v4.19.13 snapshot.
diff --git a/fs/btrfs/delayed-inode.c b/fs/btrfs/delayed-inode.c
new file mode 100644
index 0000000..f51b509
--- /dev/null
+++ b/fs/btrfs/delayed-inode.c
@@ -0,0 +1,1967 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2011 Fujitsu.  All rights reserved.
+ * Written by Miao Xie <miaox@cn.fujitsu.com>
+ */
+
+#include <linux/slab.h>
+#include <linux/iversion.h>
+#include "delayed-inode.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "ctree.h"
+#include "qgroup.h"
+
+#define BTRFS_DELAYED_WRITEBACK		512
+#define BTRFS_DELAYED_BACKGROUND	128
+#define BTRFS_DELAYED_BATCH		16
+
+static struct kmem_cache *delayed_node_cache;
+
+int __init btrfs_delayed_inode_init(void)
+{
+	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
+					sizeof(struct btrfs_delayed_node),
+					0,
+					SLAB_MEM_SPREAD,
+					NULL);
+	if (!delayed_node_cache)
+		return -ENOMEM;
+	return 0;
+}
+
+void __cold btrfs_delayed_inode_exit(void)
+{
+	kmem_cache_destroy(delayed_node_cache);
+}
+
+static inline void btrfs_init_delayed_node(
+				struct btrfs_delayed_node *delayed_node,
+				struct btrfs_root *root, u64 inode_id)
+{
+	delayed_node->root = root;
+	delayed_node->inode_id = inode_id;
+	refcount_set(&delayed_node->refs, 0);
+	delayed_node->ins_root = RB_ROOT;
+	delayed_node->del_root = RB_ROOT;
+	mutex_init(&delayed_node->mutex);
+	INIT_LIST_HEAD(&delayed_node->n_list);
+	INIT_LIST_HEAD(&delayed_node->p_list);
+}
+
+static inline int btrfs_is_continuous_delayed_item(
+					struct btrfs_delayed_item *item1,
+					struct btrfs_delayed_item *item2)
+{
+	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
+	    item1->key.objectid == item2->key.objectid &&
+	    item1->key.type == item2->key.type &&
+	    item1->key.offset + 1 == item2->key.offset)
+		return 1;
+	return 0;
+}
+
+static struct btrfs_delayed_node *btrfs_get_delayed_node(
+		struct btrfs_inode *btrfs_inode)
+{
+	struct btrfs_root *root = btrfs_inode->root;
+	u64 ino = btrfs_ino(btrfs_inode);
+	struct btrfs_delayed_node *node;
+
+	node = READ_ONCE(btrfs_inode->delayed_node);
+	if (node) {
+		refcount_inc(&node->refs);
+		return node;
+	}
+
+	spin_lock(&root->inode_lock);
+	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
+
+	if (node) {
+		if (btrfs_inode->delayed_node) {
+			refcount_inc(&node->refs);	/* can be accessed */
+			BUG_ON(btrfs_inode->delayed_node != node);
+			spin_unlock(&root->inode_lock);
+			return node;
+		}
+
+		/*
+		 * It's possible that we're racing into the middle of removing
+		 * this node from the radix tree.  In this case, the refcount
+		 * was zero and it should never go back to one.  Just return
+		 * NULL like it was never in the radix at all; our release
+		 * function is in the process of removing it.
+		 *
+		 * Some implementations of refcount_inc refuse to bump the
+		 * refcount once it has hit zero.  If we don't do this dance
+		 * here, refcount_inc() may decide to just WARN_ONCE() instead
+		 * of actually bumping the refcount.
+		 *
+		 * If this node is properly in the radix, we want to bump the
+		 * refcount twice, once for the inode and once for this get
+		 * operation.
+		 */
+		if (refcount_inc_not_zero(&node->refs)) {
+			refcount_inc(&node->refs);
+			btrfs_inode->delayed_node = node;
+		} else {
+			node = NULL;
+		}
+
+		spin_unlock(&root->inode_lock);
+		return node;
+	}
+	spin_unlock(&root->inode_lock);
+
+	return NULL;
+}
+
+/* Will return either the node or PTR_ERR(-ENOMEM) */
+static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
+		struct btrfs_inode *btrfs_inode)
+{
+	struct btrfs_delayed_node *node;
+	struct btrfs_root *root = btrfs_inode->root;
+	u64 ino = btrfs_ino(btrfs_inode);
+	int ret;
+
+again:
+	node = btrfs_get_delayed_node(btrfs_inode);
+	if (node)
+		return node;
+
+	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
+	if (!node)
+		return ERR_PTR(-ENOMEM);
+	btrfs_init_delayed_node(node, root, ino);
+
+	/* cached in the btrfs inode and can be accessed */
+	refcount_set(&node->refs, 2);
+
+	ret = radix_tree_preload(GFP_NOFS);
+	if (ret) {
+		kmem_cache_free(delayed_node_cache, node);
+		return ERR_PTR(ret);
+	}
+
+	spin_lock(&root->inode_lock);
+	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
+	if (ret == -EEXIST) {
+		spin_unlock(&root->inode_lock);
+		kmem_cache_free(delayed_node_cache, node);
+		radix_tree_preload_end();
+		goto again;
+	}
+	btrfs_inode->delayed_node = node;
+	spin_unlock(&root->inode_lock);
+	radix_tree_preload_end();
+
+	return node;
+}
+
+/*
+ * Call it when holding delayed_node->mutex
+ *
+ * If mod = 1, add this node into the prepared list.
