v4.19.13 snapshot.
diff --git a/fs/kernfs/Kconfig b/fs/kernfs/Kconfig
new file mode 100644
index 0000000..397b5f7
--- /dev/null
+++ b/fs/kernfs/Kconfig
@@ -0,0 +1,7 @@
+#
+# KERNFS should be selected by its users
+#
+
+config KERNFS
+	bool
+	default n
diff --git a/fs/kernfs/Makefile b/fs/kernfs/Makefile
new file mode 100644
index 0000000..674337c
--- /dev/null
+++ b/fs/kernfs/Makefile
@@ -0,0 +1,5 @@
+#
+# Makefile for the kernfs pseudo filesystem
+#
+
+obj-y		:= mount.o inode.o dir.o file.o symlink.o
diff --git a/fs/kernfs/dir.c b/fs/kernfs/dir.c
new file mode 100644
index 0000000..4ca0b5c
--- /dev/null
+++ b/fs/kernfs/dir.c
@@ -0,0 +1,1702 @@
+/*
+ * fs/kernfs/dir.c - kernfs directory implementation
+ *
+ * Copyright (c) 2001-3 Patrick Mochel
+ * Copyright (c) 2007 SUSE Linux Products GmbH
+ * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ */
+
+#include <linux/sched.h>
+#include <linux/fs.h>
+#include <linux/namei.h>
+#include <linux/idr.h>
+#include <linux/slab.h>
+#include <linux/security.h>
+#include <linux/hash.h>
+
+#include "kernfs-internal.h"
+
+DEFINE_MUTEX(kernfs_mutex);
+static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
+static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
+static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
+
+#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
+
+static bool kernfs_active(struct kernfs_node *kn)
+{
+	lockdep_assert_held(&kernfs_mutex);
+	return atomic_read(&kn->active) >= 0;
+}
+
+static bool kernfs_lockdep(struct kernfs_node *kn)
+{
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	return kn->flags & KERNFS_LOCKDEP;
+#else
+	return false;
+#endif
+}
+
+static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
+{
+	if (!kn)
+		return strlcpy(buf, "(null)", buflen);
+
+	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
+}
+
+/* kernfs_node_depth - compute depth from @from to @to */
+static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
+{
+	size_t depth = 0;
+
+	while (to->parent && to != from) {
+		depth++;
+		to = to->parent;
+	}
+	return depth;
+}
+
+static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
+						  struct kernfs_node *b)
+{
+	size_t da, db;
+	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
+
+	if (ra != rb)
+		return NULL;
+
+	da = kernfs_depth(ra->kn, a);
+	db = kernfs_depth(rb->kn, b);
+
+	while (da > db) {
+		a = a->parent;
+		da--;
+	}
+	while (db > da) {
+		b = b->parent;
+		db--;
+	}
+
+	/* worst case b and a will be the same at root */
+	while (b != a) {
+		b = b->parent;
+		a = a->parent;
+	}
+
+	return a;
+}
+
+/**
+ * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
+ * where kn_from is treated as root of the path.
+ * @kn_from: kernfs node which should be treated as root for the path
+ * @kn_to: kernfs node to which path is needed
+ * @buf: buffer to copy the path into
+ * @buflen: size of @buf
+ *
+ * We need to handle couple of scenarios here:
+ * [1] when @kn_from is an ancestor of @kn_to at some level
+ * kn_from: /n1/n2/n3
+ * kn_to:   /n1/n2/n3/n4/n5
+ * result:  /n4/n5
+ *
+ * [2] when @kn_from is on a different hierarchy and we need to find common
+ * ancestor between @kn_from and @kn_to.
+ * kn_from: /n1/n2/n3/n4
+ * kn_to:   /n1/n2/n5
+ * result:  /../../n5
+ * OR
+ * kn_from: /n1/n2/n3/n4/n5   [depth=5]
+ * kn_to:   /n1/n2/n3         [depth=3]
+ * result:  /../..
+ *
+ * [3] when @kn_to is NULL result will be "(null)"
+ *
+ * Returns the length of the full path.  If the full length is equal to or
+ * greater than @buflen, @buf contains the truncated path with the trailing
+ * '\0'.  On error, -errno is returned.
+ */
+static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
+					struct kernfs_node *kn_from,
+					char *buf, size_t buflen)
+{
+	struct kernfs_node *kn, *common;
+	const char parent_str[] = "/..";
+	size_t depth_from, depth_to, len = 0;
+	int i, j;
+
+	if (!kn_to)
+		return strlcpy(buf, "(null)", buflen);
+
+	if (!kn_from)
+		kn_from = kernfs_root(kn_to)->kn;
+
+	if (kn_from == kn_to)
+		return strlcpy(buf, "/", buflen);
+
+	common = kernfs_common_ancestor(kn_from, kn_to);
+	if (WARN_ON(!common))
+		return -EINVAL;
+
+	depth_to = kernfs_depth(common, kn_to);
+	depth_from = kernfs_depth(common, kn_from);
+
+	if (buf)
+		buf[0] = '\0';
+
+	for (i = 0; i < depth_from; i++)
+		len += strlcpy(buf + len, parent_str,
+			       len < buflen ? buflen - len : 0);
+
+	/* Calculate how many bytes we need for the rest */
+	for (i = depth_to - 1; i >= 0; i--) {
+		for (kn = kn_to, j = 0; j < i; j++)
+			kn = kn->parent;
+		len += strlcpy(buf + len, "/",
+			       len < buflen ? buflen - len : 0);
+		len += strlcpy(buf + len, kn->name,
+			       len < buflen ? buflen - len : 0);
+	}
+
+	return len;
+}
+
+/**
+ * kernfs_name - obtain the name of a given node
+ * @kn: kernfs_node of interest
+ * @buf: buffer to copy @kn's name into
+ * @buflen: size of @buf
+ *
+ * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
+ * similar to strlcpy().  It returns the length of @kn's name and if @buf
+ * isn't long enough, it's filled upto @buflen-1 and nul terminated.
+ *
+ * Fills buffer with "(null)" if @kn is NULL.
+ *
+ * This function can be called from any context.
+ */
+int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
+{
+	unsigned long flags;
+	int ret;
+
+	spin_lock_irqsave(&kernfs_rename_lock, flags);
+	ret = kernfs_name_locked(kn, buf, buflen);
+	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
+	return ret;
+}
+
+/**
+ * kernfs_path_from_node - build path of node @to relative to @from.
+ * @from: parent kernfs_node relative to which we need to build the path
+ * @to: kernfs_node of interest
+ * @buf: buffer to copy @to's path into
+ * @buflen: size of @buf
+ *
+ * Builds @to's path relative to @from in @buf. @from and @to must
+ * be on the same kernfs-root. If @from is not parent of @to, then a relative
+ * path (which includes '..'s) as needed to reach from @from to @to is
+ * returned.
+ *
+ * Returns the length of the full path.  If the full length is equal to or
+ * greater than @buflen, @buf contains the truncated path with the trailing
+ * '\0'.  On error, -errno is returned.
+ */
+int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
+			  char *buf, size_t buflen)
+{
+	unsigned long flags;
+	int ret;
+
+	spin_lock_irqsave(&kernfs_rename_lock, flags);
+	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
+	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
+	return ret;
+}
+EXPORT_SYMBOL_GPL(kernfs_path_from_node);
+
+/**
+ * pr_cont_kernfs_name - pr_cont name of a kernfs_node
+ * @kn: kernfs_node of interest
+ *
+ * This function can be called from any context.
+ */
+void pr_cont_kernfs_name(struct kernfs_node *kn)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&kernfs_rename_lock, flags);
+
+	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
+	pr_cont("%s", kernfs_pr_cont_buf);
+
+	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
+}
+
+/**
+ * pr_cont_kernfs_path - pr_cont path of a kernfs_node
+ * @kn: kernfs_node of interest
+ *
+ * This function can be called from any context.
+ */
+void pr_cont_kernfs_path(struct kernfs_node *kn)
+{
+	unsigned long flags;
+	int sz;
+
+	spin_lock_irqsave(&kernfs_rename_lock, flags);
+
+	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
+					  sizeof(kernfs_pr_cont_buf));
+	if (sz < 0) {
+		pr_cont("(error)");
+		goto out;
+	}
+
+	if (sz >= sizeof(kernfs_pr_cont_buf)) {
+		pr_cont("(name too long)");
+		goto out;
+	}
+
+	pr_cont("%s", kernfs_pr_cont_buf);
+
+out:
+	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
+}
+
+/**
+ * kernfs_get_parent - determine the parent node and pin it
+ * @kn: kernfs_node of interest
+ *
+ * Determines @kn's parent, pins and returns it.  This function can be
+ * called from any context.
+ */
+struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
+{
+	struct kernfs_node *parent;
+	unsigned long flags;
+
+	spin_lock_irqsave(&kernfs_rename_lock, flags);
+	parent = kn->parent;
+	kernfs_get(parent);
+	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
+
+	return parent;
+}
+
+/**
+ *	kernfs_name_hash
+ *	@name: Null terminated string to hash
+ *	@ns:   Namespace tag to hash
+ *
+ *	Returns 31 bit hash of ns + name (so it fits in an off_t )
+ */
+static unsigned int kernfs_name_hash(const char *name, const void *ns)
+{
+	unsigned long hash = init_name_hash(ns);
+	unsigned int len = strlen(name);
+	while (len--)
+		hash = partial_name_hash(*name++, hash);
+	hash = end_name_hash(hash);
+	hash &= 0x7fffffffU;
+	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
+	if (hash < 2)
+		hash += 2;
+	if (hash >= INT_MAX)
+		hash = INT_MAX - 1;
+	return hash;
+}
+
+static int kernfs_name_compare(unsigned int hash, const char *name,
+			       const void *ns, const struct kernfs_node *kn)
+{
+	if (hash < kn->hash)
+		return -1;
+	if (hash > kn->hash)
+		return 1;
+	if (ns < kn->ns)
+		return -1;
+	if (ns > kn->ns)
+		return 1;
+	return strcmp(name, kn->name);
+}
+
+static int kernfs_sd_compare(const struct kernfs_node *left,
+			     const struct kernfs_node *right)
+{
+	return kernfs_name_compare(left->hash, left->name, left->ns, right);
+}
+
+/**
+ *	kernfs_link_sibling - link kernfs_node into sibling rbtree
+ *	@kn: kernfs_node of interest
+ *
+ *	Link @kn into its sibling rbtree which starts from
+ *	@kn->parent->dir.children.
+ *
+ *	Locking:
+ *	mutex_lock(kernfs_mutex)
+ *
+ *	RETURNS:
+ *	0 on susccess -EEXIST on failure.
+ */
+static int kernfs_link_sibling(struct kernfs_node *kn)
+{
+	struct rb_node **node = &kn->parent->dir.children.rb_node;
+	struct rb_node *parent = NULL;
+
+	while (*node) {
+		struct kernfs_node *pos;
+		int result;
+
+		pos = rb_to_kn(*node);
+		parent = *node;
+		result = kernfs_sd_compare(kn, pos);
+		if (result < 0)
+			node = &pos->rb.rb_left;
+		else if (result > 0)
+			node = &pos->rb.rb_right;
+		else
+			return -EEXIST;
+	}
+
+	/* add new node and rebalance the tree */
+	rb_link_node(&kn->rb, parent, node);
+	rb_insert_color(&kn->rb, &kn->parent->dir.children);
+
+	/* successfully added, account subdir number */
+	if (kernfs_type(kn) == KERNFS_DIR)
+		kn->parent->dir.subdirs++;
+
+	return 0;
+}
+
+/**
+ *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
+ *	@kn: kernfs_node of interest
+ *
+ *	Try to unlink @kn from its sibling rbtree which starts from
+ *	kn->parent->dir.children.  Returns %true if @kn was actually
+ *	removed, %false if @kn wasn't on the rbtree.
+ *
+ *	Locking:
+ *	mutex_lock(kernfs_mutex)
+ */
+static bool kernfs_unlink_sibling(struct kernfs_node *kn)
+{
+	if (RB_EMPTY_NODE(&kn->rb))
+		return false;
+
+	if (kernfs_type(kn) == KERNFS_DIR)
+		kn->parent->dir.subdirs--;
+
+	rb_erase(&kn->rb, &kn->parent->dir.children);
+	RB_CLEAR_NODE(&kn->rb);
+	return true;
+}
+
+/**
+ *	kernfs_get_active - get an active reference to kernfs_node
+ *	@kn: kernfs_node to get an active reference to
+ *
+ *	Get an active reference of @kn.  This function is noop if @kn
+ *	is NULL.
+ *
+ *	RETURNS:
+ *	Pointer to @kn on success, NULL on failure.
+ */
+struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
+{
+	if (unlikely(!kn))
+		return NULL;
+
+	if (!atomic_inc_unless_negative(&kn->active))
+		return NULL;
+
+	if (kernfs_lockdep(kn))
+		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
+	return kn;
+}
+
+/**
+ *	kernfs_put_active - put an active reference to kernfs_node
+ *	@kn: kernfs_node to put an active reference to
+ *
+ *	Put an active reference to @kn.  This function is noop if @kn
+ *	is NULL.
+ */
+void kernfs_put_active(struct kernfs_node *kn)
+{
+	struct kernfs_root *root = kernfs_root(kn);
+	int v;
+
+	if (unlikely(!kn))
+		return;
+
+	if (kernfs_lockdep(kn))
+		rwsem_release(&kn->dep_map, 1, _RET_IP_);
+	v = atomic_dec_return(&kn->active);
+	if (likely(v != KN_DEACTIVATED_BIAS))
+		return;
+
+	wake_up_all(&root->deactivate_waitq);
+}
+
+/**
+ * kernfs_drain - drain kernfs_node
+ * @kn: kernfs_node to drain
+ *
+ * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
+ * removers may invoke this function concurrently on @kn and all will
+ * return after draining is complete.
