v4.19.13 snapshot.
diff --git a/fs/xfs/libxfs/xfs_btree.c b/fs/xfs/libxfs/xfs_btree.c
new file mode 100644
index 0000000..34c6d7b
--- /dev/null
+++ b/fs/xfs/libxfs/xfs_btree.c
@@ -0,0 +1,4947 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_bit.h"
+#include "xfs_mount.h"
+#include "xfs_defer.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_inode_item.h"
+#include "xfs_buf_item.h"
+#include "xfs_btree.h"
+#include "xfs_errortag.h"
+#include "xfs_error.h"
+#include "xfs_trace.h"
+#include "xfs_cksum.h"
+#include "xfs_alloc.h"
+#include "xfs_log.h"
+
+/*
+ * Cursor allocation zone.
+ */
+kmem_zone_t	*xfs_btree_cur_zone;
+
+/*
+ * Btree magic numbers.
+ */
+static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
+	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
+	  XFS_FIBT_MAGIC, 0 },
+	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
+	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
+	  XFS_REFC_CRC_MAGIC }
+};
+
+uint32_t
+xfs_btree_magic(
+	int			crc,
+	xfs_btnum_t		btnum)
+{
+	uint32_t		magic = xfs_magics[crc][btnum];
+
+	/* Ensure we asked for crc for crc-only magics. */
+	ASSERT(magic != 0);
+	return magic;
+}
+
+/*
+ * Check a long btree block header.  Return the address of the failing check,
+ * or NULL if everything is ok.
+ */
+xfs_failaddr_t
+__xfs_btree_check_lblock(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	int			level,
+	struct xfs_buf		*bp)
+{
+	struct xfs_mount	*mp = cur->bc_mp;
+	xfs_btnum_t		btnum = cur->bc_btnum;
+	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
+
+	if (crc) {
+		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
+			return __this_address;
+		if (block->bb_u.l.bb_blkno !=
+		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
+			return __this_address;
+		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
+			return __this_address;
+	}
+
+	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
+		return __this_address;
+	if (be16_to_cpu(block->bb_level) != level)
+		return __this_address;
+	if (be16_to_cpu(block->bb_numrecs) >
+	    cur->bc_ops->get_maxrecs(cur, level))
+		return __this_address;
+	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
+	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
+			level + 1))
+		return __this_address;
+	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
+	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
+			level + 1))
+		return __this_address;
+
+	return NULL;
+}
+
+/* Check a long btree block header. */
+static int
+xfs_btree_check_lblock(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	int			level,
+	struct xfs_buf		*bp)
+{
+	struct xfs_mount	*mp = cur->bc_mp;
+	xfs_failaddr_t		fa;
+
+	fa = __xfs_btree_check_lblock(cur, block, level, bp);
+	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
+			XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
+		if (bp)
+			trace_xfs_btree_corrupt(bp, _RET_IP_);
+		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
+		return -EFSCORRUPTED;
+	}
+	return 0;
+}
+
+/*
+ * Check a short btree block header.  Return the address of the failing check,
+ * or NULL if everything is ok.
+ */
+xfs_failaddr_t
+__xfs_btree_check_sblock(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	int			level,
+	struct xfs_buf		*bp)
+{
+	struct xfs_mount	*mp = cur->bc_mp;
+	xfs_btnum_t		btnum = cur->bc_btnum;
+	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
+
+	if (crc) {
+		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
+			return __this_address;
+		if (block->bb_u.s.bb_blkno !=
+		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
+			return __this_address;
+	}
+
+	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
+		return __this_address;
+	if (be16_to_cpu(block->bb_level) != level)
+		return __this_address;
+	if (be16_to_cpu(block->bb_numrecs) >
+	    cur->bc_ops->get_maxrecs(cur, level))
+		return __this_address;
+	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
+	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
+			level + 1))
+		return __this_address;
+	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
+	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
+			level + 1))
+		return __this_address;
+
+	return NULL;
+}
+
+/* Check a short btree block header. */
+STATIC int
+xfs_btree_check_sblock(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	int			level,
+	struct xfs_buf		*bp)
+{
+	struct xfs_mount	*mp = cur->bc_mp;
+	xfs_failaddr_t		fa;
+
+	fa = __xfs_btree_check_sblock(cur, block, level, bp);
+	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
+			XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
+		if (bp)
+			trace_xfs_btree_corrupt(bp, _RET_IP_);
+		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
+		return -EFSCORRUPTED;
+	}
+	return 0;
+}
+
+/*
+ * Debug routine: check that block header is ok.
+ */
+int
+xfs_btree_check_block(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	struct xfs_btree_block	*block,	/* generic btree block pointer */
+	int			level,	/* level of the btree block */
+	struct xfs_buf		*bp)	/* buffer containing block, if any */
+{
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		return xfs_btree_check_lblock(cur, block, level, bp);
+	else
+		return xfs_btree_check_sblock(cur, block, level, bp);
+}
+
+/* Check that this long pointer is valid and points within the fs. */
+bool
+xfs_btree_check_lptr(
+	struct xfs_btree_cur	*cur,
+	xfs_fsblock_t		fsbno,
+	int			level)
+{
+	if (level <= 0)
+		return false;
+	return xfs_verify_fsbno(cur->bc_mp, fsbno);
+}
+
+/* Check that this short pointer is valid and points within the AG. */
+bool
+xfs_btree_check_sptr(
+	struct xfs_btree_cur	*cur,
+	xfs_agblock_t		agbno,
+	int			level)
+{
+	if (level <= 0)
+		return false;
+	return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
+}
+
+/*
+ * Check that a given (indexed) btree pointer at a certain level of a
+ * btree is valid and doesn't point past where it should.
+ */
+static int
+xfs_btree_check_ptr(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr,
+	int			index,
+	int			level)
+{
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
+		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
+				level))
+			return 0;
+		xfs_err(cur->bc_mp,
+"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
+				cur->bc_private.b.ip->i_ino,
+				cur->bc_private.b.whichfork, cur->bc_btnum,
+				level, index);
+	} else {
+		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
+				level))
+			return 0;
+		xfs_err(cur->bc_mp,
+"AG %u: Corrupt btree %d pointer at level %d index %d.",
+				cur->bc_private.a.agno, cur->bc_btnum,
+				level, index);
+	}
+
+	return -EFSCORRUPTED;
+}
+
+#ifdef DEBUG
+# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
+#else
+# define xfs_btree_debug_check_ptr(...)	(0)
+#endif
+
+/*
+ * Calculate CRC on the whole btree block and stuff it into the
+ * long-form btree header.
+ *
+ * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
+ * it into the buffer so recovery knows what the last modification was that made
+ * it to disk.
+ */
+void
+xfs_btree_lblock_calc_crc(
+	struct xfs_buf		*bp)
+{
+	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
+		return;
+	if (bip)
+		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
+	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
+}
+
+bool
+xfs_btree_lblock_verify_crc(
+	struct xfs_buf		*bp)
+{
+	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+	struct xfs_mount	*mp = bp->b_target->bt_mount;
+
+	if (xfs_sb_version_hascrc(&mp->m_sb)) {
+		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
+			return false;
+		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
+	}
+
+	return true;
+}
+
+/*
+ * Calculate CRC on the whole btree block and stuff it into the
+ * short-form btree header.
+ *
+ * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
+ * it into the buffer so recovery knows what the last modification was that made
+ * it to disk.
+ */
+void
+xfs_btree_sblock_calc_crc(
+	struct xfs_buf		*bp)
+{
+	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+	struct xfs_buf_log_item	*bip = bp->b_log_item;
+
+	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
+		return;
+	if (bip)
+		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
+	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
+}
+
+bool
+xfs_btree_sblock_verify_crc(
+	struct xfs_buf		*bp)
+{
+	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
+	struct xfs_mount	*mp = bp->b_target->bt_mount;
+
+	if (xfs_sb_version_hascrc(&mp->m_sb)) {
+		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
+			return __this_address;
+		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
+	}
+
+	return true;
+}
+
+static int
+xfs_btree_free_block(
+	struct xfs_btree_cur	*cur,
+	struct xfs_buf		*bp)
+{
+	int			error;
+
+	error = cur->bc_ops->free_block(cur, bp);
+	if (!error) {
+		xfs_trans_binval(cur->bc_tp, bp);
+		XFS_BTREE_STATS_INC(cur, free);
+	}
+	return error;
+}
+
+/*
+ * Delete the btree cursor.
+ */
+void
+xfs_btree_del_cursor(
+	xfs_btree_cur_t	*cur,		/* btree cursor */
+	int		error)		/* del because of error */
+{
+	int		i;		/* btree level */
+
+	/*
+	 * Clear the buffer pointers, and release the buffers.
+	 * If we're doing this in the face of an error, we
+	 * need to make sure to inspect all of the entries
+	 * in the bc_bufs array for buffers to be unlocked.
+	 * This is because some of the btree code works from
+	 * level n down to 0, and if we get an error along
+	 * the way we won't have initialized all the entries
+	 * down to 0.
+	 */
+	for (i = 0; i < cur->bc_nlevels; i++) {
+		if (cur->bc_bufs[i])
+			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
+		else if (!error)
+			break;
+	}
+	/*
+	 * Can't free a bmap cursor without having dealt with the
+	 * allocated indirect blocks' accounting.
+	 */
+	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
+	       cur->bc_private.b.allocated == 0);
+	/*
+	 * Free the cursor.
+	 */
+	kmem_zone_free(xfs_btree_cur_zone, cur);
+}
+
+/*
+ * Duplicate the btree cursor.
+ * Allocate a new one, copy the record, re-get the buffers.
+ */
+int					/* error */
+xfs_btree_dup_cursor(
+	xfs_btree_cur_t	*cur,		/* input cursor */
+	xfs_btree_cur_t	**ncur)		/* output cursor */
+{
+	xfs_buf_t	*bp;		/* btree block's buffer pointer */
+	int		error;		/* error return value */
+	int		i;		/* level number of btree block */
+	xfs_mount_t	*mp;		/* mount structure for filesystem */
+	xfs_btree_cur_t	*new;		/* new cursor value */
+	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
+
+	tp = cur->bc_tp;
+	mp = cur->bc_mp;
+
+	/*
+	 * Allocate a new cursor like the old one.
+	 */
+	new = cur->bc_ops->dup_cursor(cur);
+
+	/*
+	 * Copy the record currently in the cursor.
+	 */
+	new->bc_rec = cur->bc_rec;
+
+	/*
+	 * For each level current, re-get the buffer and copy the ptr value.
+	 */
+	for (i = 0; i < new->bc_nlevels; i++) {
+		new->bc_ptrs[i] = cur->bc_ptrs[i];
+		new->bc_ra[i] = cur->bc_ra[i];
+		bp = cur->bc_bufs[i];
+		if (bp) {
+			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
+						   XFS_BUF_ADDR(bp), mp->m_bsize,
+						   0, &bp,
+						   cur->bc_ops->buf_ops);
+			if (error) {
+				xfs_btree_del_cursor(new, error);
+				*ncur = NULL;
+				return error;
+			}
+		}
+		new->bc_bufs[i] = bp;
+	}
+	*ncur = new;
+	return 0;
+}
+
+/*
+ * XFS btree block layout and addressing:
+ *
+ * There are two types of blocks in the btree: leaf and non-leaf blocks.
+ *
+ * The leaf record start with a header then followed by records containing
+ * the values.  A non-leaf block also starts with the same header, and
+ * then first contains lookup keys followed by an equal number of pointers
+ * to the btree blocks at the previous level.
+ *
+ *		+--------+-------+-------+-------+-------+-------+-------+
+ * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
+ *		+--------+-------+-------+-------+-------+-------+-------+
+ *
+ *		+--------+-------+-------+-------+-------+-------+-------+
+ * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
+ *		+--------+-------+-------+-------+-------+-------+-------+
+ *
+ * The header is called struct xfs_btree_block for reasons better left unknown
+ * and comes in different versions for short (32bit) and long (64bit) block
+ * pointers.  The record and key structures are defined by the btree instances
+ * and opaque to the btree core.  The block pointers are simple disk endian
+ * integers, available in a short (32bit) and long (64bit) variant.
+ *
+ * The helpers below calculate the offset of a given record, key or pointer
+ * into a btree block (xfs_btree_*_offset) or return a pointer to the given
+ * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
+ * inside the btree block is done using indices starting at one, not zero!
+ *
+ * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
+ * overlapping intervals.  In such a tree, records are still sorted lowest to
+ * highest and indexed by the smallest key value that refers to the record.
+ * However, nodes are different: each pointer has two associated keys -- one
+ * indexing the lowest key available in the block(s) below (the same behavior
+ * as the key in a regular btree) and another indexing the highest key
+ * available in the block(s) below.  Because records are /not/ sorted by the
+ * highest key, all leaf block updates require us to compute the highest key
+ * that matches any record in the leaf and to recursively update the high keys
+ * in the nodes going further up in the tree, if necessary.  Nodes look like
+ * this:
+ *
+ *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
+ * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
+ *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
+ *
+ * To perform an interval query on an overlapped tree, perform the usual
+ * depth-first search and use the low and high keys to decide if we can skip
+ * that particular node.  If a leaf node is reached, return the records that
+ * intersect the interval.  Note that an interval query may return numerous
+ * entries.  For a non-overlapped tree, simply search for the record associated
+ * with the lowest key and iterate forward until a non-matching record is
+ * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
+ * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
+ * more detail.
+ *
+ * Why do we care about overlapping intervals?  Let's say you have a bunch of
+ * reverse mapping records on a reflink filesystem:
+ *
+ * 1: +- file A startblock B offset C length D -----------+
+ * 2:      +- file E startblock F offset G length H --------------+
+ * 3:      +- file I startblock F offset J length K --+
+ * 4:                                                        +- file L... --+
+ *
+ * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
+ * we'd simply increment the length of record 1.  But how do we find the record
+ * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
+ * record 3 because the keys are ordered first by startblock.  An interval
+ * query would return records 1 and 2 because they both overlap (B+D-1), and
+ * from that we can pick out record 1 as the appropriate left neighbor.
+ *
+ * In the non-overlapped case you can do a LE lookup and decrement the cursor
+ * because a record's interval must end before the next record.
+ */
+
+/*
+ * Return size of the btree block header for this btree instance.
+ */
+static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
+{
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
+		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
+			return XFS_BTREE_LBLOCK_CRC_LEN;
+		return XFS_BTREE_LBLOCK_LEN;
+	}
+	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
+		return XFS_BTREE_SBLOCK_CRC_LEN;
+	return XFS_BTREE_SBLOCK_LEN;
+}
+
+/*
+ * Return size of btree block pointers for this btree instance.
+ */
+static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
+{
+	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
+		sizeof(__be64) : sizeof(__be32);
+}
+
+/*
+ * Calculate offset of the n-th record in a btree block.
+ */
+STATIC size_t
+xfs_btree_rec_offset(
+	struct xfs_btree_cur	*cur,
+	int			n)
+{
+	return xfs_btree_block_len(cur) +
+		(n - 1) * cur->bc_ops->rec_len;
+}
+
+/*
+ * Calculate offset of the n-th key in a btree block.
+ */
+STATIC size_t
+xfs_btree_key_offset(
+	struct xfs_btree_cur	*cur,
+	int			n)
+{
+	return xfs_btree_block_len(cur) +
+		(n - 1) * cur->bc_ops->key_len;
+}
+
+/*
+ * Calculate offset of the n-th high key in a btree block.
+ */
+STATIC size_t
+xfs_btree_high_key_offset(
+	struct xfs_btree_cur	*cur,
+	int			n)
+{
+	return xfs_btree_block_len(cur) +
+		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
+}
+
+/*
+ * Calculate offset of the n-th block pointer in a btree block.
+ */
+STATIC size_t
+xfs_btree_ptr_offset(
+	struct xfs_btree_cur	*cur,
+	int			n,
+	int			level)
+{
+	return xfs_btree_block_len(cur) +
+		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
+		(n - 1) * xfs_btree_ptr_len(cur);
+}
+
+/*
+ * Return a pointer to the n-th record in the btree block.
+ */
+union xfs_btree_rec *
+xfs_btree_rec_addr(
+	struct xfs_btree_cur	*cur,
+	int			n,
+	struct xfs_btree_block	*block)
+{
+	return (union xfs_btree_rec *)
+		((char *)block + xfs_btree_rec_offset(cur, n));
+}
+
+/*
+ * Return a pointer to the n-th key in the btree block.
+ */
+union xfs_btree_key *
+xfs_btree_key_addr(
+	struct xfs_btree_cur	*cur,
+	int			n,
+	struct xfs_btree_block	*block)
+{
+	return (union xfs_btree_key *)
+		((char *)block + xfs_btree_key_offset(cur, n));
+}
+
+/*
+ * Return a pointer to the n-th high key in the btree block.