+ */
+static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
+				     struct btrfs_delayed_node *node,
+				     int mod)
+{
+	spin_lock(&root->lock);
+	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
+		if (!list_empty(&node->p_list))
+			list_move_tail(&node->p_list, &root->prepare_list);
+		else if (mod)
+			list_add_tail(&node->p_list, &root->prepare_list);
+	} else {
+		list_add_tail(&node->n_list, &root->node_list);
+		list_add_tail(&node->p_list, &root->prepare_list);
+		refcount_inc(&node->refs);	/* inserted into list */
+		root->nodes++;
+		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
+	}
+	spin_unlock(&root->lock);
+}
+
+/* Call it when holding delayed_node->mutex */
+static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
+				       struct btrfs_delayed_node *node)
+{
+	spin_lock(&root->lock);
+	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
+		root->nodes--;
+		refcount_dec(&node->refs);	/* not in the list */
+		list_del_init(&node->n_list);
+		if (!list_empty(&node->p_list))
+			list_del_init(&node->p_list);
+		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
+	}
+	spin_unlock(&root->lock);
+}
+
+static struct btrfs_delayed_node *btrfs_first_delayed_node(
+			struct btrfs_delayed_root *delayed_root)
+{
+	struct list_head *p;
+	struct btrfs_delayed_node *node = NULL;
+
+	spin_lock(&delayed_root->lock);
+	if (list_empty(&delayed_root->node_list))
+		goto out;
+
+	p = delayed_root->node_list.next;
+	node = list_entry(p, struct btrfs_delayed_node, n_list);
+	refcount_inc(&node->refs);
+out:
+	spin_unlock(&delayed_root->lock);
+
+	return node;
+}
+
+static struct btrfs_delayed_node *btrfs_next_delayed_node(
+						struct btrfs_delayed_node *node)
+{
+	struct btrfs_delayed_root *delayed_root;
+	struct list_head *p;
+	struct btrfs_delayed_node *next = NULL;
+
+	delayed_root = node->root->fs_info->delayed_root;
+	spin_lock(&delayed_root->lock);
+	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
+		/* not in the list */
+		if (list_empty(&delayed_root->node_list))
+			goto out;
+		p = delayed_root->node_list.next;
+	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
+		goto out;
+	else
+		p = node->n_list.next;
+
+	next = list_entry(p, struct btrfs_delayed_node, n_list);
+	refcount_inc(&next->refs);
+out:
+	spin_unlock(&delayed_root->lock);
+
+	return next;
+}
+
+static void __btrfs_release_delayed_node(
+				struct btrfs_delayed_node *delayed_node,
+				int mod)
+{
+	struct btrfs_delayed_root *delayed_root;
+
+	if (!delayed_node)
+		return;
+
+	delayed_root = delayed_node->root->fs_info->delayed_root;
+
+	mutex_lock(&delayed_node->mutex);
+	if (delayed_node->count)
+		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
+	else
+		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
+	mutex_unlock(&delayed_node->mutex);
+
+	if (refcount_dec_and_test(&delayed_node->refs)) {
+		struct btrfs_root *root = delayed_node->root;
+
+		spin_lock(&root->inode_lock);
+		/*
+		 * Once our refcount goes to zero, nobody is allowed to bump it
+		 * back up.  We can delete it now.
+		 */
+		ASSERT(refcount_read(&delayed_node->refs) == 0);
+		radix_tree_delete(&root->delayed_nodes_tree,
+				  delayed_node->inode_id);
+		spin_unlock(&root->inode_lock);
+		kmem_cache_free(delayed_node_cache, delayed_node);
+	}
+}
+
+static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
+{
+	__btrfs_release_delayed_node(node, 0);
+}
+
+static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
+					struct btrfs_delayed_root *delayed_root)
+{
+	struct list_head *p;
+	struct btrfs_delayed_node *node = NULL;
+
+	spin_lock(&delayed_root->lock);
+	if (list_empty(&delayed_root->prepare_list))
+		goto out;
+
+	p = delayed_root->prepare_list.next;
+	list_del_init(p);
+	node = list_entry(p, struct btrfs_delayed_node, p_list);
+	refcount_inc(&node->refs);
+out:
+	spin_unlock(&delayed_root->lock);
+
+	return node;
+}
+
+static inline void btrfs_release_prepared_delayed_node(
+					struct btrfs_delayed_node *node)
+{
+	__btrfs_release_delayed_node(node, 1);
+}
+
+static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
+{
+	struct btrfs_delayed_item *item;
+	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
+	if (item) {
+		item->data_len = data_len;
+		item->ins_or_del = 0;
+		item->bytes_reserved = 0;
+		item->delayed_node = NULL;
+		refcount_set(&item->refs, 1);
+	}
+	return item;
+}
+
+/*
+ * __btrfs_lookup_delayed_item - look up the delayed item by key
+ * @delayed_node: pointer to the delayed node
+ * @key:	  the key to look up
+ * @prev:	  used to store the prev item if the right item isn't found
+ * @next:	  used to store the next item if the right item isn't found
+ *
+ * Note: if we don't find the right item, we will return the prev item and
+ * the next item.
+ */
+static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
+				struct rb_root *root,
+				struct btrfs_key *key,
+				struct btrfs_delayed_item **prev,
+				struct btrfs_delayed_item **next)
+{
+	struct rb_node *node, *prev_node = NULL;
+	struct btrfs_delayed_item *delayed_item = NULL;
+	int ret = 0;
+
+	node = root->rb_node;
+
+	while (node) {
+		delayed_item = rb_entry(node, struct btrfs_delayed_item,
+					rb_node);
+		prev_node = node;
+		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
+		if (ret < 0)
+			node = node->rb_right;
+		else if (ret > 0)
+			node = node->rb_left;
+		else
+			return delayed_item;
+	}
+
+	if (prev) {
+		if (!prev_node)
+			*prev = NULL;
+		else if (ret < 0)
+			*prev = delayed_item;
+		else if ((node = rb_prev(prev_node)) != NULL) {
+			*prev = rb_entry(node, struct btrfs_delayed_item,
+					 rb_node);
+		} else
+			*prev = NULL;
+	}
+
+	if (next) {
+		if (!prev_node)
+			*next = NULL;
+		else if (ret > 0)
+			*next = delayed_item;
+		else if ((node = rb_next(prev_node)) != NULL) {
+			*next = rb_entry(node, struct btrfs_delayed_item,
+					 rb_node);
+		} else
+			*next = NULL;
+	}
+	return NULL;
+}
+
+static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
+					struct btrfs_delayed_node *delayed_node,
+					struct btrfs_key *key)
+{
+	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
+					   NULL, NULL);
+}
+
+static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
+				    struct btrfs_delayed_item *ins,
+				    int action)
+{
+	struct rb_node **p, *node;
+	struct rb_node *parent_node = NULL;
+	struct rb_root *root;
+	struct btrfs_delayed_item *item;
+	int cmp;
+
+	if (action == BTRFS_DELAYED_INSERTION_ITEM)
+		root = &delayed_node->ins_root;
+	else if (action == BTRFS_DELAYED_DELETION_ITEM)
+		root = &delayed_node->del_root;
+	else
+		BUG();
+	p = &root->rb_node;
+	node = &ins->rb_node;
+
+	while (*p) {
+		parent_node = *p;
+		item = rb_entry(parent_node, struct btrfs_delayed_item,
+				 rb_node);
+
+		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
+		if (cmp < 0)
+			p = &(*p)->rb_right;
+		else if (cmp > 0)
+			p = &(*p)->rb_left;
+		else
+			return -EEXIST;
+	}
+
+	rb_link_node(node, parent_node, p);
+	rb_insert_color(node, root);