+ */
+static void kernfs_drain(struct kernfs_node *kn)
+	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
+{
+	struct kernfs_root *root = kernfs_root(kn);
+
+	lockdep_assert_held(&kernfs_mutex);
+	WARN_ON_ONCE(kernfs_active(kn));
+
+	mutex_unlock(&kernfs_mutex);
+
+	if (kernfs_lockdep(kn)) {
+		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
+		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
+			lock_contended(&kn->dep_map, _RET_IP_);
+	}
+
+	/* but everyone should wait for draining */
+	wait_event(root->deactivate_waitq,
+		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
+
+	if (kernfs_lockdep(kn)) {
+		lock_acquired(&kn->dep_map, _RET_IP_);
+		rwsem_release(&kn->dep_map, 1, _RET_IP_);
+	}
+
+	kernfs_drain_open_files(kn);
+
+	mutex_lock(&kernfs_mutex);
+}
+
+/**
+ * kernfs_get - get a reference count on a kernfs_node
+ * @kn: the target kernfs_node
+ */
+void kernfs_get(struct kernfs_node *kn)
+{
+	if (kn) {
+		WARN_ON(!atomic_read(&kn->count));
+		atomic_inc(&kn->count);
+	}
+}
+EXPORT_SYMBOL_GPL(kernfs_get);
+
+/**
+ * kernfs_put - put a reference count on a kernfs_node
+ * @kn: the target kernfs_node
+ *
+ * Put a reference count of @kn and destroy it if it reached zero.
+ */
+void kernfs_put(struct kernfs_node *kn)
+{
+	struct kernfs_node *parent;
+	struct kernfs_root *root;
+
+	/*
+	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
+	 * depends on this to filter reused stale node
+	 */
+	if (!kn || !atomic_dec_and_test(&kn->count))
+		return;
+	root = kernfs_root(kn);
+ repeat:
+	/*
+	 * Moving/renaming is always done while holding reference.
+	 * kn->parent won't change beneath us.
+	 */
+	parent = kn->parent;
+
+	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
+		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
+		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
+
+	if (kernfs_type(kn) == KERNFS_LINK)
+		kernfs_put(kn->symlink.target_kn);
+
+	kfree_const(kn->name);
+
+	if (kn->iattr) {
+		if (kn->iattr->ia_secdata)
+			security_release_secctx(kn->iattr->ia_secdata,
+						kn->iattr->ia_secdata_len);
+		simple_xattrs_free(&kn->iattr->xattrs);
+	}
+	kfree(kn->iattr);
+	spin_lock(&kernfs_idr_lock);
+	idr_remove(&root->ino_idr, kn->id.ino);
+	spin_unlock(&kernfs_idr_lock);
+	kmem_cache_free(kernfs_node_cache, kn);
+
+	kn = parent;
+	if (kn) {
+		if (atomic_dec_and_test(&kn->count))
+			goto repeat;
+	} else {
+		/* just released the root kn, free @root too */
+		idr_destroy(&root->ino_idr);
+		kfree(root);
+	}
+}
+EXPORT_SYMBOL_GPL(kernfs_put);
+
+static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
+{
+	struct kernfs_node *kn;
+
+	if (flags & LOOKUP_RCU)
+		return -ECHILD;
+
+	/* Always perform fresh lookup for negatives */
+	if (d_really_is_negative(dentry))
+		goto out_bad_unlocked;
+
+	kn = kernfs_dentry_node(dentry);
+	mutex_lock(&kernfs_mutex);
+
+	/* The kernfs node has been deactivated */
+	if (!kernfs_active(kn))
+		goto out_bad;
+
+	/* The kernfs node has been moved? */
+	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
+		goto out_bad;
+
+	/* The kernfs node has been renamed */
+	if (strcmp(dentry->d_name.name, kn->name) != 0)
+		goto out_bad;
+
+	/* The kernfs node has been moved to a different namespace */
+	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
+	    kernfs_info(dentry->d_sb)->ns != kn->ns)
+		goto out_bad;
+
+	mutex_unlock(&kernfs_mutex);
+	return 1;
+out_bad:
+	mutex_unlock(&kernfs_mutex);
+out_bad_unlocked:
+	return 0;
+}
+
+const struct dentry_operations kernfs_dops = {
+	.d_revalidate	= kernfs_dop_revalidate,
+};
+
+/**
+ * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
+ * @dentry: the dentry in question
+ *
+ * Return the kernfs_node associated with @dentry.  If @dentry is not a
+ * kernfs one, %NULL is returned.
+ *
+ * While the returned kernfs_node will stay accessible as long as @dentry
+ * is accessible, the returned node can be in any state and the caller is
+ * fully responsible for determining what's accessible.
+ */
+struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
+{
+	if (dentry->d_sb->s_op == &kernfs_sops &&
+	    !d_really_is_negative(dentry))
+		return kernfs_dentry_node(dentry);
+	return NULL;
+}
+
+static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
+					     const char *name, umode_t mode,
+					     kuid_t uid, kgid_t gid,
+					     unsigned flags)
+{
+	struct kernfs_node *kn;
+	u32 gen;
+	int cursor;
+	int ret;
+
+	name = kstrdup_const(name, GFP_KERNEL);
+	if (!name)
+		return NULL;
+
+	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
+	if (!kn)
+		goto err_out1;
+
+	idr_preload(GFP_KERNEL);
+	spin_lock(&kernfs_idr_lock);
+	cursor = idr_get_cursor(&root->ino_idr);
+	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
+	if (ret >= 0 && ret < cursor)
+		root->next_generation++;
+	gen = root->next_generation;
+	spin_unlock(&kernfs_idr_lock);
+	idr_preload_end();
+	if (ret < 0)
+		goto err_out2;
+	kn->id.ino = ret;
+	kn->id.generation = gen;
+
+	/*
+	 * set ino first. This barrier is paired with atomic_inc_not_zero in
+	 * kernfs_find_and_get_node_by_ino
+	 */
+	smp_mb__before_atomic();
+	atomic_set(&kn->count, 1);
+	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
+	RB_CLEAR_NODE(&kn->rb);
+
+	kn->name = name;
+	kn->mode = mode;
+	kn->flags = flags;
+
+	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
+		struct iattr iattr = {
+			.ia_valid = ATTR_UID | ATTR_GID,
+			.ia_uid = uid,
+			.ia_gid = gid,
+		};
+
+		ret = __kernfs_setattr(kn, &iattr);
+		if (ret < 0)
+			goto err_out3;
+	}
+
+	return kn;
+
+ err_out3:
+	idr_remove(&root->ino_idr, kn->id.ino);
+ err_out2:
+	kmem_cache_free(kernfs_node_cache, kn);
+ err_out1:
+	kfree_const(name);
+	return NULL;
+}
+
+struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
+				    const char *name, umode_t mode,
+				    kuid_t uid, kgid_t gid,
+				    unsigned flags)
+{
+	struct kernfs_node *kn;
+
+	kn = __kernfs_new_node(kernfs_root(parent),
+			       name, mode, uid, gid, flags);
+	if (kn) {
+		kernfs_get(parent);
+		kn->parent = parent;
+	}
+	return kn;
+}
+
+/*
+ * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
+ * @root: the kernfs root
+ * @ino: inode number
+ *
+ * RETURNS:
+ * NULL on failure. Return a kernfs node with reference counter incremented
+ */
+struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
+						    unsigned int ino)
+{
+	struct kernfs_node *kn;
+
+	rcu_read_lock();
+	kn = idr_find(&root->ino_idr, ino);
+	if (!kn)
+		goto out;
+
+	/*
+	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
+	 * is freed, but reused before RCU grace period. But a freed node (see
+	 * kernfs_put) or an incompletedly initialized node (see
+	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
+	 * filter out such node.
+	 */
+	if (!atomic_inc_not_zero(&kn->count)) {
+		kn = NULL;
+		goto out;
+	}
+
+	/*
+	 * The node could be a new node or a reused node. If it's a new node,
+	 * we are ok. If it's reused because of RCU (because of
+	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
+	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
+	 * hence we can use 'ino' to filter stale node.
+	 */
+	if (kn->id.ino != ino)
+		goto out;
+	rcu_read_unlock();
+
+	return kn;
+out:
+	rcu_read_unlock();
+	kernfs_put(kn);
+	return NULL;
+}
+
+/**
+ *	kernfs_add_one - add kernfs_node to parent without warning
+ *	@kn: kernfs_node to be added
+ *
+ *	The caller must already have initialized @kn->parent.  This
+ *	function increments nlink of the parent's inode if @kn is a
+ *	directory and link into the children list of the parent.
+ *
+ *	RETURNS:
+ *	0 on success, -EEXIST if entry with the given name already
+ *	exists.
+ */
+int kernfs_add_one(struct kernfs_node *kn)
+{
+	struct kernfs_node *parent = kn->parent;
+	struct kernfs_iattrs *ps_iattr;
+	bool has_ns;
+	int ret;
+
+	mutex_lock(&kernfs_mutex);
+
+	ret = -EINVAL;
+	has_ns = kernfs_ns_enabled(parent);
+	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
+		 has_ns ? "required" : "invalid", parent->name, kn->name))
+		goto out_unlock;
+
+	if (kernfs_type(parent) != KERNFS_DIR)
+		goto out_unlock;
+
+	ret = -ENOENT;
+	if (parent->flags & KERNFS_EMPTY_DIR)
+		goto out_unlock;
+
+	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
+		goto out_unlock;
+
+	kn->hash = kernfs_name_hash(kn->name, kn->ns);
+
+	ret = kernfs_link_sibling(kn);
+	if (ret)
+		goto out_unlock;
+
+	/* Update timestamps on the parent */
+	ps_iattr = parent->iattr;
+	if (ps_iattr) {
+		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
+		ktime_get_real_ts64(&ps_iattrs->ia_ctime);
+		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
+	}
+
+	mutex_unlock(&kernfs_mutex);
+
+	/*
+	 * Activate the new node unless CREATE_DEACTIVATED is requested.
+	 * If not activated here, the kernfs user is responsible for
+	 * activating the node with kernfs_activate().  A node which hasn't
+	 * been activated is not visible to userland and its removal won't
+	 * trigger deactivation.
+	 */
+	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
+		kernfs_activate(kn);
+	return 0;
+
+out_unlock:
+	mutex_unlock(&kernfs_mutex);
+	return ret;
+}
+
+/**
+ * kernfs_find_ns - find kernfs_node with the given name
+ * @parent: kernfs_node to search under
+ * @name: name to look for
+ * @ns: the namespace tag to use
+ *
+ * Look for kernfs_node with name @name under @parent.  Returns pointer to
+ * the found kernfs_node on success, %NULL on failure.
+ */
+static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
+					  const unsigned char *name,
+					  const void *ns)
+{
+	struct rb_node *node = parent->dir.children.rb_node;
+	bool has_ns = kernfs_ns_enabled(parent);
+	unsigned int hash;
+
+	lockdep_assert_held(&kernfs_mutex);
+
+	if (has_ns != (bool)ns) {
+		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
+		     has_ns ? "required" : "invalid", parent->name, name);
+		return NULL;
+	}
+
+	hash = kernfs_name_hash(name, ns);
+	while (node) {
+		struct kernfs_node *kn;
+		int result;
+
+		kn = rb_to_kn(node);
+		result = kernfs_name_compare(hash, name, ns, kn);
+		if (result < 0)
+			node = node->rb_left;
+		else if (result > 0)
+			node = node->rb_right;
+		else
+			return kn;
+	}
+	return NULL;
+}
+
+static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
+					  const unsigned char *path,
+					  const void *ns)
+{
+	size_t len;
+	char *p, *name;
+
+	lockdep_assert_held(&kernfs_mutex);
+
+	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
+	spin_lock_irq(&kernfs_rename_lock);
+
+	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
+
+	if (len >= sizeof(kernfs_pr_cont_buf)) {
+		spin_unlock_irq(&kernfs_rename_lock);
+		return NULL;
+	}
+
+	p = kernfs_pr_cont_buf;
+
+	while ((name = strsep(&p, "/")) && parent) {
+		if (*name == '\0')
+			continue;
+		parent = kernfs_find_ns(parent, name, ns);
+	}
+
+	spin_unlock_irq(&kernfs_rename_lock);
+
+	return parent;
+}
+
+/**
+ * kernfs_find_and_get_ns - find and get kernfs_node with the given name
+ * @parent: kernfs_node to search under
+ * @name: name to look for
+ * @ns: the namespace tag to use
+ *
+ * Look for kernfs_node with name @name under @parent and get a reference
+ * if found.  This function may sleep and returns pointer to the found
+ * kernfs_node on success, %NULL on failure.
+ */
+struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
+					   const char *name, const void *ns)
+{
+	struct kernfs_node *kn;
+
+	mutex_lock(&kernfs_mutex);
+	kn = kernfs_find_ns(parent, name, ns);
+	kernfs_get(kn);
+	mutex_unlock(&kernfs_mutex);
+
+	return kn;
+}
+EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
+
+/**
+ * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
+ * @parent: kernfs_node to search under
+ * @path: path to look for
+ * @ns: the namespace tag to use
+ *
+ * Look for kernfs_node with path @path under @parent and get a reference
+ * if found.  This function may sleep and returns pointer to the found
+ * kernfs_node on success, %NULL on failure.
+ */
+struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
+					   const char *path, const void *ns)
+{
+	struct kernfs_node *kn;
+
+	mutex_lock(&kernfs_mutex);
+	kn = kernfs_walk_ns(parent, path, ns);
+	kernfs_get(kn);
+	mutex_unlock(&kernfs_mutex);
+
+	return kn;
+}
+
+/**
+ * kernfs_create_root - create a new kernfs hierarchy
+ * @scops: optional syscall operations for the hierarchy
+ * @flags: KERNFS_ROOT_* flags
+ * @priv: opaque data associated with the new directory
+ *
+ * Returns the root of the new hierarchy on success, ERR_PTR() value on
+ * failure.
+ */
+struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
+				       unsigned int flags, void *priv)
+{
+	struct kernfs_root *root;
+	struct kernfs_node *kn;
+
+	root = kzalloc(sizeof(*root), GFP_KERNEL);
+	if (!root)
+		return ERR_PTR(-ENOMEM);
+
+	idr_init(&root->ino_idr);
+	INIT_LIST_HEAD(&root->supers);
+	root->next_generation = 1;
+
+	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
+			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
+			       KERNFS_DIR);
+	if (!kn) {
+		idr_destroy(&root->ino_idr);
+		kfree(root);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	kn->priv = priv;
+	kn->dir.root = root;
+
+	root->syscall_ops = scops;
+	root->flags = flags;
+	root->kn = kn;
+	init_waitqueue_head(&root->deactivate_waitq);
+
+	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
+		kernfs_activate(kn);
+
+	return root;
+}
+
+/**
+ * kernfs_destroy_root - destroy a kernfs hierarchy
+ * @root: root of the hierarchy to destroy
+ *
+ * Destroy the hierarchy anchored at @root by removing all existing
+ * directories and destroying @root.
