v4.19.13 snapshot.
diff --git a/fs/xfs/xfs_extfree_item.c b/fs/xfs/xfs_extfree_item.c
new file mode 100644
index 0000000..d9da66c
--- /dev/null
+++ b/fs/xfs/xfs_extfree_item.c
@@ -0,0 +1,546 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_bit.h"
+#include "xfs_mount.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
+#include "xfs_buf_item.h"
+#include "xfs_extfree_item.h"
+#include "xfs_log.h"
+#include "xfs_btree.h"
+#include "xfs_rmap.h"
+
+
+kmem_zone_t	*xfs_efi_zone;
+kmem_zone_t	*xfs_efd_zone;
+
+static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
+{
+	return container_of(lip, struct xfs_efi_log_item, efi_item);
+}
+
+void
+xfs_efi_item_free(
+	struct xfs_efi_log_item	*efip)
+{
+	kmem_free(efip->efi_item.li_lv_shadow);
+	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
+		kmem_free(efip);
+	else
+		kmem_zone_free(xfs_efi_zone, efip);
+}
+
+/*
+ * Freeing the efi requires that we remove it from the AIL if it has already
+ * been placed there. However, the EFI may not yet have been placed in the AIL
+ * when called by xfs_efi_release() from EFD processing due to the ordering of
+ * committed vs unpin operations in bulk insert operations. Hence the reference
+ * count to ensure only the last caller frees the EFI.
+ */
+void
+xfs_efi_release(
+	struct xfs_efi_log_item	*efip)
+{
+	ASSERT(atomic_read(&efip->efi_refcount) > 0);
+	if (atomic_dec_and_test(&efip->efi_refcount)) {
+		xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
+		xfs_efi_item_free(efip);
+	}
+}
+
+/*
+ * This returns the number of iovecs needed to log the given efi item.
+ * We only need 1 iovec for an efi item.  It just logs the efi_log_format
+ * structure.
+ */
+static inline int
+xfs_efi_item_sizeof(
+	struct xfs_efi_log_item *efip)
+{
+	return sizeof(struct xfs_efi_log_format) +
+	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
+}
+
+STATIC void
+xfs_efi_item_size(
+	struct xfs_log_item	*lip,
+	int			*nvecs,
+	int			*nbytes)
+{
+	*nvecs += 1;
+	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
+}
+
+/*
+ * This is called to fill in the vector of log iovecs for the
+ * given efi log item. We use only 1 iovec, and we point that
+ * at the efi_log_format structure embedded in the efi item.
+ * It is at this point that we assert that all of the extent
+ * slots in the efi item have been filled.
+ */
+STATIC void
+xfs_efi_item_format(
+	struct xfs_log_item	*lip,
+	struct xfs_log_vec	*lv)
+{
+	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
+	struct xfs_log_iovec	*vecp = NULL;
+
+	ASSERT(atomic_read(&efip->efi_next_extent) ==
+				efip->efi_format.efi_nextents);
+
+	efip->efi_format.efi_type = XFS_LI_EFI;
+	efip->efi_format.efi_size = 1;
+
+	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
+			&efip->efi_format,
+			xfs_efi_item_sizeof(efip));
+}
+
+
+/*
+ * Pinning has no meaning for an efi item, so just return.
+ */
+STATIC void
+xfs_efi_item_pin(
+	struct xfs_log_item	*lip)
+{
+}
+
+/*
+ * The unpin operation is the last place an EFI is manipulated in the log. It is
+ * either inserted in the AIL or aborted in the event of a log I/O error. In
+ * either case, the EFI transaction has been successfully committed to make it
+ * this far. Therefore, we expect whoever committed the EFI to either construct
+ * and commit the EFD or drop the EFD's reference in the event of error. Simply
+ * drop the log's EFI reference now that the log is done with it.
+ */
+STATIC void
+xfs_efi_item_unpin(
+	struct xfs_log_item	*lip,
+	int			remove)
+{
+	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
+	xfs_efi_release(efip);
+}
+
+/*
+ * Efi items have no locking or pushing.  However, since EFIs are pulled from
+ * the AIL when their corresponding EFDs are committed to disk, their situation
+ * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
+ * will eventually flush the log.  This should help in getting the EFI out of
+ * the AIL.
