v4.19.13 snapshot.
diff --git a/drivers/thermal/power_allocator.c b/drivers/thermal/power_allocator.c
new file mode 100644
index 0000000..3055f9a
--- /dev/null
+++ b/drivers/thermal/power_allocator.c
@@ -0,0 +1,663 @@
+/*
+ * A power allocator to manage temperature
+ *
+ * Copyright (C) 2014 ARM Ltd.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any
+ * kind, whether express or implied; without even the implied warranty
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "Power allocator: " fmt
+
+#include <linux/rculist.h>
+#include <linux/slab.h>
+#include <linux/thermal.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/thermal_power_allocator.h>
+
+#include "thermal_core.h"
+
+#define INVALID_TRIP -1
+
+#define FRAC_BITS 10
+#define int_to_frac(x) ((x) << FRAC_BITS)
+#define frac_to_int(x) ((x) >> FRAC_BITS)
+
+/**
+ * mul_frac() - multiply two fixed-point numbers
+ * @x:	first multiplicand
+ * @y:	second multiplicand
+ *
+ * Return: the result of multiplying two fixed-point numbers.  The
+ * result is also a fixed-point number.
+ */
+static inline s64 mul_frac(s64 x, s64 y)
+{
+	return (x * y) >> FRAC_BITS;
+}
+
+/**
+ * div_frac() - divide two fixed-point numbers
+ * @x:	the dividend
+ * @y:	the divisor
+ *
+ * Return: the result of dividing two fixed-point numbers.  The
+ * result is also a fixed-point number.
+ */
+static inline s64 div_frac(s64 x, s64 y)
+{
+	return div_s64(x << FRAC_BITS, y);
+}
+
+/**
+ * struct power_allocator_params - parameters for the power allocator governor
+ * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
+ *			it needs to be freed on unbind
+ * @err_integral:	accumulated error in the PID controller.
+ * @prev_err:	error in the previous iteration of the PID controller.
+ *		Used to calculate the derivative term.
+ * @trip_switch_on:	first passive trip point of the thermal zone.  The
+ *			governor switches on when this trip point is crossed.
+ *			If the thermal zone only has one passive trip point,
+ *			@trip_switch_on should be INVALID_TRIP.
+ * @trip_max_desired_temperature:	last passive trip point of the thermal
+ *					zone.  The temperature we are
+ *					controlling for.
+ */
+struct power_allocator_params {
+	bool allocated_tzp;
+	s64 err_integral;
+	s32 prev_err;
+	int trip_switch_on;
+	int trip_max_desired_temperature;
+};
+
+/**
+ * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
+ * @tz: thermal zone we are operating in
+ *
+ * For thermal zones that don't provide a sustainable_power in their
+ * thermal_zone_params, estimate one.  Calculate it using the minimum
+ * power of all the cooling devices as that gives a valid value that
+ * can give some degree of functionality.  For optimal performance of
+ * this governor, provide a sustainable_power in the thermal zone's
+ * thermal_zone_params.
+ */
+static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
+{
+	u32 sustainable_power = 0;
+	struct thermal_instance *instance;
+	struct power_allocator_params *params = tz->governor_data;
+
+	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
+		struct thermal_cooling_device *cdev = instance->cdev;
+		u32 min_power;
+
+		if (instance->trip != params->trip_max_desired_temperature)
+			continue;
+
+		if (power_actor_get_min_power(cdev, tz, &min_power))
+			continue;
+
+		sustainable_power += min_power;
+	}
+
+	return sustainable_power;
+}
+
+/**
+ * estimate_pid_constants() - Estimate the constants for the PID controller
+ * @tz:		thermal zone for which to estimate the constants
+ * @sustainable_power:	sustainable power for the thermal zone
+ * @trip_switch_on:	trip point number for the switch on temperature
+ * @control_temp:	target temperature for the power allocator governor
+ * @force:	whether to force the update of the constants
+ *
+ * This function is used to update the estimation of the PID
+ * controller constants in struct thermal_zone_parameters.
+ * Sustainable power is provided in case it was estimated.  The
+ * estimated sustainable_power should not be stored in the
+ * thermal_zone_parameters so it has to be passed explicitly to this
+ * function.
+ *
+ * If @force is not set, the values in the thermal zone's parameters
+ * are preserved if they are not zero.  If @force is set, the values
+ * in thermal zone's parameters are overwritten.
+ */
+static void estimate_pid_constants(struct thermal_zone_device *tz,
+				   u32 sustainable_power, int trip_switch_on,
+				   int control_temp, bool force)
+{
+	int ret;
+	int switch_on_temp;
+	u32 temperature_threshold;
+
+	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
+	if (ret)
+		switch_on_temp = 0;
+
+	temperature_threshold = control_temp - switch_on_temp;
+	/*
+	 * estimate_pid_constants() tries to find appropriate default
+	 * values for thermal zones that don't provide them. If a
+	 * system integrator has configured a thermal zone with two
+	 * passive trip points at the same temperature, that person
+	 * hasn't put any effort to set up the thermal zone properly
+	 * so just give up.