+ */
+void kernfs_destroy_root(struct kernfs_root *root)
+{
+	kernfs_remove(root->kn);	/* will also free @root */
+}
+
+/**
+ * kernfs_create_dir_ns - create a directory
+ * @parent: parent in which to create a new directory
+ * @name: name of the new directory
+ * @mode: mode of the new directory
+ * @uid: uid of the new directory
+ * @gid: gid of the new directory
+ * @priv: opaque data associated with the new directory
+ * @ns: optional namespace tag of the directory
+ *
+ * Returns the created node on success, ERR_PTR() value on failure.
+ */
+struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
+					 const char *name, umode_t mode,
+					 kuid_t uid, kgid_t gid,
+					 void *priv, const void *ns)
+{
+	struct kernfs_node *kn;
+	int rc;
+
+	/* allocate */
+	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
+			     uid, gid, KERNFS_DIR);
+	if (!kn)
+		return ERR_PTR(-ENOMEM);
+
+	kn->dir.root = parent->dir.root;
+	kn->ns = ns;
+	kn->priv = priv;
+
+	/* link in */
+	rc = kernfs_add_one(kn);
+	if (!rc)
+		return kn;
+
+	kernfs_put(kn);
+	return ERR_PTR(rc);
+}
+
+/**
+ * kernfs_create_empty_dir - create an always empty directory
+ * @parent: parent in which to create a new directory
+ * @name: name of the new directory
+ *
+ * Returns the created node on success, ERR_PTR() value on failure.
+ */
+struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
+					    const char *name)
+{
+	struct kernfs_node *kn;
+	int rc;
+
+	/* allocate */
+	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
+			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
+	if (!kn)
+		return ERR_PTR(-ENOMEM);
+
+	kn->flags |= KERNFS_EMPTY_DIR;
+	kn->dir.root = parent->dir.root;
+	kn->ns = NULL;
+	kn->priv = NULL;
+
+	/* link in */
+	rc = kernfs_add_one(kn);
+	if (!rc)
+		return kn;
+
+	kernfs_put(kn);
+	return ERR_PTR(rc);
+}
+
+static struct dentry *kernfs_iop_lookup(struct inode *dir,
+					struct dentry *dentry,
+					unsigned int flags)
+{
+	struct dentry *ret;
+	struct kernfs_node *parent = dir->i_private;
+	struct kernfs_node *kn;
+	struct inode *inode;
+	const void *ns = NULL;
+
+	mutex_lock(&kernfs_mutex);
+
+	if (kernfs_ns_enabled(parent))
+		ns = kernfs_info(dir->i_sb)->ns;
+
+	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
+
+	/* no such entry */
+	if (!kn || !kernfs_active(kn)) {
+		ret = NULL;
+		goto out_unlock;
+	}
+
+	/* attach dentry and inode */
+	inode = kernfs_get_inode(dir->i_sb, kn);
+	if (!inode) {
+		ret = ERR_PTR(-ENOMEM);
+		goto out_unlock;
+	}
+
+	/* instantiate and hash dentry */
+	ret = d_splice_alias(inode, dentry);
+ out_unlock:
+	mutex_unlock(&kernfs_mutex);
+	return ret;
+}
+
+static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
+			    umode_t mode)
+{
+	struct kernfs_node *parent = dir->i_private;
+	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
+	int ret;
+
+	if (!scops || !scops->mkdir)
+		return -EPERM;
+
+	if (!kernfs_get_active(parent))
+		return -ENODEV;
+
+	ret = scops->mkdir(parent, dentry->d_name.name, mode);
+
+	kernfs_put_active(parent);
+	return ret;
+}
+
+static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
+{
+	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
+	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
+	int ret;
+
+	if (!scops || !scops->rmdir)
+		return -EPERM;
+
+	if (!kernfs_get_active(kn))
+		return -ENODEV;
+
+	ret = scops->rmdir(kn);
+
+	kernfs_put_active(kn);
+	return ret;
+}
+
+static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
+			     struct inode *new_dir, struct dentry *new_dentry,
+			     unsigned int flags)
+{
+	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
+	struct kernfs_node *new_parent = new_dir->i_private;
+	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
+	int ret;
+
+	if (flags)
+		return -EINVAL;
+
+	if (!scops || !scops->rename)
+		return -EPERM;
+
+	if (!kernfs_get_active(kn))
+		return -ENODEV;
+
+	if (!kernfs_get_active(new_parent)) {
+		kernfs_put_active(kn);
+		return -ENODEV;
+	}
+
+	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
+
+	kernfs_put_active(new_parent);
+	kernfs_put_active(kn);
+	return ret;
+}
+
+const struct inode_operations kernfs_dir_iops = {
+	.lookup		= kernfs_iop_lookup,
+	.permission	= kernfs_iop_permission,
+	.setattr	= kernfs_iop_setattr,
+	.getattr	= kernfs_iop_getattr,
+	.listxattr	= kernfs_iop_listxattr,
+
+	.mkdir		= kernfs_iop_mkdir,
+	.rmdir		= kernfs_iop_rmdir,
+	.rename		= kernfs_iop_rename,
+};
+
+static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
+{
+	struct kernfs_node *last;
+
+	while (true) {
+		struct rb_node *rbn;
+
+		last = pos;
+
+		if (kernfs_type(pos) != KERNFS_DIR)
+			break;
+
+		rbn = rb_first(&pos->dir.children);
+		if (!rbn)
+			break;
+
+		pos = rb_to_kn(rbn);
+	}
+
+	return last;
+}
+
+/**
+ * kernfs_next_descendant_post - find the next descendant for post-order walk
+ * @pos: the current position (%NULL to initiate traversal)
+ * @root: kernfs_node whose descendants to walk
+ *
+ * Find the next descendant to visit for post-order traversal of @root's
+ * descendants.  @root is included in the iteration and the last node to be
+ * visited.
+ */
+static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
+						       struct kernfs_node *root)
+{
+	struct rb_node *rbn;
+
+	lockdep_assert_held(&kernfs_mutex);
+
+	/* if first iteration, visit leftmost descendant which may be root */
+	if (!pos)
+		return kernfs_leftmost_descendant(root);
+
+	/* if we visited @root, we're done */
+	if (pos == root)
+		return NULL;
+
+	/* if there's an unvisited sibling, visit its leftmost descendant */
+	rbn = rb_next(&pos->rb);
+	if (rbn)
+		return kernfs_leftmost_descendant(rb_to_kn(rbn));
+
+	/* no sibling left, visit parent */
+	return pos->parent;
+}
+
+/**
+ * kernfs_activate - activate a node which started deactivated
+ * @kn: kernfs_node whose subtree is to be activated
+ *
+ * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
+ * needs to be explicitly activated.  A node which hasn't been activated
+ * isn't visible to userland and deactivation is skipped during its
+ * removal.  This is useful to construct atomic init sequences where
+ * creation of multiple nodes should either succeed or fail atomically.
+ *
+ * The caller is responsible for ensuring that this function is not called
+ * after kernfs_remove*() is invoked on @kn.
+ */
+void kernfs_activate(struct kernfs_node *kn)
+{
+	struct kernfs_node *pos;
+
+	mutex_lock(&kernfs_mutex);
+
+	pos = NULL;
+	while ((pos = kernfs_next_descendant_post(pos, kn))) {
+		if (!pos || (pos->flags & KERNFS_ACTIVATED))
+			continue;
+
+		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
+		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
+
+		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
+		pos->flags |= KERNFS_ACTIVATED;
+	}
+
+	mutex_unlock(&kernfs_mutex);
+}
+
+static void __kernfs_remove(struct kernfs_node *kn)
+{
+	struct kernfs_node *pos;
+
+	lockdep_assert_held(&kernfs_mutex);
+
+	/*
+	 * Short-circuit if non-root @kn has already finished removal.
+	 * This is for kernfs_remove_self() which plays with active ref
+	 * after removal.
+	 */
+	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
+		return;
+
+	pr_debug("kernfs %s: removing\n", kn->name);
+
+	/* prevent any new usage under @kn by deactivating all nodes */
+	pos = NULL;
+	while ((pos = kernfs_next_descendant_post(pos, kn)))
+		if (kernfs_active(pos))
+			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
+
+	/* deactivate and unlink the subtree node-by-node */
+	do {
+		pos = kernfs_leftmost_descendant(kn);
+
+		/*
+		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
+		 * base ref could have been put by someone else by the time
+		 * the function returns.  Make sure it doesn't go away
+		 * underneath us.
+		 */
+		kernfs_get(pos);
+
+		/*
+		 * Drain iff @kn was activated.  This avoids draining and
+		 * its lockdep annotations for nodes which have never been
+		 * activated and allows embedding kernfs_remove() in create
+		 * error paths without worrying about draining.
+		 */
+		if (kn->flags & KERNFS_ACTIVATED)
+			kernfs_drain(pos);
+		else
+			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
+
+		/*
+		 * kernfs_unlink_sibling() succeeds once per node.  Use it
+		 * to decide who's responsible for cleanups.
+		 */
+		if (!pos->parent || kernfs_unlink_sibling(pos)) {
+			struct kernfs_iattrs *ps_iattr =
+				pos->parent ? pos->parent->iattr : NULL;
+
+			/* update timestamps on the parent */
+			if (ps_iattr) {
+				ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime);
+				ps_iattr->ia_iattr.ia_mtime =
+					ps_iattr->ia_iattr.ia_ctime;
+			}
+
+			kernfs_put(pos);
+		}
+
+		kernfs_put(pos);
+	} while (pos != kn);
+}
+
+/**
+ * kernfs_remove - remove a kernfs_node recursively
+ * @kn: the kernfs_node to remove
+ *
+ * Remove @kn along with all its subdirectories and files.
+ */
+void kernfs_remove(struct kernfs_node *kn)
+{
+	mutex_lock(&kernfs_mutex);
+	__kernfs_remove(kn);
+	mutex_unlock(&kernfs_mutex);
+}
+
+/**
+ * kernfs_break_active_protection - break out of active protection
+ * @kn: the self kernfs_node
+ *
+ * The caller must be running off of a kernfs operation which is invoked
+ * with an active reference - e.g. one of kernfs_ops.  Each invocation of
+ * this function must also be matched with an invocation of
+ * kernfs_unbreak_active_protection().
+ *
+ * This function releases the active reference of @kn the caller is
+ * holding.  Once this function is called, @kn may be removed at any point
+ * and the caller is solely responsible for ensuring that the objects it
+ * dereferences are accessible.
+ */
+void kernfs_break_active_protection(struct kernfs_node *kn)
+{
+	/*
+	 * Take out ourself out of the active ref dependency chain.  If
+	 * we're called without an active ref, lockdep will complain.
+	 */
+	kernfs_put_active(kn);
+}
+
+/**
+ * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
+ * @kn: the self kernfs_node
+ *
+ * If kernfs_break_active_protection() was called, this function must be
+ * invoked before finishing the kernfs operation.  Note that while this
+ * function restores the active reference, it doesn't and can't actually
+ * restore the active protection - @kn may already or be in the process of
+ * being removed.  Once kernfs_break_active_protection() is invoked, that
+ * protection is irreversibly gone for the kernfs operation instance.
+ *
+ * While this function may be called at any point after
+ * kernfs_break_active_protection() is invoked, its most useful location
+ * would be right before the enclosing kernfs operation returns.
+ */
+void kernfs_unbreak_active_protection(struct kernfs_node *kn)
+{
+	/*
+	 * @kn->active could be in any state; however, the increment we do
+	 * here will be undone as soon as the enclosing kernfs operation
+	 * finishes and this temporary bump can't break anything.  If @kn
+	 * is alive, nothing changes.  If @kn is being deactivated, the
+	 * soon-to-follow put will either finish deactivation or restore
+	 * deactivated state.  If @kn is already removed, the temporary
+	 * bump is guaranteed to be gone before @kn is released.
+	 */
+	atomic_inc(&kn->active);
+	if (kernfs_lockdep(kn))
+		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
+}
+
+/**
+ * kernfs_remove_self - remove a kernfs_node from its own method
+ * @kn: the self kernfs_node to remove
+ *
+ * The caller must be running off of a kernfs operation which is invoked
+ * with an active reference - e.g. one of kernfs_ops.  This can be used to
+ * implement a file operation which deletes itself.
+ *
+ * For example, the "delete" file for a sysfs device directory can be
+ * implemented by invoking kernfs_remove_self() on the "delete" file
+ * itself.  This function breaks the circular dependency of trying to
+ * deactivate self while holding an active ref itself.  It isn't necessary
+ * to modify the usual removal path to use kernfs_remove_self().  The
+ * "delete" implementation can simply invoke kernfs_remove_self() on self
+ * before proceeding with the usual removal path.  kernfs will ignore later
+ * kernfs_remove() on self.
+ *
+ * kernfs_remove_self() can be called multiple times concurrently on the
+ * same kernfs_node.  Only the first one actually performs removal and
+ * returns %true.  All others will wait until the kernfs operation which
+ * won self-removal finishes and return %false.  Note that the losers wait
+ * for the completion of not only the winning kernfs_remove_self() but also
+ * the whole kernfs_ops which won the arbitration.  This can be used to
+ * guarantee, for example, all concurrent writes to a "delete" file to
+ * finish only after the whole operation is complete.
+ */
+bool kernfs_remove_self(struct kernfs_node *kn)
+{
+	bool ret;
+
+	mutex_lock(&kernfs_mutex);
+	kernfs_break_active_protection(kn);
+
+	/*
+	 * SUICIDAL is used to arbitrate among competing invocations.  Only
+	 * the first one will actually perform removal.  When the removal
+	 * is complete, SUICIDED is set and the active ref is restored
+	 * while holding kernfs_mutex.  The ones which lost arbitration
+	 * waits for SUICDED && drained which can happen only after the
+	 * enclosing kernfs operation which executed the winning instance
+	 * of kernfs_remove_self() finished.