+ */
+STATIC uint
+xfs_efi_item_push(
+	struct xfs_log_item	*lip,
+	struct list_head	*buffer_list)
+{
+	return XFS_ITEM_PINNED;
+}
+
+/*
+ * The EFI has been either committed or aborted if the transaction has been
+ * cancelled. If the transaction was cancelled, an EFD isn't going to be
+ * constructed and thus we free the EFI here directly.
+ */
+STATIC void
+xfs_efi_item_unlock(
+	struct xfs_log_item	*lip)
+{
+	if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
+		xfs_efi_release(EFI_ITEM(lip));
+}
+
+/*
+ * The EFI is logged only once and cannot be moved in the log, so simply return
+ * the lsn at which it's been logged.
+ */
+STATIC xfs_lsn_t
+xfs_efi_item_committed(
+	struct xfs_log_item	*lip,
+	xfs_lsn_t		lsn)
+{
+	return lsn;
+}
+
+/*
+ * The EFI dependency tracking op doesn't do squat.  It can't because
+ * it doesn't know where the free extent is coming from.  The dependency
+ * tracking has to be handled by the "enclosing" metadata object.  For
+ * example, for inodes, the inode is locked throughout the extent freeing
+ * so the dependency should be recorded there.
+ */
+STATIC void
+xfs_efi_item_committing(
+	struct xfs_log_item	*lip,
+	xfs_lsn_t		lsn)
+{
+}
+
+/*
+ * This is the ops vector shared by all efi log items.
+ */
+static const struct xfs_item_ops xfs_efi_item_ops = {
+	.iop_size	= xfs_efi_item_size,
+	.iop_format	= xfs_efi_item_format,
+	.iop_pin	= xfs_efi_item_pin,
+	.iop_unpin	= xfs_efi_item_unpin,
+	.iop_unlock	= xfs_efi_item_unlock,
+	.iop_committed	= xfs_efi_item_committed,
+	.iop_push	= xfs_efi_item_push,
+	.iop_committing = xfs_efi_item_committing
+};
+
+
+/*
+ * Allocate and initialize an efi item with the given number of extents.
+ */
+struct xfs_efi_log_item *
+xfs_efi_init(
+	struct xfs_mount	*mp,
+	uint			nextents)
+
+{
+	struct xfs_efi_log_item	*efip;
+	uint			size;
+
+	ASSERT(nextents > 0);
+	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
+		size = (uint)(sizeof(xfs_efi_log_item_t) +
+			((nextents - 1) * sizeof(xfs_extent_t)));
+		efip = kmem_zalloc(size, KM_SLEEP);
+	} else {
+		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
+	}
+
+	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
+	efip->efi_format.efi_nextents = nextents;
+	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
+	atomic_set(&efip->efi_next_extent, 0);
+	atomic_set(&efip->efi_refcount, 2);
+
+	return efip;
+}
+
+/*
+ * Copy an EFI format buffer from the given buf, and into the destination
+ * EFI format structure.
+ * The given buffer can be in 32 bit or 64 bit form (which has different padding),
+ * one of which will be the native format for this kernel.
+ * It will handle the conversion of formats if necessary.
