v4.19.13 snapshot.
diff --git a/drivers/usb/host/ehci-q.c b/drivers/usb/host/ehci-q.c
new file mode 100644
index 0000000..3276304
--- /dev/null
+++ b/drivers/usb/host/ehci-q.c
@@ -0,0 +1,1518 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2001-2004 by David Brownell
+ */
+
+/* this file is part of ehci-hcd.c */
+
+/*-------------------------------------------------------------------------*/
+
+/*
+ * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
+ *
+ * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
+ * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
+ * buffers needed for the larger number).  We use one QH per endpoint, queue
+ * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
+ *
+ * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
+ * interrupts) needs careful scheduling.  Performance improvements can be
+ * an ongoing challenge.  That's in "ehci-sched.c".
+ *
+ * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
+ * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
+ * (b) special fields in qh entries or (c) split iso entries.  TTs will
+ * buffer low/full speed data so the host collects it at high speed.
+ */
+
+/*-------------------------------------------------------------------------*/
+
+/* fill a qtd, returning how much of the buffer we were able to queue up */
+
+static int
+qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
+		  size_t len, int token, int maxpacket)
+{
+	int	i, count;
+	u64	addr = buf;
+
+	/* one buffer entry per 4K ... first might be short or unaligned */
+	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
+	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
+	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
+	if (likely (len < count))		/* ... iff needed */
+		count = len;
+	else {
+		buf +=  0x1000;
+		buf &= ~0x0fff;
+
+		/* per-qtd limit: from 16K to 20K (best alignment) */
+		for (i = 1; count < len && i < 5; i++) {
+			addr = buf;
+			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
+			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
+					(u32)(addr >> 32));
+			buf += 0x1000;
+			if ((count + 0x1000) < len)
+				count += 0x1000;
+			else
+				count = len;
+		}
+
+		/* short packets may only terminate transfers */
+		if (count != len)
+			count -= (count % maxpacket);
+	}
+	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
+	qtd->length = count;
+
+	return count;
+}
+
+/*-------------------------------------------------------------------------*/
+
+static inline void
+qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
+{
+	struct ehci_qh_hw *hw = qh->hw;
+
+	/* writes to an active overlay are unsafe */
+	WARN_ON(qh->qh_state != QH_STATE_IDLE);
+
+	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
+	hw->hw_alt_next = EHCI_LIST_END(ehci);
+
+	/* Except for control endpoints, we make hardware maintain data
+	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
+	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
+	 * ever clear it.
+	 */
+	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
+		unsigned	is_out, epnum;
+
+		is_out = qh->is_out;
+		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
+		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
+			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
+			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
+		}
+	}
+
+	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
+}
+
+/* if it weren't for a common silicon quirk (writing the dummy into the qh
+ * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
+ * recovery (including urb dequeue) would need software changes to a QH...
+ */
+static void
+qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+	struct ehci_qtd *qtd;
+
+	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
+
+	/*
+	 * first qtd may already be partially processed.
+	 * If we come here during unlink, the QH overlay region
+	 * might have reference to the just unlinked qtd. The
+	 * qtd is updated in qh_completions(). Update the QH
+	 * overlay here.
+	 */
+	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
+		qh->hw->hw_qtd_next = qtd->hw_next;
+		if (qh->should_be_inactive)
+			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
+	} else {
+		qh_update(ehci, qh, qtd);
+	}
+	qh->should_be_inactive = 0;
+}
+
+/*-------------------------------------------------------------------------*/
+
+static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
+
+static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
+		struct usb_host_endpoint *ep)
+{
+	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
+	struct ehci_qh		*qh = ep->hcpriv;
+	unsigned long		flags;
+
+	spin_lock_irqsave(&ehci->lock, flags);
+	qh->clearing_tt = 0;
+	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
+			&& ehci->rh_state == EHCI_RH_RUNNING)
+		qh_link_async(ehci, qh);
+	spin_unlock_irqrestore(&ehci->lock, flags);
+}
+
+static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
+		struct urb *urb, u32 token)
+{
+
+	/* If an async split transaction gets an error or is unlinked,
+	 * the TT buffer may be left in an indeterminate state.  We
+	 * have to clear the TT buffer.
+	 *
+	 * Note: this routine is never called for Isochronous transfers.
+	 */
+	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
+#ifdef CONFIG_DYNAMIC_DEBUG
+		struct usb_device *tt = urb->dev->tt->hub;
+		dev_dbg(&tt->dev,
+			"clear tt buffer port %d, a%d ep%d t%08x\n",
+			urb->dev->ttport, urb->dev->devnum,
+			usb_pipeendpoint(urb->pipe), token);
+#endif /* CONFIG_DYNAMIC_DEBUG */
+		if (!ehci_is_TDI(ehci)
+				|| urb->dev->tt->hub !=
+				   ehci_to_hcd(ehci)->self.root_hub) {
+			if (usb_hub_clear_tt_buffer(urb) == 0)
+				qh->clearing_tt = 1;
+		} else {
+
+			/* REVISIT ARC-derived cores don't clear the root
+			 * hub TT buffer in this way...
+			 */
+		}
+	}
+}
+
+static int qtd_copy_status (
+	struct ehci_hcd *ehci,
+	struct urb *urb,
+	size_t length,
+	u32 token
+)
+{
+	int	status = -EINPROGRESS;
+
+	/* count IN/OUT bytes, not SETUP (even short packets) */
+	if (likely (QTD_PID (token) != 2))
+		urb->actual_length += length - QTD_LENGTH (token);
+
+	/* don't modify error codes */
+	if (unlikely(urb->unlinked))
+		return status;
+
+	/* force cleanup after short read; not always an error */
+	if (unlikely (IS_SHORT_READ (token)))
+		status = -EREMOTEIO;
+
+	/* serious "can't proceed" faults reported by the hardware */
+	if (token & QTD_STS_HALT) {
+		if (token & QTD_STS_BABBLE) {
+			/* FIXME "must" disable babbling device's port too */
+			status = -EOVERFLOW;
+		/* CERR nonzero + halt --> stall */
+		} else if (QTD_CERR(token)) {
+			status = -EPIPE;
+
+		/* In theory, more than one of the following bits can be set
+		 * since they are sticky and the transaction is retried.