+	ins->delayed_node = delayed_node;
+	ins->ins_or_del = action;
+
+	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
+	    action == BTRFS_DELAYED_INSERTION_ITEM &&
+	    ins->key.offset >= delayed_node->index_cnt)
+			delayed_node->index_cnt = ins->key.offset + 1;
+
+	delayed_node->count++;
+	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
+	return 0;
+}
+
+static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
+					      struct btrfs_delayed_item *item)
+{
+	return __btrfs_add_delayed_item(node, item,
+					BTRFS_DELAYED_INSERTION_ITEM);
+}
+
+static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
+					     struct btrfs_delayed_item *item)
+{
+	return __btrfs_add_delayed_item(node, item,
+					BTRFS_DELAYED_DELETION_ITEM);
+}
+
+static void finish_one_item(struct btrfs_delayed_root *delayed_root)
+{
+	int seq = atomic_inc_return(&delayed_root->items_seq);
+
+	/* atomic_dec_return implies a barrier */
+	if ((atomic_dec_return(&delayed_root->items) <
+	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
+		cond_wake_up_nomb(&delayed_root->wait);
+}
+
+static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
+{
+	struct rb_root *root;
+	struct btrfs_delayed_root *delayed_root;
+
+	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
+
+	BUG_ON(!delayed_root);
+	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
+	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
+
+	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
+		root = &delayed_item->delayed_node->ins_root;
+	else
+		root = &delayed_item->delayed_node->del_root;
+
+	rb_erase(&delayed_item->rb_node, root);
+	delayed_item->delayed_node->count--;
+
+	finish_one_item(delayed_root);
+}
+
+static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
+{
+	if (item) {
+		__btrfs_remove_delayed_item(item);
+		if (refcount_dec_and_test(&item->refs))
+			kfree(item);
+	}
+}
+
+static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
+					struct btrfs_delayed_node *delayed_node)
+{
+	struct rb_node *p;
+	struct btrfs_delayed_item *item = NULL;
+
+	p = rb_first(&delayed_node->ins_root);
+	if (p)
+		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
+
+	return item;
+}
+
+static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
+					struct btrfs_delayed_node *delayed_node)
+{
+	struct rb_node *p;
+	struct btrfs_delayed_item *item = NULL;
+
+	p = rb_first(&delayed_node->del_root);
+	if (p)
+		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
+
+	return item;
+}
+
+static struct btrfs_delayed_item *__btrfs_next_delayed_item(
+						struct btrfs_delayed_item *item)
+{
+	struct rb_node *p;
+	struct btrfs_delayed_item *next = NULL;
+
+	p = rb_next(&item->rb_node);
+	if (p)
+		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
+
+	return next;
+}
+
+static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
+					       struct btrfs_root *root,
+					       struct btrfs_delayed_item *item)
+{
+	struct btrfs_block_rsv *src_rsv;
+	struct btrfs_block_rsv *dst_rsv;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	u64 num_bytes;
+	int ret;
+
+	if (!trans->bytes_reserved)
+		return 0;
+
+	src_rsv = trans->block_rsv;
+	dst_rsv = &fs_info->delayed_block_rsv;
+
+	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
+
+	/*
+	 * Here we migrate space rsv from transaction rsv, since have already
+	 * reserved space when starting a transaction.  So no need to reserve
+	 * qgroup space here.
+	 */
+	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
+	if (!ret) {
+		trace_btrfs_space_reservation(fs_info, "delayed_item",
+					      item->key.objectid,
+					      num_bytes, 1);
+		item->bytes_reserved = num_bytes;
+	}
+
+	return ret;
+}
+
+static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
+						struct btrfs_delayed_item *item)
+{
+	struct btrfs_block_rsv *rsv;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+
+	if (!item->bytes_reserved)
+		return;
+
+	rsv = &fs_info->delayed_block_rsv;
+	/*
+	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
+	 * to release/reserve qgroup space.
+	 */
+	trace_btrfs_space_reservation(fs_info, "delayed_item",
+				      item->key.objectid, item->bytes_reserved,
+				      0);
+	btrfs_block_rsv_release(fs_info, rsv,
+				item->bytes_reserved);
+}
+
+static int btrfs_delayed_inode_reserve_metadata(
+					struct btrfs_trans_handle *trans,
+					struct btrfs_root *root,
+					struct btrfs_inode *inode,
+					struct btrfs_delayed_node *node)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_block_rsv *src_rsv;
+	struct btrfs_block_rsv *dst_rsv;
+	u64 num_bytes;
+	int ret;
+
+	src_rsv = trans->block_rsv;
+	dst_rsv = &fs_info->delayed_block_rsv;
+
+	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
+
+	/*
+	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
+	 * which doesn't reserve space for speed.  This is a problem since we
+	 * still need to reserve space for this update, so try to reserve the
+	 * space.
+	 *
+	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
+	 * we always reserve enough to update the inode item.
+	 */
+	if (!src_rsv || (!trans->bytes_reserved &&
+			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
+		ret = btrfs_qgroup_reserve_meta_prealloc(root,
+				fs_info->nodesize, true);
+		if (ret < 0)
+			return ret;
+		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
+					  BTRFS_RESERVE_NO_FLUSH);
+		/*
+		 * Since we're under a transaction reserve_metadata_bytes could
+		 * try to commit the transaction which will make it return
+		 * EAGAIN to make us stop the transaction we have, so return
+		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
+		 */
+		if (ret == -EAGAIN) {
+			ret = -ENOSPC;
+			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
+		}
+		if (!ret) {
+			node->bytes_reserved = num_bytes;
+			trace_btrfs_space_reservation(fs_info,
+						      "delayed_inode",
+						      btrfs_ino(inode),
+						      num_bytes, 1);
+		} else {
+			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
+		}
+		return ret;
+	}
+
+	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
+	if (!ret) {
+		trace_btrfs_space_reservation(fs_info, "delayed_inode",
+					      btrfs_ino(inode), num_bytes, 1);
+		node->bytes_reserved = num_bytes;
+	}
+
+	return ret;
+}
+
+static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
+						struct btrfs_delayed_node *node,
+						bool qgroup_free)
+{
+	struct btrfs_block_rsv *rsv;
+
+	if (!node->bytes_reserved)
+		return;
+
+	rsv = &fs_info->delayed_block_rsv;
+	trace_btrfs_space_reservation(fs_info, "delayed_inode",
+				      node->inode_id, node->bytes_reserved, 0);
+	btrfs_block_rsv_release(fs_info, rsv,
+				node->bytes_reserved);
+	if (qgroup_free)
+		btrfs_qgroup_free_meta_prealloc(node->root,
+				node->bytes_reserved);
+	else
+		btrfs_qgroup_convert_reserved_meta(node->root,
+				node->bytes_reserved);
+	node->bytes_reserved = 0;
+}
+
+/*
+ * This helper will insert some continuous items into the same leaf according
+ * to the free space of the leaf.