+ */
+int
+xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
+{
+	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
+	uint i;
+	uint len = sizeof(xfs_efi_log_format_t) + 
+		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
+	uint len32 = sizeof(xfs_efi_log_format_32_t) + 
+		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
+	uint len64 = sizeof(xfs_efi_log_format_64_t) + 
+		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
+
+	if (buf->i_len == len) {
+		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
+		return 0;
+	} else if (buf->i_len == len32) {
+		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
+
+		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
+		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
+		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
+		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
+		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
+			dst_efi_fmt->efi_extents[i].ext_start =
+				src_efi_fmt_32->efi_extents[i].ext_start;
+			dst_efi_fmt->efi_extents[i].ext_len =
+				src_efi_fmt_32->efi_extents[i].ext_len;
+		}
+		return 0;
+	} else if (buf->i_len == len64) {
+		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
+
+		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
+		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
+		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
+		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
+		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
+			dst_efi_fmt->efi_extents[i].ext_start =
+				src_efi_fmt_64->efi_extents[i].ext_start;
+			dst_efi_fmt->efi_extents[i].ext_len =
+				src_efi_fmt_64->efi_extents[i].ext_len;
+		}
+		return 0;
+	}
+	return -EFSCORRUPTED;
+}
+
+static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
+{
+	return container_of(lip, struct xfs_efd_log_item, efd_item);
+}
+
+STATIC void
+xfs_efd_item_free(struct xfs_efd_log_item *efdp)
+{
+	kmem_free(efdp->efd_item.li_lv_shadow);
+	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
+		kmem_free(efdp);
+	else
+		kmem_zone_free(xfs_efd_zone, efdp);
+}
+
+/*
+ * This returns the number of iovecs needed to log the given efd item.
+ * We only need 1 iovec for an efd item.  It just logs the efd_log_format
+ * structure.
+ */
+static inline int
+xfs_efd_item_sizeof(
+	struct xfs_efd_log_item *efdp)
+{
+	return sizeof(xfs_efd_log_format_t) +
+	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
+}
+
+STATIC void
+xfs_efd_item_size(
+	struct xfs_log_item	*lip,
+	int			*nvecs,
+	int			*nbytes)
+{
+	*nvecs += 1;
+	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
+}
+
+/*
+ * This is called to fill in the vector of log iovecs for the
+ * given efd log item. We use only 1 iovec, and we point that
+ * at the efd_log_format structure embedded in the efd item.
+ * It is at this point that we assert that all of the extent
+ * slots in the efd item have been filled.
+ */
+STATIC void
+xfs_efd_item_format(
+	struct xfs_log_item	*lip,
+	struct xfs_log_vec	*lv)
+{
+	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
+	struct xfs_log_iovec	*vecp = NULL;
+
+	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
+
+	efdp->efd_format.efd_type = XFS_LI_EFD;
+	efdp->efd_format.efd_size = 1;
+
+	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
+			&efdp->efd_format,
+			xfs_efd_item_sizeof(efdp));
+}
+
+/*
+ * Pinning has no meaning for an efd item, so just return.
+ */
+STATIC void
+xfs_efd_item_pin(
+	struct xfs_log_item	*lip)
+{
+}
+
+/*
+ * Since pinning has no meaning for an efd item, unpinning does
+ * not either.
+ */
+STATIC void
+xfs_efd_item_unpin(
+	struct xfs_log_item	*lip,
+	int			remove)
+{
+}
+
+/*
+ * There isn't much you can do to push on an efd item.  It is simply stuck
+ * waiting for the log to be flushed to disk.
+ */
+STATIC uint
+xfs_efd_item_push(
+	struct xfs_log_item	*lip,
+	struct list_head	*buffer_list)
+{
+	return XFS_ITEM_PINNED;
+}
+
+/*
+ * The EFD is either committed or aborted if the transaction is cancelled. If
+ * the transaction is cancelled, drop our reference to the EFI and free the EFD.
+ */
+STATIC void
+xfs_efd_item_unlock(
+	struct xfs_log_item	*lip)
+{
+	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
+
+	if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
+		xfs_efi_release(efdp->efd_efip);
+		xfs_efd_item_free(efdp);
+	}
+}
+
+/*
+ * When the efd item is committed to disk, all we need to do is delete our
+ * reference to our partner efi item and then free ourselves. Since we're
+ * freeing ourselves we must return -1 to keep the transaction code from further
+ * referencing this item.
+ */
+STATIC xfs_lsn_t
+xfs_efd_item_committed(
+	struct xfs_log_item	*lip,
+	xfs_lsn_t		lsn)
+{
+	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
+
+	/*
+	 * Drop the EFI reference regardless of whether the EFD has been
+	 * aborted. Once the EFD transaction is constructed, it is the sole
+	 * responsibility of the EFD to release the EFI (even if the EFI is
+	 * aborted due to log I/O error).