+		 * Which to test first is rather arbitrary.
+		 */
+		} else if (token & QTD_STS_MMF) {
+			/* fs/ls interrupt xfer missed the complete-split */
+			status = -EPROTO;
+		} else if (token & QTD_STS_DBE) {
+			status = (QTD_PID (token) == 1) /* IN ? */
+				? -ENOSR  /* hc couldn't read data */
+				: -ECOMM; /* hc couldn't write data */
+		} else if (token & QTD_STS_XACT) {
+			/* timeout, bad CRC, wrong PID, etc */
+			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
+				urb->dev->devpath,
+				usb_pipeendpoint(urb->pipe),
+				usb_pipein(urb->pipe) ? "in" : "out");
+			status = -EPROTO;
+		} else {	/* unknown */
+			status = -EPROTO;
+		}
+	}
+
+	return status;
+}
+
+static void
+ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
+{
+	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
+		/* ... update hc-wide periodic stats */
+		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
+	}
+
+	if (unlikely(urb->unlinked)) {
+		COUNT(ehci->stats.unlink);
+	} else {
+		/* report non-error and short read status as zero */
+		if (status == -EINPROGRESS || status == -EREMOTEIO)
+			status = 0;
+		COUNT(ehci->stats.complete);
+	}
+
+#ifdef EHCI_URB_TRACE
+	ehci_dbg (ehci,
+		"%s %s urb %p ep%d%s status %d len %d/%d\n",
+		__func__, urb->dev->devpath, urb,
+		usb_pipeendpoint (urb->pipe),
+		usb_pipein (urb->pipe) ? "in" : "out",
+		status,
+		urb->actual_length, urb->transfer_buffer_length);
+#endif
+
+	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
+	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
+}
+
+static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
+
+/*
+ * Process and free completed qtds for a qh, returning URBs to drivers.
+ * Chases up to qh->hw_current.  Returns nonzero if the caller should
+ * unlink qh.
+ */
+static unsigned
+qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+	struct ehci_qtd		*last, *end = qh->dummy;
+	struct list_head	*entry, *tmp;
+	int			last_status;
+	int			stopped;
+	u8			state;
+	struct ehci_qh_hw	*hw = qh->hw;
+
+	/* completions (or tasks on other cpus) must never clobber HALT
+	 * till we've gone through and cleaned everything up, even when
+	 * they add urbs to this qh's queue or mark them for unlinking.
+	 *
+	 * NOTE:  unlinking expects to be done in queue order.
+	 *
+	 * It's a bug for qh->qh_state to be anything other than
+	 * QH_STATE_IDLE, unless our caller is scan_async() or
+	 * scan_intr().
+	 */
+	state = qh->qh_state;
+	qh->qh_state = QH_STATE_COMPLETING;
+	stopped = (state == QH_STATE_IDLE);
+
+ rescan:
+	last = NULL;
+	last_status = -EINPROGRESS;
+	qh->dequeue_during_giveback = 0;
+
+	/* remove de-activated QTDs from front of queue.
+	 * after faults (including short reads), cleanup this urb
+	 * then let the queue advance.
+	 * if queue is stopped, handles unlinks.
+	 */
+	list_for_each_safe (entry, tmp, &qh->qtd_list) {
+		struct ehci_qtd	*qtd;
+		struct urb	*urb;
+		u32		token = 0;
+
+		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
+		urb = qtd->urb;
+
+		/* clean up any state from previous QTD ...*/
+		if (last) {
+			if (likely (last->urb != urb)) {
+				ehci_urb_done(ehci, last->urb, last_status);
+				last_status = -EINPROGRESS;
+			}
+			ehci_qtd_free (ehci, last);
+			last = NULL;
+		}
+
+		/* ignore urbs submitted during completions we reported */
+		if (qtd == end)
+			break;
+
+		/* hardware copies qtd out of qh overlay */
+		rmb ();
+		token = hc32_to_cpu(ehci, qtd->hw_token);
+
+		/* always clean up qtds the hc de-activated */
+ retry_xacterr:
+		if ((token & QTD_STS_ACTIVE) == 0) {
+
+			/* Report Data Buffer Error: non-fatal but useful */
+			if (token & QTD_STS_DBE)
+				ehci_dbg(ehci,
+					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
+					urb,
+					usb_endpoint_num(&urb->ep->desc),
+					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
+					urb->transfer_buffer_length,
+					qtd,
+					qh);
+
+			/* on STALL, error, and short reads this urb must
+			 * complete and all its qtds must be recycled.
+			 */
+			if ((token & QTD_STS_HALT) != 0) {
+
+				/* retry transaction errors until we
+				 * reach the software xacterr limit
+				 */
+				if ((token & QTD_STS_XACT) &&
+						QTD_CERR(token) == 0 &&
+						++qh->xacterrs < QH_XACTERR_MAX &&
+						!urb->unlinked) {
+					ehci_dbg(ehci,
+	"detected XactErr len %zu/%zu retry %d\n",
+	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
+
+					/* reset the token in the qtd and the
+					 * qh overlay (which still contains
+					 * the qtd) so that we pick up from
+					 * where we left off
+					 */
+					token &= ~QTD_STS_HALT;
+					token |= QTD_STS_ACTIVE |
+							(EHCI_TUNE_CERR << 10);
+					qtd->hw_token = cpu_to_hc32(ehci,
+							token);
+					wmb();
+					hw->hw_token = cpu_to_hc32(ehci,
+							token);
+					goto retry_xacterr;
+				}
+				stopped = 1;
+				qh->unlink_reason |= QH_UNLINK_HALTED;
+
+			/* magic dummy for some short reads; qh won't advance.
+			 * that silicon quirk can kick in with this dummy too.
+			 *
+			 * other short reads won't stop the queue, including
+			 * control transfers (status stage handles that) or
+			 * most other single-qtd reads ... the queue stops if
+			 * URB_SHORT_NOT_OK was set so the driver submitting
+			 * the urbs could clean it up.