+ */
+static int btrfs_batch_insert_items(struct btrfs_root *root,
+				    struct btrfs_path *path,
+				    struct btrfs_delayed_item *item)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_delayed_item *curr, *next;
+	int free_space;
+	int total_data_size = 0, total_size = 0;
+	struct extent_buffer *leaf;
+	char *data_ptr;
+	struct btrfs_key *keys;
+	u32 *data_size;
+	struct list_head head;
+	int slot;
+	int nitems;
+	int i;
+	int ret = 0;
+
+	BUG_ON(!path->nodes[0]);
+
+	leaf = path->nodes[0];
+	free_space = btrfs_leaf_free_space(fs_info, leaf);
+	INIT_LIST_HEAD(&head);
+
+	next = item;
+	nitems = 0;
+
+	/*
+	 * count the number of the continuous items that we can insert in batch
+	 */
+	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
+	       free_space) {
+		total_data_size += next->data_len;
+		total_size += next->data_len + sizeof(struct btrfs_item);
+		list_add_tail(&next->tree_list, &head);
+		nitems++;
+
+		curr = next;
+		next = __btrfs_next_delayed_item(curr);
+		if (!next)
+			break;
+
+		if (!btrfs_is_continuous_delayed_item(curr, next))
+			break;
+	}
+
+	if (!nitems) {
+		ret = 0;
+		goto out;
+	}
+
+	/*
+	 * we need allocate some memory space, but it might cause the task
+	 * to sleep, so we set all locked nodes in the path to blocking locks
+	 * first.
+	 */
+	btrfs_set_path_blocking(path);
+
+	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
+	if (!keys) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
+	if (!data_size) {
+		ret = -ENOMEM;
+		goto error;
+	}
+
+	/* get keys of all the delayed items */
+	i = 0;
+	list_for_each_entry(next, &head, tree_list) {
+		keys[i] = next->key;
+		data_size[i] = next->data_len;
+		i++;
+	}
+
+	/* reset all the locked nodes in the patch to spinning locks. */
+	btrfs_clear_path_blocking(path, NULL, 0);
+
+	/* insert the keys of the items */
+	setup_items_for_insert(root, path, keys, data_size,
+			       total_data_size, total_size, nitems);
+
+	/* insert the dir index items */
+	slot = path->slots[0];
+	list_for_each_entry_safe(curr, next, &head, tree_list) {
+		data_ptr = btrfs_item_ptr(leaf, slot, char);
+		write_extent_buffer(leaf, &curr->data,
+				    (unsigned long)data_ptr,
+				    curr->data_len);
+		slot++;
+
+		btrfs_delayed_item_release_metadata(root, curr);
+
+		list_del(&curr->tree_list);
+		btrfs_release_delayed_item(curr);
+	}
+
+error:
+	kfree(data_size);
+	kfree(keys);
+out:
+	return ret;
+}
+
+/*
+ * This helper can just do simple insertion that needn't extend item for new
+ * data, such as directory name index insertion, inode insertion.
+ */
+static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
+				     struct btrfs_root *root,
+				     struct btrfs_path *path,
+				     struct btrfs_delayed_item *delayed_item)
+{
+	struct extent_buffer *leaf;
+	char *ptr;
+	int ret;
+
+	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
+				      delayed_item->data_len);
+	if (ret < 0 && ret != -EEXIST)
+		return ret;
+
+	leaf = path->nodes[0];
+
+	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
+
+	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
+			    delayed_item->data_len);
+	btrfs_mark_buffer_dirty(leaf);
+
+	btrfs_delayed_item_release_metadata(root, delayed_item);
+	return 0;
+}
+
+/*
+ * we insert an item first, then if there are some continuous items, we try
+ * to insert those items into the same leaf.
+ */
+static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
+				      struct btrfs_path *path,
+				      struct btrfs_root *root,
+				      struct btrfs_delayed_node *node)
+{
+	struct btrfs_delayed_item *curr, *prev;
+	int ret = 0;
+
+do_again:
+	mutex_lock(&node->mutex);
+	curr = __btrfs_first_delayed_insertion_item(node);
+	if (!curr)
+		goto insert_end;
+
+	ret = btrfs_insert_delayed_item(trans, root, path, curr);
+	if (ret < 0) {
+		btrfs_release_path(path);
+		goto insert_end;
+	}
+
+	prev = curr;
+	curr = __btrfs_next_delayed_item(prev);
+	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
+		/* insert the continuous items into the same leaf */
+		path->slots[0]++;
+		btrfs_batch_insert_items(root, path, curr);
+	}
+	btrfs_release_delayed_item(prev);
+	btrfs_mark_buffer_dirty(path->nodes[0]);
+
+	btrfs_release_path(path);
+	mutex_unlock(&node->mutex);
+	goto do_again;
+
+insert_end:
+	mutex_unlock(&node->mutex);
+	return ret;
+}
+
+static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
+				    struct btrfs_root *root,
+				    struct btrfs_path *path,
+				    struct btrfs_delayed_item *item)
+{
+	struct btrfs_delayed_item *curr, *next;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	struct list_head head;
+	int nitems, i, last_item;
+	int ret = 0;
+
+	BUG_ON(!path->nodes[0]);
+
+	leaf = path->nodes[0];
+
+	i = path->slots[0];
+	last_item = btrfs_header_nritems(leaf) - 1;
+	if (i > last_item)
+		return -ENOENT;	/* FIXME: Is errno suitable? */
+
+	next = item;
+	INIT_LIST_HEAD(&head);
+	btrfs_item_key_to_cpu(leaf, &key, i);
+	nitems = 0;
+	/*
+	 * count the number of the dir index items that we can delete in batch
+	 */
+	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
+		list_add_tail(&next->tree_list, &head);
+		nitems++;
+
+		curr = next;
+		next = __btrfs_next_delayed_item(curr);
+		if (!next)
+			break;
+
+		if (!btrfs_is_continuous_delayed_item(curr, next))
+			break;
+
+		i++;
+		if (i > last_item)
+			break;
+		btrfs_item_key_to_cpu(leaf, &key, i);
+	}
+
+	if (!nitems)
+		return 0;
+
+	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
+	if (ret)
+		goto out;
+
+	list_for_each_entry_safe(curr, next, &head, tree_list) {
+		btrfs_delayed_item_release_metadata(root, curr);
+		list_del(&curr->tree_list);
+		btrfs_release_delayed_item(curr);
+	}
+
+out:
+	return ret;
+}
+
+static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
+				      struct btrfs_path *path,
+				      struct btrfs_root *root,
+				      struct btrfs_delayed_node *node)
+{
+	struct btrfs_delayed_item *curr, *prev;
+	int ret = 0;
+
+do_again:
+	mutex_lock(&node->mutex);
+	curr = __btrfs_first_delayed_deletion_item(node);
+	if (!curr)
+		goto delete_fail;
+
+	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
+	if (ret < 0)
+		goto delete_fail;
+	else if (ret > 0) {
+		/*
+		 * can't find the item which the node points to, so this node
+		 * is invalid, just drop it.