+	 */
+	xfs_efi_release(efdp->efd_efip);
+	xfs_efd_item_free(efdp);
+
+	return (xfs_lsn_t)-1;
+}
+
+/*
+ * The EFD dependency tracking op doesn't do squat.  It can't because
+ * it doesn't know where the free extent is coming from.  The dependency
+ * tracking has to be handled by the "enclosing" metadata object.  For
+ * example, for inodes, the inode is locked throughout the extent freeing
+ * so the dependency should be recorded there.
+ */
+STATIC void
+xfs_efd_item_committing(
+	struct xfs_log_item	*lip,
+	xfs_lsn_t		lsn)
+{
+}
+
+/*
+ * This is the ops vector shared by all efd log items.
+ */
+static const struct xfs_item_ops xfs_efd_item_ops = {
+	.iop_size	= xfs_efd_item_size,
+	.iop_format	= xfs_efd_item_format,
+	.iop_pin	= xfs_efd_item_pin,
+	.iop_unpin	= xfs_efd_item_unpin,
+	.iop_unlock	= xfs_efd_item_unlock,
+	.iop_committed	= xfs_efd_item_committed,
+	.iop_push	= xfs_efd_item_push,
+	.iop_committing = xfs_efd_item_committing
+};
+
+/*
+ * Allocate and initialize an efd item with the given number of extents.
+ */
+struct xfs_efd_log_item *
+xfs_efd_init(
+	struct xfs_mount	*mp,
+	struct xfs_efi_log_item	*efip,
+	uint			nextents)
+
+{
+	struct xfs_efd_log_item	*efdp;
+	uint			size;
+
+	ASSERT(nextents > 0);
+	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
+		size = (uint)(sizeof(xfs_efd_log_item_t) +
+			((nextents - 1) * sizeof(xfs_extent_t)));
+		efdp = kmem_zalloc(size, KM_SLEEP);
+	} else {
+		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
+	}
+
+	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
+	efdp->efd_efip = efip;
+	efdp->efd_format.efd_nextents = nextents;
+	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
+
+	return efdp;
+}
+
+/*
+ * Process an extent free intent item that was recovered from
+ * the log.  We need to free the extents that it describes.
+ */
+int
+xfs_efi_recover(
+	struct xfs_mount	*mp,
+	struct xfs_efi_log_item	*efip)
+{
+	struct xfs_efd_log_item	*efdp;
+	struct xfs_trans	*tp;
+	int			i;
+	int			error = 0;
+	xfs_extent_t		*extp;
+	xfs_fsblock_t		startblock_fsb;
+	struct xfs_owner_info	oinfo;
+
+	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
+
+	/*
+	 * First check the validity of the extents described by the
+	 * EFI.  If any are bad, then assume that all are bad and
+	 * just toss the EFI.
+	 */
+	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
+		extp = &efip->efi_format.efi_extents[i];
+		startblock_fsb = XFS_BB_TO_FSB(mp,
+				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
+		if (startblock_fsb == 0 ||
+		    extp->ext_len == 0 ||
+		    startblock_fsb >= mp->m_sb.sb_dblocks ||
+		    extp->ext_len >= mp->m_sb.sb_agblocks) {
+			/*
+			 * This will pull the EFI from the AIL and
+			 * free the memory associated with it.
+			 */
+			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
+			xfs_efi_release(efip);
+			return -EIO;
+		}
+	}
+
+	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
+	if (error)
+		return error;
+	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
+
+	xfs_rmap_any_owner_update(&oinfo);
+	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
+		extp = &efip->efi_format.efi_extents[i];
+		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
+					      extp->ext_len, &oinfo, false);
+		if (error)
+			goto abort_error;
+
+	}
+
+	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
+	error = xfs_trans_commit(tp);
+	return error;
+
+abort_error:
+	xfs_trans_cancel(tp);
+	return error;
+}