+ */
+union xfs_btree_key *
+xfs_btree_high_key_addr(
+	struct xfs_btree_cur	*cur,
+	int			n,
+	struct xfs_btree_block	*block)
+{
+	return (union xfs_btree_key *)
+		((char *)block + xfs_btree_high_key_offset(cur, n));
+}
+
+/*
+ * Return a pointer to the n-th block pointer in the btree block.
+ */
+union xfs_btree_ptr *
+xfs_btree_ptr_addr(
+	struct xfs_btree_cur	*cur,
+	int			n,
+	struct xfs_btree_block	*block)
+{
+	int			level = xfs_btree_get_level(block);
+
+	ASSERT(block->bb_level != 0);
+
+	return (union xfs_btree_ptr *)
+		((char *)block + xfs_btree_ptr_offset(cur, n, level));
+}
+
+/*
+ * Get the root block which is stored in the inode.
+ *
+ * For now this btree implementation assumes the btree root is always
+ * stored in the if_broot field of an inode fork.
+ */
+STATIC struct xfs_btree_block *
+xfs_btree_get_iroot(
+	struct xfs_btree_cur	*cur)
+{
+	struct xfs_ifork	*ifp;
+
+	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
+	return (struct xfs_btree_block *)ifp->if_broot;
+}
+
+/*
+ * Retrieve the block pointer from the cursor at the given level.
+ * This may be an inode btree root or from a buffer.
+ */
+struct xfs_btree_block *		/* generic btree block pointer */
+xfs_btree_get_block(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	int			level,	/* level in btree */
+	struct xfs_buf		**bpp)	/* buffer containing the block */
+{
+	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
+	    (level == cur->bc_nlevels - 1)) {
+		*bpp = NULL;
+		return xfs_btree_get_iroot(cur);
+	}
+
+	*bpp = cur->bc_bufs[level];
+	return XFS_BUF_TO_BLOCK(*bpp);
+}
+
+/*
+ * Get a buffer for the block, return it with no data read.
+ * Long-form addressing.
+ */
+xfs_buf_t *				/* buffer for fsbno */
+xfs_btree_get_bufl(
+	xfs_mount_t	*mp,		/* file system mount point */
+	xfs_trans_t	*tp,		/* transaction pointer */
+	xfs_fsblock_t	fsbno,		/* file system block number */
+	uint		lock)		/* lock flags for get_buf */
+{
+	xfs_daddr_t		d;		/* real disk block address */
+
+	ASSERT(fsbno != NULLFSBLOCK);
+	d = XFS_FSB_TO_DADDR(mp, fsbno);
+	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
+}
+
+/*
+ * Get a buffer for the block, return it with no data read.
+ * Short-form addressing.
+ */
+xfs_buf_t *				/* buffer for agno/agbno */
+xfs_btree_get_bufs(
+	xfs_mount_t	*mp,		/* file system mount point */
+	xfs_trans_t	*tp,		/* transaction pointer */
+	xfs_agnumber_t	agno,		/* allocation group number */
+	xfs_agblock_t	agbno,		/* allocation group block number */
+	uint		lock)		/* lock flags for get_buf */
+{
+	xfs_daddr_t		d;		/* real disk block address */
+
+	ASSERT(agno != NULLAGNUMBER);
+	ASSERT(agbno != NULLAGBLOCK);
+	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
+	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
+}
+
+/*
+ * Check for the cursor referring to the last block at the given level.
+ */
+int					/* 1=is last block, 0=not last block */
+xfs_btree_islastblock(
+	xfs_btree_cur_t		*cur,	/* btree cursor */
+	int			level)	/* level to check */
+{
+	struct xfs_btree_block	*block;	/* generic btree block pointer */
+	xfs_buf_t		*bp;	/* buffer containing block */
+
+	block = xfs_btree_get_block(cur, level, &bp);
+	xfs_btree_check_block(cur, block, level, bp);
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
+	else
+		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
+}
+
+/*
+ * Change the cursor to point to the first record at the given level.
+ * Other levels are unaffected.
+ */
+STATIC int				/* success=1, failure=0 */
+xfs_btree_firstrec(
+	xfs_btree_cur_t		*cur,	/* btree cursor */
+	int			level)	/* level to change */
+{
+	struct xfs_btree_block	*block;	/* generic btree block pointer */
+	xfs_buf_t		*bp;	/* buffer containing block */
+
+	/*
+	 * Get the block pointer for this level.
+	 */
+	block = xfs_btree_get_block(cur, level, &bp);
+	if (xfs_btree_check_block(cur, block, level, bp))
+		return 0;
+	/*
+	 * It's empty, there is no such record.
+	 */
+	if (!block->bb_numrecs)
+		return 0;
+	/*
+	 * Set the ptr value to 1, that's the first record/key.
+	 */
+	cur->bc_ptrs[level] = 1;
+	return 1;
+}
+
+/*
+ * Change the cursor to point to the last record in the current block
+ * at the given level.  Other levels are unaffected.
+ */
+STATIC int				/* success=1, failure=0 */
+xfs_btree_lastrec(
+	xfs_btree_cur_t		*cur,	/* btree cursor */
+	int			level)	/* level to change */
+{
+	struct xfs_btree_block	*block;	/* generic btree block pointer */
+	xfs_buf_t		*bp;	/* buffer containing block */
+
+	/*
+	 * Get the block pointer for this level.
+	 */
+	block = xfs_btree_get_block(cur, level, &bp);
+	if (xfs_btree_check_block(cur, block, level, bp))
+		return 0;
+	/*
+	 * It's empty, there is no such record.
+	 */
+	if (!block->bb_numrecs)
+		return 0;
+	/*
+	 * Set the ptr value to numrecs, that's the last record/key.
+	 */
+	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
+	return 1;
+}
+
+/*
+ * Compute first and last byte offsets for the fields given.
+ * Interprets the offsets table, which contains struct field offsets.
+ */
+void
+xfs_btree_offsets(
+	int64_t		fields,		/* bitmask of fields */
+	const short	*offsets,	/* table of field offsets */
+	int		nbits,		/* number of bits to inspect */
+	int		*first,		/* output: first byte offset */
+	int		*last)		/* output: last byte offset */
+{
+	int		i;		/* current bit number */
+	int64_t		imask;		/* mask for current bit number */
+
+	ASSERT(fields != 0);
+	/*
+	 * Find the lowest bit, so the first byte offset.
+	 */
+	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
+		if (imask & fields) {
+			*first = offsets[i];
+			break;
+		}
+	}
+	/*
+	 * Find the highest bit, so the last byte offset.
+	 */
+	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
+		if (imask & fields) {
+			*last = offsets[i + 1] - 1;
+			break;
+		}
+	}
+}
+
+/*
+ * Get a buffer for the block, return it read in.
+ * Long-form addressing.
+ */
+int
+xfs_btree_read_bufl(
+	struct xfs_mount	*mp,		/* file system mount point */
+	struct xfs_trans	*tp,		/* transaction pointer */
+	xfs_fsblock_t		fsbno,		/* file system block number */
+	uint			lock,		/* lock flags for read_buf */
+	struct xfs_buf		**bpp,		/* buffer for fsbno */
+	int			refval,		/* ref count value for buffer */
+	const struct xfs_buf_ops *ops)
+{
+	struct xfs_buf		*bp;		/* return value */
+	xfs_daddr_t		d;		/* real disk block address */
+	int			error;
+
+	if (!xfs_verify_fsbno(mp, fsbno))
+		return -EFSCORRUPTED;
+	d = XFS_FSB_TO_DADDR(mp, fsbno);
+	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
+				   mp->m_bsize, lock, &bp, ops);
+	if (error)
+		return error;
+	if (bp)
+		xfs_buf_set_ref(bp, refval);
+	*bpp = bp;
+	return 0;
+}
+
+/*
+ * Read-ahead the block, don't wait for it, don't return a buffer.
+ * Long-form addressing.
+ */
+/* ARGSUSED */
+void
+xfs_btree_reada_bufl(
+	struct xfs_mount	*mp,		/* file system mount point */
+	xfs_fsblock_t		fsbno,		/* file system block number */
+	xfs_extlen_t		count,		/* count of filesystem blocks */
+	const struct xfs_buf_ops *ops)
+{
+	xfs_daddr_t		d;
+
+	ASSERT(fsbno != NULLFSBLOCK);
+	d = XFS_FSB_TO_DADDR(mp, fsbno);
+	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
+}
+
+/*
+ * Read-ahead the block, don't wait for it, don't return a buffer.
+ * Short-form addressing.
+ */
+/* ARGSUSED */
+void
+xfs_btree_reada_bufs(
+	struct xfs_mount	*mp,		/* file system mount point */
+	xfs_agnumber_t		agno,		/* allocation group number */
+	xfs_agblock_t		agbno,		/* allocation group block number */
+	xfs_extlen_t		count,		/* count of filesystem blocks */
+	const struct xfs_buf_ops *ops)
+{
+	xfs_daddr_t		d;
+
+	ASSERT(agno != NULLAGNUMBER);
+	ASSERT(agbno != NULLAGBLOCK);
+	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
+	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
+}
+
+STATIC int
+xfs_btree_readahead_lblock(
+	struct xfs_btree_cur	*cur,
+	int			lr,
+	struct xfs_btree_block	*block)
+{
+	int			rval = 0;
+	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
+	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
+
+	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
+		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
+				     cur->bc_ops->buf_ops);
+		rval++;
+	}
+
+	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
+		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
+				     cur->bc_ops->buf_ops);
+		rval++;
+	}
+
+	return rval;
+}
+
+STATIC int
+xfs_btree_readahead_sblock(
+	struct xfs_btree_cur	*cur,
+	int			lr,
+	struct xfs_btree_block *block)
+{
+	int			rval = 0;
+	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
+	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
+
+
+	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
+		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
+				     left, 1, cur->bc_ops->buf_ops);
+		rval++;
+	}
+
+	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
+		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
+				     right, 1, cur->bc_ops->buf_ops);
+		rval++;
+	}
+
+	return rval;
+}
+
+/*
+ * Read-ahead btree blocks, at the given level.
+ * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
+ */
+STATIC int
+xfs_btree_readahead(
+	struct xfs_btree_cur	*cur,		/* btree cursor */
+	int			lev,		/* level in btree */
+	int			lr)		/* left/right bits */
+{
+	struct xfs_btree_block	*block;
+
+	/*
+	 * No readahead needed if we are at the root level and the
+	 * btree root is stored in the inode.
+	 */
+	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
+	    (lev == cur->bc_nlevels - 1))
+		return 0;
+
+	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
+		return 0;
+
+	cur->bc_ra[lev] |= lr;
+	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
+
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		return xfs_btree_readahead_lblock(cur, lr, block);
+	return xfs_btree_readahead_sblock(cur, lr, block);
+}
+
+STATIC int
+xfs_btree_ptr_to_daddr(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr,
+	xfs_daddr_t		*daddr)
+{
+	xfs_fsblock_t		fsbno;
+	xfs_agblock_t		agbno;
+	int			error;
+
+	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
+	if (error)
+		return error;
+
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
+		fsbno = be64_to_cpu(ptr->l);
+		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
+	} else {
+		agbno = be32_to_cpu(ptr->s);
+		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
+				agbno);
+	}
+
+	return 0;
+}
+
+/*
+ * Readahead @count btree blocks at the given @ptr location.
+ *
+ * We don't need to care about long or short form btrees here as we have a
+ * method of converting the ptr directly to a daddr available to us.
+ */
+STATIC void
+xfs_btree_readahead_ptr(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr,
+	xfs_extlen_t		count)
+{
+	xfs_daddr_t		daddr;
+
+	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
+		return;
+	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
+			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
+}
+
+/*
+ * Set the buffer for level "lev" in the cursor to bp, releasing
+ * any previous buffer.
+ */
+STATIC void
+xfs_btree_setbuf(
+	xfs_btree_cur_t		*cur,	/* btree cursor */
+	int			lev,	/* level in btree */
+	xfs_buf_t		*bp)	/* new buffer to set */
+{
+	struct xfs_btree_block	*b;	/* btree block */
+
+	if (cur->bc_bufs[lev])
+		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
+	cur->bc_bufs[lev] = bp;
+	cur->bc_ra[lev] = 0;
+
+	b = XFS_BUF_TO_BLOCK(bp);
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
+		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
+			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
+		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
+			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
+	} else {
+		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
+			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
+		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
+			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
+	}
+}
+
+bool
+xfs_btree_ptr_is_null(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr)
+{
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		return ptr->l == cpu_to_be64(NULLFSBLOCK);
+	else
+		return ptr->s == cpu_to_be32(NULLAGBLOCK);
+}
+
+STATIC void
+xfs_btree_set_ptr_null(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr)
+{
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		ptr->l = cpu_to_be64(NULLFSBLOCK);
+	else
+		ptr->s = cpu_to_be32(NULLAGBLOCK);
+}
+
+/*
+ * Get/set/init sibling pointers
+ */
+void
+xfs_btree_get_sibling(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	union xfs_btree_ptr	*ptr,
+	int			lr)
+{
+	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
+
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
+		if (lr == XFS_BB_RIGHTSIB)
+			ptr->l = block->bb_u.l.bb_rightsib;
+		else
+			ptr->l = block->bb_u.l.bb_leftsib;
+	} else {
+		if (lr == XFS_BB_RIGHTSIB)
+			ptr->s = block->bb_u.s.bb_rightsib;
+		else
+			ptr->s = block->bb_u.s.bb_leftsib;
+	}
+}
+
+STATIC void
+xfs_btree_set_sibling(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	union xfs_btree_ptr	*ptr,
+	int			lr)
+{
+	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
+
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
+		if (lr == XFS_BB_RIGHTSIB)
+			block->bb_u.l.bb_rightsib = ptr->l;
+		else
+			block->bb_u.l.bb_leftsib = ptr->l;
+	} else {
+		if (lr == XFS_BB_RIGHTSIB)
+			block->bb_u.s.bb_rightsib = ptr->s;
+		else
+			block->bb_u.s.bb_leftsib = ptr->s;
+	}
+}
+
+void
+xfs_btree_init_block_int(
+	struct xfs_mount	*mp,
+	struct xfs_btree_block	*buf,
+	xfs_daddr_t		blkno,
+	xfs_btnum_t		btnum,
+	__u16			level,
+	__u16			numrecs,
+	__u64			owner,
+	unsigned int		flags)
+{
+	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
+	__u32			magic = xfs_btree_magic(crc, btnum);
+
+	buf->bb_magic = cpu_to_be32(magic);
+	buf->bb_level = cpu_to_be16(level);
+	buf->bb_numrecs = cpu_to_be16(numrecs);
+
+	if (flags & XFS_BTREE_LONG_PTRS) {
+		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
+		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
+		if (crc) {
+			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
+			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
+			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
+			buf->bb_u.l.bb_pad = 0;
+			buf->bb_u.l.bb_lsn = 0;
+		}
+	} else {
+		/* owner is a 32 bit value on short blocks */
+		__u32 __owner = (__u32)owner;
+
+		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
+		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
+		if (crc) {
+			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
+			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
+			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
+			buf->bb_u.s.bb_lsn = 0;
+		}
+	}
+}
+
+void
+xfs_btree_init_block(
+	struct xfs_mount *mp,
+	struct xfs_buf	*bp,
+	xfs_btnum_t	btnum,
+	__u16		level,
+	__u16		numrecs,
+	__u64		owner,
+	unsigned int	flags)
+{
+	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
+				 btnum, level, numrecs, owner, flags);
+}
+
+STATIC void
+xfs_btree_init_block_cur(
+	struct xfs_btree_cur	*cur,
+	struct xfs_buf		*bp,
+	int			level,
+	int			numrecs)
+{
+	__u64			owner;
+
+	/*
+	 * we can pull the owner from the cursor right now as the different
+	 * owners align directly with the pointer size of the btree. This may
+	 * change in future, but is safe for current users of the generic btree
+	 * code.
+	 */
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		owner = cur->bc_private.b.ip->i_ino;
+	else
+		owner = cur->bc_private.a.agno;
+
+	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
+				 cur->bc_btnum, level, numrecs,
+				 owner, cur->bc_flags);
+}
+
+/*
+ * Return true if ptr is the last record in the btree and
+ * we need to track updates to this record.  The decision
+ * will be further refined in the update_lastrec method.