+		 */
+		prev = curr;
+		curr = __btrfs_next_delayed_item(prev);
+		btrfs_release_delayed_item(prev);
+		ret = 0;
+		btrfs_release_path(path);
+		if (curr) {
+			mutex_unlock(&node->mutex);
+			goto do_again;
+		} else
+			goto delete_fail;
+	}
+
+	btrfs_batch_delete_items(trans, root, path, curr);
+	btrfs_release_path(path);
+	mutex_unlock(&node->mutex);
+	goto do_again;
+
+delete_fail:
+	btrfs_release_path(path);
+	mutex_unlock(&node->mutex);
+	return ret;
+}
+
+static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
+{
+	struct btrfs_delayed_root *delayed_root;
+
+	if (delayed_node &&
+	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
+		BUG_ON(!delayed_node->root);
+		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
+		delayed_node->count--;
+
+		delayed_root = delayed_node->root->fs_info->delayed_root;
+		finish_one_item(delayed_root);
+	}
+}
+
+static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
+{
+	struct btrfs_delayed_root *delayed_root;
+
+	ASSERT(delayed_node->root);
+	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
+	delayed_node->count--;
+
+	delayed_root = delayed_node->root->fs_info->delayed_root;
+	finish_one_item(delayed_root);
+}
+
+static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
+					struct btrfs_root *root,
+					struct btrfs_path *path,
+					struct btrfs_delayed_node *node)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_key key;
+	struct btrfs_inode_item *inode_item;
+	struct extent_buffer *leaf;
+	int mod;
+	int ret;
+
+	key.objectid = node->inode_id;
+	key.type = BTRFS_INODE_ITEM_KEY;
+	key.offset = 0;
+
+	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
+		mod = -1;
+	else
+		mod = 1;
+
+	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
+	if (ret > 0) {
+		btrfs_release_path(path);
+		return -ENOENT;
+	} else if (ret < 0) {
+		return ret;
+	}
+
+	leaf = path->nodes[0];
+	inode_item = btrfs_item_ptr(leaf, path->slots[0],
+				    struct btrfs_inode_item);
+	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
+			    sizeof(struct btrfs_inode_item));
+	btrfs_mark_buffer_dirty(leaf);
+
+	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
+		goto no_iref;
+
+	path->slots[0]++;
+	if (path->slots[0] >= btrfs_header_nritems(leaf))
+		goto search;
+again:
+	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+	if (key.objectid != node->inode_id)
+		goto out;
+
+	if (key.type != BTRFS_INODE_REF_KEY &&
+	    key.type != BTRFS_INODE_EXTREF_KEY)
+		goto out;
+
+	/*
+	 * Delayed iref deletion is for the inode who has only one link,
+	 * so there is only one iref. The case that several irefs are
+	 * in the same item doesn't exist.
+	 */
+	btrfs_del_item(trans, root, path);
+out:
+	btrfs_release_delayed_iref(node);
+no_iref:
+	btrfs_release_path(path);
+err_out:
+	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
+	btrfs_release_delayed_inode(node);
+
+	return ret;
+
+search:
+	btrfs_release_path(path);
+
+	key.type = BTRFS_INODE_EXTREF_KEY;
+	key.offset = -1;
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret < 0)
+		goto err_out;
+	ASSERT(ret);
+
+	ret = 0;
+	leaf = path->nodes[0];
+	path->slots[0]--;
+	goto again;
+}
+
+static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
+					     struct btrfs_root *root,
+					     struct btrfs_path *path,
+					     struct btrfs_delayed_node *node)
+{
+	int ret;
+
+	mutex_lock(&node->mutex);
+	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
+		mutex_unlock(&node->mutex);
+		return 0;
+	}
+
+	ret = __btrfs_update_delayed_inode(trans, root, path, node);
+	mutex_unlock(&node->mutex);
+	return ret;
+}
+
+static inline int
+__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
+				   struct btrfs_path *path,
+				   struct btrfs_delayed_node *node)
+{
+	int ret;
+
+	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
+	if (ret)
+		return ret;
+
+	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
+	if (ret)
+		return ret;
+
+	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
+	return ret;
+}
+
+/*
+ * Called when committing the transaction.
+ * Returns 0 on success.
+ * Returns < 0 on error and returns with an aborted transaction with any
+ * outstanding delayed items cleaned up.
+ */
+static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
+{
+	struct btrfs_fs_info *fs_info = trans->fs_info;
+	struct btrfs_delayed_root *delayed_root;
+	struct btrfs_delayed_node *curr_node, *prev_node;
+	struct btrfs_path *path;
+	struct btrfs_block_rsv *block_rsv;
+	int ret = 0;
+	bool count = (nr > 0);
+
+	if (trans->aborted)
+		return -EIO;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+	path->leave_spinning = 1;
+
+	block_rsv = trans->block_rsv;
+	trans->block_rsv = &fs_info->delayed_block_rsv;
+
+	delayed_root = fs_info->delayed_root;
+
+	curr_node = btrfs_first_delayed_node(delayed_root);
+	while (curr_node && (!count || (count && nr--))) {
+		ret = __btrfs_commit_inode_delayed_items(trans, path,
+							 curr_node);
+		if (ret) {
+			btrfs_release_delayed_node(curr_node);
+			curr_node = NULL;
+			btrfs_abort_transaction(trans, ret);
+			break;
+		}
+
+		prev_node = curr_node;
+		curr_node = btrfs_next_delayed_node(curr_node);
+		btrfs_release_delayed_node(prev_node);
+	}
+
+	if (curr_node)
+		btrfs_release_delayed_node(curr_node);
+	btrfs_free_path(path);
+	trans->block_rsv = block_rsv;
+
+	return ret;
+}
+
+int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
+{
+	return __btrfs_run_delayed_items(trans, -1);
+}
+
+int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
+{
+	return __btrfs_run_delayed_items(trans, nr);
+}
+
+int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
+				     struct btrfs_inode *inode)
+{
+	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
+	struct btrfs_path *path;
+	struct btrfs_block_rsv *block_rsv;
+	int ret;
+
+	if (!delayed_node)
+		return 0;
+
+	mutex_lock(&delayed_node->mutex);
+	if (!delayed_node->count) {
+		mutex_unlock(&delayed_node->mutex);
+		btrfs_release_delayed_node(delayed_node);
+		return 0;
+	}
+	mutex_unlock(&delayed_node->mutex);
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		btrfs_release_delayed_node(delayed_node);
+		return -ENOMEM;
+	}
+	path->leave_spinning = 1;
+
+	block_rsv = trans->block_rsv;
+	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
+
+	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
+
+	btrfs_release_delayed_node(delayed_node);
+	btrfs_free_path(path);
+	trans->block_rsv = block_rsv;
+
+	return ret;
+}
+
+int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
+{
+	struct btrfs_fs_info *fs_info = inode->root->fs_info;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
+	struct btrfs_path *path;
+	struct btrfs_block_rsv *block_rsv;
+	int ret;
+
+	if (!delayed_node)
+		return 0;
+
+	mutex_lock(&delayed_node->mutex);
+	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
+		mutex_unlock(&delayed_node->mutex);
+		btrfs_release_delayed_node(delayed_node);
+		return 0;
+	}
+	mutex_unlock(&delayed_node->mutex);
+
+	trans = btrfs_join_transaction(delayed_node->root);
+	if (IS_ERR(trans)) {
+		ret = PTR_ERR(trans);
