v4.19.13 snapshot.
diff --git a/fs/btrfs/reada.c b/fs/btrfs/reada.c
new file mode 100644
index 0000000..dec14b7
--- /dev/null
+++ b/fs/btrfs/reada.c
@@ -0,0 +1,980 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2011 STRATO.  All rights reserved.
+ */
+
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/slab.h>
+#include <linux/workqueue.h>
+#include "ctree.h"
+#include "volumes.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "dev-replace.h"
+
+#undef DEBUG
+
+/*
+ * This is the implementation for the generic read ahead framework.
+ *
+ * To trigger a readahead, btrfs_reada_add must be called. It will start
+ * a read ahead for the given range [start, end) on tree root. The returned
+ * handle can either be used to wait on the readahead to finish
+ * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
+ *
+ * The read ahead works as follows:
+ * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
+ * reada_start_machine will then search for extents to prefetch and trigger
+ * some reads. When a read finishes for a node, all contained node/leaf
+ * pointers that lie in the given range will also be enqueued. The reads will
+ * be triggered in sequential order, thus giving a big win over a naive
+ * enumeration. It will also make use of multi-device layouts. Each disk
+ * will have its on read pointer and all disks will by utilized in parallel.
+ * Also will no two disks read both sides of a mirror simultaneously, as this
+ * would waste seeking capacity. Instead both disks will read different parts
+ * of the filesystem.
+ * Any number of readaheads can be started in parallel. The read order will be
+ * determined globally, i.e. 2 parallel readaheads will normally finish faster
+ * than the 2 started one after another.
+ */
+
+#define MAX_IN_FLIGHT 6
+
+struct reada_extctl {
+	struct list_head	list;
+	struct reada_control	*rc;
+	u64			generation;
+};
+
+struct reada_extent {
+	u64			logical;
+	struct btrfs_key	top;
+	struct list_head	extctl;
+	int 			refcnt;
+	spinlock_t		lock;
+	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
+	int			nzones;
+	int			scheduled;
+};
+
+struct reada_zone {
+	u64			start;
+	u64			end;
+	u64			elems;
+	struct list_head	list;
+	spinlock_t		lock;
+	int			locked;
+	struct btrfs_device	*device;
+	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
+							   * self */
+	int			ndevs;
+	struct kref		refcnt;
+};
+
+struct reada_machine_work {
+	struct btrfs_work	work;
+	struct btrfs_fs_info	*fs_info;
+};
+
+static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
+static void reada_control_release(struct kref *kref);
+static void reada_zone_release(struct kref *kref);
+static void reada_start_machine(struct btrfs_fs_info *fs_info);
+static void __reada_start_machine(struct btrfs_fs_info *fs_info);
+
+static int reada_add_block(struct reada_control *rc, u64 logical,
+			   struct btrfs_key *top, u64 generation);
+
+/* recurses */
+/* in case of err, eb might be NULL */
+static void __readahead_hook(struct btrfs_fs_info *fs_info,
+			     struct reada_extent *re, struct extent_buffer *eb,
+			     int err)
+{
+	int nritems;
+	int i;
+	u64 bytenr;
+	u64 generation;
+	struct list_head list;
+
+	spin_lock(&re->lock);
+	/*
+	 * just take the full list from the extent. afterwards we
+	 * don't need the lock anymore
+	 */
+	list_replace_init(&re->extctl, &list);
+	re->scheduled = 0;
+	spin_unlock(&re->lock);
+
+	/*
+	 * this is the error case, the extent buffer has not been
+	 * read correctly. We won't access anything from it and
+	 * just cleanup our data structures. Effectively this will
+	 * cut the branch below this node from read ahead.
+	 */
+	if (err)
+		goto cleanup;
+
+	/*
+	 * FIXME: currently we just set nritems to 0 if this is a leaf,
+	 * effectively ignoring the content. In a next step we could
+	 * trigger more readahead depending from the content, e.g.
+	 * fetch the checksums for the extents in the leaf.