+	 */
+	if (!temperature_threshold)
+		return;
+
+	if (!tz->tzp->k_po || force)
+		tz->tzp->k_po = int_to_frac(sustainable_power) /
+			temperature_threshold;
+
+	if (!tz->tzp->k_pu || force)
+		tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
+			temperature_threshold;
+
+	if (!tz->tzp->k_i || force)
+		tz->tzp->k_i = int_to_frac(10) / 1000;
+	/*
+	 * The default for k_d and integral_cutoff is 0, so we can
+	 * leave them as they are.
+	 */
+}
+
+/**
+ * pid_controller() - PID controller
+ * @tz:	thermal zone we are operating in
+ * @control_temp:	the target temperature in millicelsius
+ * @max_allocatable_power:	maximum allocatable power for this thermal zone
+ *
+ * This PID controller increases the available power budget so that the
+ * temperature of the thermal zone gets as close as possible to
+ * @control_temp and limits the power if it exceeds it.  k_po is the
+ * proportional term when we are overshooting, k_pu is the
+ * proportional term when we are undershooting.  integral_cutoff is a
+ * threshold below which we stop accumulating the error.  The
+ * accumulated error is only valid if the requested power will make
+ * the system warmer.  If the system is mostly idle, there's no point
+ * in accumulating positive error.
+ *
+ * Return: The power budget for the next period.
+ */
+static u32 pid_controller(struct thermal_zone_device *tz,
+			  int control_temp,
+			  u32 max_allocatable_power)
+{
+	s64 p, i, d, power_range;
+	s32 err, max_power_frac;
+	u32 sustainable_power;
+	struct power_allocator_params *params = tz->governor_data;
+
+	max_power_frac = int_to_frac(max_allocatable_power);
+
+	if (tz->tzp->sustainable_power) {
+		sustainable_power = tz->tzp->sustainable_power;
+	} else {
+		sustainable_power = estimate_sustainable_power(tz);
+		estimate_pid_constants(tz, sustainable_power,
+				       params->trip_switch_on, control_temp,
+				       true);
+	}
+
+	err = control_temp - tz->temperature;
+	err = int_to_frac(err);
+
+	/* Calculate the proportional term */
+	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
+
+	/*
+	 * Calculate the integral term
+	 *
+	 * if the error is less than cut off allow integration (but
+	 * the integral is limited to max power)
+	 */
+	i = mul_frac(tz->tzp->k_i, params->err_integral);
+
+	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
+		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
+
+		if (abs(i_next) < max_power_frac) {
+			i = i_next;
+			params->err_integral += err;
+		}
+	}
+
+	/*
+	 * Calculate the derivative term
+	 *
+	 * We do err - prev_err, so with a positive k_d, a decreasing
+	 * error (i.e. driving closer to the line) results in less
+	 * power being applied, slowing down the controller)
+	 */
+	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
+	d = div_frac(d, tz->passive_delay);
+	params->prev_err = err;
+
+	power_range = p + i + d;
+
+	/* feed-forward the known sustainable dissipatable power */
+	power_range = sustainable_power + frac_to_int(power_range);
+
+	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
+
+	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
+					  frac_to_int(params->err_integral),
+					  frac_to_int(p), frac_to_int(i),
+					  frac_to_int(d), power_range);
+
+	return power_range;
+}
+
+/**
+ * divvy_up_power() - divvy the allocated power between the actors
+ * @req_power:	each actor's requested power
+ * @max_power:	each actor's maximum available power
+ * @num_actors:	size of the @req_power, @max_power and @granted_power's array
+ * @total_req_power: sum of @req_power
+ * @power_range:	total allocated power
+ * @granted_power:	output array: each actor's granted power
+ * @extra_actor_power:	an appropriately sized array to be used in the
+ *			function as temporary storage of the extra power given
+ *			to the actors
+ *
+ * This function divides the total allocated power (@power_range)
+ * fairly between the actors.  It first tries to give each actor a
+ * share of the @power_range according to how much power it requested
+ * compared to the rest of the actors.  For example, if only one actor
+ * requests power, then it receives all the @power_range.  If
+ * three actors each requests 1mW, each receives a third of the
+ * @power_range.
+ *
+ * If any actor received more than their maximum power, then that
+ * surplus is re-divvied among the actors based on how far they are
+ * from their respective maximums.
+ *
+ * Granted power for each actor is written to @granted_power, which
+ * should've been allocated by the calling function.
+ */
+static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
+			   u32 total_req_power, u32 power_range,
+			   u32 *granted_power, u32 *extra_actor_power)
+{
+	u32 extra_power, capped_extra_power;
+	int i;
+
+	/*
+	 * Prevent division by 0 if none of the actors request power.