+ */
+STATIC int
+xfs_btree_is_lastrec(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	int			level)
+{
+	union xfs_btree_ptr	ptr;
+
+	if (level > 0)
+		return 0;
+	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
+		return 0;
+
+	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
+	if (!xfs_btree_ptr_is_null(cur, &ptr))
+		return 0;
+	return 1;
+}
+
+STATIC void
+xfs_btree_buf_to_ptr(
+	struct xfs_btree_cur	*cur,
+	struct xfs_buf		*bp,
+	union xfs_btree_ptr	*ptr)
+{
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
+					XFS_BUF_ADDR(bp)));
+	else {
+		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
+					XFS_BUF_ADDR(bp)));
+	}
+}
+
+STATIC void
+xfs_btree_set_refs(
+	struct xfs_btree_cur	*cur,
+	struct xfs_buf		*bp)
+{
+	switch (cur->bc_btnum) {
+	case XFS_BTNUM_BNO:
+	case XFS_BTNUM_CNT:
+		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
+		break;
+	case XFS_BTNUM_INO:
+	case XFS_BTNUM_FINO:
+		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
+		break;
+	case XFS_BTNUM_BMAP:
+		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
+		break;
+	case XFS_BTNUM_RMAP:
+		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
+		break;
+	case XFS_BTNUM_REFC:
+		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
+		break;
+	default:
+		ASSERT(0);
+	}
+}
+
+STATIC int
+xfs_btree_get_buf_block(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr,
+	int			flags,
+	struct xfs_btree_block	**block,
+	struct xfs_buf		**bpp)
+{
+	struct xfs_mount	*mp = cur->bc_mp;
+	xfs_daddr_t		d;
+	int			error;
+
+	/* need to sort out how callers deal with failures first */
+	ASSERT(!(flags & XBF_TRYLOCK));
+
+	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
+	if (error)
+		return error;
+	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
+				 mp->m_bsize, flags);
+
+	if (!*bpp)
+		return -ENOMEM;
+
+	(*bpp)->b_ops = cur->bc_ops->buf_ops;
+	*block = XFS_BUF_TO_BLOCK(*bpp);
+	return 0;
+}
+
+/*
+ * Read in the buffer at the given ptr and return the buffer and
+ * the block pointer within the buffer.
+ */
+STATIC int
+xfs_btree_read_buf_block(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr,
+	int			flags,
+	struct xfs_btree_block	**block,
+	struct xfs_buf		**bpp)
+{
+	struct xfs_mount	*mp = cur->bc_mp;
+	xfs_daddr_t		d;
+	int			error;
+
+	/* need to sort out how callers deal with failures first */
+	ASSERT(!(flags & XBF_TRYLOCK));
+
+	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
+	if (error)
+		return error;
+	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
+				   mp->m_bsize, flags, bpp,
+				   cur->bc_ops->buf_ops);
+	if (error)
+		return error;
+
+	xfs_btree_set_refs(cur, *bpp);
+	*block = XFS_BUF_TO_BLOCK(*bpp);
+	return 0;
+}
+
+/*
+ * Copy keys from one btree block to another.
+ */
+STATIC void
+xfs_btree_copy_keys(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_key	*dst_key,
+	union xfs_btree_key	*src_key,
+	int			numkeys)
+{
+	ASSERT(numkeys >= 0);
+	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
+}
+
+/*
+ * Copy records from one btree block to another.
+ */
+STATIC void
+xfs_btree_copy_recs(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_rec	*dst_rec,
+	union xfs_btree_rec	*src_rec,
+	int			numrecs)
+{
+	ASSERT(numrecs >= 0);
+	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
+}
+
+/*
+ * Copy block pointers from one btree block to another.
+ */
+STATIC void
+xfs_btree_copy_ptrs(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*dst_ptr,
+	union xfs_btree_ptr	*src_ptr,
+	int			numptrs)
+{
+	ASSERT(numptrs >= 0);
+	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
+}
+
+/*
+ * Shift keys one index left/right inside a single btree block.
+ */
+STATIC void
+xfs_btree_shift_keys(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_key	*key,
+	int			dir,
+	int			numkeys)
+{
+	char			*dst_key;
+
+	ASSERT(numkeys >= 0);
+	ASSERT(dir == 1 || dir == -1);
+
+	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
+	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
+}
+
+/*
+ * Shift records one index left/right inside a single btree block.
+ */
+STATIC void
+xfs_btree_shift_recs(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_rec	*rec,
+	int			dir,
+	int			numrecs)
+{
+	char			*dst_rec;
+
+	ASSERT(numrecs >= 0);
+	ASSERT(dir == 1 || dir == -1);
+
+	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
+	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
+}
+
+/*
+ * Shift block pointers one index left/right inside a single btree block.
+ */
+STATIC void
+xfs_btree_shift_ptrs(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_ptr	*ptr,
+	int			dir,
+	int			numptrs)
+{
+	char			*dst_ptr;
+
+	ASSERT(numptrs >= 0);
+	ASSERT(dir == 1 || dir == -1);
+
+	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
+	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
+}
+
+/*
+ * Log key values from the btree block.
+ */
+STATIC void
+xfs_btree_log_keys(
+	struct xfs_btree_cur	*cur,
+	struct xfs_buf		*bp,
+	int			first,
+	int			last)
+{
+
+	if (bp) {
+		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
+		xfs_trans_log_buf(cur->bc_tp, bp,
+				  xfs_btree_key_offset(cur, first),
+				  xfs_btree_key_offset(cur, last + 1) - 1);
+	} else {
+		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
+				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
+	}
+}
+
+/*
+ * Log record values from the btree block.
+ */
+void
+xfs_btree_log_recs(
+	struct xfs_btree_cur	*cur,
+	struct xfs_buf		*bp,
+	int			first,
+	int			last)
+{
+
+	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
+	xfs_trans_log_buf(cur->bc_tp, bp,
+			  xfs_btree_rec_offset(cur, first),
+			  xfs_btree_rec_offset(cur, last + 1) - 1);
+
+}
+
+/*
+ * Log block pointer fields from a btree block (nonleaf).
+ */
+STATIC void
+xfs_btree_log_ptrs(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	struct xfs_buf		*bp,	/* buffer containing btree block */
+	int			first,	/* index of first pointer to log */
+	int			last)	/* index of last pointer to log */
+{
+
+	if (bp) {
+		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+		int			level = xfs_btree_get_level(block);
+
+		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
+		xfs_trans_log_buf(cur->bc_tp, bp,
+				xfs_btree_ptr_offset(cur, first, level),
+				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
+	} else {
+		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
+			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
+	}
+
+}
+
+/*
+ * Log fields from a btree block header.
+ */
+void
+xfs_btree_log_block(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	struct xfs_buf		*bp,	/* buffer containing btree block */
+	int			fields)	/* mask of fields: XFS_BB_... */
+{
+	int			first;	/* first byte offset logged */
+	int			last;	/* last byte offset logged */
+	static const short	soffsets[] = {	/* table of offsets (short) */
+		offsetof(struct xfs_btree_block, bb_magic),
+		offsetof(struct xfs_btree_block, bb_level),
+		offsetof(struct xfs_btree_block, bb_numrecs),
+		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
+		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
+		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
+		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
+		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
+		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
+		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
+		XFS_BTREE_SBLOCK_CRC_LEN
+	};
+	static const short	loffsets[] = {	/* table of offsets (long) */
+		offsetof(struct xfs_btree_block, bb_magic),
+		offsetof(struct xfs_btree_block, bb_level),
+		offsetof(struct xfs_btree_block, bb_numrecs),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
+		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
+		XFS_BTREE_LBLOCK_CRC_LEN
+	};
+
+	if (bp) {
+		int nbits;
+
+		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
+			/*
+			 * We don't log the CRC when updating a btree
+			 * block but instead recreate it during log
+			 * recovery.  As the log buffers have checksums
+			 * of their own this is safe and avoids logging a crc
+			 * update in a lot of places.
+			 */
+			if (fields == XFS_BB_ALL_BITS)
+				fields = XFS_BB_ALL_BITS_CRC;
+			nbits = XFS_BB_NUM_BITS_CRC;
+		} else {
+			nbits = XFS_BB_NUM_BITS;
+		}
+		xfs_btree_offsets(fields,
+				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
+					loffsets : soffsets,
+				  nbits, &first, &last);
+		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
+		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
+	} else {
+		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
+			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
+	}
+}
+
+/*
+ * Increment cursor by one record at the level.
+ * For nonzero levels the leaf-ward information is untouched.
+ */
+int						/* error */
+xfs_btree_increment(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	int			*stat)		/* success/failure */
+{
+	struct xfs_btree_block	*block;
+	union xfs_btree_ptr	ptr;
+	struct xfs_buf		*bp;
+	int			error;		/* error return value */
+	int			lev;
+
+	ASSERT(level < cur->bc_nlevels);
+
+	/* Read-ahead to the right at this level. */
+	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
+
+	/* Get a pointer to the btree block. */
+	block = xfs_btree_get_block(cur, level, &bp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, level, bp);
+	if (error)
+		goto error0;
+#endif
+
+	/* We're done if we remain in the block after the increment. */
+	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
+		goto out1;
+
+	/* Fail if we just went off the right edge of the tree. */
+	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
+	if (xfs_btree_ptr_is_null(cur, &ptr))
+		goto out0;
+
+	XFS_BTREE_STATS_INC(cur, increment);
+
+	/*
+	 * March up the tree incrementing pointers.
+	 * Stop when we don't go off the right edge of a block.
+	 */
+	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
+		block = xfs_btree_get_block(cur, lev, &bp);
+
+#ifdef DEBUG
+		error = xfs_btree_check_block(cur, block, lev, bp);
+		if (error)
+			goto error0;
+#endif
+
+		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
+			break;
+
+		/* Read-ahead the right block for the next loop. */
+		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
+	}
+
+	/*
+	 * If we went off the root then we are either seriously
+	 * confused or have the tree root in an inode.
+	 */
+	if (lev == cur->bc_nlevels) {
+		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
+			goto out0;
+		ASSERT(0);
+		error = -EFSCORRUPTED;
+		goto error0;
+	}
+	ASSERT(lev < cur->bc_nlevels);
+
+	/*
+	 * Now walk back down the tree, fixing up the cursor's buffer
+	 * pointers and key numbers.
+	 */
+	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
+		union xfs_btree_ptr	*ptrp;
+
+		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
+		--lev;
+		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
+		if (error)
+			goto error0;
+
+		xfs_btree_setbuf(cur, lev, bp);
+		cur->bc_ptrs[lev] = 1;
+	}
+out1:
+	*stat = 1;
+	return 0;
+
+out0:
+	*stat = 0;
+	return 0;
+
+error0:
+	return error;
+}
+
+/*
+ * Decrement cursor by one record at the level.
+ * For nonzero levels the leaf-ward information is untouched.
+ */
+int						/* error */
+xfs_btree_decrement(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	int			*stat)		/* success/failure */
+{
+	struct xfs_btree_block	*block;
+	xfs_buf_t		*bp;
+	int			error;		/* error return value */
+	int			lev;
+	union xfs_btree_ptr	ptr;
+
+	ASSERT(level < cur->bc_nlevels);
+
+	/* Read-ahead to the left at this level. */
+	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
+
+	/* We're done if we remain in the block after the decrement. */
+	if (--cur->bc_ptrs[level] > 0)
+		goto out1;
+
+	/* Get a pointer to the btree block. */
+	block = xfs_btree_get_block(cur, level, &bp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, level, bp);
+	if (error)
+		goto error0;
+#endif
+
+	/* Fail if we just went off the left edge of the tree. */
+	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
+	if (xfs_btree_ptr_is_null(cur, &ptr))
+		goto out0;
+
+	XFS_BTREE_STATS_INC(cur, decrement);
+
+	/*
+	 * March up the tree decrementing pointers.
+	 * Stop when we don't go off the left edge of a block.
+	 */
+	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
+		if (--cur->bc_ptrs[lev] > 0)
+			break;
+		/* Read-ahead the left block for the next loop. */
+		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
+	}
+
+	/*
+	 * If we went off the root then we are seriously confused.
+	 * or the root of the tree is in an inode.
+	 */
+	if (lev == cur->bc_nlevels) {
+		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
+			goto out0;
+		ASSERT(0);
+		error = -EFSCORRUPTED;
+		goto error0;
+	}
+	ASSERT(lev < cur->bc_nlevels);
+
+	/*
+	 * Now walk back down the tree, fixing up the cursor's buffer
+	 * pointers and key numbers.
+	 */
+	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
+		union xfs_btree_ptr	*ptrp;
+
+		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
+		--lev;
+		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
+		if (error)
+			goto error0;
+		xfs_btree_setbuf(cur, lev, bp);
+		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
+	}
+out1:
+	*stat = 1;
+	return 0;
+
+out0:
+	*stat = 0;
+	return 0;
+
+error0:
+	return error;
+}
+
+int
+xfs_btree_lookup_get_block(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	int			level,	/* level in the btree */
+	union xfs_btree_ptr	*pp,	/* ptr to btree block */
+	struct xfs_btree_block	**blkp) /* return btree block */
+{
+	struct xfs_buf		*bp;	/* buffer pointer for btree block */
+	xfs_daddr_t		daddr;
+	int			error = 0;
+
+	/* special case the root block if in an inode */
+	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
+	    (level == cur->bc_nlevels - 1)) {
+		*blkp = xfs_btree_get_iroot(cur);
+		return 0;
+	}
+
+	/*
+	 * If the old buffer at this level for the disk address we are
+	 * looking for re-use it.
+	 *
+	 * Otherwise throw it away and get a new one.
+	 */
+	bp = cur->bc_bufs[level];
+	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
+	if (error)
+		return error;
+	if (bp && XFS_BUF_ADDR(bp) == daddr) {
+		*blkp = XFS_BUF_TO_BLOCK(bp);
+		return 0;
+	}
+
+	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
+	if (error)
+		return error;
+
+	/* Check the inode owner since the verifiers don't. */
+	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
+	    !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
+	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
+	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
+			cur->bc_private.b.ip->i_ino)
+		goto out_bad;
+
+	/* Did we get the level we were looking for? */
+	if (be16_to_cpu((*blkp)->bb_level) != level)
+		goto out_bad;
+
+	/* Check that internal nodes have at least one record. */
+	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
+		goto out_bad;
+
+	xfs_btree_setbuf(cur, level, bp);
+	return 0;
+
+out_bad:
+	*blkp = NULL;
+	xfs_trans_brelse(cur->bc_tp, bp);
+	return -EFSCORRUPTED;
+}
+
+/*
+ * Get current search key.  For level 0 we don't actually have a key
+ * structure so we make one up from the record.  For all other levels
+ * we just return the right key.
+ */
+STATIC union xfs_btree_key *
+xfs_lookup_get_search_key(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	int			keyno,
+	struct xfs_btree_block	*block,
+	union xfs_btree_key	*kp)
+{
+	if (level == 0) {
+		cur->bc_ops->init_key_from_rec(kp,
+				xfs_btree_rec_addr(cur, keyno, block));
+		return kp;
+	}
+
+	return xfs_btree_key_addr(cur, keyno, block);
+}
+
+/*
+ * Lookup the record.  The cursor is made to point to it, based on dir.
+ * stat is set to 0 if can't find any such record, 1 for success.
+ */
+int					/* error */
+xfs_btree_lookup(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	xfs_lookup_t		dir,	/* <=, ==, or >= */
+	int			*stat)	/* success/failure */
+{
+	struct xfs_btree_block	*block;	/* current btree block */
+	int64_t			diff;	/* difference for the current key */
+	int			error;	/* error return value */
+	int			keyno;	/* current key number */
+	int			level;	/* level in the btree */
+	union xfs_btree_ptr	*pp;	/* ptr to btree block */
+	union xfs_btree_ptr	ptr;	/* ptr to btree block */
+
+	XFS_BTREE_STATS_INC(cur, lookup);
+
+	/* No such thing as a zero-level tree. */
+	if (cur->bc_nlevels == 0)
+		return -EFSCORRUPTED;
+
+	block = NULL;
+	keyno = 0;
+
+	/* initialise start pointer from cursor */
+	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
+	pp = &ptr;
+
+	/*
+	 * Iterate over each level in the btree, starting at the root.
+	 * For each level above the leaves, find the key we need, based
+	 * on the lookup record, then follow the corresponding block
+	 * pointer down to the next level.
+	 */
+	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
+		/* Get the block we need to do the lookup on. */
+		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
+		if (error)
+			goto error0;
+
+		if (diff == 0) {
+			/*
+			 * If we already had a key match at a higher level, we
+			 * know we need to use the first entry in this block.