+	 */
+	if (!btrfs_header_level(eb))
+		goto cleanup;
+
+	nritems = btrfs_header_nritems(eb);
+	generation = btrfs_header_generation(eb);
+	for (i = 0; i < nritems; i++) {
+		struct reada_extctl *rec;
+		u64 n_gen;
+		struct btrfs_key key;
+		struct btrfs_key next_key;
+
+		btrfs_node_key_to_cpu(eb, &key, i);
+		if (i + 1 < nritems)
+			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
+		else
+			next_key = re->top;
+		bytenr = btrfs_node_blockptr(eb, i);
+		n_gen = btrfs_node_ptr_generation(eb, i);
+
+		list_for_each_entry(rec, &list, list) {
+			struct reada_control *rc = rec->rc;
+
+			/*
+			 * if the generation doesn't match, just ignore this
+			 * extctl. This will probably cut off a branch from
+			 * prefetch. Alternatively one could start a new (sub-)
+			 * prefetch for this branch, starting again from root.
+			 * FIXME: move the generation check out of this loop
+			 */
+#ifdef DEBUG
+			if (rec->generation != generation) {
+				btrfs_debug(fs_info,
+					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
+					    key.objectid, key.type, key.offset,
+					    rec->generation, generation);
+			}
+#endif
+			if (rec->generation == generation &&
+			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
+			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
+				reada_add_block(rc, bytenr, &next_key, n_gen);
+		}
+	}
+
+cleanup:
+	/*
+	 * free extctl records
+	 */
+	while (!list_empty(&list)) {
+		struct reada_control *rc;
+		struct reada_extctl *rec;
+
+		rec = list_first_entry(&list, struct reada_extctl, list);
+		list_del(&rec->list);
+		rc = rec->rc;
+		kfree(rec);
+
+		kref_get(&rc->refcnt);
+		if (atomic_dec_and_test(&rc->elems)) {
+			kref_put(&rc->refcnt, reada_control_release);
+			wake_up(&rc->wait);
+		}
+		kref_put(&rc->refcnt, reada_control_release);
+
+		reada_extent_put(fs_info, re);	/* one ref for each entry */
+	}
+
+	return;
+}
+
+int btree_readahead_hook(struct extent_buffer *eb, int err)
+{
+	struct btrfs_fs_info *fs_info = eb->fs_info;
+	int ret = 0;
+	struct reada_extent *re;
+
+	/* find extent */
+	spin_lock(&fs_info->reada_lock);
+	re = radix_tree_lookup(&fs_info->reada_tree,
+			       eb->start >> PAGE_SHIFT);
+	if (re)
+		re->refcnt++;
+	spin_unlock(&fs_info->reada_lock);
+	if (!re) {
+		ret = -1;
+		goto start_machine;
+	}
+
+	__readahead_hook(fs_info, re, eb, err);
+	reada_extent_put(fs_info, re);	/* our ref */
+
+start_machine:
+	reada_start_machine(fs_info);
+	return ret;
+}
+
+static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
+					  struct btrfs_bio *bbio)
+{
+	struct btrfs_fs_info *fs_info = dev->fs_info;
+	int ret;
+	struct reada_zone *zone;
+	struct btrfs_block_group_cache *cache = NULL;
+	u64 start;
+	u64 end;
+	int i;
+
+	zone = NULL;
+	spin_lock(&fs_info->reada_lock);
+	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
+				     logical >> PAGE_SHIFT, 1);
+	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
+		kref_get(&zone->refcnt);
+		spin_unlock(&fs_info->reada_lock);
+		return zone;
+	}
+
+	spin_unlock(&fs_info->reada_lock);
+
+	cache = btrfs_lookup_block_group(fs_info, logical);
+	if (!cache)
+		return NULL;
+
+	start = cache->key.objectid;
+	end = start + cache->key.offset - 1;
+	btrfs_put_block_group(cache);
+
+	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
+	if (!zone)
+		return NULL;
+
+	ret = radix_tree_preload(GFP_KERNEL);
+	if (ret) {
+		kfree(zone);
+		return NULL;
+	}
+
+	zone->start = start;
+	zone->end = end;
+	INIT_LIST_HEAD(&zone->list);
+	spin_lock_init(&zone->lock);
+	zone->locked = 0;
+	kref_init(&zone->refcnt);
+	zone->elems = 0;
+	zone->device = dev; /* our device always sits at index 0 */
