v4.19.13 snapshot.
diff --git a/fs/crypto/crypto.c b/fs/crypto/crypto.c
new file mode 100644
index 0000000..0f46cf5
--- /dev/null
+++ b/fs/crypto/crypto.c
@@ -0,0 +1,501 @@
+/*
+ * This contains encryption functions for per-file encryption.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility
+ *
+ * Written by Michael Halcrow, 2014.
+ *
+ * Filename encryption additions
+ *	Uday Savagaonkar, 2014
+ * Encryption policy handling additions
+ *	Ildar Muslukhov, 2014
+ * Add fscrypt_pullback_bio_page()
+ *	Jaegeuk Kim, 2015.
+ *
+ * This has not yet undergone a rigorous security audit.
+ *
+ * The usage of AES-XTS should conform to recommendations in NIST
+ * Special Publication 800-38E and IEEE P1619/D16.
+ */
+
+#include <linux/pagemap.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/scatterlist.h>
+#include <linux/ratelimit.h>
+#include <linux/dcache.h>
+#include <linux/namei.h>
+#include <crypto/aes.h>
+#include <crypto/skcipher.h>
+#include "fscrypt_private.h"
+
+static unsigned int num_prealloc_crypto_pages = 32;
+static unsigned int num_prealloc_crypto_ctxs = 128;
+
+module_param(num_prealloc_crypto_pages, uint, 0444);
+MODULE_PARM_DESC(num_prealloc_crypto_pages,
+		"Number of crypto pages to preallocate");
+module_param(num_prealloc_crypto_ctxs, uint, 0444);
+MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
+		"Number of crypto contexts to preallocate");
+
+static mempool_t *fscrypt_bounce_page_pool = NULL;
+
+static LIST_HEAD(fscrypt_free_ctxs);
+static DEFINE_SPINLOCK(fscrypt_ctx_lock);
+
+static struct workqueue_struct *fscrypt_read_workqueue;
+static DEFINE_MUTEX(fscrypt_init_mutex);
+
+static struct kmem_cache *fscrypt_ctx_cachep;
+struct kmem_cache *fscrypt_info_cachep;
+
+void fscrypt_enqueue_decrypt_work(struct work_struct *work)
+{
+	queue_work(fscrypt_read_workqueue, work);
+}
+EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
+
+/**
+ * fscrypt_release_ctx() - Releases an encryption context
+ * @ctx: The encryption context to release.
+ *
+ * If the encryption context was allocated from the pre-allocated pool, returns
+ * it to that pool. Else, frees it.
+ *
+ * If there's a bounce page in the context, this frees that.
+ */
+void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
+{
+	unsigned long flags;
+
+	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
+		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
+		ctx->w.bounce_page = NULL;
+	}
+	ctx->w.control_page = NULL;
+	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
+		kmem_cache_free(fscrypt_ctx_cachep, ctx);
+	} else {
+		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
+		list_add(&ctx->free_list, &fscrypt_free_ctxs);
+		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
+	}
+}
+EXPORT_SYMBOL(fscrypt_release_ctx);
+
+/**
+ * fscrypt_get_ctx() - Gets an encryption context
+ * @inode:       The inode for which we are doing the crypto
+ * @gfp_flags:   The gfp flag for memory allocation
+ *
+ * Allocates and initializes an encryption context.
+ *
+ * Return: An allocated and initialized encryption context on success; error
+ * value or NULL otherwise.
+ */
+struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
+{
+	struct fscrypt_ctx *ctx = NULL;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	unsigned long flags;
+
+	if (ci == NULL)
+		return ERR_PTR(-ENOKEY);
+
+	/*
+	 * We first try getting the ctx from a free list because in
+	 * the common case the ctx will have an allocated and
+	 * initialized crypto tfm, so it's probably a worthwhile
+	 * optimization. For the bounce page, we first try getting it
+	 * from the kernel allocator because that's just about as fast
+	 * as getting it from a list and because a cache of free pages
+	 * should generally be a "last resort" option for a filesystem
+	 * to be able to do its job.