+			 */
+			keyno = 1;
+		} else {
+			/* Otherwise search this block. Do a binary search. */
+
+			int	high;	/* high entry number */
+			int	low;	/* low entry number */
+
+			/* Set low and high entry numbers, 1-based. */
+			low = 1;
+			high = xfs_btree_get_numrecs(block);
+			if (!high) {
+				/* Block is empty, must be an empty leaf. */
+				if (level != 0 || cur->bc_nlevels != 1) {
+					XFS_CORRUPTION_ERROR(__func__,
+							XFS_ERRLEVEL_LOW,
+							cur->bc_mp, block,
+							sizeof(*block));
+					return -EFSCORRUPTED;
+				}
+
+				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
+				*stat = 0;
+				return 0;
+			}
+
+			/* Binary search the block. */
+			while (low <= high) {
+				union xfs_btree_key	key;
+				union xfs_btree_key	*kp;
+
+				XFS_BTREE_STATS_INC(cur, compare);
+
+				/* keyno is average of low and high. */
+				keyno = (low + high) >> 1;
+
+				/* Get current search key */
+				kp = xfs_lookup_get_search_key(cur, level,
+						keyno, block, &key);
+
+				/*
+				 * Compute difference to get next direction:
+				 *  - less than, move right
+				 *  - greater than, move left
+				 *  - equal, we're done
+				 */
+				diff = cur->bc_ops->key_diff(cur, kp);
+				if (diff < 0)
+					low = keyno + 1;
+				else if (diff > 0)
+					high = keyno - 1;
+				else
+					break;
+			}
+		}
+
+		/*
+		 * If there are more levels, set up for the next level
+		 * by getting the block number and filling in the cursor.
+		 */
+		if (level > 0) {
+			/*
+			 * If we moved left, need the previous key number,
+			 * unless there isn't one.
+			 */
+			if (diff > 0 && --keyno < 1)
+				keyno = 1;
+			pp = xfs_btree_ptr_addr(cur, keyno, block);
+
+			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
+			if (error)
+				goto error0;
+
+			cur->bc_ptrs[level] = keyno;
+		}
+	}
+
+	/* Done with the search. See if we need to adjust the results. */
+	if (dir != XFS_LOOKUP_LE && diff < 0) {
+		keyno++;
+		/*
+		 * If ge search and we went off the end of the block, but it's
+		 * not the last block, we're in the wrong block.
+		 */
+		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
+		if (dir == XFS_LOOKUP_GE &&
+		    keyno > xfs_btree_get_numrecs(block) &&
+		    !xfs_btree_ptr_is_null(cur, &ptr)) {
+			int	i;
+
+			cur->bc_ptrs[0] = keyno;
+			error = xfs_btree_increment(cur, 0, &i);
+			if (error)
+				goto error0;
+			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
+			*stat = 1;
+			return 0;
+		}
+	} else if (dir == XFS_LOOKUP_LE && diff > 0)
+		keyno--;
+	cur->bc_ptrs[0] = keyno;
+
+	/* Return if we succeeded or not. */
+	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
+		*stat = 0;
+	else if (dir != XFS_LOOKUP_EQ || diff == 0)
+		*stat = 1;
+	else
+		*stat = 0;
+	return 0;
+
+error0:
+	return error;
+}
+
+/* Find the high key storage area from a regular key. */
+union xfs_btree_key *
+xfs_btree_high_key_from_key(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_key	*key)
+{
+	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
+	return (union xfs_btree_key *)((char *)key +
+			(cur->bc_ops->key_len / 2));
+}
+
+/* Determine the low (and high if overlapped) keys of a leaf block */
+STATIC void
+xfs_btree_get_leaf_keys(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	union xfs_btree_key	*key)
+{
+	union xfs_btree_key	max_hkey;
+	union xfs_btree_key	hkey;
+	union xfs_btree_rec	*rec;
+	union xfs_btree_key	*high;
+	int			n;
+
+	rec = xfs_btree_rec_addr(cur, 1, block);
+	cur->bc_ops->init_key_from_rec(key, rec);
+
+	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
+
+		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
+		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
+			rec = xfs_btree_rec_addr(cur, n, block);
+			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
+			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
+					> 0)
+				max_hkey = hkey;
+		}
+
+		high = xfs_btree_high_key_from_key(cur, key);
+		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
+	}
+}
+
+/* Determine the low (and high if overlapped) keys of a node block */
+STATIC void
+xfs_btree_get_node_keys(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	union xfs_btree_key	*key)
+{
+	union xfs_btree_key	*hkey;
+	union xfs_btree_key	*max_hkey;
+	union xfs_btree_key	*high;
+	int			n;
+
+	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
+		memcpy(key, xfs_btree_key_addr(cur, 1, block),
+				cur->bc_ops->key_len / 2);
+
+		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
+		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
+			hkey = xfs_btree_high_key_addr(cur, n, block);
+			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
+				max_hkey = hkey;
+		}
+
+		high = xfs_btree_high_key_from_key(cur, key);
+		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
+	} else {
+		memcpy(key, xfs_btree_key_addr(cur, 1, block),
+				cur->bc_ops->key_len);
+	}
+}
+
+/* Derive the keys for any btree block. */
+void
+xfs_btree_get_keys(
+	struct xfs_btree_cur	*cur,
+	struct xfs_btree_block	*block,
+	union xfs_btree_key	*key)
+{
+	if (be16_to_cpu(block->bb_level) == 0)
+		xfs_btree_get_leaf_keys(cur, block, key);
+	else
+		xfs_btree_get_node_keys(cur, block, key);
+}
+
+/*
+ * Decide if we need to update the parent keys of a btree block.  For
+ * a standard btree this is only necessary if we're updating the first
+ * record/key.  For an overlapping btree, we must always update the
+ * keys because the highest key can be in any of the records or keys
+ * in the block.
+ */
+static inline bool
+xfs_btree_needs_key_update(
+	struct xfs_btree_cur	*cur,
+	int			ptr)
+{
+	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
+}
+
+/*
+ * Update the low and high parent keys of the given level, progressing
+ * towards the root.  If force_all is false, stop if the keys for a given
+ * level do not need updating.
+ */
+STATIC int
+__xfs_btree_updkeys(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	struct xfs_btree_block	*block,
+	struct xfs_buf		*bp0,
+	bool			force_all)
+{
+	union xfs_btree_key	key;	/* keys from current level */
+	union xfs_btree_key	*lkey;	/* keys from the next level up */
+	union xfs_btree_key	*hkey;
+	union xfs_btree_key	*nlkey;	/* keys from the next level up */
+	union xfs_btree_key	*nhkey;
+	struct xfs_buf		*bp;
+	int			ptr;
+
+	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
+
+	/* Exit if there aren't any parent levels to update. */
+	if (level + 1 >= cur->bc_nlevels)
+		return 0;
+
+	trace_xfs_btree_updkeys(cur, level, bp0);
+
+	lkey = &key;
+	hkey = xfs_btree_high_key_from_key(cur, lkey);
+	xfs_btree_get_keys(cur, block, lkey);
+	for (level++; level < cur->bc_nlevels; level++) {
+#ifdef DEBUG
+		int		error;
+#endif
+		block = xfs_btree_get_block(cur, level, &bp);
+		trace_xfs_btree_updkeys(cur, level, bp);
+#ifdef DEBUG
+		error = xfs_btree_check_block(cur, block, level, bp);
+		if (error)
+			return error;
+#endif
+		ptr = cur->bc_ptrs[level];
+		nlkey = xfs_btree_key_addr(cur, ptr, block);
+		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
+		if (!force_all &&
+		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
+		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
+			break;
+		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
+		xfs_btree_log_keys(cur, bp, ptr, ptr);
+		if (level + 1 >= cur->bc_nlevels)
+			break;
+		xfs_btree_get_node_keys(cur, block, lkey);
+	}
+
+	return 0;
+}
+
+/* Update all the keys from some level in cursor back to the root. */
+STATIC int
+xfs_btree_updkeys_force(
+	struct xfs_btree_cur	*cur,
+	int			level)
+{
+	struct xfs_buf		*bp;
+	struct xfs_btree_block	*block;
+
+	block = xfs_btree_get_block(cur, level, &bp);
+	return __xfs_btree_updkeys(cur, level, block, bp, true);
+}
+
+/*
+ * Update the parent keys of the given level, progressing towards the root.
+ */
+STATIC int
+xfs_btree_update_keys(
+	struct xfs_btree_cur	*cur,
+	int			level)
+{
+	struct xfs_btree_block	*block;
+	struct xfs_buf		*bp;
+	union xfs_btree_key	*kp;
+	union xfs_btree_key	key;
+	int			ptr;
+
+	ASSERT(level >= 0);
+
+	block = xfs_btree_get_block(cur, level, &bp);
+	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
+		return __xfs_btree_updkeys(cur, level, block, bp, false);
+
+	/*
+	 * Go up the tree from this level toward the root.
+	 * At each level, update the key value to the value input.
+	 * Stop when we reach a level where the cursor isn't pointing
+	 * at the first entry in the block.
+	 */
+	xfs_btree_get_keys(cur, block, &key);
+	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
+#ifdef DEBUG
+		int		error;
+#endif
+		block = xfs_btree_get_block(cur, level, &bp);
+#ifdef DEBUG
+		error = xfs_btree_check_block(cur, block, level, bp);
+		if (error)
+			return error;
+#endif
+		ptr = cur->bc_ptrs[level];
+		kp = xfs_btree_key_addr(cur, ptr, block);
+		xfs_btree_copy_keys(cur, kp, &key, 1);
+		xfs_btree_log_keys(cur, bp, ptr, ptr);
+	}
+
+	return 0;
+}
+
+/*
+ * Update the record referred to by cur to the value in the
+ * given record. This either works (return 0) or gets an
+ * EFSCORRUPTED error.
+ */
+int
+xfs_btree_update(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_rec	*rec)
+{
+	struct xfs_btree_block	*block;
+	struct xfs_buf		*bp;
+	int			error;
+	int			ptr;
+	union xfs_btree_rec	*rp;
+
+	/* Pick up the current block. */
+	block = xfs_btree_get_block(cur, 0, &bp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, 0, bp);
+	if (error)
+		goto error0;
+#endif
+	/* Get the address of the rec to be updated. */
+	ptr = cur->bc_ptrs[0];
+	rp = xfs_btree_rec_addr(cur, ptr, block);
+
+	/* Fill in the new contents and log them. */
+	xfs_btree_copy_recs(cur, rp, rec, 1);
+	xfs_btree_log_recs(cur, bp, ptr, ptr);
+
+	/*
+	 * If we are tracking the last record in the tree and
+	 * we are at the far right edge of the tree, update it.
+	 */
+	if (xfs_btree_is_lastrec(cur, block, 0)) {
+		cur->bc_ops->update_lastrec(cur, block, rec,
+					    ptr, LASTREC_UPDATE);
+	}
+
+	/* Pass new key value up to our parent. */
+	if (xfs_btree_needs_key_update(cur, ptr)) {
+		error = xfs_btree_update_keys(cur, 0);
+		if (error)
+			goto error0;
+	}
+
+	return 0;
+
+error0:
+	return error;
+}
+
+/*
+ * Move 1 record left from cur/level if possible.
+ * Update cur to reflect the new path.
+ */
+STATIC int					/* error */
+xfs_btree_lshift(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	int			*stat)		/* success/failure */
+{
+	struct xfs_buf		*lbp;		/* left buffer pointer */
+	struct xfs_btree_block	*left;		/* left btree block */
+	int			lrecs;		/* left record count */
+	struct xfs_buf		*rbp;		/* right buffer pointer */
+	struct xfs_btree_block	*right;		/* right btree block */
+	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
+	int			rrecs;		/* right record count */
+	union xfs_btree_ptr	lptr;		/* left btree pointer */
+	union xfs_btree_key	*rkp = NULL;	/* right btree key */
+	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
+	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
+	int			error;		/* error return value */
+	int			i;
+
+	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
+	    level == cur->bc_nlevels - 1)
+		goto out0;
+
+	/* Set up variables for this block as "right". */
+	right = xfs_btree_get_block(cur, level, &rbp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, right, level, rbp);
+	if (error)
+		goto error0;
+#endif
+
+	/* If we've got no left sibling then we can't shift an entry left. */
+	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
+	if (xfs_btree_ptr_is_null(cur, &lptr))
+		goto out0;
+
+	/*
+	 * If the cursor entry is the one that would be moved, don't
+	 * do it... it's too complicated.
+	 */
+	if (cur->bc_ptrs[level] <= 1)
+		goto out0;
+
+	/* Set up the left neighbor as "left". */
+	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
+	if (error)
+		goto error0;
+
+	/* If it's full, it can't take another entry. */
+	lrecs = xfs_btree_get_numrecs(left);
+	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
+		goto out0;
+
+	rrecs = xfs_btree_get_numrecs(right);
+
+	/*
+	 * We add one entry to the left side and remove one for the right side.
+	 * Account for it here, the changes will be updated on disk and logged
+	 * later.
+	 */
+	lrecs++;
+	rrecs--;
+
+	XFS_BTREE_STATS_INC(cur, lshift);
+	XFS_BTREE_STATS_ADD(cur, moves, 1);
+
+	/*
+	 * If non-leaf, copy a key and a ptr to the left block.
+	 * Log the changes to the left block.
+	 */
+	if (level > 0) {
+		/* It's a non-leaf.  Move keys and pointers. */
+		union xfs_btree_key	*lkp;	/* left btree key */
+		union xfs_btree_ptr	*lpp;	/* left address pointer */
+
+		lkp = xfs_btree_key_addr(cur, lrecs, left);
+		rkp = xfs_btree_key_addr(cur, 1, right);
+
+		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
+		rpp = xfs_btree_ptr_addr(cur, 1, right);
+
+		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
+		if (error)
+			goto error0;
+
+		xfs_btree_copy_keys(cur, lkp, rkp, 1);
+		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
+
+		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
+		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
+
+		ASSERT(cur->bc_ops->keys_inorder(cur,
+			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
+	} else {
+		/* It's a leaf.  Move records.  */
+		union xfs_btree_rec	*lrp;	/* left record pointer */
+
+		lrp = xfs_btree_rec_addr(cur, lrecs, left);
+		rrp = xfs_btree_rec_addr(cur, 1, right);
+
+		xfs_btree_copy_recs(cur, lrp, rrp, 1);
+		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
+
+		ASSERT(cur->bc_ops->recs_inorder(cur,
+			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
+	}
+
+	xfs_btree_set_numrecs(left, lrecs);
+	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
+
+	xfs_btree_set_numrecs(right, rrecs);
+	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
+
+	/*
+	 * Slide the contents of right down one entry.
+	 */
+	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
+	if (level > 0) {
+		/* It's a nonleaf. operate on keys and ptrs */
+		int			i;		/* loop index */
+
+		for (i = 0; i < rrecs; i++) {
+			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
+			if (error)
+				goto error0;
+		}
+
+		xfs_btree_shift_keys(cur,
+				xfs_btree_key_addr(cur, 2, right),
+				-1, rrecs);
+		xfs_btree_shift_ptrs(cur,
+				xfs_btree_ptr_addr(cur, 2, right),
+				-1, rrecs);
+
+		xfs_btree_log_keys(cur, rbp, 1, rrecs);
+		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
+	} else {
+		/* It's a leaf. operate on records */
+		xfs_btree_shift_recs(cur,
+			xfs_btree_rec_addr(cur, 2, right),
+			-1, rrecs);
+		xfs_btree_log_recs(cur, rbp, 1, rrecs);
+	}
+
+	/*
+	 * Using a temporary cursor, update the parent key values of the
+	 * block on the left.
+	 */
+	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
+		error = xfs_btree_dup_cursor(cur, &tcur);
+		if (error)
+			goto error0;
+		i = xfs_btree_firstrec(tcur, level);
+		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
+
+		error = xfs_btree_decrement(tcur, level, &i);
+		if (error)
+			goto error1;
+
+		/* Update the parent high keys of the left block, if needed. */
+		error = xfs_btree_update_keys(tcur, level);
+		if (error)
+			goto error1;
+
+		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+	}
+
+	/* Update the parent keys of the right block. */
+	error = xfs_btree_update_keys(cur, level);
+	if (error)
+		goto error0;
+
+	/* Slide the cursor value left one. */
+	cur->bc_ptrs[level]--;
+
+	*stat = 1;
+	return 0;
+
+out0:
+	*stat = 0;
+	return 0;
+
+error0:
+	return error;
+
+error1:
+	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
+	return error;
+}
+
+/*
+ * Move 1 record right from cur/level if possible.
+ * Update cur to reflect the new path.
+ */
+STATIC int					/* error */
+xfs_btree_rshift(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	int			*stat)		/* success/failure */
+{
+	struct xfs_buf		*lbp;		/* left buffer pointer */
+	struct xfs_btree_block	*left;		/* left btree block */
+	struct xfs_buf		*rbp;		/* right buffer pointer */
+	struct xfs_btree_block	*right;		/* right btree block */
+	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
+	union xfs_btree_ptr	rptr;		/* right block pointer */
+	union xfs_btree_key	*rkp;		/* right btree key */
+	int			rrecs;		/* right record count */
+	int			lrecs;		/* left record count */
+	int			error;		/* error return value */
+	int			i;		/* loop counter */
+
+	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
+	    (level == cur->bc_nlevels - 1))
+		goto out0;
+
+	/* Set up variables for this block as "left". */
+	left = xfs_btree_get_block(cur, level, &lbp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, left, level, lbp);
+	if (error)
+		goto error0;
+#endif
+
+	/* If we've got no right sibling then we can't shift an entry right. */
+	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
+	if (xfs_btree_ptr_is_null(cur, &rptr))
+		goto out0;
+
+	/*
+	 * If the cursor entry is the one that would be moved, don't
+	 * do it... it's too complicated.
