf_recur(bip);
+		return bp;
+	}
+
+	bp = xfs_buf_get_map(target, map, nmaps, flags);
+	if (bp == NULL) {
+		return NULL;
+	}
+
+	ASSERT(!bp->b_error);
+
+	_xfs_trans_bjoin(tp, bp, 1);
+	trace_xfs_trans_get_buf(bp->b_log_item);
+	return bp;
+}
+
+/*
+ * Get and lock the superblock buffer of this file system for the
+ * given transaction.
+ *
+ * We don't need to use incore_match() here, because the superblock
+ * buffer is a private buffer which we keep a pointer to in the
+ * mount structure.
+ */
+xfs_buf_t *
+xfs_trans_getsb(
+	xfs_trans_t		*tp,
+	struct xfs_mount	*mp,
+	int			flags)
+{
+	xfs_buf_t		*bp;
+	struct xfs_buf_log_item	*bip;
+
+	/*
+	 * Default to just trying to lock the superblock buffer
+	 * if tp is NULL.
+	 */
+	if (tp == NULL)
+		return xfs_getsb(mp, flags);
+
+	/*
+	 * If the superblock buffer already has this transaction
+	 * pointer in its b_fsprivate2 field, then we know we already
+	 * have it locked.  In this case we just increment the lock
+	 * recursion count and return the buffer to the caller.
+	 */
+	bp = mp->m_sb_bp;
+	if (bp->b_transp == tp) {
+		bip = bp->b_log_item;
+		ASSERT(bip != NULL);
+		ASSERT(atomic_read(&bip->bli_refcount) > 0);
+		bip->bli_recur++;
+		trace_xfs_trans_getsb_recur(bip);
+		return bp;
+	}
+
+	bp = xfs_getsb(mp, flags);
+	if (bp == NULL)
+		return NULL;
+
+	_xfs_trans_bjoin(tp, bp, 1);
+	trace_xfs_trans_getsb(bp->b_log_item);
+	return bp;
+}
+
+/*
+ * Get and lock the buffer for the caller if it is not already
+ * locked within the given transaction.  If it has not yet been
+ * read in, read it from disk. If it is already locked
+ * within the transaction and already read in, just increment its
+ * lock recursion count and return a pointer to it.
+ *
+ * If the transaction pointer is NULL, make this just a normal
+ * read_buf() call.
+ */
+int
+xfs_trans_read_buf_map(
+	struct xfs_mount	*mp,
+	struct xfs_trans	*tp,
+	struct xfs_buftarg	*target,
+	struct xfs_buf_map	*map,
+	int			nmaps,
+	xfs_buf_flags_t		flags,
+	struct xfs_buf		**bpp,
+	const struct xfs_buf_ops *ops)
+{
+	struct xfs_buf		*bp = NULL;
+	struct xfs_buf_log_item	*bip;
+	int			error;
+
+	*bpp = NULL;
+	/*
+	 * If we find the buffer in the cache with this transaction
+	 * pointer in its b_fsprivate2 field, then we know we already
+	 * have it locked.  If it is already read in we just increment
+	 * the lock recursion count and return the buffer to the caller.
+	 * If the buffer is not yet read in, then we read it in, increment
+	 * the lock recursion count, and return it to the caller.
+	 */
+	if (tp)
+		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
+	if (bp) {
+		ASSERT(xfs_buf_islocked(bp));
+		ASSERT(bp->b_transp == tp);
+		ASSERT(bp->b_log_item != NULL);
+		ASSERT(!bp->b_error);
+		ASSERT(bp->b_flags & XBF_DONE);
+
+		/*
+		 * We never locked this buf ourselves, so we shouldn't
+		 * brelse it either. Just get out.
+		 */
+		if (XFS_FORCED_SHUTDOWN(mp)) {
+			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
+			return -EIO;
+		}
+
+		bip = bp->b_log_item;
+		bip->bli_recur++;
+
+		ASSERT(atomic_read(&bip->bli_refcount) > 0);
+		trace_xfs_trans_read_buf_recur(bip);
+		*bpp = bp;
+		return 0;
+	}
+
+	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
+	if (!bp) {
+		if (!(flags & XBF_TRYLOCK))
+			return -ENOMEM;
+		return tp ? 0 : -EAGAIN;
+	}
+
+	/*
+	 * If we've had a read error, then the contents of the buffer are
+	 * invalid and should not be used. To ensure that a followup read tries
+	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
+	 * mark the buffer stale. This ensures that anyone who has a current
+	 * reference to the buffer will interpret it's contents correctly and
+	 * future cache lookups will also treat it as an empty, uninitialised
+	 * buffer.