+	 */
+	if (!(kn->flags & KERNFS_SUICIDAL)) {
+		kn->flags |= KERNFS_SUICIDAL;
+		__kernfs_remove(kn);
+		kn->flags |= KERNFS_SUICIDED;
+		ret = true;
+	} else {
+		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
+		DEFINE_WAIT(wait);
+
+		while (true) {
+			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
+
+			if ((kn->flags & KERNFS_SUICIDED) &&
+			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
+				break;
+
+			mutex_unlock(&kernfs_mutex);
+			schedule();
+			mutex_lock(&kernfs_mutex);
+		}
+		finish_wait(waitq, &wait);
+		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
+		ret = false;
+	}
+
+	/*
+	 * This must be done while holding kernfs_mutex; otherwise, waiting
+	 * for SUICIDED && deactivated could finish prematurely.
+	 */
+	kernfs_unbreak_active_protection(kn);
+
+	mutex_unlock(&kernfs_mutex);
+	return ret;
+}
+
+/**
+ * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
+ * @parent: parent of the target
+ * @name: name of the kernfs_node to remove
+ * @ns: namespace tag of the kernfs_node to remove
+ *
+ * Look for the kernfs_node with @name and @ns under @parent and remove it.
+ * Returns 0 on success, -ENOENT if such entry doesn't exist.
+ */
+int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
+			     const void *ns)
+{
+	struct kernfs_node *kn;
+
+	if (!parent) {
+		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
+			name);
+		return -ENOENT;
+	}
+
+	mutex_lock(&kernfs_mutex);
+
+	kn = kernfs_find_ns(parent, name, ns);
+	if (kn)
+		__kernfs_remove(kn);
+
+	mutex_unlock(&kernfs_mutex);
+
+	if (kn)
+		return 0;
+	else
+		return -ENOENT;
+}
+
+/**
+ * kernfs_rename_ns - move and rename a kernfs_node
+ * @kn: target node
+ * @new_parent: new parent to put @sd under
+ * @new_name: new name
+ * @new_ns: new namespace tag
+ */
+int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
+		     const char *new_name, const void *new_ns)
+{
+	struct kernfs_node *old_parent;
+	const char *old_name = NULL;
+	int error;
+
+	/* can't move or rename root */
+	if (!kn->parent)
+		return -EINVAL;
+
+	mutex_lock(&kernfs_mutex);
+
+	error = -ENOENT;
+	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
+	    (new_parent->flags & KERNFS_EMPTY_DIR))
+		goto out;
+
+	error = 0;
+	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
+	    (strcmp(kn->name, new_name) == 0))
+		goto out;	/* nothing to rename */
+
+	error = -EEXIST;
+	if (kernfs_find_ns(new_parent, new_name, new_ns))
+		goto out;
+
+	/* rename kernfs_node */
+	if (strcmp(kn->name, new_name) != 0) {
+		error = -ENOMEM;
+		new_name = kstrdup_const(new_name, GFP_KERNEL);
+		if (!new_name)
+			goto out;
+	} else {
+		new_name = NULL;
+	}
+
+	/*
+	 * Move to the appropriate place in the appropriate directories rbtree.
+	 */
+	kernfs_unlink_sibling(kn);
+	kernfs_get(new_parent);
+
+	/* rename_lock protects ->parent and ->name accessors */
+	spin_lock_irq(&kernfs_rename_lock);
+
+	old_parent = kn->parent;
+	kn->parent = new_parent;
+
+	kn->ns = new_ns;
+	if (new_name) {
+		old_name = kn->name;
+		kn->name = new_name;
+	}
+
+	spin_unlock_irq(&kernfs_rename_lock);
+
+	kn->hash = kernfs_name_hash(kn->name, kn->ns);
+	kernfs_link_sibling(kn);
+
+	kernfs_put(old_parent);
+	kfree_const(old_name);
+
+	error = 0;
+ out:
+	mutex_unlock(&kernfs_mutex);
+	return error;
+}
+
+/* Relationship between s_mode and the DT_xxx types */
+static inline unsigned char dt_type(struct kernfs_node *kn)
+{
+	return (kn->mode >> 12) & 15;
+}
+
+static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
+{
+	kernfs_put(filp->private_data);
+	return 0;
+}
+
+static struct kernfs_node *kernfs_dir_pos(const void *ns,
+	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
+{
+	if (pos) {
+		int valid = kernfs_active(pos) &&
+			pos->parent == parent && hash == pos->hash;
+		kernfs_put(pos);
+		if (!valid)
+			pos = NULL;
+	}
+	if (!pos && (hash > 1) && (hash < INT_MAX)) {
+		struct rb_node *node = parent->dir.children.rb_node;
+		while (node) {
+			pos = rb_to_kn(node);
+
+			if (hash < pos->hash)
+				node = node->rb_left;
+			else if (hash > pos->hash)
+				node = node->rb_right;
+			else
+				break;
+		}
+	}
+	/* Skip over entries which are dying/dead or in the wrong namespace */
+	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
+		struct rb_node *node = rb_next(&pos->rb);
+		if (!node)
+			pos = NULL;
+		else
+			pos = rb_to_kn(node);
+	}
+	return pos;
+}
+
+static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
+	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
+{
+	pos = kernfs_dir_pos(ns, parent, ino, pos);
+	if (pos) {
+		do {
+			struct rb_node *node = rb_next(&pos->rb);
+			if (!node)
+				pos = NULL;
+			else
+				pos = rb_to_kn(node);
+		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
+	}
+	return pos;
+}
+
+static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
+{
+	struct dentry *dentry = file->f_path.dentry;
+	struct kernfs_node *parent = kernfs_dentry_node(dentry);
+	struct kernfs_node *pos = file->private_data;
+	const void *ns = NULL;
+
+	if (!dir_emit_dots(file, ctx))
+		return 0;
+	mutex_lock(&kernfs_mutex);
+
+	if (kernfs_ns_enabled(parent))
+		ns = kernfs_info(dentry->d_sb)->ns;
+
+	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
+	     pos;
+	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
+		const char *name = pos->name;
+		unsigned int type = dt_type(pos);
+		int len = strlen(name);
+		ino_t ino = pos->id.ino;
+
+		ctx->pos = pos->hash;
+		file->private_data = pos;
+		kernfs_get(pos);
+
+		mutex_unlock(&kernfs_mutex);
+		if (!dir_emit(ctx, name, len, ino, type))
+			return 0;
+		mutex_lock(&kernfs_mutex);
+	}
+	mutex_unlock(&kernfs_mutex);
+	file->private_data = NULL;
+	ctx->pos = INT_MAX;
+	return 0;
+}
+
+const struct file_operations kernfs_dir_fops = {
+	.read		= generic_read_dir,
+	.iterate_shared	= kernfs_fop_readdir,
+	.release	= kernfs_dir_fop_release,
+	.llseek		= generic_file_llseek,
+};
diff --git a/fs/kernfs/file.c b/fs/kernfs/file.c
new file mode 100644
index 0000000..dbf5bc2
--- /dev/null
+++ b/fs/kernfs/file.c
@@ -0,0 +1,1027 @@
+/*
+ * fs/kernfs/file.c - kernfs file implementation
+ *
+ * Copyright (c) 2001-3 Patrick Mochel
+ * Copyright (c) 2007 SUSE Linux Products GmbH
+ * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ */
+
+#include <linux/fs.h>
+#include <linux/seq_file.h>
+#include <linux/slab.h>
+#include <linux/poll.h>
+#include <linux/pagemap.h>
+#include <linux/sched/mm.h>
+#include <linux/fsnotify.h>
+
+#include "kernfs-internal.h"
+
+/*
+ * There's one kernfs_open_file for each open file and one kernfs_open_node
+ * for each kernfs_node with one or more open files.
+ *
+ * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
+ * protected by kernfs_open_node_lock.
+ *
+ * filp->private_data points to seq_file whose ->private points to
+ * kernfs_open_file.  kernfs_open_files are chained at
+ * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
+ */
+static DEFINE_SPINLOCK(kernfs_open_node_lock);
+static DEFINE_MUTEX(kernfs_open_file_mutex);
+
+struct kernfs_open_node {
+	atomic_t		refcnt;
+	atomic_t		event;
+	wait_queue_head_t	poll;
+	struct list_head	files; /* goes through kernfs_open_file.list */
+};
+
+/*
+ * kernfs_notify() may be called from any context and bounces notifications
+ * through a work item.  To minimize space overhead in kernfs_node, the
+ * pending queue is implemented as a singly linked list of kernfs_nodes.
+ * The list is terminated with the self pointer so that whether a
+ * kernfs_node is on the list or not can be determined by testing the next
+ * pointer for NULL.
+ */
+#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
+
+static DEFINE_SPINLOCK(kernfs_notify_lock);
+static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
+
+static struct kernfs_open_file *kernfs_of(struct file *file)
+{
+	return ((struct seq_file *)file->private_data)->private;
+}
+
+/*
+ * Determine the kernfs_ops for the given kernfs_node.  This function must
+ * be called while holding an active reference.
+ */
+static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
+{
+	if (kn->flags & KERNFS_LOCKDEP)
+		lockdep_assert_held(kn);
+	return kn->attr.ops;
+}
+
+/*
+ * As kernfs_seq_stop() is also called after kernfs_seq_start() or
+ * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
+ * a seq_file iteration which is fully initialized with an active reference
+ * or an aborted kernfs_seq_start() due to get_active failure.  The
+ * position pointer is the only context for each seq_file iteration and
+ * thus the stop condition should be encoded in it.  As the return value is
+ * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
+ * choice to indicate get_active failure.
+ *
+ * Unfortunately, this is complicated due to the optional custom seq_file
+ * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
+ * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
+ * custom seq_file operations and thus can't decide whether put_active
+ * should be performed or not only on ERR_PTR(-ENODEV).
+ *
+ * This is worked around by factoring out the custom seq_stop() and
+ * put_active part into kernfs_seq_stop_active(), skipping it from
+ * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
+ * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
+ * that kernfs_seq_stop_active() is skipped only after get_active failure.
+ */
+static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
+{
+	struct kernfs_open_file *of = sf->private;
+	const struct kernfs_ops *ops = kernfs_ops(of->kn);
+
+	if (ops->seq_stop)
+		ops->seq_stop(sf, v);
+	kernfs_put_active(of->kn);
+}
+
+static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
+{
+	struct kernfs_open_file *of = sf->private;
+	const struct kernfs_ops *ops;
+
+	/*
+	 * @of->mutex nests outside active ref and is primarily to ensure that
+	 * the ops aren't called concurrently for the same open file.
+	 */
+	mutex_lock(&of->mutex);
+	if (!kernfs_get_active(of->kn))
+		return ERR_PTR(-ENODEV);
+
+	ops = kernfs_ops(of->kn);
+	if (ops->seq_start) {
+		void *next = ops->seq_start(sf, ppos);
+		/* see the comment above kernfs_seq_stop_active() */
+		if (next == ERR_PTR(-ENODEV))
+			kernfs_seq_stop_active(sf, next);
+		return next;
+	} else {
+		/*
+		 * The same behavior and code as single_open().  Returns
+		 * !NULL if pos is at the beginning; otherwise, NULL.
+		 */
+		return NULL + !*ppos;
+	}
+}
+
+static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
+{
+	struct kernfs_open_file *of = sf->private;
+	const struct kernfs_ops *ops = kernfs_ops(of->kn);
+
+	if (ops->seq_next) {
+		void *next = ops->seq_next(sf, v, ppos);
+		/* see the comment above kernfs_seq_stop_active() */
+		if (next == ERR_PTR(-ENODEV))
+			kernfs_seq_stop_active(sf, next);
+		return next;
+	} else {
+		/*
+		 * The same behavior and code as single_open(), always
+		 * terminate after the initial read.
+		 */
+		++*ppos;
+		return NULL;
+	}
+}
+
+static void kernfs_seq_stop(struct seq_file *sf, void *v)
+{
+	struct kernfs_open_file *of = sf->private;
+
+	if (v != ERR_PTR(-ENODEV))
+		kernfs_seq_stop_active(sf, v);
+	mutex_unlock(&of->mutex);
+}
+
+static int kernfs_seq_show(struct seq_file *sf, void *v)
+{
+	struct kernfs_open_file *of = sf->private;
+
+	of->event = atomic_read(&of->kn->attr.open->event);
+
+	return of->kn->attr.ops->seq_show(sf, v);
+}
+
+static const struct seq_operations kernfs_seq_ops = {
+	.start = kernfs_seq_start,
+	.next = kernfs_seq_next,
+	.stop = kernfs_seq_stop,
+	.show = kernfs_seq_show,
+};
+
+/*
+ * As reading a bin file can have side-effects, the exact offset and bytes
+ * specified in read(2) call should be passed to the read callback making
+ * it difficult to use seq_file.  Implement simplistic custom buffering for
+ * bin files.
+ */
+static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
+				       char __user *user_buf, size_t count,
+				       loff_t *ppos)
+{
+	ssize_t len = min_t(size_t, count, PAGE_SIZE);
+	const struct kernfs_ops *ops;
+	char *buf;
+
+	buf = of->prealloc_buf;
+	if (buf)
+		mutex_lock(&of->prealloc_mutex);
+	else
+		buf = kmalloc(len, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	/*
+	 * @of->mutex nests outside active ref and is used both to ensure that
+	 * the ops aren't called concurrently for the same open file.