+	for (i = 0; i < bbio->num_stripes; ++i) {
+		/* bounds have already been checked */
+		zone->devs[i] = bbio->stripes[i].dev;
+	}
+	zone->ndevs = bbio->num_stripes;
+
+	spin_lock(&fs_info->reada_lock);
+	ret = radix_tree_insert(&dev->reada_zones,
+				(unsigned long)(zone->end >> PAGE_SHIFT),
+				zone);
+
+	if (ret == -EEXIST) {
+		kfree(zone);
+		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
+					     logical >> PAGE_SHIFT, 1);
+		if (ret == 1 && logical >= zone->start && logical <= zone->end)
+			kref_get(&zone->refcnt);
+		else
+			zone = NULL;
+	}
+	spin_unlock(&fs_info->reada_lock);
+	radix_tree_preload_end();
+
+	return zone;
+}
+
+static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
+					      u64 logical,
+					      struct btrfs_key *top)
+{
+	int ret;
+	struct reada_extent *re = NULL;
+	struct reada_extent *re_exist = NULL;
+	struct btrfs_bio *bbio = NULL;
+	struct btrfs_device *dev;
+	struct btrfs_device *prev_dev;
+	u64 length;
+	int real_stripes;
+	int nzones = 0;
+	unsigned long index = logical >> PAGE_SHIFT;
+	int dev_replace_is_ongoing;
+	int have_zone = 0;
+
+	spin_lock(&fs_info->reada_lock);
+	re = radix_tree_lookup(&fs_info->reada_tree, index);
+	if (re)
+		re->refcnt++;
+	spin_unlock(&fs_info->reada_lock);
+
+	if (re)
+		return re;
+
+	re = kzalloc(sizeof(*re), GFP_KERNEL);
+	if (!re)
+		return NULL;
+
+	re->logical = logical;
+	re->top = *top;
+	INIT_LIST_HEAD(&re->extctl);
+	spin_lock_init(&re->lock);
+	re->refcnt = 1;
+
+	/*
+	 * map block
+	 */
+	length = fs_info->nodesize;
+	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
+			&length, &bbio, 0);
+	if (ret || !bbio || length < fs_info->nodesize)
+		goto error;
+
+	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
+		btrfs_err(fs_info,
+			   "readahead: more than %d copies not supported",
+			   BTRFS_MAX_MIRRORS);
+		goto error;
+	}
+
+	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
+	for (nzones = 0; nzones < real_stripes; ++nzones) {
+		struct reada_zone *zone;
+
+		dev = bbio->stripes[nzones].dev;
+
+		/* cannot read ahead on missing device. */
+		if (!dev->bdev)
+			continue;
+
+		zone = reada_find_zone(dev, logical, bbio);
+		if (!zone)
+			continue;
+
+		re->zones[re->nzones++] = zone;
+		spin_lock(&zone->lock);
+		if (!zone->elems)
+			kref_get(&zone->refcnt);
+		++zone->elems;
+		spin_unlock(&zone->lock);
+		spin_lock(&fs_info->reada_lock);
+		kref_put(&zone->refcnt, reada_zone_release);
+		spin_unlock(&fs_info->reada_lock);
+	}
+	if (re->nzones == 0) {
+		/* not a single zone found, error and out */
+		goto error;
+	}
+
+	ret = radix_tree_preload(GFP_KERNEL);
+	if (ret)
+		goto error;
+
+	/* insert extent in reada_tree + all per-device trees, all or nothing */
+	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
+	spin_lock(&fs_info->reada_lock);
+	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
+	if (ret == -EEXIST) {
+		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
+		re_exist->refcnt++;
+		spin_unlock(&fs_info->reada_lock);
+		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
+		radix_tree_preload_end();
+		goto error;
+	}
+	if (ret) {
+		spin_unlock(&fs_info->reada_lock);
+		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
+		radix_tree_preload_end();
+		goto error;
+	}
+	radix_tree_preload_end();
+	prev_dev = NULL;
+	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
+			&fs_info->dev_replace);
+	for (nzones = 0; nzones < re->nzones; ++nzones) {
+		dev = re->zones[nzones]->device;
+
+		if (dev == prev_dev) {
+			/*
+			 * in case of DUP, just add the first zone. As both
+			 * are on the same device, there's nothing to gain
+			 * from adding both.