+	 */
+	if (bp->b_error) {
+		error = bp->b_error;
+		if (!XFS_FORCED_SHUTDOWN(mp))
+			xfs_buf_ioerror_alert(bp, __func__);
+		bp->b_flags &= ~XBF_DONE;
+		xfs_buf_stale(bp);
+
+		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
+			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
+		xfs_buf_relse(bp);
+
+		/* bad CRC means corrupted metadata */
+		if (error == -EFSBADCRC)
+			error = -EFSCORRUPTED;
+		return error;
+	}
+
+	if (XFS_FORCED_SHUTDOWN(mp)) {
+		xfs_buf_relse(bp);
+		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
+		return -EIO;
+	}
+
+	if (tp) {
+		_xfs_trans_bjoin(tp, bp, 1);
+		trace_xfs_trans_read_buf(bp->b_log_item);
+	}
+	*bpp = bp;
+	return 0;
+
+}
+
+/*
+ * Release a buffer previously joined to the transaction. If the buffer is
+ * modified within this transaction, decrement the recursion count but do not
+ * release the buffer even if the count goes to 0. If the buffer is not modified
+ * within the transaction, decrement the recursion count and release the buffer
+ * if the recursion count goes to 0.
+ *
+ * If the buffer is to be released and it was not already dirty before this
+ * transaction began, then also free the buf_log_item associated with it.
+ *
+ * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
+ */
+void
+xfs_trans_brelse(
+	struct xfs_trans	*tp,
+	struct xfs_buf		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+
+	if (!tp) {
+		xfs_buf_relse(bp);
+		return;
+	}
+
+	trace_xfs_trans_brelse(bip);
+	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	/*
+	 * If the release is for a recursive lookup, then decrement the count
+	 * and return.
+	 */
+	if (bip->bli_recur > 0) {
+		bip->bli_recur--;
+		return;
+	}
+
+	/*
+	 * If the buffer is invalidated or dirty in this transaction, we can't
+	 * release it until we commit.
+	 */
+	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
+		return;
+	if (bip->bli_flags & XFS_BLI_STALE)
+		return;
+
+	/*
+	 * Unlink the log item from the transaction and clear the hold flag, if
+	 * set. We wouldn't want the next user of the buffer to get confused.
+	 */
+	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
+	xfs_trans_del_item(&bip->bli_item);
+	bip->bli_flags &= ~XFS_BLI_HOLD;
+
+	/* drop the reference to the bli */
+	xfs_buf_item_put(bip);
+
+	bp->b_transp = NULL;
+	xfs_buf_relse(bp);
+}
+
+/*
+ * Mark the buffer as not needing to be unlocked when the buf item's
+ * iop_unlock() routine is called.  The buffer must already be locked
+ * and associated with the given transaction.
+ */
+/* ARGSUSED */
+void
+xfs_trans_bhold(
+	xfs_trans_t		*tp,
+	xfs_buf_t		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
+	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	bip->bli_flags |= XFS_BLI_HOLD;
+	trace_xfs_trans_bhold(bip);
+}
+
+/*
+ * Cancel the previous buffer hold request made on this buffer
+ * for this transaction.
+ */
+void
+xfs_trans_bhold_release(
+	xfs_trans_t		*tp,
+	xfs_buf_t		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
+	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
+
+	bip->bli_flags &= ~XFS_BLI_HOLD;
+	trace_xfs_trans_bhold_release(bip);
+}
+
+/*
+ * Mark a buffer dirty in the transaction.
+ */
+void
+xfs_trans_dirty_buf(
+	struct xfs_trans	*tp,
+	struct xfs_buf		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(bp->b_iodone == NULL ||
+	       bp->b_iodone == xfs_buf_iodone_callbacks);
+
+	/*
+	 * Mark the buffer as needing to be written out eventually,
+	 * and set its iodone function to remove the buffer's buf log
+	 * item from the AIL and free it when the buffer is flushed
+	 * to disk.  See xfs_buf_attach_iodone() for more details
+	 * on li_cb and xfs_buf_iodone_callbacks().
+	 * If we end up aborting this transaction, we trap this buffer
+	 * inside the b_bdstrat callback so that this won't get written to
+	 * disk.