+	 */
+	mutex_lock(&of->mutex);
+	if (!kernfs_get_active(of->kn)) {
+		len = -ENODEV;
+		mutex_unlock(&of->mutex);
+		goto out_free;
+	}
+
+	of->event = atomic_read(&of->kn->attr.open->event);
+	ops = kernfs_ops(of->kn);
+	if (ops->read)
+		len = ops->read(of, buf, len, *ppos);
+	else
+		len = -EINVAL;
+
+	kernfs_put_active(of->kn);
+	mutex_unlock(&of->mutex);
+
+	if (len < 0)
+		goto out_free;
+
+	if (copy_to_user(user_buf, buf, len)) {
+		len = -EFAULT;
+		goto out_free;
+	}
+
+	*ppos += len;
+
+ out_free:
+	if (buf == of->prealloc_buf)
+		mutex_unlock(&of->prealloc_mutex);
+	else
+		kfree(buf);
+	return len;
+}
+
+/**
+ * kernfs_fop_read - kernfs vfs read callback
+ * @file: file pointer
+ * @user_buf: data to write
+ * @count: number of bytes
+ * @ppos: starting offset
+ */
+static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
+			       size_t count, loff_t *ppos)
+{
+	struct kernfs_open_file *of = kernfs_of(file);
+
+	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
+		return seq_read(file, user_buf, count, ppos);
+	else
+		return kernfs_file_direct_read(of, user_buf, count, ppos);
+}
+
+/**
+ * kernfs_fop_write - kernfs vfs write callback
+ * @file: file pointer
+ * @user_buf: data to write
+ * @count: number of bytes
+ * @ppos: starting offset
+ *
+ * Copy data in from userland and pass it to the matching kernfs write
+ * operation.
+ *
+ * There is no easy way for us to know if userspace is only doing a partial
+ * write, so we don't support them. We expect the entire buffer to come on
+ * the first write.  Hint: if you're writing a value, first read the file,
+ * modify only the the value you're changing, then write entire buffer
+ * back.
+ */
+static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
+				size_t count, loff_t *ppos)
+{
+	struct kernfs_open_file *of = kernfs_of(file);
+	const struct kernfs_ops *ops;
+	ssize_t len;
+	char *buf;
+
+	if (of->atomic_write_len) {
+		len = count;
+		if (len > of->atomic_write_len)
+			return -E2BIG;
+	} else {
+		len = min_t(size_t, count, PAGE_SIZE);
+	}
+
+	buf = of->prealloc_buf;
+	if (buf)
+		mutex_lock(&of->prealloc_mutex);
+	else
+		buf = kmalloc(len + 1, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	if (copy_from_user(buf, user_buf, len)) {
+		len = -EFAULT;
+		goto out_free;
+	}
+	buf[len] = '\0';	/* guarantee string termination */
+
+	/*
+	 * @of->mutex nests outside active ref and is used both to ensure that
+	 * the ops aren't called concurrently for the same open file.
+	 */
+	mutex_lock(&of->mutex);
+	if (!kernfs_get_active(of->kn)) {
+		mutex_unlock(&of->mutex);
+		len = -ENODEV;
+		goto out_free;
+	}
+
+	ops = kernfs_ops(of->kn);
+	if (ops->write)
+		len = ops->write(of, buf, len, *ppos);
+	else
+		len = -EINVAL;
+
+	kernfs_put_active(of->kn);
+	mutex_unlock(&of->mutex);
+
+	if (len > 0)
+		*ppos += len;
+
+out_free:
+	if (buf == of->prealloc_buf)
+		mutex_unlock(&of->prealloc_mutex);
+	else
+		kfree(buf);
+	return len;
+}
+
+static void kernfs_vma_open(struct vm_area_struct *vma)
+{
+	struct file *file = vma->vm_file;
+	struct kernfs_open_file *of = kernfs_of(file);
+
+	if (!of->vm_ops)
+		return;
+
+	if (!kernfs_get_active(of->kn))
+		return;
+
+	if (of->vm_ops->open)
+		of->vm_ops->open(vma);
+
+	kernfs_put_active(of->kn);
+}
+
+static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
+{
+	struct file *file = vmf->vma->vm_file;
+	struct kernfs_open_file *of = kernfs_of(file);
+	vm_fault_t ret;
+
+	if (!of->vm_ops)
+		return VM_FAULT_SIGBUS;
+
+	if (!kernfs_get_active(of->kn))
+		return VM_FAULT_SIGBUS;
+
+	ret = VM_FAULT_SIGBUS;
+	if (of->vm_ops->fault)
+		ret = of->vm_ops->fault(vmf);
+
+	kernfs_put_active(of->kn);
+	return ret;
+}
+
+static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
+{
+	struct file *file = vmf->vma->vm_file;
+	struct kernfs_open_file *of = kernfs_of(file);
+	vm_fault_t ret;
+
+	if (!of->vm_ops)
+		return VM_FAULT_SIGBUS;
+
+	if (!kernfs_get_active(of->kn))
+		return VM_FAULT_SIGBUS;
+
+	ret = 0;
+	if (of->vm_ops->page_mkwrite)
+		ret = of->vm_ops->page_mkwrite(vmf);
+	else
+		file_update_time(file);
+
+	kernfs_put_active(of->kn);
+	return ret;
+}
+
+static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
+			     void *buf, int len, int write)
+{
+	struct file *file = vma->vm_file;
+	struct kernfs_open_file *of = kernfs_of(file);
+	int ret;
+
+	if (!of->vm_ops)
+		return -EINVAL;
+
+	if (!kernfs_get_active(of->kn))
+		return -EINVAL;
+
+	ret = -EINVAL;
+	if (of->vm_ops->access)
+		ret = of->vm_ops->access(vma, addr, buf, len, write);
+
+	kernfs_put_active(of->kn);
+	return ret;
+}
+
+#ifdef CONFIG_NUMA
+static int kernfs_vma_set_policy(struct vm_area_struct *vma,
+				 struct mempolicy *new)
+{
+	struct file *file = vma->vm_file;
+	struct kernfs_open_file *of = kernfs_of(file);
+	int ret;
+
+	if (!of->vm_ops)
+		return 0;
+
+	if (!kernfs_get_active(of->kn))
+		return -EINVAL;
+
+	ret = 0;
+	if (of->vm_ops->set_policy)
+		ret = of->vm_ops->set_policy(vma, new);
+
+	kernfs_put_active(of->kn);
+	return ret;
+}
+
+static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
+					       unsigned long addr)
+{
+	struct file *file = vma->vm_file;
+	struct kernfs_open_file *of = kernfs_of(file);
+	struct mempolicy *pol;
+
+	if (!of->vm_ops)
+		return vma->vm_policy;
+
+	if (!kernfs_get_active(of->kn))
+		return vma->vm_policy;
+
+	pol = vma->vm_policy;
+	if (of->vm_ops->get_policy)
+		pol = of->vm_ops->get_policy(vma, addr);
+
+	kernfs_put_active(of->kn);
+	return pol;
+}
+
+#endif
+
+static const struct vm_operations_struct kernfs_vm_ops = {
+	.open		= kernfs_vma_open,
+	.fault		= kernfs_vma_fault,
+	.page_mkwrite	= kernfs_vma_page_mkwrite,
+	.access		= kernfs_vma_access,
+#ifdef CONFIG_NUMA
+	.set_policy	= kernfs_vma_set_policy,
+	.get_policy	= kernfs_vma_get_policy,
+#endif
+};
+
+static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
+{
+	struct kernfs_open_file *of = kernfs_of(file);
+	const struct kernfs_ops *ops;
+	int rc;
+
+	/*
+	 * mmap path and of->mutex are prone to triggering spurious lockdep
+	 * warnings and we don't want to add spurious locking dependency
+	 * between the two.  Check whether mmap is actually implemented
+	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
+	 * comment in kernfs_file_open() for more details.
+	 */
+	if (!(of->kn->flags & KERNFS_HAS_MMAP))
+		return -ENODEV;
+
+	mutex_lock(&of->mutex);
+
+	rc = -ENODEV;
+	if (!kernfs_get_active(of->kn))
+		goto out_unlock;
+
+	ops = kernfs_ops(of->kn);
+	rc = ops->mmap(of, vma);
+	if (rc)
+		goto out_put;
+
+	/*
+	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
+	 * to satisfy versions of X which crash if the mmap fails: that
+	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
+	 */
+	if (vma->vm_file != file)
+		goto out_put;
+
+	rc = -EINVAL;
+	if (of->mmapped && of->vm_ops != vma->vm_ops)
+		goto out_put;
+
+	/*
+	 * It is not possible to successfully wrap close.
+	 * So error if someone is trying to use close.
+	 */
+	rc = -EINVAL;
+	if (vma->vm_ops && vma->vm_ops->close)
+		goto out_put;
+
+	rc = 0;
+	of->mmapped = true;
+	of->vm_ops = vma->vm_ops;
+	vma->vm_ops = &kernfs_vm_ops;
+out_put:
+	kernfs_put_active(of->kn);
+out_unlock:
+	mutex_unlock(&of->mutex);
+
+	return rc;
+}
+
+/**
+ *	kernfs_get_open_node - get or create kernfs_open_node
+ *	@kn: target kernfs_node
+ *	@of: kernfs_open_file for this instance of open
+ *
+ *	If @kn->attr.open exists, increment its reference count; otherwise,
+ *	create one.  @of is chained to the files list.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep).
+ *
+ *	RETURNS:
+ *	0 on success, -errno on failure.
+ */
+static int kernfs_get_open_node(struct kernfs_node *kn,
+				struct kernfs_open_file *of)
+{
+	struct kernfs_open_node *on, *new_on = NULL;
+
+ retry:
+	mutex_lock(&kernfs_open_file_mutex);
+	spin_lock_irq(&kernfs_open_node_lock);
+
+	if (!kn->attr.open && new_on) {
+		kn->attr.open = new_on;
+		new_on = NULL;
+	}
+
+	on = kn->attr.open;
+	if (on) {
+		atomic_inc(&on->refcnt);
+		list_add_tail(&of->list, &on->files);
+	}
+
+	spin_unlock_irq(&kernfs_open_node_lock);
+	mutex_unlock(&kernfs_open_file_mutex);
+
+	if (on) {
+		kfree(new_on);
+		return 0;
+	}
+
+	/* not there, initialize a new one and retry */
+	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
+	if (!new_on)
+		return -ENOMEM;
+
+	atomic_set(&new_on->refcnt, 0);
+	atomic_set(&new_on->event, 1);
+	init_waitqueue_head(&new_on->poll);
+	INIT_LIST_HEAD(&new_on->files);
+	goto retry;
+}
+
+/**
+ *	kernfs_put_open_node - put kernfs_open_node
+ *	@kn: target kernfs_nodet
+ *	@of: associated kernfs_open_file
+ *
+ *	Put @kn->attr.open and unlink @of from the files list.  If
+ *	reference count reaches zero, disassociate and free it.
+ *
+ *	LOCKING:
+ *	None.
+ */
+static void kernfs_put_open_node(struct kernfs_node *kn,
+				 struct kernfs_open_file *of)
+{
+	struct kernfs_open_node *on = kn->attr.open;
+	unsigned long flags;
+
+	mutex_lock(&kernfs_open_file_mutex);
+	spin_lock_irqsave(&kernfs_open_node_lock, flags);
+
+	if (of)
+		list_del(&of->list);
+
+	if (atomic_dec_and_test(&on->refcnt))
+		kn->attr.open = NULL;
+	else
+		on = NULL;
+
+	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
+	mutex_unlock(&kernfs_open_file_mutex);
+
+	kfree(on);
+}
+
+static int kernfs_fop_open(struct inode *inode, struct file *file)
+{
+	struct kernfs_node *kn = inode->i_private;
+	struct kernfs_root *root = kernfs_root(kn);
+	const struct kernfs_ops *ops;
+	struct kernfs_open_file *of;
+	bool has_read, has_write, has_mmap;
+	int error = -EACCES;
+
+	if (!kernfs_get_active(kn))
+		return -ENODEV;
+
+	ops = kernfs_ops(kn);
+
+	has_read = ops->seq_show || ops->read || ops->mmap;
+	has_write = ops->write || ops->mmap;
+	has_mmap = ops->mmap;
+
+	/* see the flag definition for details */
+	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
+		if ((file->f_mode & FMODE_WRITE) &&
+		    (!(inode->i_mode & S_IWUGO) || !has_write))
+			goto err_out;
+
+		if ((file->f_mode & FMODE_READ) &&
+		    (!(inode->i_mode & S_IRUGO) || !has_read))
+			goto err_out;
+	}
+
+	/* allocate a kernfs_open_file for the file */
+	error = -ENOMEM;
+	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
+	if (!of)
+		goto err_out;
+
+	/*
+	 * The following is done to give a different lockdep key to
+	 * @of->mutex for files which implement mmap.  This is a rather
+	 * crude way to avoid false positive lockdep warning around
+	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
+	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
+	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
+	 * open file has a separate mutex, it's okay as long as those don't
+	 * happen on the same file.  At this point, we can't easily give
+	 * each file a separate locking class.  Let's differentiate on
+	 * whether the file has mmap or not for now.
+	 *
+	 * Both paths of the branch look the same.  They're supposed to
+	 * look that way and give @of->mutex different static lockdep keys.
+	 */
+	if (has_mmap)
+		mutex_init(&of->mutex);
+	else
+		mutex_init(&of->mutex);
+
+	of->kn = kn;
+	of->file = file;
+
+	/*
+	 * Write path needs to atomic_write_len outside active reference.
+	 * Cache it in open_file.  See kernfs_fop_write() for details.
+	 */
+	of->atomic_write_len = ops->atomic_write_len;
+
+	error = -EINVAL;
+	/*
+	 * ->seq_show is incompatible with ->prealloc,
+	 * as seq_read does its own allocation.
+	 * ->read must be used instead.
+	 */
+	if (ops->prealloc && ops->seq_show)
+		goto err_free;
+	if (ops->prealloc) {
+		int len = of->atomic_write_len ?: PAGE_SIZE;
+		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
+		error = -ENOMEM;
+		if (!of->prealloc_buf)
+			goto err_free;
+		mutex_init(&of->prealloc_mutex);
+	}
+
+	/*
+	 * Always instantiate seq_file even if read access doesn't use
+	 * seq_file or is not requested.  This unifies private data access
+	 * and readable regular files are the vast majority anyway.