+			 */
+			} else if (IS_SHORT_READ (token)
+					&& !(qtd->hw_alt_next
+						& EHCI_LIST_END(ehci))) {
+				stopped = 1;
+				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
+			}
+
+		/* stop scanning when we reach qtds the hc is using */
+		} else if (likely (!stopped
+				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
+			break;
+
+		/* scan the whole queue for unlinks whenever it stops */
+		} else {
+			stopped = 1;
+
+			/* cancel everything if we halt, suspend, etc */
+			if (ehci->rh_state < EHCI_RH_RUNNING) {
+				last_status = -ESHUTDOWN;
+				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
+			}
+
+			/* this qtd is active; skip it unless a previous qtd
+			 * for its urb faulted, or its urb was canceled.
+			 */
+			else if (last_status == -EINPROGRESS && !urb->unlinked)
+				continue;
+
+			/*
+			 * If this was the active qtd when the qh was unlinked
+			 * and the overlay's token is active, then the overlay
+			 * hasn't been written back to the qtd yet so use its
+			 * token instead of the qtd's.  After the qtd is
+			 * processed and removed, the overlay won't be valid
+			 * any more.
+			 */
+			if (state == QH_STATE_IDLE &&
+					qh->qtd_list.next == &qtd->qtd_list &&
+					(hw->hw_token & ACTIVE_BIT(ehci))) {
+				token = hc32_to_cpu(ehci, hw->hw_token);
+				hw->hw_token &= ~ACTIVE_BIT(ehci);
+				qh->should_be_inactive = 1;
+
+				/* An unlink may leave an incomplete
+				 * async transaction in the TT buffer.
+				 * We have to clear it.
+				 */
+				ehci_clear_tt_buffer(ehci, qh, urb, token);
+			}
+		}
+
+		/* unless we already know the urb's status, collect qtd status
+		 * and update count of bytes transferred.  in common short read
+		 * cases with only one data qtd (including control transfers),
+		 * queue processing won't halt.  but with two or more qtds (for
+		 * example, with a 32 KB transfer), when the first qtd gets a
+		 * short read the second must be removed by hand.
+		 */
+		if (last_status == -EINPROGRESS) {
+			last_status = qtd_copy_status(ehci, urb,
+					qtd->length, token);
+			if (last_status == -EREMOTEIO
+					&& (qtd->hw_alt_next
+						& EHCI_LIST_END(ehci)))
+				last_status = -EINPROGRESS;
+
+			/* As part of low/full-speed endpoint-halt processing
+			 * we must clear the TT buffer (11.17.5).
+			 */
+			if (unlikely(last_status != -EINPROGRESS &&
+					last_status != -EREMOTEIO)) {
+				/* The TT's in some hubs malfunction when they
+				 * receive this request following a STALL (they
+				 * stop sending isochronous packets).  Since a
+				 * STALL can't leave the TT buffer in a busy
+				 * state (if you believe Figures 11-48 - 11-51
+				 * in the USB 2.0 spec), we won't clear the TT
+				 * buffer in this case.  Strictly speaking this
+				 * is a violation of the spec.
+				 */
+				if (last_status != -EPIPE)
+					ehci_clear_tt_buffer(ehci, qh, urb,
+							token);
+			}
+		}
+
+		/* if we're removing something not at the queue head,
+		 * patch the hardware queue pointer.
+		 */
+		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
+			last = list_entry (qtd->qtd_list.prev,
+					struct ehci_qtd, qtd_list);
+			last->hw_next = qtd->hw_next;
+		}
+
+		/* remove qtd; it's recycled after possible urb completion */
+		list_del (&qtd->qtd_list);
+		last = qtd;
+
+		/* reinit the xacterr counter for the next qtd */
+		qh->xacterrs = 0;
+	}
+
+	/* last urb's completion might still need calling */
+	if (likely (last != NULL)) {
+		ehci_urb_done(ehci, last->urb, last_status);
+		ehci_qtd_free (ehci, last);
+	}
+
+	/* Do we need to rescan for URBs dequeued during a giveback? */
+	if (unlikely(qh->dequeue_during_giveback)) {
+		/* If the QH is already unlinked, do the rescan now. */
+		if (state == QH_STATE_IDLE)
+			goto rescan;
+
+		/* Otherwise the caller must unlink the QH. */
+	}
+
+	/* restore original state; caller must unlink or relink */
+	qh->qh_state = state;
+
+	/* be sure the hardware's done with the qh before refreshing
+	 * it after fault cleanup, or recovering from silicon wrongly
+	 * overlaying the dummy qtd (which reduces DMA chatter).
+	 *
+	 * We won't refresh a QH that's linked (after the HC
+	 * stopped the queue).  That avoids a race:
+	 *  - HC reads first part of QH;
+	 *  - CPU updates that first part and the token;
+	 *  - HC reads rest of that QH, including token
+	 * Result:  HC gets an inconsistent image, and then
+	 * DMAs to/from the wrong memory (corrupting it).
+	 *
+	 * That should be rare for interrupt transfers,
+	 * except maybe high bandwidth ...
+	 */
+	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
+		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
+
+	/* Let the caller know if the QH needs to be unlinked. */
+	return qh->unlink_reason;
+}
+
+/*-------------------------------------------------------------------------*/
+
+/*
+ * reverse of qh_urb_transaction:  free a list of TDs.
+ * used for cleanup after errors, before HC sees an URB's TDs.
+ */
+static void qtd_list_free (
+	struct ehci_hcd		*ehci,
+	struct urb		*urb,
+	struct list_head	*qtd_list
+) {
+	struct list_head	*entry, *temp;
+
+	list_for_each_safe (entry, temp, qtd_list) {
+		struct ehci_qtd	*qtd;
+
+		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
+		list_del (&qtd->qtd_list);
+		ehci_qtd_free (ehci, qtd);
+	}
+}
+
+/*
+ * create a list of filled qtds for this URB; won't link into qh.