+	 */
+	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
+	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
+					struct fscrypt_ctx, free_list);
+	if (ctx)
+		list_del(&ctx->free_list);
+	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
+	if (!ctx) {
+		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
+		if (!ctx)
+			return ERR_PTR(-ENOMEM);
+		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
+	} else {
+		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
+	}
+	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
+	return ctx;
+}
+EXPORT_SYMBOL(fscrypt_get_ctx);
+
+int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
+			   u64 lblk_num, struct page *src_page,
+			   struct page *dest_page, unsigned int len,
+			   unsigned int offs, gfp_t gfp_flags)
+{
+	struct {
+		__le64 index;
+		u8 padding[FS_IV_SIZE - sizeof(__le64)];
+	} iv;
+	struct skcipher_request *req = NULL;
+	DECLARE_CRYPTO_WAIT(wait);
+	struct scatterlist dst, src;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct crypto_skcipher *tfm = ci->ci_ctfm;
+	int res = 0;
+
+	BUG_ON(len == 0);
+
+	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
+	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
+	iv.index = cpu_to_le64(lblk_num);
+	memset(iv.padding, 0, sizeof(iv.padding));
+
+	if (ci->ci_essiv_tfm != NULL) {
+		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
+					  (u8 *)&iv);
+	}
+
+	req = skcipher_request_alloc(tfm, gfp_flags);
+	if (!req)
+		return -ENOMEM;
+
+	skcipher_request_set_callback(
+		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+		crypto_req_done, &wait);
+
+	sg_init_table(&dst, 1);
+	sg_set_page(&dst, dest_page, len, offs);
+	sg_init_table(&src, 1);
+	sg_set_page(&src, src_page, len, offs);
+	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
+	if (rw == FS_DECRYPT)
+		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
+	else
+		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+	skcipher_request_free(req);
+	if (res) {
+		fscrypt_err(inode->i_sb,
+			    "%scryption failed for inode %lu, block %llu: %d",
+			    (rw == FS_DECRYPT ? "de" : "en"),
+			    inode->i_ino, lblk_num, res);
+		return res;
+	}
+	return 0;
+}
+
+struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
+				       gfp_t gfp_flags)
+{
+	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
+	if (ctx->w.bounce_page == NULL)
+		return ERR_PTR(-ENOMEM);
+	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
+	return ctx->w.bounce_page;
+}
+
+/**
+ * fscypt_encrypt_page() - Encrypts a page
+ * @inode:     The inode for which the encryption should take place
+ * @page:      The page to encrypt. Must be locked for bounce-page
+ *             encryption.
+ * @len:       Length of data to encrypt in @page and encrypted
+ *             data in returned page.
+ * @offs:      Offset of data within @page and returned
+ *             page holding encrypted data.
+ * @lblk_num:  Logical block number. This must be unique for multiple
+ *             calls with same inode, except when overwriting
+ *             previously written data.
+ * @gfp_flags: The gfp flag for memory allocation
+ *
+ * Encrypts @page using the ctx encryption context. Performs encryption
+ * either in-place or into a newly allocated bounce page.
+ * Called on the page write path.
+ *
+ * Bounce page allocation is the default.
+ * In this case, the contents of @page are encrypted and stored in an
+ * allocated bounce page. @page has to be locked and the caller must call
+ * fscrypt_restore_control_page() on the returned ciphertext page to
+ * release the bounce buffer and the encryption context.
+ *
+ * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
+ * fscrypt_operations. Here, the input-page is returned with its content
+ * encrypted.
+ *
+ * Return: A page with the encrypted content on success. Else, an
+ * error value or NULL.