+			 * Also, it wouldn't work, as the tree is per device
+			 * and adding would fail with EEXIST
+			 */
+			continue;
+		}
+		if (!dev->bdev)
+			continue;
+
+		if (dev_replace_is_ongoing &&
+		    dev == fs_info->dev_replace.tgtdev) {
+			/*
+			 * as this device is selected for reading only as
+			 * a last resort, skip it for read ahead.
+			 */
+			continue;
+		}
+		prev_dev = dev;
+		ret = radix_tree_insert(&dev->reada_extents, index, re);
+		if (ret) {
+			while (--nzones >= 0) {
+				dev = re->zones[nzones]->device;
+				BUG_ON(dev == NULL);
+				/* ignore whether the entry was inserted */
+				radix_tree_delete(&dev->reada_extents, index);
+			}
+			radix_tree_delete(&fs_info->reada_tree, index);
+			spin_unlock(&fs_info->reada_lock);
+			btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
+			goto error;
+		}
+		have_zone = 1;
+	}
+	spin_unlock(&fs_info->reada_lock);
+	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
+
+	if (!have_zone)
+		goto error;
+
+	btrfs_put_bbio(bbio);
+	return re;
+
+error:
+	for (nzones = 0; nzones < re->nzones; ++nzones) {
+		struct reada_zone *zone;
+
+		zone = re->zones[nzones];
+		kref_get(&zone->refcnt);
+		spin_lock(&zone->lock);
+		--zone->elems;
+		if (zone->elems == 0) {
+			/*
+			 * no fs_info->reada_lock needed, as this can't be
+			 * the last ref
+			 */
+			kref_put(&zone->refcnt, reada_zone_release);
+		}
+		spin_unlock(&zone->lock);
+
+		spin_lock(&fs_info->reada_lock);
+		kref_put(&zone->refcnt, reada_zone_release);
+		spin_unlock(&fs_info->reada_lock);
+	}
+	btrfs_put_bbio(bbio);
+	kfree(re);
+	return re_exist;
+}
+
+static void reada_extent_put(struct btrfs_fs_info *fs_info,
+			     struct reada_extent *re)
+{
+	int i;
+	unsigned long index = re->logical >> PAGE_SHIFT;
+
+	spin_lock(&fs_info->reada_lock);
+	if (--re->refcnt) {
+		spin_unlock(&fs_info->reada_lock);
+		return;
+	}
+
+	radix_tree_delete(&fs_info->reada_tree, index);
+	for (i = 0; i < re->nzones; ++i) {
+		struct reada_zone *zone = re->zones[i];
+
+		radix_tree_delete(&zone->device->reada_extents, index);
+	}
+
+	spin_unlock(&fs_info->reada_lock);
+
+	for (i = 0; i < re->nzones; ++i) {
+		struct reada_zone *zone = re->zones[i];
+
+		kref_get(&zone->refcnt);
+		spin_lock(&zone->lock);
+		--zone->elems;
+		if (zone->elems == 0) {
+			/* no fs_info->reada_lock needed, as this can't be
+			 * the last ref */
+			kref_put(&zone->refcnt, reada_zone_release);
+		}
+		spin_unlock(&zone->lock);
+
+		spin_lock(&fs_info->reada_lock);
+		kref_put(&zone->refcnt, reada_zone_release);
+		spin_unlock(&fs_info->reada_lock);
+	}
+
+	kfree(re);
+}
+
+static void reada_zone_release(struct kref *kref)
+{
+	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
+
+	radix_tree_delete(&zone->device->reada_zones,
+			  zone->end >> PAGE_SHIFT);
+
+	kfree(zone);
+}
+
+static void reada_control_release(struct kref *kref)
+{
+	struct reada_control *rc = container_of(kref, struct reada_control,
+						refcnt);
+
+	kfree(rc);
+}
+
+static int reada_add_block(struct reada_control *rc, u64 logical,
+			   struct btrfs_key *top, u64 generation)
+{
+	struct btrfs_fs_info *fs_info = rc->fs_info;
+	struct reada_extent *re;
+	struct reada_extctl *rec;
+
+	/* takes one ref */
+	re = reada_find_extent(fs_info, logical, top);
+	if (!re)
+		return -1;
+
+	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
+	if (!rec) {
+		reada_extent_put(fs_info, re);
+		return -ENOMEM;
+	}
+
+	rec->rc = rc;