+	 */
+	bp->b_flags |= XBF_DONE;
+
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+	bp->b_iodone = xfs_buf_iodone_callbacks;
+	bip->bli_item.li_cb = xfs_buf_iodone;
+
+	/*
+	 * If we invalidated the buffer within this transaction, then
+	 * cancel the invalidation now that we're dirtying the buffer
+	 * again.  There are no races with the code in xfs_buf_item_unpin(),
+	 * because we have a reference to the buffer this entire time.
+	 */
+	if (bip->bli_flags & XFS_BLI_STALE) {
+		bip->bli_flags &= ~XFS_BLI_STALE;
+		ASSERT(bp->b_flags & XBF_STALE);
+		bp->b_flags &= ~XBF_STALE;
+		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
+	}
+	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
+
+	tp->t_flags |= XFS_TRANS_DIRTY;
+	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
+}
+
+/*
+ * This is called to mark bytes first through last inclusive of the given
+ * buffer as needing to be logged when the transaction is committed.
+ * The buffer must already be associated with the given transaction.
+ *
+ * First and last are numbers relative to the beginning of this buffer,
+ * so the first byte in the buffer is numbered 0 regardless of the
+ * value of b_blkno.
+ */
+void
+xfs_trans_log_buf(
+	struct xfs_trans	*tp,
+	struct xfs_buf		*bp,
+	uint			first,
+	uint			last)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(first <= last && last < BBTOB(bp->b_length));
+	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
+
+	xfs_trans_dirty_buf(tp, bp);
+
+	trace_xfs_trans_log_buf(bip);
+	xfs_buf_item_log(bip, first, last);
+}
+
+
+/*
+ * Invalidate a buffer that is being used within a transaction.
+ *
+ * Typically this is because the blocks in the buffer are being freed, so we
+ * need to prevent it from being written out when we're done.  Allowing it
+ * to be written again might overwrite data in the free blocks if they are
+ * reallocated to a file.
+ *
+ * We prevent the buffer from being written out by marking it stale.  We can't
+ * get rid of the buf log item at this point because the buffer may still be
+ * pinned by another transaction.  If that is the case, then we'll wait until
+ * the buffer is committed to disk for the last time (we can tell by the ref
+ * count) and free it in xfs_buf_item_unpin().  Until that happens we will
+ * keep the buffer locked so that the buffer and buf log item are not reused.
+ *
+ * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
+ * the buf item.  This will be used at recovery time to determine that copies
+ * of the buffer in the log before this should not be replayed.
+ *
+ * We mark the item descriptor and the transaction dirty so that we'll hold
+ * the buffer until after the commit.
+ *
+ * Since we're invalidating the buffer, we also clear the state about which
+ * parts of the buffer have been logged.  We also clear the flag indicating
+ * that this is an inode buffer since the data in the buffer will no longer
+ * be valid.
+ *
+ * We set the stale bit in the buffer as well since we're getting rid of it.
+ */
+void
+xfs_trans_binval(
+	xfs_trans_t		*tp,
+	xfs_buf_t		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+	int			i;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	trace_xfs_trans_binval(bip);
+
+	if (bip->bli_flags & XFS_BLI_STALE) {
+		/*
+		 * If the buffer is already invalidated, then
+		 * just return.
+		 */
+		ASSERT(bp->b_flags & XBF_STALE);
+		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
+		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
+		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
+		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
+		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
+		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
+		return;
+	}
+
+	xfs_buf_stale(bp);
+
+	bip->bli_flags |= XFS_BLI_STALE;
+	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
+	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
+	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
+	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
+	for (i = 0; i < bip->bli_format_count; i++) {
+		memset(bip->bli_formats[i].blf_data_map, 0,
+		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
+	}
+	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
+	tp->t_flags |= XFS_TRANS_DIRTY;
+}
+
+/*
+ * This call is used to indicate that the buffer contains on-disk inodes which
+ * must be handled specially during recovery.  They require special handling
+ * because only the di_next_unlinked from the inodes in the buffer should be
+ * recovered.  The rest of the data in the buffer is logged via the inodes
+ * themselves.
+ *
+ * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
+ * transferred to the buffer's log format structure so that we'll know what to
+ * do at recovery time.