+ */
+static struct list_head *
+qh_urb_transaction (
+	struct ehci_hcd		*ehci,
+	struct urb		*urb,
+	struct list_head	*head,
+	gfp_t			flags
+) {
+	struct ehci_qtd		*qtd, *qtd_prev;
+	dma_addr_t		buf;
+	int			len, this_sg_len, maxpacket;
+	int			is_input;
+	u32			token;
+	int			i;
+	struct scatterlist	*sg;
+
+	/*
+	 * URBs map to sequences of QTDs:  one logical transaction
+	 */
+	qtd = ehci_qtd_alloc (ehci, flags);
+	if (unlikely (!qtd))
+		return NULL;
+	list_add_tail (&qtd->qtd_list, head);
+	qtd->urb = urb;
+
+	token = QTD_STS_ACTIVE;
+	token |= (EHCI_TUNE_CERR << 10);
+	/* for split transactions, SplitXState initialized to zero */
+
+	len = urb->transfer_buffer_length;
+	is_input = usb_pipein (urb->pipe);
+	if (usb_pipecontrol (urb->pipe)) {
+		/* SETUP pid */
+		qtd_fill(ehci, qtd, urb->setup_dma,
+				sizeof (struct usb_ctrlrequest),
+				token | (2 /* "setup" */ << 8), 8);
+
+		/* ... and always at least one more pid */
+		token ^= QTD_TOGGLE;
+		qtd_prev = qtd;
+		qtd = ehci_qtd_alloc (ehci, flags);
+		if (unlikely (!qtd))
+			goto cleanup;
+		qtd->urb = urb;
+		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
+		list_add_tail (&qtd->qtd_list, head);
+
+		/* for zero length DATA stages, STATUS is always IN */
+		if (len == 0)
+			token |= (1 /* "in" */ << 8);
+	}
+
+	/*
+	 * data transfer stage:  buffer setup
+	 */
+	i = urb->num_mapped_sgs;
+	if (len > 0 && i > 0) {
+		sg = urb->sg;
+		buf = sg_dma_address(sg);
+
+		/* urb->transfer_buffer_length may be smaller than the
+		 * size of the scatterlist (or vice versa)
+		 */
+		this_sg_len = min_t(int, sg_dma_len(sg), len);
+	} else {
+		sg = NULL;
+		buf = urb->transfer_dma;
+		this_sg_len = len;
+	}
+
+	if (is_input)
+		token |= (1 /* "in" */ << 8);
+	/* else it's already initted to "out" pid (0 << 8) */
+
+	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
+
+	/*
+	 * buffer gets wrapped in one or more qtds;
+	 * last one may be "short" (including zero len)
+	 * and may serve as a control status ack
+	 */
+	for (;;) {
+		int this_qtd_len;
+
+		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
+				maxpacket);
+		this_sg_len -= this_qtd_len;
+		len -= this_qtd_len;
+		buf += this_qtd_len;
+
+		/*
+		 * short reads advance to a "magic" dummy instead of the next
+		 * qtd ... that forces the queue to stop, for manual cleanup.
+		 * (this will usually be overridden later.)
+		 */
+		if (is_input)
+			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
+
+		/* qh makes control packets use qtd toggle; maybe switch it */
+		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
+			token ^= QTD_TOGGLE;
+
+		if (likely(this_sg_len <= 0)) {
+			if (--i <= 0 || len <= 0)
+				break;
+			sg = sg_next(sg);
+			buf = sg_dma_address(sg);
+			this_sg_len = min_t(int, sg_dma_len(sg), len);
+		}
+
+		qtd_prev = qtd;
+		qtd = ehci_qtd_alloc (ehci, flags);
+		if (unlikely (!qtd))
+			goto cleanup;
+		qtd->urb = urb;
+		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
+		list_add_tail (&qtd->qtd_list, head);
+	}
+
+	/*
+	 * unless the caller requires manual cleanup after short reads,
+	 * have the alt_next mechanism keep the queue running after the
+	 * last data qtd (the only one, for control and most other cases).
+	 */
+	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
+				|| usb_pipecontrol (urb->pipe)))
+		qtd->hw_alt_next = EHCI_LIST_END(ehci);
+
+	/*
+	 * control requests may need a terminating data "status" ack;
+	 * other OUT ones may need a terminating short packet
+	 * (zero length).
+	 */
+	if (likely (urb->transfer_buffer_length != 0)) {
+		int	one_more = 0;
+
+		if (usb_pipecontrol (urb->pipe)) {
+			one_more = 1;
+			token ^= 0x0100;	/* "in" <--> "out"  */
+			token |= QTD_TOGGLE;	/* force DATA1 */
+		} else if (usb_pipeout(urb->pipe)
+				&& (urb->transfer_flags & URB_ZERO_PACKET)
+				&& !(urb->transfer_buffer_length % maxpacket)) {
+			one_more = 1;
+		}
+		if (one_more) {
+			qtd_prev = qtd;
+			qtd = ehci_qtd_alloc (ehci, flags);
+			if (unlikely (!qtd))
+				goto cleanup;
+			qtd->urb = urb;
+			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
+			list_add_tail (&qtd->qtd_list, head);
+
+			/* never any data in such packets */
+			qtd_fill(ehci, qtd, 0, 0, token, 0);
+		}
+	}
+
+	/* by default, enable interrupt on urb completion */
+	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
+		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
+	return head;
+
+cleanup:
+	qtd_list_free (ehci, urb, head);
+	return NULL;
+}
+
+/*-------------------------------------------------------------------------*/
+
+// Would be best to create all qh's from config descriptors,
+// when each interface/altsetting is established.  Unlink
+// any previous qh and cancel its urbs first; endpoints are
+// implicitly reset then (data toggle too).
+// That'd mean updating how usbcore talks to HCDs. (2.7?)
+
+
+/*
+ * Each QH holds a qtd list; a QH is used for everything except iso.
+ *
+ * For interrupt urbs, the scheduler must set the microframe scheduling
+ * mask(s) each time the QH gets scheduled.  For highspeed, that's
+ * just one microframe in the s-mask.  For split interrupt transactions
+ * there are additional complications: c-mask, maybe FSTNs.