+	rec->generation = generation;
+	atomic_inc(&rc->elems);
+
+	spin_lock(&re->lock);
+	list_add_tail(&rec->list, &re->extctl);
+	spin_unlock(&re->lock);
+
+	/* leave the ref on the extent */
+
+	return 0;
+}
+
+/*
+ * called with fs_info->reada_lock held
+ */
+static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
+{
+	int i;
+	unsigned long index = zone->end >> PAGE_SHIFT;
+
+	for (i = 0; i < zone->ndevs; ++i) {
+		struct reada_zone *peer;
+		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
+		if (peer && peer->device != zone->device)
+			peer->locked = lock;
+	}
+}
+
+/*
+ * called with fs_info->reada_lock held
+ */
+static int reada_pick_zone(struct btrfs_device *dev)
+{
+	struct reada_zone *top_zone = NULL;
+	struct reada_zone *top_locked_zone = NULL;
+	u64 top_elems = 0;
+	u64 top_locked_elems = 0;
+	unsigned long index = 0;
+	int ret;
+
+	if (dev->reada_curr_zone) {
+		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
+		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
+		dev->reada_curr_zone = NULL;
+	}
+	/* pick the zone with the most elements */
+	while (1) {
+		struct reada_zone *zone;
+
+		ret = radix_tree_gang_lookup(&dev->reada_zones,
+					     (void **)&zone, index, 1);
+		if (ret == 0)
+			break;
+		index = (zone->end >> PAGE_SHIFT) + 1;
+		if (zone->locked) {
+			if (zone->elems > top_locked_elems) {
+				top_locked_elems = zone->elems;
+				top_locked_zone = zone;
+			}
+		} else {
+			if (zone->elems > top_elems) {
+				top_elems = zone->elems;
+				top_zone = zone;
+			}
+		}
+	}
+	if (top_zone)
+		dev->reada_curr_zone = top_zone;
+	else if (top_locked_zone)
+		dev->reada_curr_zone = top_locked_zone;
+	else
+		return 0;
+
+	dev->reada_next = dev->reada_curr_zone->start;
+	kref_get(&dev->reada_curr_zone->refcnt);
+	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
+
+	return 1;
+}
+
+static int reada_start_machine_dev(struct btrfs_device *dev)
+{
+	struct btrfs_fs_info *fs_info = dev->fs_info;
+	struct reada_extent *re = NULL;
+	int mirror_num = 0;
+	struct extent_buffer *eb = NULL;
+	u64 logical;
+	int ret;
+	int i;
+
+	spin_lock(&fs_info->reada_lock);
+	if (dev->reada_curr_zone == NULL) {
+		ret = reada_pick_zone(dev);
+		if (!ret) {
+			spin_unlock(&fs_info->reada_lock);
+			return 0;
+		}
+	}
+	/*
+	 * FIXME currently we issue the reads one extent at a time. If we have
+	 * a contiguous block of extents, we could also coagulate them or use
+	 * plugging to speed things up
+	 */
+	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
+				     dev->reada_next >> PAGE_SHIFT, 1);
+	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
+		ret = reada_pick_zone(dev);
+		if (!ret) {
+			spin_unlock(&fs_info->reada_lock);
+			return 0;
+		}
+		re = NULL;
+		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
+					dev->reada_next >> PAGE_SHIFT, 1);
+	}
+	if (ret == 0) {
+		spin_unlock(&fs_info->reada_lock);
+		return 0;
+	}
+	dev->reada_next = re->logical + fs_info->nodesize;
+	re->refcnt++;
+
+	spin_unlock(&fs_info->reada_lock);
+
+	spin_lock(&re->lock);
+	if (re->scheduled || list_empty(&re->extctl)) {
+		spin_unlock(&re->lock);
+		reada_extent_put(fs_info, re);
+		return 0;
+	}
+	re->scheduled = 1;
+	spin_unlock(&re->lock);
+
+	/*
+	 * find mirror num
+	 */
+	for (i = 0; i < re->nzones; ++i) {
+		if (re->zones[i]->device == dev) {
+			mirror_num = i + 1;
+			break;
+		}
+	}
+	logical = re->logical;
+
+	atomic_inc(&dev->reada_in_flight);
+	ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