+	 */
+	lrecs = xfs_btree_get_numrecs(left);
+	if (cur->bc_ptrs[level] >= lrecs)
+		goto out0;
+
+	/* Set up the right neighbor as "right". */
+	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
+	if (error)
+		goto error0;
+
+	/* If it's full, it can't take another entry. */
+	rrecs = xfs_btree_get_numrecs(right);
+	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
+		goto out0;
+
+	XFS_BTREE_STATS_INC(cur, rshift);
+	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
+
+	/*
+	 * Make a hole at the start of the right neighbor block, then
+	 * copy the last left block entry to the hole.
+	 */
+	if (level > 0) {
+		/* It's a nonleaf. make a hole in the keys and ptrs */
+		union xfs_btree_key	*lkp;
+		union xfs_btree_ptr	*lpp;
+		union xfs_btree_ptr	*rpp;
+
+		lkp = xfs_btree_key_addr(cur, lrecs, left);
+		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
+		rkp = xfs_btree_key_addr(cur, 1, right);
+		rpp = xfs_btree_ptr_addr(cur, 1, right);
+
+		for (i = rrecs - 1; i >= 0; i--) {
+			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
+			if (error)
+				goto error0;
+		}
+
+		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
+		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
+
+		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
+		if (error)
+			goto error0;
+
+		/* Now put the new data in, and log it. */
+		xfs_btree_copy_keys(cur, rkp, lkp, 1);
+		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
+
+		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
+		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
+
+		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
+			xfs_btree_key_addr(cur, 2, right)));
+	} else {
+		/* It's a leaf. make a hole in the records */
+		union xfs_btree_rec	*lrp;
+		union xfs_btree_rec	*rrp;
+
+		lrp = xfs_btree_rec_addr(cur, lrecs, left);
+		rrp = xfs_btree_rec_addr(cur, 1, right);
+
+		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
+
+		/* Now put the new data in, and log it. */
+		xfs_btree_copy_recs(cur, rrp, lrp, 1);
+		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
+	}
+
+	/*
+	 * Decrement and log left's numrecs, bump and log right's numrecs.
+	 */
+	xfs_btree_set_numrecs(left, --lrecs);
+	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
+
+	xfs_btree_set_numrecs(right, ++rrecs);
+	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
+
+	/*
+	 * Using a temporary cursor, update the parent key values of the
+	 * block on the right.
+	 */
+	error = xfs_btree_dup_cursor(cur, &tcur);
+	if (error)
+		goto error0;
+	i = xfs_btree_lastrec(tcur, level);
+	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
+
+	error = xfs_btree_increment(tcur, level, &i);
+	if (error)
+		goto error1;
+
+	/* Update the parent high keys of the left block, if needed. */
+	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
+		error = xfs_btree_update_keys(cur, level);
+		if (error)
+			goto error1;
+	}
+
+	/* Update the parent keys of the right block. */
+	error = xfs_btree_update_keys(tcur, level);
+	if (error)
+		goto error1;
+
+	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+
+	*stat = 1;
+	return 0;
+
+out0:
+	*stat = 0;
+	return 0;
+
+error0:
+	return error;
+
+error1:
+	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
+	return error;
+}
+
+/*
+ * Split cur/level block in half.
+ * Return new block number and the key to its first
+ * record (to be inserted into parent).
+ */
+STATIC int					/* error */
+__xfs_btree_split(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	union xfs_btree_ptr	*ptrp,
+	union xfs_btree_key	*key,
+	struct xfs_btree_cur	**curp,
+	int			*stat)		/* success/failure */
+{
+	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
+	struct xfs_buf		*lbp;		/* left buffer pointer */
+	struct xfs_btree_block	*left;		/* left btree block */
+	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
+	struct xfs_buf		*rbp;		/* right buffer pointer */
+	struct xfs_btree_block	*right;		/* right btree block */
+	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
+	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
+	struct xfs_btree_block	*rrblock;	/* right-right btree block */
+	int			lrecs;
+	int			rrecs;
+	int			src_index;
+	int			error;		/* error return value */
+	int			i;
+
+	XFS_BTREE_STATS_INC(cur, split);
+
+	/* Set up left block (current one). */
+	left = xfs_btree_get_block(cur, level, &lbp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, left, level, lbp);
+	if (error)
+		goto error0;
+#endif
+
+	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
+
+	/* Allocate the new block. If we can't do it, we're toast. Give up. */
+	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
+	if (error)
+		goto error0;
+	if (*stat == 0)
+		goto out0;
+	XFS_BTREE_STATS_INC(cur, alloc);
+
+	/* Set up the new block as "right". */
+	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
+	if (error)
+		goto error0;
+
+	/* Fill in the btree header for the new right block. */
+	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
+
+	/*
+	 * Split the entries between the old and the new block evenly.
+	 * Make sure that if there's an odd number of entries now, that
+	 * each new block will have the same number of entries.
+	 */
+	lrecs = xfs_btree_get_numrecs(left);
+	rrecs = lrecs / 2;
+	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
+		rrecs++;
+	src_index = (lrecs - rrecs + 1);
+
+	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
+
+	/* Adjust numrecs for the later get_*_keys() calls. */
+	lrecs -= rrecs;
+	xfs_btree_set_numrecs(left, lrecs);
+	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
+
+	/*
+	 * Copy btree block entries from the left block over to the
+	 * new block, the right. Update the right block and log the
+	 * changes.
+	 */
+	if (level > 0) {
+		/* It's a non-leaf.  Move keys and pointers. */
+		union xfs_btree_key	*lkp;	/* left btree key */
+		union xfs_btree_ptr	*lpp;	/* left address pointer */
+		union xfs_btree_key	*rkp;	/* right btree key */
+		union xfs_btree_ptr	*rpp;	/* right address pointer */
+
+		lkp = xfs_btree_key_addr(cur, src_index, left);
+		lpp = xfs_btree_ptr_addr(cur, src_index, left);
+		rkp = xfs_btree_key_addr(cur, 1, right);
+		rpp = xfs_btree_ptr_addr(cur, 1, right);
+
+		for (i = src_index; i < rrecs; i++) {
+			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
+			if (error)
+				goto error0;
+		}
+
+		/* Copy the keys & pointers to the new block. */
+		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
+		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
+
+		xfs_btree_log_keys(cur, rbp, 1, rrecs);
+		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
+
+		/* Stash the keys of the new block for later insertion. */
+		xfs_btree_get_node_keys(cur, right, key);
+	} else {
+		/* It's a leaf.  Move records.  */
+		union xfs_btree_rec	*lrp;	/* left record pointer */
+		union xfs_btree_rec	*rrp;	/* right record pointer */
+
+		lrp = xfs_btree_rec_addr(cur, src_index, left);
+		rrp = xfs_btree_rec_addr(cur, 1, right);
+
+		/* Copy records to the new block. */
+		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
+		xfs_btree_log_recs(cur, rbp, 1, rrecs);
+
+		/* Stash the keys of the new block for later insertion. */
+		xfs_btree_get_leaf_keys(cur, right, key);
+	}
+
+	/*
+	 * Find the left block number by looking in the buffer.
+	 * Adjust sibling pointers.
+	 */
+	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
+	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
+	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
+	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
+
+	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
+	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
+
+	/*
+	 * If there's a block to the new block's right, make that block
+	 * point back to right instead of to left.
+	 */
+	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
+		error = xfs_btree_read_buf_block(cur, &rrptr,
+							0, &rrblock, &rrbp);
+		if (error)
+			goto error0;
+		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
+		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
+	}
+
+	/* Update the parent high keys of the left block, if needed. */
+	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
+		error = xfs_btree_update_keys(cur, level);
+		if (error)
+			goto error0;
+	}
+
+	/*
+	 * If the cursor is really in the right block, move it there.
+	 * If it's just pointing past the last entry in left, then we'll
+	 * insert there, so don't change anything in that case.
+	 */
+	if (cur->bc_ptrs[level] > lrecs + 1) {
+		xfs_btree_setbuf(cur, level, rbp);
+		cur->bc_ptrs[level] -= lrecs;
+	}
+	/*
+	 * If there are more levels, we'll need another cursor which refers
+	 * the right block, no matter where this cursor was.
+	 */
+	if (level + 1 < cur->bc_nlevels) {
+		error = xfs_btree_dup_cursor(cur, curp);
+		if (error)
+			goto error0;
+		(*curp)->bc_ptrs[level + 1]++;
+	}
+	*ptrp = rptr;
+	*stat = 1;
+	return 0;
+out0:
+	*stat = 0;
+	return 0;
+
+error0:
+	return error;
+}
+
+struct xfs_btree_split_args {
+	struct xfs_btree_cur	*cur;
+	int			level;
+	union xfs_btree_ptr	*ptrp;
+	union xfs_btree_key	*key;
+	struct xfs_btree_cur	**curp;
+	int			*stat;		/* success/failure */
+	int			result;
+	bool			kswapd;	/* allocation in kswapd context */
+	struct completion	*done;
+	struct work_struct	work;
+};
+
+/*
+ * Stack switching interfaces for allocation
+ */
+static void
+xfs_btree_split_worker(
+	struct work_struct	*work)
+{
+	struct xfs_btree_split_args	*args = container_of(work,
+						struct xfs_btree_split_args, work);
+	unsigned long		pflags;
+	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
+
+	/*
+	 * we are in a transaction context here, but may also be doing work
+	 * in kswapd context, and hence we may need to inherit that state
+	 * temporarily to ensure that we don't block waiting for memory reclaim
+	 * in any way.
+	 */
+	if (args->kswapd)
+		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
+
+	current_set_flags_nested(&pflags, new_pflags);
+
+	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
+					 args->key, args->curp, args->stat);
+	complete(args->done);
+
+	current_restore_flags_nested(&pflags, new_pflags);
+}
+
+/*
+ * BMBT split requests often come in with little stack to work on. Push
+ * them off to a worker thread so there is lots of stack to use. For the other
+ * btree types, just call directly to avoid the context switch overhead here.
+ */
+STATIC int					/* error */
+xfs_btree_split(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	union xfs_btree_ptr	*ptrp,
+	union xfs_btree_key	*key,
+	struct xfs_btree_cur	**curp,
+	int			*stat)		/* success/failure */
+{
+	struct xfs_btree_split_args	args;
+	DECLARE_COMPLETION_ONSTACK(done);
+
+	if (cur->bc_btnum != XFS_BTNUM_BMAP)
+		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
+
+	args.cur = cur;
+	args.level = level;
+	args.ptrp = ptrp;
+	args.key = key;
+	args.curp = curp;
+	args.stat = stat;
+	args.done = &done;
+	args.kswapd = current_is_kswapd();
+	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
+	queue_work(xfs_alloc_wq, &args.work);
+	wait_for_completion(&done);
+	destroy_work_on_stack(&args.work);
+	return args.result;
+}
+
+
+/*
+ * Copy the old inode root contents into a real block and make the
+ * broot point to it.
+ */
+int						/* error */
+xfs_btree_new_iroot(
+	struct xfs_btree_cur	*cur,		/* btree cursor */
+	int			*logflags,	/* logging flags for inode */
+	int			*stat)		/* return status - 0 fail */
+{
+	struct xfs_buf		*cbp;		/* buffer for cblock */
+	struct xfs_btree_block	*block;		/* btree block */
+	struct xfs_btree_block	*cblock;	/* child btree block */
+	union xfs_btree_key	*ckp;		/* child key pointer */
+	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
+	union xfs_btree_key	*kp;		/* pointer to btree key */
+	union xfs_btree_ptr	*pp;		/* pointer to block addr */
+	union xfs_btree_ptr	nptr;		/* new block addr */
+	int			level;		/* btree level */
+	int			error;		/* error return code */
+	int			i;		/* loop counter */
+
+	XFS_BTREE_STATS_INC(cur, newroot);
+
+	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
+
+	level = cur->bc_nlevels - 1;
+
+	block = xfs_btree_get_iroot(cur);
+	pp = xfs_btree_ptr_addr(cur, 1, block);
+
+	/* Allocate the new block. If we can't do it, we're toast. Give up. */
+	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
+	if (error)
+		goto error0;
+	if (*stat == 0)
+		return 0;
+
+	XFS_BTREE_STATS_INC(cur, alloc);
+
+	/* Copy the root into a real block. */
+	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
+	if (error)
+		goto error0;
+
+	/*
+	 * we can't just memcpy() the root in for CRC enabled btree blocks.
+	 * In that case have to also ensure the blkno remains correct
+	 */
+	memcpy(cblock, block, xfs_btree_block_len(cur));
+	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
+		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
+		else
+			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
+	}
+
+	be16_add_cpu(&block->bb_level, 1);
+	xfs_btree_set_numrecs(block, 1);
+	cur->bc_nlevels++;
+	cur->bc_ptrs[level + 1] = 1;
+
+	kp = xfs_btree_key_addr(cur, 1, block);
+	ckp = xfs_btree_key_addr(cur, 1, cblock);
+	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
+
+	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
+	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
+		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
+		if (error)
+			goto error0;
+	}
+
+	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
+
+	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
+	if (error)
+		goto error0;
+
+	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
+
+	xfs_iroot_realloc(cur->bc_private.b.ip,
+			  1 - xfs_btree_get_numrecs(cblock),
+			  cur->bc_private.b.whichfork);
+
+	xfs_btree_setbuf(cur, level, cbp);
+
+	/*
+	 * Do all this logging at the end so that
+	 * the root is at the right level.
+	 */
+	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
+	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
+	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
+
+	*logflags |=
+		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
+	*stat = 1;
+	return 0;
+error0:
+	return error;
+}
+
+/*
+ * Allocate a new root block, fill it in.
+ */
+STATIC int				/* error */
+xfs_btree_new_root(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	int			*stat)	/* success/failure */
+{
+	struct xfs_btree_block	*block;	/* one half of the old root block */
+	struct xfs_buf		*bp;	/* buffer containing block */
+	int			error;	/* error return value */
+	struct xfs_buf		*lbp;	/* left buffer pointer */
+	struct xfs_btree_block	*left;	/* left btree block */
+	struct xfs_buf		*nbp;	/* new (root) buffer */
+	struct xfs_btree_block	*new;	/* new (root) btree block */
+	int			nptr;	/* new value for key index, 1 or 2 */
+	struct xfs_buf		*rbp;	/* right buffer pointer */
+	struct xfs_btree_block	*right;	/* right btree block */
+	union xfs_btree_ptr	rptr;
+	union xfs_btree_ptr	lptr;
+
+	XFS_BTREE_STATS_INC(cur, newroot);
+
+	/* initialise our start point from the cursor */
+	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
+
+	/* Allocate the new block. If we can't do it, we're toast. Give up. */
+	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
+	if (error)
+		goto error0;
+	if (*stat == 0)
+		goto out0;
+	XFS_BTREE_STATS_INC(cur, alloc);
+
+	/* Set up the new block. */
+	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
+	if (error)
+		goto error0;
+
+	/* Set the root in the holding structure  increasing the level by 1. */
+	cur->bc_ops->set_root(cur, &lptr, 1);
+
+	/*
+	 * At the previous root level there are now two blocks: the old root,
+	 * and the new block generated when it was split.  We don't know which
+	 * one the cursor is pointing at, so we set up variables "left" and
+	 * "right" for each case.
+	 */
+	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
+	if (error)
+		goto error0;
+#endif
+
+	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
+	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
+		/* Our block is left, pick up the right block. */
+		lbp = bp;
+		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
+		left = block;
+		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
+		if (error)
+			goto error0;
+		bp = rbp;
+		nptr = 1;
+	} else {
+		/* Our block is right, pick up the left block. */
+		rbp = bp;
+		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
+		right = block;
+		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
+		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
+		if (error)
+			goto error0;
+		bp = lbp;
+		nptr = 2;
+	}
+
+	/* Fill in the new block's btree header and log it. */
+	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
+	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
+	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
+			!xfs_btree_ptr_is_null(cur, &rptr));
+
+	/* Fill in the key data in the new root. */
+	if (xfs_btree_get_level(left) > 0) {
+		/*
+		 * Get the keys for the left block's keys and put them directly
+		 * in the parent block.  Do the same for the right block.
+		 */
+		xfs_btree_get_node_keys(cur, left,
+				xfs_btree_key_addr(cur, 1, new));
+		xfs_btree_get_node_keys(cur, right,
+				xfs_btree_key_addr(cur, 2, new));
+	} else {
+		/*
+		 * Get the keys for the left block's records and put them
+		 * directly in the parent block.  Do the same for the right
+		 * block.