+ */
+struct page *fscrypt_encrypt_page(const struct inode *inode,
+				struct page *page,
+				unsigned int len,
+				unsigned int offs,
+				u64 lblk_num, gfp_t gfp_flags)
+
+{
+	struct fscrypt_ctx *ctx;
+	struct page *ciphertext_page = page;
+	int err;
+
+	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
+
+	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
+		/* with inplace-encryption we just encrypt the page */
+		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
+					     ciphertext_page, len, offs,
+					     gfp_flags);
+		if (err)
+			return ERR_PTR(err);
+
+		return ciphertext_page;
+	}
+
+	BUG_ON(!PageLocked(page));
+
+	ctx = fscrypt_get_ctx(inode, gfp_flags);
+	if (IS_ERR(ctx))
+		return (struct page *)ctx;
+
+	/* The encryption operation will require a bounce page. */
+	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
+	if (IS_ERR(ciphertext_page))
+		goto errout;
+
+	ctx->w.control_page = page;
+	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
+				     page, ciphertext_page, len, offs,
+				     gfp_flags);
+	if (err) {
+		ciphertext_page = ERR_PTR(err);
+		goto errout;
+	}
+	SetPagePrivate(ciphertext_page);
+	set_page_private(ciphertext_page, (unsigned long)ctx);
+	lock_page(ciphertext_page);
+	return ciphertext_page;
+
+errout:
+	fscrypt_release_ctx(ctx);
+	return ciphertext_page;
+}
+EXPORT_SYMBOL(fscrypt_encrypt_page);
+
+/**
+ * fscrypt_decrypt_page() - Decrypts a page in-place
+ * @inode:     The corresponding inode for the page to decrypt.
+ * @page:      The page to decrypt. Must be locked in case
+ *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
+ * @len:       Number of bytes in @page to be decrypted.
+ * @offs:      Start of data in @page.
+ * @lblk_num:  Logical block number.
+ *
+ * Decrypts page in-place using the ctx encryption context.
+ *
+ * Called from the read completion callback.
+ *
+ * Return: Zero on success, non-zero otherwise.
+ */
+int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
+			unsigned int len, unsigned int offs, u64 lblk_num)
+{
+	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
+		BUG_ON(!PageLocked(page));
+
+	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
+				      len, offs, GFP_NOFS);
+}
+EXPORT_SYMBOL(fscrypt_decrypt_page);
+
+/*
+ * Validate dentries for encrypted directories to make sure we aren't
+ * potentially caching stale data after a key has been added or
+ * removed.
+ */
+static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
+{
+	struct dentry *dir;
+	int dir_has_key, cached_with_key;
+
+	if (flags & LOOKUP_RCU)
+		return -ECHILD;
+
+	dir = dget_parent(dentry);
+	if (!IS_ENCRYPTED(d_inode(dir))) {
+		dput(dir);
+		return 0;
+	}
+
+	spin_lock(&dentry->d_lock);
+	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
+	spin_unlock(&dentry->d_lock);
+	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
+	dput(dir);
+
+	/*
+	 * If the dentry was cached without the key, and it is a
+	 * negative dentry, it might be a valid name.  We can't check
+	 * if the key has since been made available due to locking
+	 * reasons, so we fail the validation so ext4_lookup() can do
+	 * this check.
+	 *
+	 * We also fail the validation if the dentry was created with
+	 * the key present, but we no longer have the key, or vice versa.
+	 */
+	if ((!cached_with_key && d_is_negative(dentry)) ||
+			(!cached_with_key && dir_has_key) ||
+			(cached_with_key && !dir_has_key))
+		return 0;
+	return 1;
+}
+
+const struct dentry_operations fscrypt_d_ops = {
+	.d_revalidate = fscrypt_d_revalidate,
+};
+
+void fscrypt_restore_control_page(struct page *page)
+{
+	struct fscrypt_ctx *ctx;
+
+	ctx = (struct fscrypt_ctx *)page_private(page);
+	set_page_private(page, (unsigned long)NULL);
+	ClearPagePrivate(page);
+	unlock_page(page);
+	fscrypt_release_ctx(ctx);
+}
+EXPORT_SYMBOL(fscrypt_restore_control_page);
+
+static void fscrypt_destroy(void)
+{
+	struct fscrypt_ctx *pos, *n;
+
+	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
+		kmem_cache_free(fscrypt_ctx_cachep, pos);
+	INIT_LIST_HEAD(&fscrypt_free_ctxs);
+	mempool_destroy(fscrypt_bounce_page_pool);
+	fscrypt_bounce_page_pool = NULL;
+}
+
+/**
+ * fscrypt_initialize() - allocate major buffers for fs encryption.