+	if (ret)
+		__readahead_hook(fs_info, re, NULL, ret);
+	else if (eb)
+		__readahead_hook(fs_info, re, eb, ret);
+
+	if (eb)
+		free_extent_buffer(eb);
+
+	atomic_dec(&dev->reada_in_flight);
+	reada_extent_put(fs_info, re);
+
+	return 1;
+
+}
+
+static void reada_start_machine_worker(struct btrfs_work *work)
+{
+	struct reada_machine_work *rmw;
+	struct btrfs_fs_info *fs_info;
+	int old_ioprio;
+
+	rmw = container_of(work, struct reada_machine_work, work);
+	fs_info = rmw->fs_info;
+
+	kfree(rmw);
+
+	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
+				       task_nice_ioprio(current));
+	set_task_ioprio(current, BTRFS_IOPRIO_READA);
+	__reada_start_machine(fs_info);
+	set_task_ioprio(current, old_ioprio);
+
+	atomic_dec(&fs_info->reada_works_cnt);
+}
+
+static void __reada_start_machine(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_device *device;
+	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
+	u64 enqueued;
+	u64 total = 0;
+	int i;
+
+	do {
+		enqueued = 0;
+		mutex_lock(&fs_devices->device_list_mutex);
+		list_for_each_entry(device, &fs_devices->devices, dev_list) {
+			if (atomic_read(&device->reada_in_flight) <
+			    MAX_IN_FLIGHT)
+				enqueued += reada_start_machine_dev(device);
+		}
+		mutex_unlock(&fs_devices->device_list_mutex);
+		total += enqueued;
+	} while (enqueued && total < 10000);
+
+	if (enqueued == 0)
+		return;
+
+	/*
+	 * If everything is already in the cache, this is effectively single
+	 * threaded. To a) not hold the caller for too long and b) to utilize
+	 * more cores, we broke the loop above after 10000 iterations and now
+	 * enqueue to workers to finish it. This will distribute the load to
+	 * the cores.
+	 */
+	for (i = 0; i < 2; ++i) {
+		reada_start_machine(fs_info);
+		if (atomic_read(&fs_info->reada_works_cnt) >
+		    BTRFS_MAX_MIRRORS * 2)
+			break;
+	}
+}
+
+static void reada_start_machine(struct btrfs_fs_info *fs_info)
+{
+	struct reada_machine_work *rmw;
+
+	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
+	if (!rmw) {
+		/* FIXME we cannot handle this properly right now */
+		BUG();
+	}
+	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
+			reada_start_machine_worker, NULL, NULL);
+	rmw->fs_info = fs_info;
+
+	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
+	atomic_inc(&fs_info->reada_works_cnt);
+}
+
+#ifdef DEBUG
+static void dump_devs(struct btrfs_fs_info *fs_info, int all)
+{
+	struct btrfs_device *device;
+	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
+	unsigned long index;
+	int ret;
+	int i;
+	int j;
+	int cnt;
+
+	spin_lock(&fs_info->reada_lock);
+	list_for_each_entry(device, &fs_devices->devices, dev_list) {
+		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
+			atomic_read(&device->reada_in_flight));
+		index = 0;
+		while (1) {
+			struct reada_zone *zone;
+			ret = radix_tree_gang_lookup(&device->reada_zones,
+						     (void **)&zone, index, 1);
+			if (ret == 0)
+				break;
+			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
+				    zone->start, zone->end, zone->elems,
+				    zone->locked);
+			for (j = 0; j < zone->ndevs; ++j) {
+				pr_cont(" %lld",
+					zone->devs[j]->devid);
+			}
+			if (device->reada_curr_zone == zone)
+				pr_cont(" curr off %llu",
+					device->reada_next - zone->start);
+			pr_cont("\n");
+			index = (zone->end >> PAGE_SHIFT) + 1;
+		}
+		cnt = 0;
+		index = 0;
+		while (all) {
+			struct reada_extent *re = NULL;
+