+		 */
+		xfs_btree_get_leaf_keys(cur, left,
+			xfs_btree_key_addr(cur, 1, new));
+		xfs_btree_get_leaf_keys(cur, right,
+			xfs_btree_key_addr(cur, 2, new));
+	}
+	xfs_btree_log_keys(cur, nbp, 1, 2);
+
+	/* Fill in the pointer data in the new root. */
+	xfs_btree_copy_ptrs(cur,
+		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
+	xfs_btree_copy_ptrs(cur,
+		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
+	xfs_btree_log_ptrs(cur, nbp, 1, 2);
+
+	/* Fix up the cursor. */
+	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
+	cur->bc_ptrs[cur->bc_nlevels] = nptr;
+	cur->bc_nlevels++;
+	*stat = 1;
+	return 0;
+error0:
+	return error;
+out0:
+	*stat = 0;
+	return 0;
+}
+
+STATIC int
+xfs_btree_make_block_unfull(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	int			level,	/* btree level */
+	int			numrecs,/* # of recs in block */
+	int			*oindex,/* old tree index */
+	int			*index,	/* new tree index */
+	union xfs_btree_ptr	*nptr,	/* new btree ptr */
+	struct xfs_btree_cur	**ncur,	/* new btree cursor */
+	union xfs_btree_key	*key,	/* key of new block */
+	int			*stat)
+{
+	int			error = 0;
+
+	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
+	    level == cur->bc_nlevels - 1) {
+		struct xfs_inode *ip = cur->bc_private.b.ip;
+
+		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
+			/* A root block that can be made bigger. */
+			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
+			*stat = 1;
+		} else {
+			/* A root block that needs replacing */
+			int	logflags = 0;
+
+			error = xfs_btree_new_iroot(cur, &logflags, stat);
+			if (error || *stat == 0)
+				return error;
+
+			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
+		}
+
+		return 0;
+	}
+
+	/* First, try shifting an entry to the right neighbor. */
+	error = xfs_btree_rshift(cur, level, stat);
+	if (error || *stat)
+		return error;
+
+	/* Next, try shifting an entry to the left neighbor. */
+	error = xfs_btree_lshift(cur, level, stat);
+	if (error)
+		return error;
+
+	if (*stat) {
+		*oindex = *index = cur->bc_ptrs[level];
+		return 0;
+	}
+
+	/*
+	 * Next, try splitting the current block in half.
+	 *
+	 * If this works we have to re-set our variables because we
+	 * could be in a different block now.
+	 */
+	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
+	if (error || *stat == 0)
+		return error;
+
+
+	*index = cur->bc_ptrs[level];
+	return 0;
+}
+
+/*
+ * Insert one record/level.  Return information to the caller
+ * allowing the next level up to proceed if necessary.
+ */
+STATIC int
+xfs_btree_insrec(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	int			level,	/* level to insert record at */
+	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
+	union xfs_btree_rec	*rec,	/* record to insert */
+	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
+	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
+	int			*stat)	/* success/failure */
+{
+	struct xfs_btree_block	*block;	/* btree block */
+	struct xfs_buf		*bp;	/* buffer for block */
+	union xfs_btree_ptr	nptr;	/* new block ptr */
+	struct xfs_btree_cur	*ncur;	/* new btree cursor */
+	union xfs_btree_key	nkey;	/* new block key */
+	union xfs_btree_key	*lkey;
+	int			optr;	/* old key/record index */
+	int			ptr;	/* key/record index */
+	int			numrecs;/* number of records */
+	int			error;	/* error return value */
+	int			i;
+	xfs_daddr_t		old_bn;
+
+	ncur = NULL;
+	lkey = &nkey;
+
+	/*
+	 * If we have an external root pointer, and we've made it to the
+	 * root level, allocate a new root block and we're done.
+	 */
+	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
+	    (level >= cur->bc_nlevels)) {
+		error = xfs_btree_new_root(cur, stat);
+		xfs_btree_set_ptr_null(cur, ptrp);
+
+		return error;
+	}
+
+	/* If we're off the left edge, return failure. */
+	ptr = cur->bc_ptrs[level];
+	if (ptr == 0) {
+		*stat = 0;
+		return 0;
+	}
+
+	optr = ptr;
+
+	XFS_BTREE_STATS_INC(cur, insrec);
+
+	/* Get pointers to the btree buffer and block. */
+	block = xfs_btree_get_block(cur, level, &bp);
+	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
+	numrecs = xfs_btree_get_numrecs(block);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, level, bp);
+	if (error)
+		goto error0;
+
+	/* Check that the new entry is being inserted in the right place. */
+	if (ptr <= numrecs) {
+		if (level == 0) {
+			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
+				xfs_btree_rec_addr(cur, ptr, block)));
+		} else {
+			ASSERT(cur->bc_ops->keys_inorder(cur, key,
+				xfs_btree_key_addr(cur, ptr, block)));
+		}
+	}
+#endif
+
+	/*
+	 * If the block is full, we can't insert the new entry until we
+	 * make the block un-full.
+	 */
+	xfs_btree_set_ptr_null(cur, &nptr);
+	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
+		error = xfs_btree_make_block_unfull(cur, level, numrecs,
+					&optr, &ptr, &nptr, &ncur, lkey, stat);
+		if (error || *stat == 0)
+			goto error0;
+	}
+
+	/*
+	 * The current block may have changed if the block was
+	 * previously full and we have just made space in it.
+	 */
+	block = xfs_btree_get_block(cur, level, &bp);
+	numrecs = xfs_btree_get_numrecs(block);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, level, bp);
+	if (error)
+		return error;
+#endif
+
+	/*
+	 * At this point we know there's room for our new entry in the block
+	 * we're pointing at.
+	 */
+	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
+
+	if (level > 0) {
+		/* It's a nonleaf. make a hole in the keys and ptrs */
+		union xfs_btree_key	*kp;
+		union xfs_btree_ptr	*pp;
+
+		kp = xfs_btree_key_addr(cur, ptr, block);
+		pp = xfs_btree_ptr_addr(cur, ptr, block);
+
+		for (i = numrecs - ptr; i >= 0; i--) {
+			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
+			if (error)
+				return error;
+		}
+
+		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
+		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
+
+		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
+		if (error)
+			goto error0;
+
+		/* Now put the new data in, bump numrecs and log it. */
+		xfs_btree_copy_keys(cur, kp, key, 1);
+		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
+		numrecs++;
+		xfs_btree_set_numrecs(block, numrecs);
+		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
+		xfs_btree_log_keys(cur, bp, ptr, numrecs);
+#ifdef DEBUG
+		if (ptr < numrecs) {
+			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
+				xfs_btree_key_addr(cur, ptr + 1, block)));
+		}
+#endif
+	} else {
+		/* It's a leaf. make a hole in the records */
+		union xfs_btree_rec             *rp;
+
+		rp = xfs_btree_rec_addr(cur, ptr, block);
+
+		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
+
+		/* Now put the new data in, bump numrecs and log it. */
+		xfs_btree_copy_recs(cur, rp, rec, 1);
+		xfs_btree_set_numrecs(block, ++numrecs);
+		xfs_btree_log_recs(cur, bp, ptr, numrecs);
+#ifdef DEBUG
+		if (ptr < numrecs) {
+			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
+				xfs_btree_rec_addr(cur, ptr + 1, block)));
+		}
+#endif
+	}
+
+	/* Log the new number of records in the btree header. */
+	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
+
+	/*
+	 * If we just inserted into a new tree block, we have to
+	 * recalculate nkey here because nkey is out of date.
+	 *
+	 * Otherwise we're just updating an existing block (having shoved
+	 * some records into the new tree block), so use the regular key
+	 * update mechanism.
+	 */
+	if (bp && bp->b_bn != old_bn) {
+		xfs_btree_get_keys(cur, block, lkey);
+	} else if (xfs_btree_needs_key_update(cur, optr)) {
+		error = xfs_btree_update_keys(cur, level);
+		if (error)
+			goto error0;
+	}
+
+	/*
+	 * If we are tracking the last record in the tree and
+	 * we are at the far right edge of the tree, update it.
+	 */
+	if (xfs_btree_is_lastrec(cur, block, level)) {
+		cur->bc_ops->update_lastrec(cur, block, rec,
+					    ptr, LASTREC_INSREC);
+	}
+
+	/*
+	 * Return the new block number, if any.
+	 * If there is one, give back a record value and a cursor too.
+	 */
+	*ptrp = nptr;
+	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
+		xfs_btree_copy_keys(cur, key, lkey, 1);
+		*curp = ncur;
+	}
+
+	*stat = 1;
+	return 0;
+
+error0:
+	return error;
+}
+
+/*
+ * Insert the record at the point referenced by cur.
+ *
+ * A multi-level split of the tree on insert will invalidate the original
+ * cursor.  All callers of this function should assume that the cursor is
+ * no longer valid and revalidate it.
+ */
+int
+xfs_btree_insert(
+	struct xfs_btree_cur	*cur,
+	int			*stat)
+{
+	int			error;	/* error return value */
+	int			i;	/* result value, 0 for failure */
+	int			level;	/* current level number in btree */
+	union xfs_btree_ptr	nptr;	/* new block number (split result) */
+	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
+	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
+	union xfs_btree_key	bkey;	/* key of block to insert */
+	union xfs_btree_key	*key;
+	union xfs_btree_rec	rec;	/* record to insert */
+
+	level = 0;
+	ncur = NULL;
+	pcur = cur;
+	key = &bkey;
+
+	xfs_btree_set_ptr_null(cur, &nptr);
+
+	/* Make a key out of the record data to be inserted, and save it. */
+	cur->bc_ops->init_rec_from_cur(cur, &rec);
+	cur->bc_ops->init_key_from_rec(key, &rec);
+
+	/*
+	 * Loop going up the tree, starting at the leaf level.
+	 * Stop when we don't get a split block, that must mean that
+	 * the insert is finished with this level.
+	 */
+	do {
+		/*
+		 * Insert nrec/nptr into this level of the tree.
+		 * Note if we fail, nptr will be null.
+		 */
+		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
+				&ncur, &i);
+		if (error) {
+			if (pcur != cur)
+				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
+			goto error0;
+		}
+
+		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+		level++;
+
+		/*
+		 * See if the cursor we just used is trash.
+		 * Can't trash the caller's cursor, but otherwise we should
+		 * if ncur is a new cursor or we're about to be done.
+		 */
+		if (pcur != cur &&
+		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
+			/* Save the state from the cursor before we trash it */
+			if (cur->bc_ops->update_cursor)
+				cur->bc_ops->update_cursor(pcur, cur);
+			cur->bc_nlevels = pcur->bc_nlevels;
+			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
+		}
+		/* If we got a new cursor, switch to it. */
+		if (ncur) {
+			pcur = ncur;
+			ncur = NULL;
+		}
+	} while (!xfs_btree_ptr_is_null(cur, &nptr));
+
+	*stat = i;
+	return 0;
+error0:
+	return error;
+}
+
+/*
+ * Try to merge a non-leaf block back into the inode root.
+ *
+ * Note: the killroot names comes from the fact that we're effectively
+ * killing the old root block.  But because we can't just delete the
+ * inode we have to copy the single block it was pointing to into the
+ * inode.
+ */
+STATIC int
+xfs_btree_kill_iroot(
+	struct xfs_btree_cur	*cur)
+{
+	int			whichfork = cur->bc_private.b.whichfork;
+	struct xfs_inode	*ip = cur->bc_private.b.ip;
+	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
+	struct xfs_btree_block	*block;
+	struct xfs_btree_block	*cblock;
+	union xfs_btree_key	*kp;
+	union xfs_btree_key	*ckp;
+	union xfs_btree_ptr	*pp;
+	union xfs_btree_ptr	*cpp;
+	struct xfs_buf		*cbp;
+	int			level;
+	int			index;
+	int			numrecs;
+	int			error;
+#ifdef DEBUG
+	union xfs_btree_ptr	ptr;
+#endif
+	int			i;
+
+	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
+	ASSERT(cur->bc_nlevels > 1);
+
+	/*
+	 * Don't deal with the root block needs to be a leaf case.
+	 * We're just going to turn the thing back into extents anyway.
+	 */
+	level = cur->bc_nlevels - 1;
+	if (level == 1)
+		goto out0;
+
+	/*
+	 * Give up if the root has multiple children.
+	 */
+	block = xfs_btree_get_iroot(cur);
+	if (xfs_btree_get_numrecs(block) != 1)
+		goto out0;
+
+	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
+	numrecs = xfs_btree_get_numrecs(cblock);
+
+	/*
+	 * Only do this if the next level will fit.
+	 * Then the data must be copied up to the inode,
+	 * instead of freeing the root you free the next level.
+	 */
+	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
+		goto out0;
+
+	XFS_BTREE_STATS_INC(cur, killroot);
+
+#ifdef DEBUG
+	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
+	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
+	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
+	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
+#endif
+
+	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
+	if (index) {
+		xfs_iroot_realloc(cur->bc_private.b.ip, index,
+				  cur->bc_private.b.whichfork);
+		block = ifp->if_broot;
+	}
+
+	be16_add_cpu(&block->bb_numrecs, index);
+	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
+
+	kp = xfs_btree_key_addr(cur, 1, block);
+	ckp = xfs_btree_key_addr(cur, 1, cblock);
+	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
+
+	pp = xfs_btree_ptr_addr(cur, 1, block);
+	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
+
+	for (i = 0; i < numrecs; i++) {
+		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
+		if (error)
+			return error;
+	}
+
+	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
+
+	error = xfs_btree_free_block(cur, cbp);
+	if (error)
+		return error;
+
+	cur->bc_bufs[level - 1] = NULL;
+	be16_add_cpu(&block->bb_level, -1);
+	xfs_trans_log_inode(cur->bc_tp, ip,
+		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
+	cur->bc_nlevels--;
+out0:
+	return 0;
+}
+
+/*
+ * Kill the current root node, and replace it with it's only child node.
+ */
+STATIC int
+xfs_btree_kill_root(
+	struct xfs_btree_cur	*cur,
+	struct xfs_buf		*bp,
+	int			level,
+	union xfs_btree_ptr	*newroot)
+{
+	int			error;
+
+	XFS_BTREE_STATS_INC(cur, killroot);
+
+	/*
+	 * Update the root pointer, decreasing the level by 1 and then
+	 * free the old root.
+	 */
+	cur->bc_ops->set_root(cur, newroot, -1);
+
+	error = xfs_btree_free_block(cur, bp);
+	if (error)
+		return error;
+
+	cur->bc_bufs[level] = NULL;
+	cur->bc_ra[level] = 0;
+	cur->bc_nlevels--;
+
+	return 0;
+}
+
+STATIC int
+xfs_btree_dec_cursor(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	int			*stat)
+{
+	int			error;
+	int			i;
+
+	if (level > 0) {
+		error = xfs_btree_decrement(cur, level, &i);
+		if (error)
+			return error;
+	}
+
+	*stat = 1;
+	return 0;
+}
+
+/*
+ * Single level of the btree record deletion routine.
+ * Delete record pointed to by cur/level.
+ * Remove the record from its block then rebalance the tree.
+ * Return 0 for error, 1 for done, 2 to go on to the next level.
+ */
+STATIC int					/* error */
+xfs_btree_delrec(
+	struct xfs_btree_cur	*cur,		/* btree cursor */
+	int			level,		/* level removing record from */
+	int			*stat)		/* fail/done/go-on */
+{
+	struct xfs_btree_block	*block;		/* btree block */
+	union xfs_btree_ptr	cptr;		/* current block ptr */
+	struct xfs_buf		*bp;		/* buffer for block */
+	int			error;		/* error return value */
+	int			i;		/* loop counter */
+	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
+	struct xfs_buf		*lbp;		/* left buffer pointer */
+	struct xfs_btree_block	*left;		/* left btree block */
+	int			lrecs = 0;	/* left record count */
+	int			ptr;		/* key/record index */
+	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
+	struct xfs_buf		*rbp;		/* right buffer pointer */
+	struct xfs_btree_block	*right;		/* right btree block */
+	struct xfs_btree_block	*rrblock;	/* right-right btree block */
+	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
+	int			rrecs = 0;	/* right record count */
+	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
+	int			numrecs;	/* temporary numrec count */
+
+	tcur = NULL;
+
+	/* Get the index of the entry being deleted, check for nothing there. */
+	ptr = cur->bc_ptrs[level];
+	if (ptr == 0) {
+		*stat = 0;
+		return 0;
+	}
+
+	/* Get the buffer & block containing the record or key/ptr. */
+	block = xfs_btree_get_block(cur, level, &bp);
+	numrecs = xfs_btree_get_numrecs(block);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, level, bp);
+	if (error)
+		goto error0;
+#endif
+
+	/* Fail if we're off the end of the block. */
+	if (ptr > numrecs) {
+		*stat = 0;
+		return 0;
+	}
+
+	XFS_BTREE_STATS_INC(cur, delrec);
+	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
+
+	/* Excise the entries being deleted. */
+	if (level > 0) {
+		/* It's a nonleaf. operate on keys and ptrs */
+		union xfs_btree_key	*lkp;
+		union xfs_btree_ptr	*lpp;
+
+		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
+		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
+
+		for (i = 0; i < numrecs - ptr; i++) {
+			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
+			if (error)
+				goto error0;
+		}
+
+		if (ptr < numrecs) {
+			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
+			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
+			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
+			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
+		}
+	} else {
+		/* It's a leaf. operate on records */
+		if (ptr < numrecs) {
+			xfs_btree_shift_recs(cur,
+				xfs_btree_rec_addr(cur, ptr + 1, block),
+				-1, numrecs - ptr);
+			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
+		}
+	}
+
+	/*
+	 * Decrement and log the number of entries in the block.