+ */
+void
+xfs_trans_inode_buf(
+	xfs_trans_t		*tp,
+	xfs_buf_t		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	bip->bli_flags |= XFS_BLI_INODE_BUF;
+	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
+}
+
+/*
+ * This call is used to indicate that the buffer is going to
+ * be staled and was an inode buffer. This means it gets
+ * special processing during unpin - where any inodes
+ * associated with the buffer should be removed from ail.
+ * There is also special processing during recovery,
+ * any replay of the inodes in the buffer needs to be
+ * prevented as the buffer may have been reused.
+ */
+void
+xfs_trans_stale_inode_buf(
+	xfs_trans_t		*tp,
+	xfs_buf_t		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	bip->bli_flags |= XFS_BLI_STALE_INODE;
+	bip->bli_item.li_cb = xfs_buf_iodone;
+	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
+}
+
+/*
+ * Mark the buffer as being one which contains newly allocated
+ * inodes.  We need to make sure that even if this buffer is
+ * relogged as an 'inode buf' we still recover all of the inode
+ * images in the face of a crash.  This works in coordination with
+ * xfs_buf_item_committed() to ensure that the buffer remains in the
+ * AIL at its original location even after it has been relogged.
+ */
+/* ARGSUSED */
+void
+xfs_trans_inode_alloc_buf(
+	xfs_trans_t		*tp,
+	xfs_buf_t		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
+	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
+}
+
+/*
+ * Mark the buffer as ordered for this transaction. This means that the contents
+ * of the buffer are not recorded in the transaction but it is tracked in the
+ * AIL as though it was. This allows us to record logical changes in
+ * transactions rather than the physical changes we make to the buffer without
+ * changing writeback ordering constraints of metadata buffers.
+ */
+bool
+xfs_trans_ordered_buf(
+	struct xfs_trans	*tp,
+	struct xfs_buf		*bp)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	if (xfs_buf_item_dirty_format(bip))
+		return false;
+
+	bip->bli_flags |= XFS_BLI_ORDERED;
+	trace_xfs_buf_item_ordered(bip);
+
+	/*
+	 * We don't log a dirty range of an ordered buffer but it still needs
+	 * to be marked dirty and that it has been logged.
+	 */
+	xfs_trans_dirty_buf(tp, bp);
+	return true;
+}
+
+/*
+ * Set the type of the buffer for log recovery so that it can correctly identify
+ * and hence attach the correct buffer ops to the buffer after replay.
+ */
+void
+xfs_trans_buf_set_type(
+	struct xfs_trans	*tp,
+	struct xfs_buf		*bp,
+	enum xfs_blft		type)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	if (!tp)
+		return;
+
+	ASSERT(bp->b_transp == tp);
+	ASSERT(bip != NULL);
+	ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+	xfs_blft_to_flags(&bip->__bli_format, type);
+}
+
+void
+xfs_trans_buf_copy_type(
+	struct xfs_buf		*dst_bp,
+	struct xfs_buf		*src_bp)
+{
+	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
+	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
+	enum xfs_blft		type;
+
+	type = xfs_blft_from_flags(&sbip->__bli_format);
+	xfs_blft_to_flags(&dbip->__bli_format, type);
+}
+
+/*
+ * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
+ * dquots. However, unlike in inode buffer recovery, dquot buffers get
+ * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
+ * The only thing that makes dquot buffers different from regular
+ * buffers is that we must not replay dquot bufs when recovering
+ * if a _corresponding_ quotaoff has happened. We also have to distinguish
+ * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
+ * can be turned off independently.
+ */
+/* ARGSUSED */
+void
+xfs_trans_dquot_buf(
+	xfs_trans_t		*tp,
+	xfs_buf_t		*bp,
+	uint			type)
+{
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
+	       type == XFS_BLF_PDQUOT_BUF ||
+	       type == XFS_BLF_GDQUOT_BUF);
+
+	bip->__bli_format.blf_flags |= type;
+
+	switch (type) {
+	case XFS_BLF_UDQUOT_BUF:
+		type = XFS_BLFT_UDQUOT_BUF;
+		break;
+	case XFS_BLF_PDQUOT_BUF:
+		type = XFS_BLFT_PDQUOT_BUF;
+		break;
+	case XFS_BLF_GDQUOT_BUF:
+		type = XFS_BLFT_GDQUOT_BUF;
+		break;
+	default:
+		type = XFS_BLFT_UNKNOWN_BUF;
+		break;
+	}
+
+	xfs_trans_buf_set_type(tp, bp, type);
+}