+	 */
+	if (ops->seq_show)
+		error = seq_open(file, &kernfs_seq_ops);
+	else
+		error = seq_open(file, NULL);
+	if (error)
+		goto err_free;
+
+	of->seq_file = file->private_data;
+	of->seq_file->private = of;
+
+	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
+	if (file->f_mode & FMODE_WRITE)
+		file->f_mode |= FMODE_PWRITE;
+
+	/* make sure we have open node struct */
+	error = kernfs_get_open_node(kn, of);
+	if (error)
+		goto err_seq_release;
+
+	if (ops->open) {
+		/* nobody has access to @of yet, skip @of->mutex */
+		error = ops->open(of);
+		if (error)
+			goto err_put_node;
+	}
+
+	/* open succeeded, put active references */
+	kernfs_put_active(kn);
+	return 0;
+
+err_put_node:
+	kernfs_put_open_node(kn, of);
+err_seq_release:
+	seq_release(inode, file);
+err_free:
+	kfree(of->prealloc_buf);
+	kfree(of);
+err_out:
+	kernfs_put_active(kn);
+	return error;
+}
+
+/* used from release/drain to ensure that ->release() is called exactly once */
+static void kernfs_release_file(struct kernfs_node *kn,
+				struct kernfs_open_file *of)
+{
+	/*
+	 * @of is guaranteed to have no other file operations in flight and
+	 * we just want to synchronize release and drain paths.
+	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
+	 * here because drain path may be called from places which can
+	 * cause circular dependency.
+	 */
+	lockdep_assert_held(&kernfs_open_file_mutex);
+
+	if (!of->released) {
+		/*
+		 * A file is never detached without being released and we
+		 * need to be able to release files which are deactivated
+		 * and being drained.  Don't use kernfs_ops().
+		 */
+		kn->attr.ops->release(of);
+		of->released = true;
+	}
+}
+
+static int kernfs_fop_release(struct inode *inode, struct file *filp)
+{
+	struct kernfs_node *kn = inode->i_private;
+	struct kernfs_open_file *of = kernfs_of(filp);
+
+	if (kn->flags & KERNFS_HAS_RELEASE) {
+		mutex_lock(&kernfs_open_file_mutex);
+		kernfs_release_file(kn, of);
+		mutex_unlock(&kernfs_open_file_mutex);
+	}
+
+	kernfs_put_open_node(kn, of);
+	seq_release(inode, filp);
+	kfree(of->prealloc_buf);
+	kfree(of);
+
+	return 0;
+}
+
+void kernfs_drain_open_files(struct kernfs_node *kn)
+{
+	struct kernfs_open_node *on;
+	struct kernfs_open_file *of;
+
+	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
+		return;
+
+	spin_lock_irq(&kernfs_open_node_lock);
+	on = kn->attr.open;
+	if (on)
+		atomic_inc(&on->refcnt);
+	spin_unlock_irq(&kernfs_open_node_lock);
+	if (!on)
+		return;
+
+	mutex_lock(&kernfs_open_file_mutex);
+
+	list_for_each_entry(of, &on->files, list) {
+		struct inode *inode = file_inode(of->file);
+
+		if (kn->flags & KERNFS_HAS_MMAP)
+			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
+
+		if (kn->flags & KERNFS_HAS_RELEASE)
+			kernfs_release_file(kn, of);
+	}
+
+	mutex_unlock(&kernfs_open_file_mutex);
+
+	kernfs_put_open_node(kn, NULL);
+}
+
+/*
+ * Kernfs attribute files are pollable.  The idea is that you read
+ * the content and then you use 'poll' or 'select' to wait for
+ * the content to change.  When the content changes (assuming the
+ * manager for the kobject supports notification), poll will
+ * return EPOLLERR|EPOLLPRI, and select will return the fd whether
+ * it is waiting for read, write, or exceptions.
+ * Once poll/select indicates that the value has changed, you
+ * need to close and re-open the file, or seek to 0 and read again.
+ * Reminder: this only works for attributes which actively support
+ * it, and it is not possible to test an attribute from userspace
+ * to see if it supports poll (Neither 'poll' nor 'select' return
+ * an appropriate error code).  When in doubt, set a suitable timeout value.
+ */
+static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
+{
+	struct kernfs_open_file *of = kernfs_of(filp);
+	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
+	struct kernfs_open_node *on = kn->attr.open;
+
+	if (!kernfs_get_active(kn))
+		goto trigger;
+
+	poll_wait(filp, &on->poll, wait);
+
+	kernfs_put_active(kn);
+
+	if (of->event != atomic_read(&on->event))
+		goto trigger;
+
+	return DEFAULT_POLLMASK;
+
+ trigger:
+	return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
+}
+
+static void kernfs_notify_workfn(struct work_struct *work)
+{
+	struct kernfs_node *kn;
+	struct kernfs_open_node *on;
+	struct kernfs_super_info *info;
+repeat:
+	/* pop one off the notify_list */
+	spin_lock_irq(&kernfs_notify_lock);
+	kn = kernfs_notify_list;
+	if (kn == KERNFS_NOTIFY_EOL) {
+		spin_unlock_irq(&kernfs_notify_lock);
+		return;
+	}
+	kernfs_notify_list = kn->attr.notify_next;
+	kn->attr.notify_next = NULL;
+	spin_unlock_irq(&kernfs_notify_lock);
+
+	/* kick poll */
+	spin_lock_irq(&kernfs_open_node_lock);
+
+	on = kn->attr.open;
+	if (on) {
+		atomic_inc(&on->event);
+		wake_up_interruptible(&on->poll);
+	}
+
+	spin_unlock_irq(&kernfs_open_node_lock);
+
+	/* kick fsnotify */
+	mutex_lock(&kernfs_mutex);
+
+	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
+		struct kernfs_node *parent;
+		struct inode *inode;
+
+		/*
+		 * We want fsnotify_modify() on @kn but as the
+		 * modifications aren't originating from userland don't
+		 * have the matching @file available.  Look up the inodes
+		 * and generate the events manually.
+		 */
+		inode = ilookup(info->sb, kn->id.ino);
+		if (!inode)
+			continue;
+
+		parent = kernfs_get_parent(kn);
+		if (parent) {
+			struct inode *p_inode;
+
+			p_inode = ilookup(info->sb, parent->id.ino);
+			if (p_inode) {
+				fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
+					 inode, FSNOTIFY_EVENT_INODE, kn->name, 0);
+				iput(p_inode);
+			}
+
+			kernfs_put(parent);
+		}
+
+		fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
+			 kn->name, 0);
+		iput(inode);
+	}
+
+	mutex_unlock(&kernfs_mutex);
+	kernfs_put(kn);
+	goto repeat;
+}
+
+/**
+ * kernfs_notify - notify a kernfs file
+ * @kn: file to notify
+ *
+ * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
+ * context.
+ */
+void kernfs_notify(struct kernfs_node *kn)
+{
+	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
+	unsigned long flags;
+
+	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
+		return;
+
+	spin_lock_irqsave(&kernfs_notify_lock, flags);
+	if (!kn->attr.notify_next) {
+		kernfs_get(kn);
+		kn->attr.notify_next = kernfs_notify_list;
+		kernfs_notify_list = kn;
+		schedule_work(&kernfs_notify_work);
+	}
+	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
+}
+EXPORT_SYMBOL_GPL(kernfs_notify);
+
+const struct file_operations kernfs_file_fops = {
+	.read		= kernfs_fop_read,
+	.write		= kernfs_fop_write,
+	.llseek		= generic_file_llseek,
+	.mmap		= kernfs_fop_mmap,
+	.open		= kernfs_fop_open,
+	.release	= kernfs_fop_release,
+	.poll		= kernfs_fop_poll,
+	.fsync		= noop_fsync,
+};
+
+/**
+ * __kernfs_create_file - kernfs internal function to create a file
+ * @parent: directory to create the file in
+ * @name: name of the file
+ * @mode: mode of the file
+ * @uid: uid of the file
+ * @gid: gid of the file
+ * @size: size of the file
+ * @ops: kernfs operations for the file
+ * @priv: private data for the file
+ * @ns: optional namespace tag of the file
+ * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
+ *
+ * Returns the created node on success, ERR_PTR() value on error.
+ */
+struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
+					 const char *name,
+					 umode_t mode, kuid_t uid, kgid_t gid,
+					 loff_t size,
+					 const struct kernfs_ops *ops,
+					 void *priv, const void *ns,
+					 struct lock_class_key *key)
+{
+	struct kernfs_node *kn;
+	unsigned flags;
+	int rc;
+
+	flags = KERNFS_FILE;
+
+	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
+			     uid, gid, flags);
+	if (!kn)
+		return ERR_PTR(-ENOMEM);
+
+	kn->attr.ops = ops;
+	kn->attr.size = size;
+	kn->ns = ns;
+	kn->priv = priv;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	if (key) {
+		lockdep_init_map(&kn->dep_map, "kn->count", key, 0);
+		kn->flags |= KERNFS_LOCKDEP;
+	}
+#endif
+
+	/*
+	 * kn->attr.ops is accesible only while holding active ref.  We
+	 * need to know whether some ops are implemented outside active
+	 * ref.  Cache their existence in flags.
+	 */
+	if (ops->seq_show)
+		kn->flags |= KERNFS_HAS_SEQ_SHOW;
+	if (ops->mmap)
+		kn->flags |= KERNFS_HAS_MMAP;
+	if (ops->release)
+		kn->flags |= KERNFS_HAS_RELEASE;
+
+	rc = kernfs_add_one(kn);
+	if (rc) {
+		kernfs_put(kn);
+		return ERR_PTR(rc);
+	}
+	return kn;
+}
diff --git a/fs/kernfs/inode.c b/fs/kernfs/inode.c
new file mode 100644
index 0000000..80cebcd
--- /dev/null
+++ b/fs/kernfs/inode.c
@@ -0,0 +1,386 @@
+/*
+ * fs/kernfs/inode.c - kernfs inode implementation
+ *
+ * Copyright (c) 2001-3 Patrick Mochel
+ * Copyright (c) 2007 SUSE Linux Products GmbH
+ * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ */
+
+#include <linux/pagemap.h>
+#include <linux/backing-dev.h>
+#include <linux/capability.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/xattr.h>
+#include <linux/security.h>
+
+#include "kernfs-internal.h"
+
+static const struct address_space_operations kernfs_aops = {
+	.readpage	= simple_readpage,
+	.write_begin	= simple_write_begin,
+	.write_end	= simple_write_end,
+};
+
+static const struct inode_operations kernfs_iops = {
+	.permission	= kernfs_iop_permission,
+	.setattr	= kernfs_iop_setattr,
+	.getattr	= kernfs_iop_getattr,
+	.listxattr	= kernfs_iop_listxattr,
+};
+
+static struct kernfs_iattrs *kernfs_iattrs(struct kernfs_node *kn)
+{
+	static DEFINE_MUTEX(iattr_mutex);
+	struct kernfs_iattrs *ret;
+	struct iattr *iattrs;
+
+	mutex_lock(&iattr_mutex);
+
+	if (kn->iattr)
+		goto out_unlock;
+
+	kn->iattr = kzalloc(sizeof(struct kernfs_iattrs), GFP_KERNEL);
+	if (!kn->iattr)
+		goto out_unlock;
+	iattrs = &kn->iattr->ia_iattr;
+
+	/* assign default attributes */
+	iattrs->ia_mode = kn->mode;
+	iattrs->ia_uid = GLOBAL_ROOT_UID;
+	iattrs->ia_gid = GLOBAL_ROOT_GID;
+
+	ktime_get_real_ts64(&iattrs->ia_atime);
+	iattrs->ia_mtime = iattrs->ia_atime;
+	iattrs->ia_ctime = iattrs->ia_atime;
+
+	simple_xattrs_init(&kn->iattr->xattrs);
+out_unlock:
+	ret = kn->iattr;
+	mutex_unlock(&iattr_mutex);
+	return ret;
+}
+
+int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
+{
+	struct kernfs_iattrs *attrs;
+	struct iattr *iattrs;
+	unsigned int ia_valid = iattr->ia_valid;
+
+	attrs = kernfs_iattrs(kn);
+	if (!attrs)
+		return -ENOMEM;
+
+	iattrs = &attrs->ia_iattr;
+
+	if (ia_valid & ATTR_UID)
+		iattrs->ia_uid = iattr->ia_uid;
+	if (ia_valid & ATTR_GID)
+		iattrs->ia_gid = iattr->ia_gid;
+	if (ia_valid & ATTR_ATIME)
+		iattrs->ia_atime = iattr->ia_atime;
+	if (ia_valid & ATTR_MTIME)
+		iattrs->ia_mtime = iattr->ia_mtime;
+	if (ia_valid & ATTR_CTIME)
+		iattrs->ia_ctime = iattr->ia_ctime;
+	if (ia_valid & ATTR_MODE) {
+		umode_t mode = iattr->ia_mode;
+		iattrs->ia_mode = kn->mode = mode;
+	}
+	return 0;
+}
+
+/**
+ * kernfs_setattr - set iattr on a node
+ * @kn: target node
+ * @iattr: iattr to set
+ *
+ * Returns 0 on success, -errno on failure.