+ */
+static struct ehci_qh *
+qh_make (
+	struct ehci_hcd		*ehci,
+	struct urb		*urb,
+	gfp_t			flags
+) {
+	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
+	struct usb_host_endpoint *ep;
+	u32			info1 = 0, info2 = 0;
+	int			is_input, type;
+	int			maxp = 0;
+	int			mult;
+	struct usb_tt		*tt = urb->dev->tt;
+	struct ehci_qh_hw	*hw;
+
+	if (!qh)
+		return qh;
+
+	/*
+	 * init endpoint/device data for this QH
+	 */
+	info1 |= usb_pipeendpoint (urb->pipe) << 8;
+	info1 |= usb_pipedevice (urb->pipe) << 0;
+
+	is_input = usb_pipein (urb->pipe);
+	type = usb_pipetype (urb->pipe);
+	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
+	maxp = usb_endpoint_maxp (&ep->desc);
+	mult = usb_endpoint_maxp_mult (&ep->desc);
+
+	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
+	 * acts like up to 3KB, but is built from smaller packets.
+	 */
+	if (maxp > 1024) {
+		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
+		goto done;
+	}
+
+	/* Compute interrupt scheduling parameters just once, and save.
+	 * - allowing for high bandwidth, how many nsec/uframe are used?
+	 * - split transactions need a second CSPLIT uframe; same question
+	 * - splits also need a schedule gap (for full/low speed I/O)
+	 * - qh has a polling interval
+	 *
+	 * For control/bulk requests, the HC or TT handles these.
+	 */
+	if (type == PIPE_INTERRUPT) {
+		unsigned	tmp;
+
+		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
+				is_input, 0, mult * maxp));
+		qh->ps.phase = NO_FRAME;
+
+		if (urb->dev->speed == USB_SPEED_HIGH) {
+			qh->ps.c_usecs = 0;
+			qh->gap_uf = 0;
+
+			if (urb->interval > 1 && urb->interval < 8) {
+				/* NOTE interval 2 or 4 uframes could work.
+				 * But interval 1 scheduling is simpler, and
+				 * includes high bandwidth.
+				 */
+				urb->interval = 1;
+			} else if (urb->interval > ehci->periodic_size << 3) {
+				urb->interval = ehci->periodic_size << 3;
+			}
+			qh->ps.period = urb->interval >> 3;
+
+			/* period for bandwidth allocation */
+			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
+					1 << (urb->ep->desc.bInterval - 1));
+
+			/* Allow urb->interval to override */
+			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
+			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
+		} else {
+			int		think_time;
+
+			/* gap is f(FS/LS transfer times) */
+			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
+					is_input, 0, maxp) / (125 * 1000);
+
+			/* FIXME this just approximates SPLIT/CSPLIT times */
+			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
+				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
+				qh->ps.usecs = HS_USECS(1);
+			} else {		// SPLIT+DATA, gap, CSPLIT
+				qh->ps.usecs += HS_USECS(1);
+				qh->ps.c_usecs = HS_USECS(0);
+			}
+
+			think_time = tt ? tt->think_time : 0;
+			qh->ps.tt_usecs = NS_TO_US(think_time +
+					usb_calc_bus_time (urb->dev->speed,
+					is_input, 0, maxp));
+			if (urb->interval > ehci->periodic_size)
+				urb->interval = ehci->periodic_size;
+			qh->ps.period = urb->interval;
+
+			/* period for bandwidth allocation */
+			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
+					urb->ep->desc.bInterval);
+			tmp = rounddown_pow_of_two(tmp);
+
+			/* Allow urb->interval to override */
+			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
+			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
+		}
+	}
+
+	/* support for tt scheduling, and access to toggles */
+	qh->ps.udev = urb->dev;
+	qh->ps.ep = urb->ep;
+
+	/* using TT? */
+	switch (urb->dev->speed) {
+	case USB_SPEED_LOW:
+		info1 |= QH_LOW_SPEED;
+		/* FALL THROUGH */
+
+	case USB_SPEED_FULL:
+		/* EPS 0 means "full" */
+		if (type != PIPE_INTERRUPT)
+			info1 |= (EHCI_TUNE_RL_TT << 28);
+		if (type == PIPE_CONTROL) {
+			info1 |= QH_CONTROL_EP;		/* for TT */
+			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
+		}
+		info1 |= maxp << 16;
+
+		info2 |= (EHCI_TUNE_MULT_TT << 30);
+
+		/* Some Freescale processors have an erratum in which the
+		 * port number in the queue head was 0..N-1 instead of 1..N.
+		 */
+		if (ehci_has_fsl_portno_bug(ehci))
+			info2 |= (urb->dev->ttport-1) << 23;
+		else
+			info2 |= urb->dev->ttport << 23;
+
+		/* set the address of the TT; for TDI's integrated
+		 * root hub tt, leave it zeroed.
+		 */
+		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
+			info2 |= tt->hub->devnum << 16;
+
+		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
+
+		break;
+
+	case USB_SPEED_HIGH:		/* no TT involved */
+		info1 |= QH_HIGH_SPEED;
+		if (type == PIPE_CONTROL) {
+			info1 |= (EHCI_TUNE_RL_HS << 28);
+			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
+			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
+			info2 |= (EHCI_TUNE_MULT_HS << 30);
+		} else if (type == PIPE_BULK) {
+			info1 |= (EHCI_TUNE_RL_HS << 28);
+			/* The USB spec says that high speed bulk endpoints
+			 * always use 512 byte maxpacket.  But some device
+			 * vendors decided to ignore that, and MSFT is happy
+			 * to help them do so.  So now people expect to use
+			 * such nonconformant devices with Linux too; sigh.