+		goto out;
+	}
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		ret = -ENOMEM;
+		goto trans_out;
+	}
+	path->leave_spinning = 1;
+
+	block_rsv = trans->block_rsv;
+	trans->block_rsv = &fs_info->delayed_block_rsv;
+
+	mutex_lock(&delayed_node->mutex);
+	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
+		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
+						   path, delayed_node);
+	else
+		ret = 0;
+	mutex_unlock(&delayed_node->mutex);
+
+	btrfs_free_path(path);
+	trans->block_rsv = block_rsv;
+trans_out:
+	btrfs_end_transaction(trans);
+	btrfs_btree_balance_dirty(fs_info);
+out:
+	btrfs_release_delayed_node(delayed_node);
+
+	return ret;
+}
+
+void btrfs_remove_delayed_node(struct btrfs_inode *inode)
+{
+	struct btrfs_delayed_node *delayed_node;
+
+	delayed_node = READ_ONCE(inode->delayed_node);
+	if (!delayed_node)
+		return;
+
+	inode->delayed_node = NULL;
+	btrfs_release_delayed_node(delayed_node);
+}
+
+struct btrfs_async_delayed_work {
+	struct btrfs_delayed_root *delayed_root;
+	int nr;
+	struct btrfs_work work;
+};
+
+static void btrfs_async_run_delayed_root(struct btrfs_work *work)
+{
+	struct btrfs_async_delayed_work *async_work;
+	struct btrfs_delayed_root *delayed_root;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_path *path;
+	struct btrfs_delayed_node *delayed_node = NULL;
+	struct btrfs_root *root;
+	struct btrfs_block_rsv *block_rsv;
+	int total_done = 0;
+
+	async_work = container_of(work, struct btrfs_async_delayed_work, work);
+	delayed_root = async_work->delayed_root;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		goto out;
+
+	do {
+		if (atomic_read(&delayed_root->items) <
+		    BTRFS_DELAYED_BACKGROUND / 2)
+			break;
+
+		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
+		if (!delayed_node)
+			break;
+
+		path->leave_spinning = 1;
+		root = delayed_node->root;
+
+		trans = btrfs_join_transaction(root);
+		if (IS_ERR(trans)) {
+			btrfs_release_path(path);
+			btrfs_release_prepared_delayed_node(delayed_node);
+			total_done++;
+			continue;
+		}
+
+		block_rsv = trans->block_rsv;
+		trans->block_rsv = &root->fs_info->delayed_block_rsv;
+
+		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
+
+		trans->block_rsv = block_rsv;
+		btrfs_end_transaction(trans);
+		btrfs_btree_balance_dirty_nodelay(root->fs_info);
+
+		btrfs_release_path(path);
+		btrfs_release_prepared_delayed_node(delayed_node);
+		total_done++;
+
+	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
+		 || total_done < async_work->nr);
+
+	btrfs_free_path(path);
+out:
+	wake_up(&delayed_root->wait);
+	kfree(async_work);
+}
+
+
+static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
+				     struct btrfs_fs_info *fs_info, int nr)
+{
+	struct btrfs_async_delayed_work *async_work;
+
+	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
+	if (!async_work)
+		return -ENOMEM;
+
+	async_work->delayed_root = delayed_root;
+	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
+			btrfs_async_run_delayed_root, NULL, NULL);
+	async_work->nr = nr;
+
+	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
+	return 0;
+}
+
+void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
+{
+	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
+}
+
+static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
+{
+	int val = atomic_read(&delayed_root->items_seq);
+
+	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
+		return 1;
+
+	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
+		return 1;
+
+	return 0;
+}
+
+void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
+
+	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
+		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
+		return;
+
+	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
+		int seq;
+		int ret;
+
+		seq = atomic_read(&delayed_root->items_seq);
+
+		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
+		if (ret)
+			return;
+
+		wait_event_interruptible(delayed_root->wait,
+					 could_end_wait(delayed_root, seq));
+		return;
+	}
+
+	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
+}
+
+/* Will return 0 or -ENOMEM */
+int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
+				   const char *name, int name_len,
+				   struct btrfs_inode *dir,
+				   struct btrfs_disk_key *disk_key, u8 type,
+				   u64 index)
+{
+	struct btrfs_delayed_node *delayed_node;
+	struct btrfs_delayed_item *delayed_item;
+	struct btrfs_dir_item *dir_item;
+	int ret;
+
+	delayed_node = btrfs_get_or_create_delayed_node(dir);
+	if (IS_ERR(delayed_node))
+		return PTR_ERR(delayed_node);
+
+	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
+	if (!delayed_item) {
+		ret = -ENOMEM;
+		goto release_node;
+	}
+
+	delayed_item->key.objectid = btrfs_ino(dir);
+	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
+	delayed_item->key.offset = index;
+
+	dir_item = (struct btrfs_dir_item *)delayed_item->data;
+	dir_item->location = *disk_key;
+	btrfs_set_stack_dir_transid(dir_item, trans->transid);
+	btrfs_set_stack_dir_data_len(dir_item, 0);
+	btrfs_set_stack_dir_name_len(dir_item, name_len);
+	btrfs_set_stack_dir_type(dir_item, type);
+	memcpy((char *)(dir_item + 1), name, name_len);
+
+	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
+	/*
+	 * we have reserved enough space when we start a new transaction,
+	 * so reserving metadata failure is impossible
+	 */
+	BUG_ON(ret);
+
+	mutex_lock(&delayed_node->mutex);
+	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
+	if (unlikely(ret)) {
+		btrfs_err(trans->fs_info,
+			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
+			  name_len, name, delayed_node->root->objectid,
+			  delayed_node->inode_id, ret);
+		BUG();
+	}
+	mutex_unlock(&delayed_node->mutex);
+
+release_node:
+	btrfs_release_delayed_node(delayed_node);
+	return ret;
+}
+
+static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
+					       struct btrfs_delayed_node *node,
+					       struct btrfs_key *key)
+{
+	struct btrfs_delayed_item *item;
+
+	mutex_lock(&node->mutex);
+	item = __btrfs_lookup_delayed_insertion_item(node, key);
+	if (!item) {
+		mutex_unlock(&node->mutex);
+		return 1;
+	}
+
+	btrfs_delayed_item_release_metadata(node->root, item);
+	btrfs_release_delayed_item(item);
+	mutex_unlock(&node->mutex);
+	return 0;
+}
+
+int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
+				   struct btrfs_inode *dir, u64 index)
+{
+	struct btrfs_delayed_node *node;
+	struct btrfs_delayed_item *item;
+	struct btrfs_key item_key;
+	int ret;
+
+	node = btrfs_get_or_create_delayed_node(dir);
+	if (IS_ERR(node))
+		return PTR_ERR(node);
+
+	item_key.objectid = btrfs_ino(dir);
+	item_key.type = BTRFS_DIR_INDEX_KEY;
+	item_key.offset = index;
+
+	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
+						  &item_key);
+	if (!ret)
+		goto end;
+
+	item = btrfs_alloc_delayed_item(0);
+	if (!item) {
+		ret = -ENOMEM;
+		goto end;
+	}
+
+	item->key = item_key;
+
+	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
+	/*
+	 * we have reserved enough space when we start a new transaction,
+	 * so reserving metadata failure is impossible.