+			ret = radix_tree_gang_lookup(&device->reada_extents,
+						     (void **)&re, index, 1);
+			if (ret == 0)
+				break;
+			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
+				re->logical, fs_info->nodesize,
+				list_empty(&re->extctl), re->scheduled);
+
+			for (i = 0; i < re->nzones; ++i) {
+				pr_cont(" zone %llu-%llu devs",
+					re->zones[i]->start,
+					re->zones[i]->end);
+				for (j = 0; j < re->zones[i]->ndevs; ++j) {
+					pr_cont(" %lld",
+						re->zones[i]->devs[j]->devid);
+				}
+			}
+			pr_cont("\n");
+			index = (re->logical >> PAGE_SHIFT) + 1;
+			if (++cnt > 15)
+				break;
+		}
+	}
+
+	index = 0;
+	cnt = 0;
+	while (all) {
+		struct reada_extent *re = NULL;
+
+		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
+					     index, 1);
+		if (ret == 0)
+			break;
+		if (!re->scheduled) {
+			index = (re->logical >> PAGE_SHIFT) + 1;
+			continue;
+		}
+		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
+			re->logical, fs_info->nodesize,
+			list_empty(&re->extctl), re->scheduled);
+		for (i = 0; i < re->nzones; ++i) {
+			pr_cont(" zone %llu-%llu devs",
+				re->zones[i]->start,
+				re->zones[i]->end);
+			for (j = 0; j < re->zones[i]->ndevs; ++j) {
+				pr_cont(" %lld",
+				       re->zones[i]->devs[j]->devid);
+			}
+		}
+		pr_cont("\n");
+		index = (re->logical >> PAGE_SHIFT) + 1;
+	}
+	spin_unlock(&fs_info->reada_lock);
+}
+#endif
+
+/*
+ * interface
+ */
+struct reada_control *btrfs_reada_add(struct btrfs_root *root,
+			struct btrfs_key *key_start, struct btrfs_key *key_end)
+{
+	struct reada_control *rc;
+	u64 start;
+	u64 generation;
+	int ret;
+	struct extent_buffer *node;
+	static struct btrfs_key max_key = {
+		.objectid = (u64)-1,
+		.type = (u8)-1,
+		.offset = (u64)-1
+	};
+
+	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
+	if (!rc)
+		return ERR_PTR(-ENOMEM);
+
+	rc->fs_info = root->fs_info;
+	rc->key_start = *key_start;
+	rc->key_end = *key_end;
+	atomic_set(&rc->elems, 0);
+	init_waitqueue_head(&rc->wait);
+	kref_init(&rc->refcnt);
+	kref_get(&rc->refcnt); /* one ref for having elements */
+
+	node = btrfs_root_node(root);
+	start = node->start;
+	generation = btrfs_header_generation(node);
+	free_extent_buffer(node);
+
+	ret = reada_add_block(rc, start, &max_key, generation);
+	if (ret) {
+		kfree(rc);
+		return ERR_PTR(ret);
+	}
+
+	reada_start_machine(root->fs_info);
+
+	return rc;
+}
+
+#ifdef DEBUG
+int btrfs_reada_wait(void *handle)
+{
+	struct reada_control *rc = handle;
+	struct btrfs_fs_info *fs_info = rc->fs_info;
+
+	while (atomic_read(&rc->elems)) {
+		if (!atomic_read(&fs_info->reada_works_cnt))
+			reada_start_machine(fs_info);
+		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
+				   5 * HZ);
+		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
+	}
+
+	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
+
+	kref_put(&rc->refcnt, reada_control_release);
+
+	return 0;
+}
+#else
+int btrfs_reada_wait(void *handle)
+{
+	struct reada_control *rc = handle;
+	struct btrfs_fs_info *fs_info = rc->fs_info;
+
+	while (atomic_read(&rc->elems)) {
+		if (!atomic_read(&fs_info->reada_works_cnt))
+			reada_start_machine(fs_info);
+		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
+				   (HZ + 9) / 10);
+	}
+
+	kref_put(&rc->refcnt, reada_control_release);
+
+	return 0;
+}
+#endif
+
+void btrfs_reada_detach(void *handle)
+{
+	struct reada_control *rc = handle;
+
+	kref_put(&rc->refcnt, reada_control_release);
+}