+			 */
+			info1 |= maxp << 16;
+			info2 |= (EHCI_TUNE_MULT_HS << 30);
+		} else {		/* PIPE_INTERRUPT */
+			info1 |= maxp << 16;
+			info2 |= mult << 30;
+		}
+		break;
+	default:
+		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
+			urb->dev->speed);
+done:
+		qh_destroy(ehci, qh);
+		return NULL;
+	}
+
+	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
+
+	/* init as live, toggle clear */
+	qh->qh_state = QH_STATE_IDLE;
+	hw = qh->hw;
+	hw->hw_info1 = cpu_to_hc32(ehci, info1);
+	hw->hw_info2 = cpu_to_hc32(ehci, info2);
+	qh->is_out = !is_input;
+	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
+	return qh;
+}
+
+/*-------------------------------------------------------------------------*/
+
+static void enable_async(struct ehci_hcd *ehci)
+{
+	if (ehci->async_count++)
+		return;
+
+	/* Stop waiting to turn off the async schedule */
+	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
+
+	/* Don't start the schedule until ASS is 0 */
+	ehci_poll_ASS(ehci);
+	turn_on_io_watchdog(ehci);
+}
+
+static void disable_async(struct ehci_hcd *ehci)
+{
+	if (--ehci->async_count)
+		return;
+
+	/* The async schedule and unlink lists are supposed to be empty */
+	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
+			!list_empty(&ehci->async_idle));
+
+	/* Don't turn off the schedule until ASS is 1 */
+	ehci_poll_ASS(ehci);
+}
+
+/* move qh (and its qtds) onto async queue; maybe enable queue.  */
+
+static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
+	struct ehci_qh	*head;
+
+	/* Don't link a QH if there's a Clear-TT-Buffer pending */
+	if (unlikely(qh->clearing_tt))
+		return;
+
+	WARN_ON(qh->qh_state != QH_STATE_IDLE);
+
+	/* clear halt and/or toggle; and maybe recover from silicon quirk */
+	qh_refresh(ehci, qh);
+
+	/* splice right after start */
+	head = ehci->async;
+	qh->qh_next = head->qh_next;
+	qh->hw->hw_next = head->hw->hw_next;
+	wmb ();
+
+	head->qh_next.qh = qh;
+	head->hw->hw_next = dma;
+
+	qh->qh_state = QH_STATE_LINKED;
+	qh->xacterrs = 0;
+	qh->unlink_reason = 0;
+	/* qtd completions reported later by interrupt */
+
+	enable_async(ehci);
+}
+
+/*-------------------------------------------------------------------------*/
+
+/*
+ * For control/bulk/interrupt, return QH with these TDs appended.
+ * Allocates and initializes the QH if necessary.
+ * Returns null if it can't allocate a QH it needs to.
+ * If the QH has TDs (urbs) already, that's great.
+ */
+static struct ehci_qh *qh_append_tds (
+	struct ehci_hcd		*ehci,
+	struct urb		*urb,
+	struct list_head	*qtd_list,
+	int			epnum,
+	void			**ptr
+)
+{
+	struct ehci_qh		*qh = NULL;
+	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
+
+	qh = (struct ehci_qh *) *ptr;
+	if (unlikely (qh == NULL)) {
+		/* can't sleep here, we have ehci->lock... */
+		qh = qh_make (ehci, urb, GFP_ATOMIC);
+		*ptr = qh;
+	}
+	if (likely (qh != NULL)) {
+		struct ehci_qtd	*qtd;
+
+		if (unlikely (list_empty (qtd_list)))
+			qtd = NULL;
+		else
+			qtd = list_entry (qtd_list->next, struct ehci_qtd,
+					qtd_list);
+
+		/* control qh may need patching ... */
+		if (unlikely (epnum == 0)) {
+
+                        /* usb_reset_device() briefly reverts to address 0 */
+                        if (usb_pipedevice (urb->pipe) == 0)
+				qh->hw->hw_info1 &= ~qh_addr_mask;
+		}
+
+		/* just one way to queue requests: swap with the dummy qtd.
+		 * only hc or qh_refresh() ever modify the overlay.
+		 */
+		if (likely (qtd != NULL)) {
+			struct ehci_qtd		*dummy;
+			dma_addr_t		dma;
+			__hc32			token;
+
+			/* to avoid racing the HC, use the dummy td instead of
+			 * the first td of our list (becomes new dummy).  both
+			 * tds stay deactivated until we're done, when the
+			 * HC is allowed to fetch the old dummy (4.10.2).
+			 */
+			token = qtd->hw_token;
+			qtd->hw_token = HALT_BIT(ehci);
+
+			dummy = qh->dummy;
+
+			dma = dummy->qtd_dma;
+			*dummy = *qtd;
+			dummy->qtd_dma = dma;
+
+			list_del (&qtd->qtd_list);
+			list_add (&dummy->qtd_list, qtd_list);
+			list_splice_tail(qtd_list, &qh->qtd_list);
+
+			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
+			qh->dummy = qtd;
+
+			/* hc must see the new dummy at list end */
+			dma = qtd->qtd_dma;
+			qtd = list_entry (qh->qtd_list.prev,
+					struct ehci_qtd, qtd_list);
+			qtd->hw_next = QTD_NEXT(ehci, dma);
+
+			/* let the hc process these next qtds */
+			wmb ();
+			dummy->hw_token = token;
+
+			urb->hcpriv = qh;
+		}
+	}
+	return qh;
+}
+
+/*-------------------------------------------------------------------------*/
+
+static int
+submit_async (
+	struct ehci_hcd		*ehci,
+	struct urb		*urb,
+	struct list_head	*qtd_list,
+	gfp_t			mem_flags
+) {
+	int			epnum;
+	unsigned long		flags;
+	struct ehci_qh		*qh = NULL;
+	int			rc;
+
+	epnum = urb->ep->desc.bEndpointAddress;
+
+#ifdef EHCI_URB_TRACE
+	{
+		struct ehci_qtd *qtd;
+		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
+		ehci_dbg(ehci,
+			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
+			 __func__, urb->dev->devpath, urb,
+			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
+			 urb->transfer_buffer_length,
+			 qtd, urb->ep->hcpriv);
+	}
+#endif
+
+	spin_lock_irqsave (&ehci->lock, flags);
+	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
+		rc = -ESHUTDOWN;
+		goto done;
+	}
+	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
+	if (unlikely(rc))
+		goto done;
+
+	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
+	if (unlikely(qh == NULL)) {
+		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	/* Control/bulk operations through TTs don't need scheduling,
+	 * the HC and TT handle it when the TT has a buffer ready.