+ */
+int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
+{
+	int ret;
+
+	mutex_lock(&kernfs_mutex);
+	ret = __kernfs_setattr(kn, iattr);
+	mutex_unlock(&kernfs_mutex);
+	return ret;
+}
+
+int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr)
+{
+	struct inode *inode = d_inode(dentry);
+	struct kernfs_node *kn = inode->i_private;
+	int error;
+
+	if (!kn)
+		return -EINVAL;
+
+	mutex_lock(&kernfs_mutex);
+	error = setattr_prepare(dentry, iattr);
+	if (error)
+		goto out;
+
+	error = __kernfs_setattr(kn, iattr);
+	if (error)
+		goto out;
+
+	/* this ignores size changes */
+	setattr_copy(inode, iattr);
+
+out:
+	mutex_unlock(&kernfs_mutex);
+	return error;
+}
+
+static int kernfs_node_setsecdata(struct kernfs_iattrs *attrs, void **secdata,
+				  u32 *secdata_len)
+{
+	void *old_secdata;
+	size_t old_secdata_len;
+
+	old_secdata = attrs->ia_secdata;
+	old_secdata_len = attrs->ia_secdata_len;
+
+	attrs->ia_secdata = *secdata;
+	attrs->ia_secdata_len = *secdata_len;
+
+	*secdata = old_secdata;
+	*secdata_len = old_secdata_len;
+	return 0;
+}
+
+ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size)
+{
+	struct kernfs_node *kn = kernfs_dentry_node(dentry);
+	struct kernfs_iattrs *attrs;
+
+	attrs = kernfs_iattrs(kn);
+	if (!attrs)
+		return -ENOMEM;
+
+	return simple_xattr_list(d_inode(dentry), &attrs->xattrs, buf, size);
+}
+
+static inline void set_default_inode_attr(struct inode *inode, umode_t mode)
+{
+	inode->i_mode = mode;
+	inode->i_atime = inode->i_mtime =
+		inode->i_ctime = current_time(inode);
+}
+
+static inline void set_inode_attr(struct inode *inode, struct iattr *iattr)
+{
+	struct super_block *sb = inode->i_sb;
+	inode->i_uid = iattr->ia_uid;
+	inode->i_gid = iattr->ia_gid;
+	inode->i_atime = timespec64_trunc(iattr->ia_atime, sb->s_time_gran);
+	inode->i_mtime = timespec64_trunc(iattr->ia_mtime, sb->s_time_gran);
+	inode->i_ctime = timespec64_trunc(iattr->ia_ctime, sb->s_time_gran);
+}
+
+static void kernfs_refresh_inode(struct kernfs_node *kn, struct inode *inode)
+{
+	struct kernfs_iattrs *attrs = kn->iattr;
+
+	inode->i_mode = kn->mode;
+	if (attrs) {
+		/*
+		 * kernfs_node has non-default attributes get them from
+		 * persistent copy in kernfs_node.
+		 */
+		set_inode_attr(inode, &attrs->ia_iattr);
+		security_inode_notifysecctx(inode, attrs->ia_secdata,
+					    attrs->ia_secdata_len);
+	}
+
+	if (kernfs_type(kn) == KERNFS_DIR)
+		set_nlink(inode, kn->dir.subdirs + 2);
+}
+
+int kernfs_iop_getattr(const struct path *path, struct kstat *stat,
+		       u32 request_mask, unsigned int query_flags)
+{
+	struct inode *inode = d_inode(path->dentry);
+	struct kernfs_node *kn = inode->i_private;
+
+	mutex_lock(&kernfs_mutex);
+	kernfs_refresh_inode(kn, inode);
+	mutex_unlock(&kernfs_mutex);
+
+	generic_fillattr(inode, stat);
+	return 0;
+}
+
+static void kernfs_init_inode(struct kernfs_node *kn, struct inode *inode)
+{
+	kernfs_get(kn);
+	inode->i_private = kn;
+	inode->i_mapping->a_ops = &kernfs_aops;
+	inode->i_op = &kernfs_iops;
+	inode->i_generation = kn->id.generation;
+
+	set_default_inode_attr(inode, kn->mode);
+	kernfs_refresh_inode(kn, inode);
+
+	/* initialize inode according to type */
+	switch (kernfs_type(kn)) {
+	case KERNFS_DIR:
+		inode->i_op = &kernfs_dir_iops;
+		inode->i_fop = &kernfs_dir_fops;
+		if (kn->flags & KERNFS_EMPTY_DIR)
+			make_empty_dir_inode(inode);
+		break;
+	case KERNFS_FILE:
+		inode->i_size = kn->attr.size;
+		inode->i_fop = &kernfs_file_fops;
+		break;
+	case KERNFS_LINK:
+		inode->i_op = &kernfs_symlink_iops;
+		break;
+	default:
+		BUG();
+	}
+
+	unlock_new_inode(inode);
+}
+
+/**
+ *	kernfs_get_inode - get inode for kernfs_node
+ *	@sb: super block
+ *	@kn: kernfs_node to allocate inode for
+ *
+ *	Get inode for @kn.  If such inode doesn't exist, a new inode is
+ *	allocated and basics are initialized.  New inode is returned
+ *	locked.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep).
+ *
+ *	RETURNS:
+ *	Pointer to allocated inode on success, NULL on failure.
+ */
+struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn)
+{
+	struct inode *inode;
+
+	inode = iget_locked(sb, kn->id.ino);
+	if (inode && (inode->i_state & I_NEW))
+		kernfs_init_inode(kn, inode);
+
+	return inode;
+}
+
+/*
+ * The kernfs_node serves as both an inode and a directory entry for
+ * kernfs.  To prevent the kernfs inode numbers from being freed
+ * prematurely we take a reference to kernfs_node from the kernfs inode.  A
+ * super_operations.evict_inode() implementation is needed to drop that
+ * reference upon inode destruction.
+ */
+void kernfs_evict_inode(struct inode *inode)
+{
+	struct kernfs_node *kn = inode->i_private;
+
+	truncate_inode_pages_final(&inode->i_data);
+	clear_inode(inode);
+	kernfs_put(kn);
+}
+
+int kernfs_iop_permission(struct inode *inode, int mask)
+{
+	struct kernfs_node *kn;
+
+	if (mask & MAY_NOT_BLOCK)
+		return -ECHILD;
+
+	kn = inode->i_private;
+
+	mutex_lock(&kernfs_mutex);
+	kernfs_refresh_inode(kn, inode);
+	mutex_unlock(&kernfs_mutex);
+
+	return generic_permission(inode, mask);
+}
+
+static int kernfs_xattr_get(const struct xattr_handler *handler,
+			    struct dentry *unused, struct inode *inode,
+			    const char *suffix, void *value, size_t size)
+{
+	const char *name = xattr_full_name(handler, suffix);
+	struct kernfs_node *kn = inode->i_private;
+	struct kernfs_iattrs *attrs;
+
+	attrs = kernfs_iattrs(kn);
+	if (!attrs)
+		return -ENOMEM;
+
+	return simple_xattr_get(&attrs->xattrs, name, value, size);
+}
+
+static int kernfs_xattr_set(const struct xattr_handler *handler,
+			    struct dentry *unused, struct inode *inode,
+			    const char *suffix, const void *value,
+			    size_t size, int flags)
+{
+	const char *name = xattr_full_name(handler, suffix);
+	struct kernfs_node *kn = inode->i_private;
+	struct kernfs_iattrs *attrs;
+
+	attrs = kernfs_iattrs(kn);
+	if (!attrs)
+		return -ENOMEM;
+
+	return simple_xattr_set(&attrs->xattrs, name, value, size, flags);
+}
+
+static const struct xattr_handler kernfs_trusted_xattr_handler = {
+	.prefix = XATTR_TRUSTED_PREFIX,
+	.get = kernfs_xattr_get,
+	.set = kernfs_xattr_set,
+};
+
+static int kernfs_security_xattr_set(const struct xattr_handler *handler,
+				     struct dentry *unused, struct inode *inode,
+				     const char *suffix, const void *value,
+				     size_t size, int flags)
+{
+	struct kernfs_node *kn = inode->i_private;
+	struct kernfs_iattrs *attrs;
+	void *secdata;
+	u32 secdata_len = 0;
+	int error;
+
+	attrs = kernfs_iattrs(kn);
+	if (!attrs)
+		return -ENOMEM;
+
+	error = security_inode_setsecurity(inode, suffix, value, size, flags);
+	if (error)
+		return error;
+	error = security_inode_getsecctx(inode, &secdata, &secdata_len);
+	if (error)
+		return error;
+
+	mutex_lock(&kernfs_mutex);
+	error = kernfs_node_setsecdata(attrs, &secdata, &secdata_len);
+	mutex_unlock(&kernfs_mutex);
+
+	if (secdata)
+		security_release_secctx(secdata, secdata_len);
+	return error;
+}
+
+static const struct xattr_handler kernfs_security_xattr_handler = {
+	.prefix = XATTR_SECURITY_PREFIX,
+	.get = kernfs_xattr_get,
+	.set = kernfs_security_xattr_set,
+};
+
+const struct xattr_handler *kernfs_xattr_handlers[] = {
+	&kernfs_trusted_xattr_handler,
+	&kernfs_security_xattr_handler,
+	NULL
+};
diff --git a/fs/kernfs/kernfs-internal.h b/fs/kernfs/kernfs-internal.h
new file mode 100644
index 0000000..3d83b11
--- /dev/null
+++ b/fs/kernfs/kernfs-internal.h
@@ -0,0 +1,125 @@
+/*
+ * fs/kernfs/kernfs-internal.h - kernfs internal header file
+ *
+ * Copyright (c) 2001-3 Patrick Mochel
+ * Copyright (c) 2007 SUSE Linux Products GmbH
+ * Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de>
+ *
+ * This file is released under the GPLv2.
+ */
+
+#ifndef __KERNFS_INTERNAL_H
+#define __KERNFS_INTERNAL_H
+
+#include <linux/lockdep.h>
+#include <linux/fs.h>
+#include <linux/mutex.h>
+#include <linux/xattr.h>
+
+#include <linux/kernfs.h>
+
+struct kernfs_iattrs {
+	struct iattr		ia_iattr;
+	void			*ia_secdata;
+	u32			ia_secdata_len;
+
+	struct simple_xattrs	xattrs;
+};
+
+/* +1 to avoid triggering overflow warning when negating it */
+#define KN_DEACTIVATED_BIAS		(INT_MIN + 1)
+
+/* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */
+
+/**
+ * kernfs_root - find out the kernfs_root a kernfs_node belongs to
+ * @kn: kernfs_node of interest
+ *
+ * Return the kernfs_root @kn belongs to.
+ */
+static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn)
+{
+	/* if parent exists, it's always a dir; otherwise, @sd is a dir */
+	if (kn->parent)
+		kn = kn->parent;
+	return kn->dir.root;
+}
+
+/*
+ * mount.c
+ */
+struct kernfs_super_info {
+	struct super_block	*sb;
+
+	/*
+	 * The root associated with this super_block.  Each super_block is
+	 * identified by the root and ns it's associated with.
+	 */
+	struct kernfs_root	*root;
+
+	/*
+	 * Each sb is associated with one namespace tag, currently the
+	 * network namespace of the task which mounted this kernfs
+	 * instance.  If multiple tags become necessary, make the following
+	 * an array and compare kernfs_node tag against every entry.
+	 */
+	const void		*ns;
+
+	/* anchored at kernfs_root->supers, protected by kernfs_mutex */
+	struct list_head	node;
+};
+#define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info))
+
+static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry)
+{
+	if (d_really_is_negative(dentry))
+		return NULL;
+	return d_inode(dentry)->i_private;
+}
+
+extern const struct super_operations kernfs_sops;
+extern struct kmem_cache *kernfs_node_cache;
+
+/*
+ * inode.c
+ */
+extern const struct xattr_handler *kernfs_xattr_handlers[];
+void kernfs_evict_inode(struct inode *inode);
+int kernfs_iop_permission(struct inode *inode, int mask);
+int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr);
+int kernfs_iop_getattr(const struct path *path, struct kstat *stat,
+		       u32 request_mask, unsigned int query_flags);
+ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size);
+int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr);
+
+/*
+ * dir.c
+ */
+extern struct mutex kernfs_mutex;
+extern const struct dentry_operations kernfs_dops;
+extern const struct file_operations kernfs_dir_fops;
+extern const struct inode_operations kernfs_dir_iops;
+
+struct kernfs_node *kernfs_get_active(struct kernfs_node *kn);
+void kernfs_put_active(struct kernfs_node *kn);
+int kernfs_add_one(struct kernfs_node *kn);
+struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
+				    const char *name, umode_t mode,
+				    kuid_t uid, kgid_t gid,
+				    unsigned flags);
+struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
+						    unsigned int ino);
+
+/*
+ * file.c
+ */
+extern const struct file_operations kernfs_file_fops;
+
+void kernfs_drain_open_files(struct kernfs_node *kn);
+
+/*
+ * symlink.c
+ */
+extern const struct inode_operations kernfs_symlink_iops;
+
+#endif	/* __KERNFS_INTERNAL_H */
diff --git a/fs/kernfs/mount.c b/fs/kernfs/mount.c
new file mode 100644
index 0000000..ff2716f
--- /dev/null
+++ b/fs/kernfs/mount.c
@@ -0,0 +1,417 @@
+/*
+ * fs/kernfs/mount.c - kernfs mount implementation
+ *
+ * Copyright (c) 2001-3 Patrick Mochel
+ * Copyright (c) 2007 SUSE Linux Products GmbH
+ * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ */
+
+#include <linux/fs.h>
+#include <linux/mount.h>
+#include <linux/init.h>
+#include <linux/magic.h>
+#include <linux/slab.h>
+#include <linux/pagemap.h>
+#include <linux/namei.h>
+#include <linux/seq_file.h>
+#include <linux/exportfs.h>
+
+#include "kernfs-internal.h"
+
+struct kmem_cache *kernfs_node_cache;
+
+static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
+{
+	struct kernfs_root *root = kernfs_info(sb)->root;
+	struct kernfs_syscall_ops *scops = root->syscall_ops;
+
+	if (scops && scops->remount_fs)
+		return scops->remount_fs(root, flags, data);
+	return 0;
+}
+
+static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
+{
+	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
+	struct kernfs_syscall_ops *scops = root->syscall_ops;
+
+	if (scops && scops->show_options)
+		return scops->show_options(sf, root);
+	return 0;
+}
+
+static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
+{
+	struct kernfs_node *node = kernfs_dentry_node(dentry);
+	struct kernfs_root *root = kernfs_root(node);
+	struct kernfs_syscall_ops *scops = root->syscall_ops;
+
+	if (scops && scops->show_path)
+		return scops->show_path(sf, node, root);
+
+	seq_dentry(sf, dentry, " \t\n\\");
+	return 0;
+}
+
+const struct super_operations kernfs_sops = {
+	.statfs		= simple_statfs,
+	.drop_inode	= generic_delete_inode,
+	.evict_inode	= kernfs_evict_inode,
+
+	.remount_fs	= kernfs_sop_remount_fs,
+	.show_options	= kernfs_sop_show_options,
+	.show_path	= kernfs_sop_show_path,
+};
+
+/*
+ * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
+ * number and generation
+ */
+struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
+	const union kernfs_node_id *id)
+{
+	struct kernfs_node *kn;
+
+	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
+	if (!kn)
+		return NULL;
+	if (kn->id.generation != id->generation) {
+		kernfs_put(kn);
+		return NULL;
+	}
+	return kn;
+}
+
+static struct inode *kernfs_fh_get_inode(struct super_block *sb,
+		u64 ino, u32 generation)
+{
+	struct kernfs_super_info *info = kernfs_info(sb);
+	struct inode *inode;
+	struct kernfs_node *kn;
+
+	if (ino == 0)
+		return ERR_PTR(-ESTALE);
+
+	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
+	if (!kn)
+		return ERR_PTR(-ESTALE);
+	inode = kernfs_get_inode(sb, kn);
+	kernfs_put(kn);
+	if (!inode)
+		return ERR_PTR(-ESTALE);
+
+	if (generation && inode->i_generation != generation) {
+		/* we didn't find the right inode.. */
+		iput(inode);
+		return ERR_PTR(-ESTALE);
+	}
+	return inode;
+}
+
+static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
+		int fh_len, int fh_type)
+{
+	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
+				    kernfs_fh_get_inode);
+}
+
+static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
+		int fh_len, int fh_type)
+{
+	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
+				    kernfs_fh_get_inode);
+}
+
+static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
+{
+	struct kernfs_node *kn = kernfs_dentry_node(child);
+
+	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
+}
+
+static const struct export_operations kernfs_export_ops = {
+	.fh_to_dentry	= kernfs_fh_to_dentry,
+	.fh_to_parent	= kernfs_fh_to_parent,
+	.get_parent	= kernfs_get_parent_dentry,
+};
+
+/**
+ * kernfs_root_from_sb - determine kernfs_root associated with a super_block
+ * @sb: the super_block in question
+ *
+ * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
+ * %NULL is returned.