+	 */
+	BUG_ON(ret);
+
+	mutex_lock(&node->mutex);
+	ret = __btrfs_add_delayed_deletion_item(node, item);
+	if (unlikely(ret)) {
+		btrfs_err(trans->fs_info,
+			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
+			  index, node->root->objectid, node->inode_id, ret);
+		BUG();
+	}
+	mutex_unlock(&node->mutex);
+end:
+	btrfs_release_delayed_node(node);
+	return ret;
+}
+
+int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
+{
+	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
+
+	if (!delayed_node)
+		return -ENOENT;
+
+	/*
+	 * Since we have held i_mutex of this directory, it is impossible that
+	 * a new directory index is added into the delayed node and index_cnt
+	 * is updated now. So we needn't lock the delayed node.
+	 */
+	if (!delayed_node->index_cnt) {
+		btrfs_release_delayed_node(delayed_node);
+		return -EINVAL;
+	}
+
+	inode->index_cnt = delayed_node->index_cnt;
+	btrfs_release_delayed_node(delayed_node);
+	return 0;
+}
+
+bool btrfs_readdir_get_delayed_items(struct inode *inode,
+				     struct list_head *ins_list,
+				     struct list_head *del_list)
+{
+	struct btrfs_delayed_node *delayed_node;
+	struct btrfs_delayed_item *item;
+
+	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
+	if (!delayed_node)
+		return false;
+
+	/*
+	 * We can only do one readdir with delayed items at a time because of
+	 * item->readdir_list.
+	 */
+	inode_unlock_shared(inode);
+	inode_lock(inode);
+
+	mutex_lock(&delayed_node->mutex);
+	item = __btrfs_first_delayed_insertion_item(delayed_node);
+	while (item) {
+		refcount_inc(&item->refs);
+		list_add_tail(&item->readdir_list, ins_list);
+		item = __btrfs_next_delayed_item(item);
+	}
+
+	item = __btrfs_first_delayed_deletion_item(delayed_node);
+	while (item) {
+		refcount_inc(&item->refs);
+		list_add_tail(&item->readdir_list, del_list);
+		item = __btrfs_next_delayed_item(item);
+	}
+	mutex_unlock(&delayed_node->mutex);
+	/*
+	 * This delayed node is still cached in the btrfs inode, so refs
+	 * must be > 1 now, and we needn't check it is going to be freed
+	 * or not.
+	 *
+	 * Besides that, this function is used to read dir, we do not
+	 * insert/delete delayed items in this period. So we also needn't
+	 * requeue or dequeue this delayed node.
+	 */
+	refcount_dec(&delayed_node->refs);
+
+	return true;
+}
+
+void btrfs_readdir_put_delayed_items(struct inode *inode,
+				     struct list_head *ins_list,
+				     struct list_head *del_list)
+{
+	struct btrfs_delayed_item *curr, *next;
+
+	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
+		list_del(&curr->readdir_list);
+		if (refcount_dec_and_test(&curr->refs))
+			kfree(curr);
+	}
+
+	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
+		list_del(&curr->readdir_list);
+		if (refcount_dec_and_test(&curr->refs))
+			kfree(curr);
+	}
+
+	/*
+	 * The VFS is going to do up_read(), so we need to downgrade back to a
+	 * read lock.
+	 */
+	downgrade_write(&inode->i_rwsem);
+}
+
+int btrfs_should_delete_dir_index(struct list_head *del_list,
+				  u64 index)
+{
+	struct btrfs_delayed_item *curr;
+	int ret = 0;
+
+	list_for_each_entry(curr, del_list, readdir_list) {
+		if (curr->key.offset > index)
+			break;
+		if (curr->key.offset == index) {
+			ret = 1;
+			break;
+		}
+	}
+	return ret;
+}
+
+/*
+ * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
+ *
+ */
+int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
+				    struct list_head *ins_list)
+{
+	struct btrfs_dir_item *di;
+	struct btrfs_delayed_item *curr, *next;
+	struct btrfs_key location;
+	char *name;
+	int name_len;
+	int over = 0;
+	unsigned char d_type;
+
+	if (list_empty(ins_list))
+		return 0;
+
+	/*
+	 * Changing the data of the delayed item is impossible. So
+	 * we needn't lock them. And we have held i_mutex of the
+	 * directory, nobody can delete any directory indexes now.