+	 */
+	if (likely (qh->qh_state == QH_STATE_IDLE))
+		qh_link_async(ehci, qh);
+ done:
+	spin_unlock_irqrestore (&ehci->lock, flags);
+	if (unlikely (qh == NULL))
+		qtd_list_free (ehci, urb, qtd_list);
+	return rc;
+}
+
+/*-------------------------------------------------------------------------*/
+#ifdef CONFIG_USB_HCD_TEST_MODE
+/*
+ * This function creates the qtds and submits them for the
+ * SINGLE_STEP_SET_FEATURE Test.
+ * This is done in two parts: first SETUP req for GetDesc is sent then
+ * 15 seconds later, the IN stage for GetDesc starts to req data from dev
+ *
+ * is_setup : i/p arguement decides which of the two stage needs to be
+ * performed; TRUE - SETUP and FALSE - IN+STATUS
+ * Returns 0 if success
+ */
+static int submit_single_step_set_feature(
+	struct usb_hcd  *hcd,
+	struct urb      *urb,
+	int             is_setup
+) {
+	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
+	struct list_head	qtd_list;
+	struct list_head	*head;
+
+	struct ehci_qtd		*qtd, *qtd_prev;
+	dma_addr_t		buf;
+	int			len, maxpacket;
+	u32			token;
+
+	INIT_LIST_HEAD(&qtd_list);
+	head = &qtd_list;
+
+	/* URBs map to sequences of QTDs:  one logical transaction */
+	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
+	if (unlikely(!qtd))
+		return -1;
+	list_add_tail(&qtd->qtd_list, head);
+	qtd->urb = urb;
+
+	token = QTD_STS_ACTIVE;
+	token |= (EHCI_TUNE_CERR << 10);
+
+	len = urb->transfer_buffer_length;
+	/*
+	 * Check if the request is to perform just the SETUP stage (getDesc)
+	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
+	 * 15 secs after the setup
+	 */
+	if (is_setup) {
+		/* SETUP pid, and interrupt after SETUP completion */
+		qtd_fill(ehci, qtd, urb->setup_dma,
+				sizeof(struct usb_ctrlrequest),
+				QTD_IOC | token | (2 /* "setup" */ << 8), 8);
+
+		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
+		return 0; /*Return now; we shall come back after 15 seconds*/
+	}
+
+	/*
+	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
+	 * the get_Desc SETUP which was sent 15seconds back
+	 */
+	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
+	buf = urb->transfer_dma;
+
+	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
+
+	maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
+
+	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
+
+	/*
+	 * Our IN phase shall always be a short read; so keep the queue running
+	 * and let it advance to the next qtd which zero length OUT status
+	 */
+	qtd->hw_alt_next = EHCI_LIST_END(ehci);
+
+	/* STATUS stage for GetDesc control request */
+	token ^= 0x0100;        /* "in" <--> "out"  */
+	token |= QTD_TOGGLE;    /* force DATA1 */
+
+	qtd_prev = qtd;
+	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
+	if (unlikely(!qtd))
+		goto cleanup;
+	qtd->urb = urb;
+	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
+	list_add_tail(&qtd->qtd_list, head);
+
+	/* Interrupt after STATUS completion */
+	qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
+
+	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
+
+	return 0;
+
+cleanup:
+	qtd_list_free(ehci, urb, head);
+	return -1;
+}
+#endif /* CONFIG_USB_HCD_TEST_MODE */
+
+/*-------------------------------------------------------------------------*/
+
+static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+	struct ehci_qh		*prev;
+
+	/* Add to the end of the list of QHs waiting for the next IAAD */
+	qh->qh_state = QH_STATE_UNLINK_WAIT;
+	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
+
+	/* Unlink it from the schedule */
+	prev = ehci->async;
+	while (prev->qh_next.qh != qh)
+		prev = prev->qh_next.qh;
+
+	prev->hw->hw_next = qh->hw->hw_next;
+	prev->qh_next = qh->qh_next;
+	if (ehci->qh_scan_next == qh)
+		ehci->qh_scan_next = qh->qh_next.qh;
+}
+
+static void start_iaa_cycle(struct ehci_hcd *ehci)
+{
+	/* If the controller isn't running, we don't have to wait for it */
+	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
+		end_unlink_async(ehci);
+
+	/* Otherwise start a new IAA cycle if one isn't already running */
+	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
+			!ehci->iaa_in_progress) {
+
+		/* Make sure the unlinks are all visible to the hardware */
+		wmb();
+
+		ehci_writel(ehci, ehci->command | CMD_IAAD,
+				&ehci->regs->command);
+		ehci_readl(ehci, &ehci->regs->command);
+		ehci->iaa_in_progress = true;
+		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
+	}
+}
+
+static void end_iaa_cycle(struct ehci_hcd *ehci)
+{
+	if (ehci->has_synopsys_hc_bug)
+		ehci_writel(ehci, (u32) ehci->async->qh_dma,
+			    &ehci->regs->async_next);
+
+	/* The current IAA cycle has ended */
+	ehci->iaa_in_progress = false;
+
+	end_unlink_async(ehci);
+}
+
+/* See if the async qh for the qtds being unlinked are now gone from the HC */
+
+static void end_unlink_async(struct ehci_hcd *ehci)
+{
+	struct ehci_qh		*qh;
+	bool			early_exit;
+
+	if (list_empty(&ehci->async_unlink))
+		return;
+	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
+			unlink_node);	/* QH whose IAA cycle just ended */
+
+	/*
+	 * If async_unlinking is set then this routine is already running,
+	 * either on the stack or on another CPU.
+	 */
+	early_exit = ehci->async_unlinking;
+
+	/* If the controller isn't running, process all the waiting QHs */
+	if (ehci->rh_state < EHCI_RH_RUNNING)
+		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
+
+	/*
+	 * Intel (?) bug: The HC can write back the overlay region even
+	 * after the IAA interrupt occurs.  In self-defense, always go
+	 * through two IAA cycles for each QH.
+	 */
+	else if (qh->qh_state == QH_STATE_UNLINK) {
+		/*
+		 * Second IAA cycle has finished.  Process only the first
+		 * waiting QH (NVIDIA (?) bug).