+	 */
+	xfs_btree_set_numrecs(block, --numrecs);
+	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
+
+	/*
+	 * If we are tracking the last record in the tree and
+	 * we are at the far right edge of the tree, update it.
+	 */
+	if (xfs_btree_is_lastrec(cur, block, level)) {
+		cur->bc_ops->update_lastrec(cur, block, NULL,
+					    ptr, LASTREC_DELREC);
+	}
+
+	/*
+	 * We're at the root level.  First, shrink the root block in-memory.
+	 * Try to get rid of the next level down.  If we can't then there's
+	 * nothing left to do.
+	 */
+	if (level == cur->bc_nlevels - 1) {
+		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
+			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
+					  cur->bc_private.b.whichfork);
+
+			error = xfs_btree_kill_iroot(cur);
+			if (error)
+				goto error0;
+
+			error = xfs_btree_dec_cursor(cur, level, stat);
+			if (error)
+				goto error0;
+			*stat = 1;
+			return 0;
+		}
+
+		/*
+		 * If this is the root level, and there's only one entry left,
+		 * and it's NOT the leaf level, then we can get rid of this
+		 * level.
+		 */
+		if (numrecs == 1 && level > 0) {
+			union xfs_btree_ptr	*pp;
+			/*
+			 * pp is still set to the first pointer in the block.
+			 * Make it the new root of the btree.
+			 */
+			pp = xfs_btree_ptr_addr(cur, 1, block);
+			error = xfs_btree_kill_root(cur, bp, level, pp);
+			if (error)
+				goto error0;
+		} else if (level > 0) {
+			error = xfs_btree_dec_cursor(cur, level, stat);
+			if (error)
+				goto error0;
+		}
+		*stat = 1;
+		return 0;
+	}
+
+	/*
+	 * If we deleted the leftmost entry in the block, update the
+	 * key values above us in the tree.
+	 */
+	if (xfs_btree_needs_key_update(cur, ptr)) {
+		error = xfs_btree_update_keys(cur, level);
+		if (error)
+			goto error0;
+	}
+
+	/*
+	 * If the number of records remaining in the block is at least
+	 * the minimum, we're done.
+	 */
+	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
+		error = xfs_btree_dec_cursor(cur, level, stat);
+		if (error)
+			goto error0;
+		return 0;
+	}
+
+	/*
+	 * Otherwise, we have to move some records around to keep the
+	 * tree balanced.  Look at the left and right sibling blocks to
+	 * see if we can re-balance by moving only one record.
+	 */
+	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
+	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
+
+	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
+		/*
+		 * One child of root, need to get a chance to copy its contents
+		 * into the root and delete it. Can't go up to next level,
+		 * there's nothing to delete there.
+		 */
+		if (xfs_btree_ptr_is_null(cur, &rptr) &&
+		    xfs_btree_ptr_is_null(cur, &lptr) &&
+		    level == cur->bc_nlevels - 2) {
+			error = xfs_btree_kill_iroot(cur);
+			if (!error)
+				error = xfs_btree_dec_cursor(cur, level, stat);
+			if (error)
+				goto error0;
+			return 0;
+		}
+	}
+
+	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
+	       !xfs_btree_ptr_is_null(cur, &lptr));
+
+	/*
+	 * Duplicate the cursor so our btree manipulations here won't
+	 * disrupt the next level up.
+	 */
+	error = xfs_btree_dup_cursor(cur, &tcur);
+	if (error)
+		goto error0;
+
+	/*
+	 * If there's a right sibling, see if it's ok to shift an entry
+	 * out of it.
+	 */
+	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
+		/*
+		 * Move the temp cursor to the last entry in the next block.
+		 * Actually any entry but the first would suffice.
+		 */
+		i = xfs_btree_lastrec(tcur, level);
+		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+
+		error = xfs_btree_increment(tcur, level, &i);
+		if (error)
+			goto error0;
+		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+
+		i = xfs_btree_lastrec(tcur, level);
+		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+
+		/* Grab a pointer to the block. */
+		right = xfs_btree_get_block(tcur, level, &rbp);
+#ifdef DEBUG
+		error = xfs_btree_check_block(tcur, right, level, rbp);
+		if (error)
+			goto error0;
+#endif
+		/* Grab the current block number, for future use. */
+		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
+
+		/*
+		 * If right block is full enough so that removing one entry
+		 * won't make it too empty, and left-shifting an entry out
+		 * of right to us works, we're done.
+		 */
+		if (xfs_btree_get_numrecs(right) - 1 >=
+		    cur->bc_ops->get_minrecs(tcur, level)) {
+			error = xfs_btree_lshift(tcur, level, &i);
+			if (error)
+				goto error0;
+			if (i) {
+				ASSERT(xfs_btree_get_numrecs(block) >=
+				       cur->bc_ops->get_minrecs(tcur, level));
+
+				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+				tcur = NULL;
+
+				error = xfs_btree_dec_cursor(cur, level, stat);
+				if (error)
+					goto error0;
+				return 0;
+			}
+		}
+
+		/*
+		 * Otherwise, grab the number of records in right for
+		 * future reference, and fix up the temp cursor to point
+		 * to our block again (last record).
+		 */
+		rrecs = xfs_btree_get_numrecs(right);
+		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
+			i = xfs_btree_firstrec(tcur, level);
+			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+
+			error = xfs_btree_decrement(tcur, level, &i);
+			if (error)
+				goto error0;
+			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+		}
+	}
+
+	/*
+	 * If there's a left sibling, see if it's ok to shift an entry
+	 * out of it.
+	 */
+	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
+		/*
+		 * Move the temp cursor to the first entry in the
+		 * previous block.
+		 */
+		i = xfs_btree_firstrec(tcur, level);
+		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+
+		error = xfs_btree_decrement(tcur, level, &i);
+		if (error)
+			goto error0;
+		i = xfs_btree_firstrec(tcur, level);
+		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
+
+		/* Grab a pointer to the block. */
+		left = xfs_btree_get_block(tcur, level, &lbp);
+#ifdef DEBUG
+		error = xfs_btree_check_block(cur, left, level, lbp);
+		if (error)
+			goto error0;
+#endif
+		/* Grab the current block number, for future use. */
+		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
+
+		/*
+		 * If left block is full enough so that removing one entry
+		 * won't make it too empty, and right-shifting an entry out
+		 * of left to us works, we're done.
+		 */
+		if (xfs_btree_get_numrecs(left) - 1 >=
+		    cur->bc_ops->get_minrecs(tcur, level)) {
+			error = xfs_btree_rshift(tcur, level, &i);
+			if (error)
+				goto error0;
+			if (i) {
+				ASSERT(xfs_btree_get_numrecs(block) >=
+				       cur->bc_ops->get_minrecs(tcur, level));
+				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+				tcur = NULL;
+				if (level == 0)
+					cur->bc_ptrs[0]++;
+
+				*stat = 1;
+				return 0;
+			}
+		}
+
+		/*
+		 * Otherwise, grab the number of records in right for
+		 * future reference.
+		 */
+		lrecs = xfs_btree_get_numrecs(left);
+	}
+
+	/* Delete the temp cursor, we're done with it. */
+	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+	tcur = NULL;
+
+	/* If here, we need to do a join to keep the tree balanced. */
+	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
+
+	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
+	    lrecs + xfs_btree_get_numrecs(block) <=
+			cur->bc_ops->get_maxrecs(cur, level)) {
+		/*
+		 * Set "right" to be the starting block,
+		 * "left" to be the left neighbor.
+		 */
+		rptr = cptr;
+		right = block;
+		rbp = bp;
+		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
+		if (error)
+			goto error0;
+
+	/*
+	 * If that won't work, see if we can join with the right neighbor block.
+	 */
+	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
+		   rrecs + xfs_btree_get_numrecs(block) <=
+			cur->bc_ops->get_maxrecs(cur, level)) {
+		/*
+		 * Set "left" to be the starting block,
+		 * "right" to be the right neighbor.
+		 */
+		lptr = cptr;
+		left = block;
+		lbp = bp;
+		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
+		if (error)
+			goto error0;
+
+	/*
+	 * Otherwise, we can't fix the imbalance.
+	 * Just return.  This is probably a logic error, but it's not fatal.
+	 */
+	} else {
+		error = xfs_btree_dec_cursor(cur, level, stat);
+		if (error)
+			goto error0;
+		return 0;
+	}
+
+	rrecs = xfs_btree_get_numrecs(right);
+	lrecs = xfs_btree_get_numrecs(left);
+
+	/*
+	 * We're now going to join "left" and "right" by moving all the stuff
+	 * in "right" to "left" and deleting "right".
+	 */
+	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
+	if (level > 0) {
+		/* It's a non-leaf.  Move keys and pointers. */
+		union xfs_btree_key	*lkp;	/* left btree key */
+		union xfs_btree_ptr	*lpp;	/* left address pointer */
+		union xfs_btree_key	*rkp;	/* right btree key */
+		union xfs_btree_ptr	*rpp;	/* right address pointer */
+
+		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
+		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
+		rkp = xfs_btree_key_addr(cur, 1, right);
+		rpp = xfs_btree_ptr_addr(cur, 1, right);
+
+		for (i = 1; i < rrecs; i++) {
+			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
+			if (error)
+				goto error0;
+		}
+
+		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
+		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
+
+		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
+		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
+	} else {
+		/* It's a leaf.  Move records.  */
+		union xfs_btree_rec	*lrp;	/* left record pointer */
+		union xfs_btree_rec	*rrp;	/* right record pointer */
+
+		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
+		rrp = xfs_btree_rec_addr(cur, 1, right);
+
+		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
+		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
+	}
+
+	XFS_BTREE_STATS_INC(cur, join);
+
+	/*
+	 * Fix up the number of records and right block pointer in the
+	 * surviving block, and log it.
+	 */
+	xfs_btree_set_numrecs(left, lrecs + rrecs);
+	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
+	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
+	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
+
+	/* If there is a right sibling, point it to the remaining block. */
+	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
+	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
+		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
+		if (error)
+			goto error0;
+		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
+		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
+	}
+
+	/* Free the deleted block. */
+	error = xfs_btree_free_block(cur, rbp);
+	if (error)
+		goto error0;
+
+	/*
+	 * If we joined with the left neighbor, set the buffer in the
+	 * cursor to the left block, and fix up the index.
+	 */
+	if (bp != lbp) {
+		cur->bc_bufs[level] = lbp;
+		cur->bc_ptrs[level] += lrecs;
+		cur->bc_ra[level] = 0;
+	}
+	/*
+	 * If we joined with the right neighbor and there's a level above
+	 * us, increment the cursor at that level.
+	 */
+	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
+		   (level + 1 < cur->bc_nlevels)) {
+		error = xfs_btree_increment(cur, level + 1, &i);
+		if (error)
+			goto error0;
+	}
+
+	/*
+	 * Readjust the ptr at this level if it's not a leaf, since it's
+	 * still pointing at the deletion point, which makes the cursor
+	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
+	 * We can't use decrement because it would change the next level up.
+	 */
+	if (level > 0)
+		cur->bc_ptrs[level]--;
+
+	/*
+	 * We combined blocks, so we have to update the parent keys if the
+	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
+	 * points to the old block so that the caller knows which record to
+	 * delete.  Therefore, the caller must be savvy enough to call updkeys
+	 * for us if we return stat == 2.  The other exit points from this
+	 * function don't require deletions further up the tree, so they can
+	 * call updkeys directly.
+	 */
+
+	/* Return value means the next level up has something to do. */
+	*stat = 2;
+	return 0;
+
+error0:
+	if (tcur)
+		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
+	return error;
+}
+
+/*
+ * Delete the record pointed to by cur.
+ * The cursor refers to the place where the record was (could be inserted)
+ * when the operation returns.
+ */
+int					/* error */
+xfs_btree_delete(
+	struct xfs_btree_cur	*cur,
+	int			*stat)	/* success/failure */
+{
+	int			error;	/* error return value */
+	int			level;
+	int			i;
+	bool			joined = false;
+
+	/*
+	 * Go up the tree, starting at leaf level.
+	 *
+	 * If 2 is returned then a join was done; go to the next level.
+	 * Otherwise we are done.
+	 */
+	for (level = 0, i = 2; i == 2; level++) {
+		error = xfs_btree_delrec(cur, level, &i);
+		if (error)
+			goto error0;
+		if (i == 2)
+			joined = true;
+	}
+
+	/*
+	 * If we combined blocks as part of deleting the record, delrec won't
+	 * have updated the parent high keys so we have to do that here.
+	 */
+	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
+		error = xfs_btree_updkeys_force(cur, 0);
+		if (error)
+			goto error0;
+	}
+
+	if (i == 0) {
+		for (level = 1; level < cur->bc_nlevels; level++) {
+			if (cur->bc_ptrs[level] == 0) {
+				error = xfs_btree_decrement(cur, level, &i);
+				if (error)
+					goto error0;
+				break;
+			}
+		}
+	}
+
+	*stat = i;
+	return 0;
+error0:
+	return error;
+}
+
+/*
+ * Get the data from the pointed-to record.
+ */
+int					/* error */
+xfs_btree_get_rec(
+	struct xfs_btree_cur	*cur,	/* btree cursor */
+	union xfs_btree_rec	**recp,	/* output: btree record */
+	int			*stat)	/* output: success/failure */
+{
+	struct xfs_btree_block	*block;	/* btree block */
+	struct xfs_buf		*bp;	/* buffer pointer */
+	int			ptr;	/* record number */
+#ifdef DEBUG
+	int			error;	/* error return value */
+#endif
+
+	ptr = cur->bc_ptrs[0];
+	block = xfs_btree_get_block(cur, 0, &bp);
+
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, 0, bp);
+	if (error)
+		return error;
+#endif
+
+	/*
+	 * Off the right end or left end, return failure.
+	 */
+	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
+		*stat = 0;
+		return 0;
+	}
+
+	/*
+	 * Point to the record and extract its data.
+	 */
+	*recp = xfs_btree_rec_addr(cur, ptr, block);
+	*stat = 1;
+	return 0;
+}
+
+/* Visit a block in a btree. */
+STATIC int
+xfs_btree_visit_block(
+	struct xfs_btree_cur		*cur,
+	int				level,
+	xfs_btree_visit_blocks_fn	fn,
+	void				*data)
+{
+	struct xfs_btree_block		*block;
+	struct xfs_buf			*bp;
+	union xfs_btree_ptr		rptr;
+	int				error;
+
+	/* do right sibling readahead */
+	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
+	block = xfs_btree_get_block(cur, level, &bp);
+
+	/* process the block */
+	error = fn(cur, level, data);
+	if (error)
+		return error;
+
+	/* now read rh sibling block for next iteration */
+	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
+	if (xfs_btree_ptr_is_null(cur, &rptr))
+		return -ENOENT;
+
+	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
+}
+
+
+/* Visit every block in a btree. */
+int
+xfs_btree_visit_blocks(
+	struct xfs_btree_cur		*cur,
+	xfs_btree_visit_blocks_fn	fn,
+	void				*data)
+{
+	union xfs_btree_ptr		lptr;
+	int				level;
+	struct xfs_btree_block		*block = NULL;
+	int				error = 0;
+
+	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
+
+	/* for each level */
+	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
+		/* grab the left hand block */
+		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
+		if (error)
+			return error;
+
+		/* readahead the left most block for the next level down */
+		if (level > 0) {
+			union xfs_btree_ptr     *ptr;
+
+			ptr = xfs_btree_ptr_addr(cur, 1, block);
+			xfs_btree_readahead_ptr(cur, ptr, 1);
+
+			/* save for the next iteration of the loop */
+			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
+		}
+
+		/* for each buffer in the level */
+		do {
+			error = xfs_btree_visit_block(cur, level, fn, data);
+		} while (!error);
+
+		if (error != -ENOENT)
+			return error;
+	}
+
+	return 0;
+}
+
+/*
+ * Change the owner of a btree.