+	 */
+	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
+		list_del(&curr->readdir_list);
+
+		if (curr->key.offset < ctx->pos) {
+			if (refcount_dec_and_test(&curr->refs))
+				kfree(curr);
+			continue;
+		}
+
+		ctx->pos = curr->key.offset;
+
+		di = (struct btrfs_dir_item *)curr->data;
+		name = (char *)(di + 1);
+		name_len = btrfs_stack_dir_name_len(di);
+
+		d_type = btrfs_filetype_table[di->type];
+		btrfs_disk_key_to_cpu(&location, &di->location);
+
+		over = !dir_emit(ctx, name, name_len,
+			       location.objectid, d_type);
+
+		if (refcount_dec_and_test(&curr->refs))
+			kfree(curr);
+
+		if (over)
+			return 1;
+		ctx->pos++;
+	}
+	return 0;
+}
+
+static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
+				  struct btrfs_inode_item *inode_item,
+				  struct inode *inode)
+{
+	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
+	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
+	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
+	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
+	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
+	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
+	btrfs_set_stack_inode_generation(inode_item,
+					 BTRFS_I(inode)->generation);
+	btrfs_set_stack_inode_sequence(inode_item,
+				       inode_peek_iversion(inode));
+	btrfs_set_stack_inode_transid(inode_item, trans->transid);
+	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
+	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
+	btrfs_set_stack_inode_block_group(inode_item, 0);
+
+	btrfs_set_stack_timespec_sec(&inode_item->atime,
+				     inode->i_atime.tv_sec);
+	btrfs_set_stack_timespec_nsec(&inode_item->atime,
+				      inode->i_atime.tv_nsec);
+
+	btrfs_set_stack_timespec_sec(&inode_item->mtime,
+				     inode->i_mtime.tv_sec);
+	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
+				      inode->i_mtime.tv_nsec);
+
+	btrfs_set_stack_timespec_sec(&inode_item->ctime,
+				     inode->i_ctime.tv_sec);
+	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
+				      inode->i_ctime.tv_nsec);
+
+	btrfs_set_stack_timespec_sec(&inode_item->otime,
+				     BTRFS_I(inode)->i_otime.tv_sec);
+	btrfs_set_stack_timespec_nsec(&inode_item->otime,
+				     BTRFS_I(inode)->i_otime.tv_nsec);
+}
+
+int btrfs_fill_inode(struct inode *inode, u32 *rdev)
+{
+	struct btrfs_delayed_node *delayed_node;
+	struct btrfs_inode_item *inode_item;
+
+	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
+	if (!delayed_node)
+		return -ENOENT;
+
+	mutex_lock(&delayed_node->mutex);
+	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
+		mutex_unlock(&delayed_node->mutex);
+		btrfs_release_delayed_node(delayed_node);
+		return -ENOENT;
+	}
+
+	inode_item = &delayed_node->inode_item;
+
+	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
+	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
+	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
+	inode->i_mode = btrfs_stack_inode_mode(inode_item);
+	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
+	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
+	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
+        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
+
+	inode_set_iversion_queried(inode,
+				   btrfs_stack_inode_sequence(inode_item));
+	inode->i_rdev = 0;
+	*rdev = btrfs_stack_inode_rdev(inode_item);
+	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
+
+	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
+	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
+
+	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
+	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
+
+	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
+	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
+
+	BTRFS_I(inode)->i_otime.tv_sec =
+		btrfs_stack_timespec_sec(&inode_item->otime);
+	BTRFS_I(inode)->i_otime.tv_nsec =
+		btrfs_stack_timespec_nsec(&inode_item->otime);
+
+	inode->i_generation = BTRFS_I(inode)->generation;
+	BTRFS_I(inode)->index_cnt = (u64)-1;
+
+	mutex_unlock(&delayed_node->mutex);
+	btrfs_release_delayed_node(delayed_node);
+	return 0;
+}
+
+int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root, struct inode *inode)
+{
+	struct btrfs_delayed_node *delayed_node;
+	int ret = 0;
+
+	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
+	if (IS_ERR(delayed_node))
+		return PTR_ERR(delayed_node);
+
+	mutex_lock(&delayed_node->mutex);
+	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
+		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
+		goto release_node;
+	}
+
+	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
+						   delayed_node);
+	if (ret)
+		goto release_node;
+
+	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
+	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
+	delayed_node->count++;
+	atomic_inc(&root->fs_info->delayed_root->items);
+release_node:
+	mutex_unlock(&delayed_node->mutex);
+	btrfs_release_delayed_node(delayed_node);
+	return ret;
+}
+
+int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
+{
+	struct btrfs_fs_info *fs_info = inode->root->fs_info;
+	struct btrfs_delayed_node *delayed_node;
+
+	/*
+	 * we don't do delayed inode updates during log recovery because it
+	 * leads to enospc problems.  This means we also can't do
+	 * delayed inode refs
+	 */
+	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
+		return -EAGAIN;
+
+	delayed_node = btrfs_get_or_create_delayed_node(inode);
+	if (IS_ERR(delayed_node))
+		return PTR_ERR(delayed_node);
+
+	/*
+	 * We don't reserve space for inode ref deletion is because:
+	 * - We ONLY do async inode ref deletion for the inode who has only
+	 *   one link(i_nlink == 1), it means there is only one inode ref.
+	 *   And in most case, the inode ref and the inode item are in the
+	 *   same leaf, and we will deal with them at the same time.
+	 *   Since we are sure we will reserve the space for the inode item,
+	 *   it is unnecessary to reserve space for inode ref deletion.
+	 * - If the inode ref and the inode item are not in the same leaf,
+	 *   We also needn't worry about enospc problem, because we reserve
+	 *   much more space for the inode update than it needs.
+	 * - At the worst, we can steal some space from the global reservation.
+	 *   It is very rare.
+	 */
+	mutex_lock(&delayed_node->mutex);
+	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
+		goto release_node;
+
+	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
+	delayed_node->count++;
+	atomic_inc(&fs_info->delayed_root->items);
+release_node:
+	mutex_unlock(&delayed_node->mutex);
+	btrfs_release_delayed_node(delayed_node);
+	return 0;
+}
+
+static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
+{
+	struct btrfs_root *root = delayed_node->root;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_delayed_item *curr_item, *prev_item;
+
+	mutex_lock(&delayed_node->mutex);
+	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
+	while (curr_item) {
+		btrfs_delayed_item_release_metadata(root, curr_item);
+		prev_item = curr_item;
+		curr_item = __btrfs_next_delayed_item(prev_item);
+		btrfs_release_delayed_item(prev_item);
+	}
+
+	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
+	while (curr_item) {
+		btrfs_delayed_item_release_metadata(root, curr_item);
+		prev_item = curr_item;
+		curr_item = __btrfs_next_delayed_item(prev_item);
+		btrfs_release_delayed_item(prev_item);
+	}
+
+	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
+		btrfs_release_delayed_iref(delayed_node);
+
+	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
+		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
+		btrfs_release_delayed_inode(delayed_node);
+	}
+	mutex_unlock(&delayed_node->mutex);
+}
+
+void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
+{
+	struct btrfs_delayed_node *delayed_node;
+
+	delayed_node = btrfs_get_delayed_node(inode);
+	if (!delayed_node)
+		return;
+
+	__btrfs_kill_delayed_node(delayed_node);
+	btrfs_release_delayed_node(delayed_node);
+}
+
+void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
+{
+	u64 inode_id = 0;
+	struct btrfs_delayed_node *delayed_nodes[8];
+	int i, n;
+
+	while (1) {
+		spin_lock(&root->inode_lock);
+		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
+					   (void **)delayed_nodes, inode_id,
+					   ARRAY_SIZE(delayed_nodes));
+		if (!n) {
+			spin_unlock(&root->inode_lock);
+			break;
+		}
+
+		inode_id = delayed_nodes[n - 1]->inode_id + 1;
+
+		for (i = 0; i < n; i++)
+			refcount_inc(&delayed_nodes[i]->refs);
+		spin_unlock(&root->inode_lock);
+
+		for (i = 0; i < n; i++) {
+			__btrfs_kill_delayed_node(delayed_nodes[i]);
+			btrfs_release_delayed_node(delayed_nodes[i]);
+		}
+	}
+}
+
+void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_delayed_node *curr_node, *prev_node;
+
+	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
+	while (curr_node) {
+		__btrfs_kill_delayed_node(curr_node);
+
+		prev_node = curr_node;
+		curr_node = btrfs_next_delayed_node(curr_node);
+		btrfs_release_delayed_node(prev_node);
+	}
+}
+