+		 */
+		list_move_tail(&qh->unlink_node, &ehci->async_idle);
+	}
+
+	/*
+	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
+	 * after the IAA interrupt occurs.  To prevent problems, QHs that
+	 * may still be active will wait until 2 ms have passed with no
+	 * change to the hw_current and hw_token fields (this delay occurs
+	 * between the two IAA cycles).
+	 *
+	 * The EHCI spec (4.8.2) says that active QHs must not be removed
+	 * from the async schedule and recommends waiting until the QH
+	 * goes inactive.  This is ridiculous because the QH will _never_
+	 * become inactive if the endpoint NAKs indefinitely.
+	 */
+
+	/* Some reasons for unlinking guarantee the QH can't be active */
+	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
+			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
+		goto DelayDone;
+
+	/* The QH can't be active if the queue was and still is empty... */
+	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
+			list_empty(&qh->qtd_list))
+		goto DelayDone;
+
+	/* ... or if the QH has halted */
+	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
+		goto DelayDone;
+
+	/* Otherwise we have to wait until the QH stops changing */
+	else {
+		__hc32		qh_current, qh_token;
+
+		qh_current = qh->hw->hw_current;
+		qh_token = qh->hw->hw_token;
+		if (qh_current != ehci->old_current ||
+				qh_token != ehci->old_token) {
+			ehci->old_current = qh_current;
+			ehci->old_token = qh_token;
+			ehci_enable_event(ehci,
+					EHCI_HRTIMER_ACTIVE_UNLINK, true);
+			return;
+		}
+ DelayDone:
+		qh->qh_state = QH_STATE_UNLINK;
+		early_exit = true;
+	}
+	ehci->old_current = ~0;		/* Prepare for next QH */
+
+	/* Start a new IAA cycle if any QHs are waiting for it */
+	if (!list_empty(&ehci->async_unlink))
+		start_iaa_cycle(ehci);
+
+	/*
+	 * Don't allow nesting or concurrent calls,
+	 * or wait for the second IAA cycle for the next QH.
+	 */
+	if (early_exit)
+		return;
+
+	/* Process the idle QHs */
+	ehci->async_unlinking = true;
+	while (!list_empty(&ehci->async_idle)) {
+		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
+				unlink_node);
+		list_del(&qh->unlink_node);
+
+		qh->qh_state = QH_STATE_IDLE;
+		qh->qh_next.qh = NULL;
+
+		if (!list_empty(&qh->qtd_list))
+			qh_completions(ehci, qh);
+		if (!list_empty(&qh->qtd_list) &&
+				ehci->rh_state == EHCI_RH_RUNNING)
+			qh_link_async(ehci, qh);
+		disable_async(ehci);
+	}
+	ehci->async_unlinking = false;
+}
+
+static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
+
+static void unlink_empty_async(struct ehci_hcd *ehci)
+{
+	struct ehci_qh		*qh;
+	struct ehci_qh		*qh_to_unlink = NULL;
+	int			count = 0;
+
+	/* Find the last async QH which has been empty for a timer cycle */
+	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
+		if (list_empty(&qh->qtd_list) &&
+				qh->qh_state == QH_STATE_LINKED) {
+			++count;
+			if (qh->unlink_cycle != ehci->async_unlink_cycle)
+				qh_to_unlink = qh;
+		}
+	}
+
+	/* If nothing else is being unlinked, unlink the last empty QH */
+	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
+		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
+		start_unlink_async(ehci, qh_to_unlink);
+		--count;
+	}
+
+	/* Other QHs will be handled later */
+	if (count > 0) {
+		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
+		++ehci->async_unlink_cycle;
+	}
+}
+
+#ifdef	CONFIG_PM
+
+/* The root hub is suspended; unlink all the async QHs */
+static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
+{
+	struct ehci_qh		*qh;
+
+	while (ehci->async->qh_next.qh) {
+		qh = ehci->async->qh_next.qh;
+		WARN_ON(!list_empty(&qh->qtd_list));
+		single_unlink_async(ehci, qh);
+	}
+}
+
+#endif
+
+/* makes sure the async qh will become idle */
+/* caller must own ehci->lock */
+
+static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+	/* If the QH isn't linked then there's nothing we can do. */
+	if (qh->qh_state != QH_STATE_LINKED)
+		return;
+
+	single_unlink_async(ehci, qh);
+	start_iaa_cycle(ehci);
+}
+
+/*-------------------------------------------------------------------------*/
+
+static void scan_async (struct ehci_hcd *ehci)
+{
+	struct ehci_qh		*qh;
+	bool			check_unlinks_later = false;
+
+	ehci->qh_scan_next = ehci->async->qh_next.qh;
+	while (ehci->qh_scan_next) {
+		qh = ehci->qh_scan_next;
+		ehci->qh_scan_next = qh->qh_next.qh;
+
+		/* clean any finished work for this qh */
+		if (!list_empty(&qh->qtd_list)) {
+			int temp;
+
+			/*
+			 * Unlinks could happen here; completion reporting
+			 * drops the lock.  That's why ehci->qh_scan_next
+			 * always holds the next qh to scan; if the next qh
+			 * gets unlinked then ehci->qh_scan_next is adjusted
+			 * in single_unlink_async().
+			 */
+			temp = qh_completions(ehci, qh);
+			if (unlikely(temp)) {
+				start_unlink_async(ehci, qh);
+			} else if (list_empty(&qh->qtd_list)
+					&& qh->qh_state == QH_STATE_LINKED) {
+				qh->unlink_cycle = ehci->async_unlink_cycle;
+				check_unlinks_later = true;
+			}
+		}
+	}
+
+	/*
+	 * Unlink empty entries, reducing DMA usage as well
+	 * as HCD schedule-scanning costs.  Delay for any qh
+	 * we just scanned, there's a not-unusual case that it
+	 * doesn't stay idle for long.
+	 */
+	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
+			!(ehci->enabled_hrtimer_events &
+				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
+		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
+		++ehci->async_unlink_cycle;
+	}
+}