+ * @cop_flags:  fscrypt operations flags
+ *
+ * We only call this when we start accessing encrypted files, since it
+ * results in memory getting allocated that wouldn't otherwise be used.
+ *
+ * Return: Zero on success, non-zero otherwise.
+ */
+int fscrypt_initialize(unsigned int cop_flags)
+{
+	int i, res = -ENOMEM;
+
+	/* No need to allocate a bounce page pool if this FS won't use it. */
+	if (cop_flags & FS_CFLG_OWN_PAGES)
+		return 0;
+
+	mutex_lock(&fscrypt_init_mutex);
+	if (fscrypt_bounce_page_pool)
+		goto already_initialized;
+
+	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
+		struct fscrypt_ctx *ctx;
+
+		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
+		if (!ctx)
+			goto fail;
+		list_add(&ctx->free_list, &fscrypt_free_ctxs);
+	}
+
+	fscrypt_bounce_page_pool =
+		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
+	if (!fscrypt_bounce_page_pool)
+		goto fail;
+
+already_initialized:
+	mutex_unlock(&fscrypt_init_mutex);
+	return 0;
+fail:
+	fscrypt_destroy();
+	mutex_unlock(&fscrypt_init_mutex);
+	return res;
+}
+
+void fscrypt_msg(struct super_block *sb, const char *level,
+		 const char *fmt, ...)
+{
+	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+				      DEFAULT_RATELIMIT_BURST);
+	struct va_format vaf;
+	va_list args;
+
+	if (!__ratelimit(&rs))
+		return;
+
+	va_start(args, fmt);
+	vaf.fmt = fmt;
+	vaf.va = &args;
+	if (sb)
+		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
+	else
+		printk("%sfscrypt: %pV\n", level, &vaf);
+	va_end(args);
+}
+
+/**
+ * fscrypt_init() - Set up for fs encryption.
+ */
+static int __init fscrypt_init(void)
+{
+	/*
+	 * Use an unbound workqueue to allow bios to be decrypted in parallel
+	 * even when they happen to complete on the same CPU.  This sacrifices
+	 * locality, but it's worthwhile since decryption is CPU-intensive.
+	 *
+	 * Also use a high-priority workqueue to prioritize decryption work,
+	 * which blocks reads from completing, over regular application tasks.
+	 */
+	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
+						 WQ_UNBOUND | WQ_HIGHPRI,
+						 num_online_cpus());
+	if (!fscrypt_read_workqueue)
+		goto fail;
+
+	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
+	if (!fscrypt_ctx_cachep)
+		goto fail_free_queue;
+
+	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
+	if (!fscrypt_info_cachep)
+		goto fail_free_ctx;
+
+	return 0;
+
+fail_free_ctx:
+	kmem_cache_destroy(fscrypt_ctx_cachep);
+fail_free_queue:
+	destroy_workqueue(fscrypt_read_workqueue);
+fail:
+	return -ENOMEM;
+}
+module_init(fscrypt_init)
+
+/**
+ * fscrypt_exit() - Shutdown the fs encryption system
+ */
+static void __exit fscrypt_exit(void)
+{
+	fscrypt_destroy();
+
+	if (fscrypt_read_workqueue)
+		destroy_workqueue(fscrypt_read_workqueue);
+	kmem_cache_destroy(fscrypt_ctx_cachep);
+	kmem_cache_destroy(fscrypt_info_cachep);
+
+	fscrypt_essiv_cleanup();
+}
+module_exit(fscrypt_exit);
+
+MODULE_LICENSE("GPL");