+ */
+struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
+{
+	if (sb->s_op == &kernfs_sops)
+		return kernfs_info(sb)->root;
+	return NULL;
+}
+
+/*
+ * find the next ancestor in the path down to @child, where @parent was the
+ * ancestor whose descendant we want to find.
+ *
+ * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
+ * node.  If @parent is b, then we return the node for c.
+ * Passing in d as @parent is not ok.
+ */
+static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
+					      struct kernfs_node *parent)
+{
+	if (child == parent) {
+		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
+		return NULL;
+	}
+
+	while (child->parent != parent) {
+		if (!child->parent)
+			return NULL;
+		child = child->parent;
+	}
+
+	return child;
+}
+
+/**
+ * kernfs_node_dentry - get a dentry for the given kernfs_node
+ * @kn: kernfs_node for which a dentry is needed
+ * @sb: the kernfs super_block
+ */
+struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
+				  struct super_block *sb)
+{
+	struct dentry *dentry;
+	struct kernfs_node *knparent = NULL;
+
+	BUG_ON(sb->s_op != &kernfs_sops);
+
+	dentry = dget(sb->s_root);
+
+	/* Check if this is the root kernfs_node */
+	if (!kn->parent)
+		return dentry;
+
+	knparent = find_next_ancestor(kn, NULL);
+	if (WARN_ON(!knparent))
+		return ERR_PTR(-EINVAL);
+
+	do {
+		struct dentry *dtmp;
+		struct kernfs_node *kntmp;
+
+		if (kn == knparent)
+			return dentry;
+		kntmp = find_next_ancestor(kn, knparent);
+		if (WARN_ON(!kntmp))
+			return ERR_PTR(-EINVAL);
+		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
+					       strlen(kntmp->name));
+		dput(dentry);
+		if (IS_ERR(dtmp))
+			return dtmp;
+		knparent = kntmp;
+		dentry = dtmp;
+	} while (true);
+}
+
+static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
+{
+	struct kernfs_super_info *info = kernfs_info(sb);
+	struct inode *inode;
+	struct dentry *root;
+
+	info->sb = sb;
+	/* Userspace would break if executables or devices appear on sysfs */
+	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
+	sb->s_blocksize = PAGE_SIZE;
+	sb->s_blocksize_bits = PAGE_SHIFT;
+	sb->s_magic = magic;
+	sb->s_op = &kernfs_sops;
+	sb->s_xattr = kernfs_xattr_handlers;
+	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
+		sb->s_export_op = &kernfs_export_ops;
+	sb->s_time_gran = 1;
+
+	/* get root inode, initialize and unlock it */
+	mutex_lock(&kernfs_mutex);
+	inode = kernfs_get_inode(sb, info->root->kn);
+	mutex_unlock(&kernfs_mutex);
+	if (!inode) {
+		pr_debug("kernfs: could not get root inode\n");
+		return -ENOMEM;
+	}
+
+	/* instantiate and link root dentry */
+	root = d_make_root(inode);
+	if (!root) {
+		pr_debug("%s: could not get root dentry!\n", __func__);
+		return -ENOMEM;
+	}
+	sb->s_root = root;
+	sb->s_d_op = &kernfs_dops;
+	return 0;
+}
+
+static int kernfs_test_super(struct super_block *sb, void *data)
+{
+	struct kernfs_super_info *sb_info = kernfs_info(sb);
+	struct kernfs_super_info *info = data;
+
+	return sb_info->root == info->root && sb_info->ns == info->ns;
+}
+
+static int kernfs_set_super(struct super_block *sb, void *data)
+{
+	int error;
+	error = set_anon_super(sb, data);
+	if (!error)
+		sb->s_fs_info = data;
+	return error;
+}
+
+/**
+ * kernfs_super_ns - determine the namespace tag of a kernfs super_block
+ * @sb: super_block of interest
+ *
+ * Return the namespace tag associated with kernfs super_block @sb.
+ */
+const void *kernfs_super_ns(struct super_block *sb)
+{
+	struct kernfs_super_info *info = kernfs_info(sb);
+
+	return info->ns;
+}
+
+/**
+ * kernfs_mount_ns - kernfs mount helper
+ * @fs_type: file_system_type of the fs being mounted
+ * @flags: mount flags specified for the mount
+ * @root: kernfs_root of the hierarchy being mounted
+ * @magic: file system specific magic number
+ * @new_sb_created: tell the caller if we allocated a new superblock
+ * @ns: optional namespace tag of the mount
+ *
+ * This is to be called from each kernfs user's file_system_type->mount()
+ * implementation, which should pass through the specified @fs_type and
+ * @flags, and specify the hierarchy and namespace tag to mount via @root
+ * and @ns, respectively.
+ *
+ * The return value can be passed to the vfs layer verbatim.
+ */
+struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
+				struct kernfs_root *root, unsigned long magic,
+				bool *new_sb_created, const void *ns)
+{
+	struct super_block *sb;
+	struct kernfs_super_info *info;
+	int error;
+
+	info = kzalloc(sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return ERR_PTR(-ENOMEM);
+
+	info->root = root;
+	info->ns = ns;
+	INIT_LIST_HEAD(&info->node);
+
+	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
+			 &init_user_ns, info);
+	if (IS_ERR(sb) || sb->s_fs_info != info)
+		kfree(info);
+	if (IS_ERR(sb))
+		return ERR_CAST(sb);
+
+	if (new_sb_created)
+		*new_sb_created = !sb->s_root;
+
+	if (!sb->s_root) {
+		struct kernfs_super_info *info = kernfs_info(sb);
+
+		error = kernfs_fill_super(sb, magic);
+		if (error) {
+			deactivate_locked_super(sb);
+			return ERR_PTR(error);
+		}
+		sb->s_flags |= SB_ACTIVE;
+
+		mutex_lock(&kernfs_mutex);
+		list_add(&info->node, &root->supers);
+		mutex_unlock(&kernfs_mutex);
+	}
+
+	return dget(sb->s_root);
+}
+
+/**
+ * kernfs_kill_sb - kill_sb for kernfs
+ * @sb: super_block being killed
+ *
+ * This can be used directly for file_system_type->kill_sb().  If a kernfs
+ * user needs extra cleanup, it can implement its own kill_sb() and call
+ * this function at the end.
+ */
+void kernfs_kill_sb(struct super_block *sb)
+{
+	struct kernfs_super_info *info = kernfs_info(sb);
+
+	mutex_lock(&kernfs_mutex);
+	list_del(&info->node);
+	mutex_unlock(&kernfs_mutex);
+
+	/*
+	 * Remove the superblock from fs_supers/s_instances
+	 * so we can't find it, before freeing kernfs_super_info.
+	 */
+	kill_anon_super(sb);
+	kfree(info);
+}
+
+/**
+ * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
+ * @kernfs_root: the kernfs_root in question
+ * @ns: the namespace tag
+ *
+ * Pin the superblock so the superblock won't be destroyed in subsequent
+ * operations.  This can be used to block ->kill_sb() which may be useful
+ * for kernfs users which dynamically manage superblocks.
+ *
+ * Returns NULL if there's no superblock associated to this kernfs_root, or
+ * -EINVAL if the superblock is being freed.
+ */
+struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
+{
+	struct kernfs_super_info *info;
+	struct super_block *sb = NULL;
+
+	mutex_lock(&kernfs_mutex);
+	list_for_each_entry(info, &root->supers, node) {
+		if (info->ns == ns) {
+			sb = info->sb;
+			if (!atomic_inc_not_zero(&info->sb->s_active))
+				sb = ERR_PTR(-EINVAL);
+			break;
+		}
+	}
+	mutex_unlock(&kernfs_mutex);
+	return sb;
+}
+
+void __init kernfs_init(void)
+{
+
+	/*
+	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
+	 * can access the slab lock free. This could introduce stale nodes,
+	 * please see how kernfs_find_and_get_node_by_ino filters out stale
+	 * nodes.
+	 */
+	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
+					      sizeof(struct kernfs_node),
+					      0,
+					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
+					      NULL);
+}
diff --git a/fs/kernfs/symlink.c b/fs/kernfs/symlink.c
new file mode 100644
index 0000000..305b220
--- /dev/null
+++ b/fs/kernfs/symlink.c
@@ -0,0 +1,151 @@
+/*
+ * fs/kernfs/symlink.c - kernfs symlink implementation
+ *
+ * Copyright (c) 2001-3 Patrick Mochel
+ * Copyright (c) 2007 SUSE Linux Products GmbH
+ * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ */
+
+#include <linux/fs.h>
+#include <linux/gfp.h>
+#include <linux/namei.h>
+
+#include "kernfs-internal.h"
+
+/**
+ * kernfs_create_link - create a symlink
+ * @parent: directory to create the symlink in
+ * @name: name of the symlink
+ * @target: target node for the symlink to point to
+ *
+ * Returns the created node on success, ERR_PTR() value on error.
+ * Ownership of the link matches ownership of the target.
+ */
+struct kernfs_node *kernfs_create_link(struct kernfs_node *parent,
+				       const char *name,
+				       struct kernfs_node *target)
+{
+	struct kernfs_node *kn;
+	int error;
+	kuid_t uid = GLOBAL_ROOT_UID;
+	kgid_t gid = GLOBAL_ROOT_GID;
+
+	if (target->iattr) {
+		uid = target->iattr->ia_iattr.ia_uid;
+		gid = target->iattr->ia_iattr.ia_gid;
+	}
+
+	kn = kernfs_new_node(parent, name, S_IFLNK|S_IRWXUGO, uid, gid,
+			     KERNFS_LINK);
+	if (!kn)
+		return ERR_PTR(-ENOMEM);
+
+	if (kernfs_ns_enabled(parent))
+		kn->ns = target->ns;
+	kn->symlink.target_kn = target;
+	kernfs_get(target);	/* ref owned by symlink */
+
+	error = kernfs_add_one(kn);
+	if (!error)
+		return kn;
+
+	kernfs_put(kn);
+	return ERR_PTR(error);
+}
+
+static int kernfs_get_target_path(struct kernfs_node *parent,
+				  struct kernfs_node *target, char *path)
+{
+	struct kernfs_node *base, *kn;
+	char *s = path;
+	int len = 0;
+
+	/* go up to the root, stop at the base */
+	base = parent;
+	while (base->parent) {
+		kn = target->parent;
+		while (kn->parent && base != kn)
+			kn = kn->parent;
+
+		if (base == kn)
+			break;
+
+		strcpy(s, "../");
+		s += 3;
+		base = base->parent;
+	}
+
+	/* determine end of target string for reverse fillup */
+	kn = target;
+	while (kn->parent && kn != base) {
+		len += strlen(kn->name) + 1;
+		kn = kn->parent;
+	}
+
+	/* check limits */
+	if (len < 2)
+		return -EINVAL;
+	len--;
+	if ((s - path) + len > PATH_MAX)
+		return -ENAMETOOLONG;
+
+	/* reverse fillup of target string from target to base */
+	kn = target;
+	while (kn->parent && kn != base) {
+		int slen = strlen(kn->name);
+
+		len -= slen;
+		memcpy(s + len, kn->name, slen);
+		if (len)
+			s[--len] = '/';
+
+		kn = kn->parent;
+	}
+
+	return 0;
+}
+
+static int kernfs_getlink(struct inode *inode, char *path)
+{
+	struct kernfs_node *kn = inode->i_private;
+	struct kernfs_node *parent = kn->parent;
+	struct kernfs_node *target = kn->symlink.target_kn;
+	int error;
+
+	mutex_lock(&kernfs_mutex);
+	error = kernfs_get_target_path(parent, target, path);
+	mutex_unlock(&kernfs_mutex);
+
+	return error;
+}
+
+static const char *kernfs_iop_get_link(struct dentry *dentry,
+				       struct inode *inode,
+				       struct delayed_call *done)
+{
+	char *body;
+	int error;
+
+	if (!dentry)
+		return ERR_PTR(-ECHILD);
+	body = kzalloc(PAGE_SIZE, GFP_KERNEL);
+	if (!body)
+		return ERR_PTR(-ENOMEM);
+	error = kernfs_getlink(inode, body);
+	if (unlikely(error < 0)) {
+		kfree(body);
+		return ERR_PTR(error);
+	}
+	set_delayed_call(done, kfree_link, body);
+	return body;
+}
+
+const struct inode_operations kernfs_symlink_iops = {
+	.listxattr	= kernfs_iop_listxattr,
+	.get_link	= kernfs_iop_get_link,
+	.setattr	= kernfs_iop_setattr,
+	.getattr	= kernfs_iop_getattr,
+	.permission	= kernfs_iop_permission,
+};