+ *
+ * The mechanism we use here is ordered buffer logging. Because we don't know
+ * how many buffers were are going to need to modify, we don't really want to
+ * have to make transaction reservations for the worst case of every buffer in a
+ * full size btree as that may be more space that we can fit in the log....
+ *
+ * We do the btree walk in the most optimal manner possible - we have sibling
+ * pointers so we can just walk all the blocks on each level from left to right
+ * in a single pass, and then move to the next level and do the same. We can
+ * also do readahead on the sibling pointers to get IO moving more quickly,
+ * though for slow disks this is unlikely to make much difference to performance
+ * as the amount of CPU work we have to do before moving to the next block is
+ * relatively small.
+ *
+ * For each btree block that we load, modify the owner appropriately, set the
+ * buffer as an ordered buffer and log it appropriately. We need to ensure that
+ * we mark the region we change dirty so that if the buffer is relogged in
+ * a subsequent transaction the changes we make here as an ordered buffer are
+ * correctly relogged in that transaction.  If we are in recovery context, then
+ * just queue the modified buffer as delayed write buffer so the transaction
+ * recovery completion writes the changes to disk.
+ */
+struct xfs_btree_block_change_owner_info {
+	uint64_t		new_owner;
+	struct list_head	*buffer_list;
+};
+
+static int
+xfs_btree_block_change_owner(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	void			*data)
+{
+	struct xfs_btree_block_change_owner_info	*bbcoi = data;
+	struct xfs_btree_block	*block;
+	struct xfs_buf		*bp;
+
+	/* modify the owner */
+	block = xfs_btree_get_block(cur, level, &bp);
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
+		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
+			return 0;
+		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
+	} else {
+		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
+			return 0;
+		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
+	}
+
+	/*
+	 * If the block is a root block hosted in an inode, we might not have a
+	 * buffer pointer here and we shouldn't attempt to log the change as the
+	 * information is already held in the inode and discarded when the root
+	 * block is formatted into the on-disk inode fork. We still change it,
+	 * though, so everything is consistent in memory.
+	 */
+	if (!bp) {
+		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
+		ASSERT(level == cur->bc_nlevels - 1);
+		return 0;
+	}
+
+	if (cur->bc_tp) {
+		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
+			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
+			return -EAGAIN;
+		}
+	} else {
+		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
+	}
+
+	return 0;
+}
+
+int
+xfs_btree_change_owner(
+	struct xfs_btree_cur	*cur,
+	uint64_t		new_owner,
+	struct list_head	*buffer_list)
+{
+	struct xfs_btree_block_change_owner_info	bbcoi;
+
+	bbcoi.new_owner = new_owner;
+	bbcoi.buffer_list = buffer_list;
+
+	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
+			&bbcoi);
+}
+
+/* Verify the v5 fields of a long-format btree block. */
+xfs_failaddr_t
+xfs_btree_lblock_v5hdr_verify(
+	struct xfs_buf		*bp,
+	uint64_t		owner)
+{
+	struct xfs_mount	*mp = bp->b_target->bt_mount;
+	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+
+	if (!xfs_sb_version_hascrc(&mp->m_sb))
+		return __this_address;
+	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
+		return __this_address;
+	if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
+		return __this_address;
+	if (owner != XFS_RMAP_OWN_UNKNOWN &&
+	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
+		return __this_address;
+	return NULL;
+}
+
+/* Verify a long-format btree block. */
+xfs_failaddr_t
+xfs_btree_lblock_verify(
+	struct xfs_buf		*bp,
+	unsigned int		max_recs)
+{
+	struct xfs_mount	*mp = bp->b_target->bt_mount;
+	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+
+	/* numrecs verification */
+	if (be16_to_cpu(block->bb_numrecs) > max_recs)
+		return __this_address;
+
+	/* sibling pointer verification */
+	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
+	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
+		return __this_address;
+	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
+	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
+		return __this_address;
+
+	return NULL;
+}
+
+/**
+ * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
+ *				      btree block
+ *
+ * @bp: buffer containing the btree block
+ * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
+ * @pag_max_level: pointer to the per-ag max level field
+ */
+xfs_failaddr_t
+xfs_btree_sblock_v5hdr_verify(
+	struct xfs_buf		*bp)
+{
+	struct xfs_mount	*mp = bp->b_target->bt_mount;
+	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+	struct xfs_perag	*pag = bp->b_pag;
+
+	if (!xfs_sb_version_hascrc(&mp->m_sb))
+		return __this_address;
+	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
+		return __this_address;
+	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
+		return __this_address;
+	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
+		return __this_address;
+	return NULL;
+}
+
+/**
+ * xfs_btree_sblock_verify() -- verify a short-format btree block
+ *
+ * @bp: buffer containing the btree block
+ * @max_recs: maximum records allowed in this btree node
+ */
+xfs_failaddr_t
+xfs_btree_sblock_verify(
+	struct xfs_buf		*bp,
+	unsigned int		max_recs)
+{
+	struct xfs_mount	*mp = bp->b_target->bt_mount;
+	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
+	xfs_agblock_t		agno;
+
+	/* numrecs verification */
+	if (be16_to_cpu(block->bb_numrecs) > max_recs)
+		return __this_address;
+
+	/* sibling pointer verification */
+	agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
+	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
+	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
+		return __this_address;
+	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
+	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
+		return __this_address;
+
+	return NULL;
+}
+
+/*
+ * Calculate the number of btree levels needed to store a given number of
+ * records in a short-format btree.
+ */
+uint
+xfs_btree_compute_maxlevels(
+	uint			*limits,
+	unsigned long		len)
+{
+	uint			level;
+	unsigned long		maxblocks;
+
+	maxblocks = (len + limits[0] - 1) / limits[0];
+	for (level = 1; maxblocks > 1; level++)
+		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
+	return level;
+}
+
+/*
+ * Query a regular btree for all records overlapping a given interval.
+ * Start with a LE lookup of the key of low_rec and return all records
+ * until we find a record with a key greater than the key of high_rec.
+ */
+STATIC int
+xfs_btree_simple_query_range(
+	struct xfs_btree_cur		*cur,
+	union xfs_btree_key		*low_key,
+	union xfs_btree_key		*high_key,
+	xfs_btree_query_range_fn	fn,
+	void				*priv)
+{
+	union xfs_btree_rec		*recp;
+	union xfs_btree_key		rec_key;
+	int64_t				diff;
+	int				stat;
+	bool				firstrec = true;
+	int				error;
+
+	ASSERT(cur->bc_ops->init_high_key_from_rec);
+	ASSERT(cur->bc_ops->diff_two_keys);
+
+	/*
+	 * Find the leftmost record.  The btree cursor must be set
+	 * to the low record used to generate low_key.
+	 */
+	stat = 0;
+	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
+	if (error)
+		goto out;
+
+	/* Nothing?  See if there's anything to the right. */
+	if (!stat) {
+		error = xfs_btree_increment(cur, 0, &stat);
+		if (error)
+			goto out;
+	}
+
+	while (stat) {
+		/* Find the record. */
+		error = xfs_btree_get_rec(cur, &recp, &stat);
+		if (error || !stat)
+			break;
+
+		/* Skip if high_key(rec) < low_key. */
+		if (firstrec) {
+			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
+			firstrec = false;
+			diff = cur->bc_ops->diff_two_keys(cur, low_key,
+					&rec_key);
+			if (diff > 0)
+				goto advloop;
+		}
+
+		/* Stop if high_key < low_key(rec). */
+		cur->bc_ops->init_key_from_rec(&rec_key, recp);
+		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
+		if (diff > 0)
+			break;
+
+		/* Callback */
+		error = fn(cur, recp, priv);
+		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
+			break;
+
+advloop:
+		/* Move on to the next record. */
+		error = xfs_btree_increment(cur, 0, &stat);
+		if (error)
+			break;
+	}
+
+out:
+	return error;
+}
+
+/*
+ * Query an overlapped interval btree for all records overlapping a given
+ * interval.  This function roughly follows the algorithm given in
+ * "Interval Trees" of _Introduction to Algorithms_, which is section
+ * 14.3 in the 2nd and 3rd editions.
+ *
+ * First, generate keys for the low and high records passed in.
+ *
+ * For any leaf node, generate the high and low keys for the record.
+ * If the record keys overlap with the query low/high keys, pass the
+ * record to the function iterator.
+ *
+ * For any internal node, compare the low and high keys of each
+ * pointer against the query low/high keys.  If there's an overlap,
+ * follow the pointer.
+ *
+ * As an optimization, we stop scanning a block when we find a low key
+ * that is greater than the query's high key.
+ */
+STATIC int
+xfs_btree_overlapped_query_range(
+	struct xfs_btree_cur		*cur,
+	union xfs_btree_key		*low_key,
+	union xfs_btree_key		*high_key,
+	xfs_btree_query_range_fn	fn,
+	void				*priv)
+{
+	union xfs_btree_ptr		ptr;
+	union xfs_btree_ptr		*pp;
+	union xfs_btree_key		rec_key;
+	union xfs_btree_key		rec_hkey;
+	union xfs_btree_key		*lkp;
+	union xfs_btree_key		*hkp;
+	union xfs_btree_rec		*recp;
+	struct xfs_btree_block		*block;
+	int64_t				ldiff;
+	int64_t				hdiff;
+	int				level;
+	struct xfs_buf			*bp;
+	int				i;
+	int				error;
+
+	/* Load the root of the btree. */
+	level = cur->bc_nlevels - 1;
+	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
+	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
+	if (error)
+		return error;
+	xfs_btree_get_block(cur, level, &bp);
+	trace_xfs_btree_overlapped_query_range(cur, level, bp);
+#ifdef DEBUG
+	error = xfs_btree_check_block(cur, block, level, bp);
+	if (error)
+		goto out;
+#endif
+	cur->bc_ptrs[level] = 1;
+
+	while (level < cur->bc_nlevels) {
+		block = xfs_btree_get_block(cur, level, &bp);
+
+		/* End of node, pop back towards the root. */
+		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
+pop_up:
+			if (level < cur->bc_nlevels - 1)
+				cur->bc_ptrs[level + 1]++;
+			level++;
+			continue;
+		}
+
+		if (level == 0) {
+			/* Handle a leaf node. */
+			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
+
+			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
+			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
+					low_key);
+
+			cur->bc_ops->init_key_from_rec(&rec_key, recp);
+			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
+					&rec_key);
+
+			/*
+			 * If (record's high key >= query's low key) and
+			 *    (query's high key >= record's low key), then
+			 * this record overlaps the query range; callback.
+			 */
+			if (ldiff >= 0 && hdiff >= 0) {
+				error = fn(cur, recp, priv);
+				if (error < 0 ||
+				    error == XFS_BTREE_QUERY_RANGE_ABORT)
+					break;
+			} else if (hdiff < 0) {
+				/* Record is larger than high key; pop. */
+				goto pop_up;
+			}
+			cur->bc_ptrs[level]++;
+			continue;
+		}
+
+		/* Handle an internal node. */
+		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
+		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
+		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
+
+		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
+		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
+
+		/*
+		 * If (pointer's high key >= query's low key) and
+		 *    (query's high key >= pointer's low key), then
+		 * this record overlaps the query range; follow pointer.
+		 */
+		if (ldiff >= 0 && hdiff >= 0) {
+			level--;
+			error = xfs_btree_lookup_get_block(cur, level, pp,
+					&block);
+			if (error)
+				goto out;
+			xfs_btree_get_block(cur, level, &bp);
+			trace_xfs_btree_overlapped_query_range(cur, level, bp);
+#ifdef DEBUG
+			error = xfs_btree_check_block(cur, block, level, bp);
+			if (error)
+				goto out;
+#endif
+			cur->bc_ptrs[level] = 1;
+			continue;
+		} else if (hdiff < 0) {
+			/* The low key is larger than the upper range; pop. */
+			goto pop_up;
+		}
+		cur->bc_ptrs[level]++;
+	}
+
+out:
+	/*
+	 * If we don't end this function with the cursor pointing at a record
+	 * block, a subsequent non-error cursor deletion will not release
+	 * node-level buffers, causing a buffer leak.  This is quite possible
+	 * with a zero-results range query, so release the buffers if we
+	 * failed to return any results.
+	 */
+	if (cur->bc_bufs[0] == NULL) {
+		for (i = 0; i < cur->bc_nlevels; i++) {
+			if (cur->bc_bufs[i]) {
+				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
+				cur->bc_bufs[i] = NULL;
+				cur->bc_ptrs[i] = 0;
+				cur->bc_ra[i] = 0;
+			}
+		}
+	}
+
+	return error;
+}
+
+/*
+ * Query a btree for all records overlapping a given interval of keys.  The
+ * supplied function will be called with each record found; return one of the
+ * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
+ * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
+ * negative error code.
+ */
+int
+xfs_btree_query_range(
+	struct xfs_btree_cur		*cur,
+	union xfs_btree_irec		*low_rec,
+	union xfs_btree_irec		*high_rec,
+	xfs_btree_query_range_fn	fn,
+	void				*priv)
+{
+	union xfs_btree_rec		rec;
+	union xfs_btree_key		low_key;
+	union xfs_btree_key		high_key;
+
+	/* Find the keys of both ends of the interval. */
+	cur->bc_rec = *high_rec;
+	cur->bc_ops->init_rec_from_cur(cur, &rec);
+	cur->bc_ops->init_key_from_rec(&high_key, &rec);
+
+	cur->bc_rec = *low_rec;
+	cur->bc_ops->init_rec_from_cur(cur, &rec);
+	cur->bc_ops->init_key_from_rec(&low_key, &rec);
+
+	/* Enforce low key < high key. */
+	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
+		return -EINVAL;
+
+	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
+		return xfs_btree_simple_query_range(cur, &low_key,
+				&high_key, fn, priv);
+	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
+			fn, priv);
+}
+
+/* Query a btree for all records. */
+int
+xfs_btree_query_all(
+	struct xfs_btree_cur		*cur,
+	xfs_btree_query_range_fn	fn,
+	void				*priv)
+{
+	union xfs_btree_key		low_key;
+	union xfs_btree_key		high_key;
+
+	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
+	memset(&low_key, 0, sizeof(low_key));
+	memset(&high_key, 0xFF, sizeof(high_key));
+
+	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
+}
+
+/*
+ * Calculate the number of blocks needed to store a given number of records
+ * in a short-format (per-AG metadata) btree.
+ */
+unsigned long long
+xfs_btree_calc_size(
+	uint			*limits,
+	unsigned long long	len)
+{
+	int			level;
+	int			maxrecs;
+	unsigned long long	rval;
+
+	maxrecs = limits[0];
+	for (level = 0, rval = 0; len > 1; level++) {
+		len += maxrecs - 1;
+		do_div(len, maxrecs);
+		maxrecs = limits[1];
+		rval += len;
+	}
+	return rval;
+}
+
+static int
+xfs_btree_count_blocks_helper(
+	struct xfs_btree_cur	*cur,
+	int			level,
+	void			*data)
+{
+	xfs_extlen_t		*blocks = data;
+	(*blocks)++;
+
+	return 0;
+}
+
+/* Count the blocks in a btree and return the result in *blocks. */
+int
+xfs_btree_count_blocks(
+	struct xfs_btree_cur	*cur,
+	xfs_extlen_t		*blocks)
+{
+	*blocks = 0;
+	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
+			blocks);
+}
+
+/* Compare two btree pointers. */
+int64_t
+xfs_btree_diff_two_ptrs(
+	struct xfs_btree_cur		*cur,
+	const union xfs_btree_ptr	*a,
+	const union xfs_btree_ptr	*b)
+{
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
+	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
+}
+
+/* If there's an extent, we're done. */
+STATIC int
+xfs_btree_has_record_helper(
+	struct xfs_btree_cur		*cur,
+	union xfs_btree_rec		*rec,
+	void				*priv)
+{
+	return XFS_BTREE_QUERY_RANGE_ABORT;
+}
+
+/* Is there a record covering a given range of keys? */
+int
+xfs_btree_has_record(
+	struct xfs_btree_cur	*cur,
+	union xfs_btree_irec	*low,
+	union xfs_btree_irec	*high,
+	bool			*exists)
+{
+	int			error;
+
+	error = xfs_btree_query_range(cur, low, high,
+			&xfs_btree_has_record_helper, NULL);
+	if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
+		*exists = true;
+		return 0;
+	}
+	*exists = false;
+	return error;
+}
+
+/* Are there more records in this btree? */
+bool
+xfs_btree_has_more_records(
+	struct xfs_btree_cur	*cur)
+{
+	struct xfs_btree_block	*block;
+	struct xfs_buf		*bp;
+
+	block = xfs_btree_get_block(cur, 0, &bp);
+
+	/* There are still records in this block. */
+	if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
+		return true;
+
+	/* There are more record blocks. */
+	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
+		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
+	else
+		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
+}