+	 */
+	if (!total_req_power)
+		total_req_power = 1;
+
+	capped_extra_power = 0;
+	extra_power = 0;
+	for (i = 0; i < num_actors; i++) {
+		u64 req_range = (u64)req_power[i] * power_range;
+
+		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
+							 total_req_power);
+
+		if (granted_power[i] > max_power[i]) {
+			extra_power += granted_power[i] - max_power[i];
+			granted_power[i] = max_power[i];
+		}
+
+		extra_actor_power[i] = max_power[i] - granted_power[i];
+		capped_extra_power += extra_actor_power[i];
+	}
+
+	if (!extra_power)
+		return;
+
+	/*
+	 * Re-divvy the reclaimed extra among actors based on
+	 * how far they are from the max
+	 */
+	extra_power = min(extra_power, capped_extra_power);
+	if (capped_extra_power > 0)
+		for (i = 0; i < num_actors; i++)
+			granted_power[i] += (extra_actor_power[i] *
+					extra_power) / capped_extra_power;
+}
+
+static int allocate_power(struct thermal_zone_device *tz,
+			  int control_temp)
+{
+	struct thermal_instance *instance;
+	struct power_allocator_params *params = tz->governor_data;
+	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
+	u32 *weighted_req_power;
+	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
+	u32 total_granted_power, power_range;
+	int i, num_actors, total_weight, ret = 0;
+	int trip_max_desired_temperature = params->trip_max_desired_temperature;
+
+	mutex_lock(&tz->lock);
+
+	num_actors = 0;
+	total_weight = 0;
+	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
+		if ((instance->trip == trip_max_desired_temperature) &&
+		    cdev_is_power_actor(instance->cdev)) {
+			num_actors++;
+			total_weight += instance->weight;
+		}
+	}
+
+	if (!num_actors) {
+		ret = -ENODEV;
+		goto unlock;
+	}
+
+	/*
+	 * We need to allocate five arrays of the same size:
+	 * req_power, max_power, granted_power, extra_actor_power and
+	 * weighted_req_power.  They are going to be needed until this
+	 * function returns.  Allocate them all in one go to simplify
+	 * the allocation and deallocation logic.
+	 */
+	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
+	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
+	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
+	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
+	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
+	if (!req_power) {
+		ret = -ENOMEM;
+		goto unlock;
+	}
+
+	max_power = &req_power[num_actors];
+	granted_power = &req_power[2 * num_actors];
+	extra_actor_power = &req_power[3 * num_actors];
+	weighted_req_power = &req_power[4 * num_actors];
+
+	i = 0;
+	total_weighted_req_power = 0;
+	total_req_power = 0;
+	max_allocatable_power = 0;
+
+	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
+		int weight;
+		struct thermal_cooling_device *cdev = instance->cdev;
+
+		if (instance->trip != trip_max_desired_temperature)
+			continue;
+
+		if (!cdev_is_power_actor(cdev))
+			continue;
+
+		if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
+			continue;
+
+		if (!total_weight)
+			weight = 1 << FRAC_BITS;
+		else
+			weight = instance->weight;
+
+		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
+
+		if (power_actor_get_max_power(cdev, tz, &max_power[i]))
+			continue;
+
+		total_req_power += req_power[i];
+		max_allocatable_power += max_power[i];
+		total_weighted_req_power += weighted_req_power[i];
+
+		i++;
+	}
+
+	power_range = pid_controller(tz, control_temp, max_allocatable_power);
+
+	divvy_up_power(weighted_req_power, max_power, num_actors,
+		       total_weighted_req_power, power_range, granted_power,
+		       extra_actor_power);
+
+	total_granted_power = 0;
+	i = 0;
+	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
+		if (instance->trip != trip_max_desired_temperature)
+			continue;
+
+		if (!cdev_is_power_actor(instance->cdev))
+			continue;
+
+		power_actor_set_power(instance->cdev, instance,
+				      granted_power[i]);
+		total_granted_power += granted_power[i];
+
+		i++;
+	}
+
+	trace_thermal_power_allocator(tz, req_power, total_req_power,
+				      granted_power, total_granted_power,
+				      num_actors, power_range,
+				      max_allocatable_power, tz->temperature,
+				      control_temp - tz->temperature);
+
+	kfree(req_power);
+unlock:
+	mutex_unlock(&tz->lock);
+
+	return ret;
+}
+
+/**
+ * get_governor_trips() - get the number of the two trip points that are key for this governor
+ * @tz:	thermal zone to operate on
+ * @params:	pointer to private data for this governor
+ *
+ * The power allocator governor works optimally with two trips points:
+ * a "switch on" trip point and a "maximum desired temperature".  These
+ * are defined as the first and last passive trip points.
+ *
+ * If there is only one trip point, then that's considered to be the
+ * "maximum desired temperature" trip point and the governor is always
+ * on.  If there are no passive or active trip points, then the
+ * governor won't do anything.  In fact, its throttle function
+ * won't be called at all.
+ */
+static void get_governor_trips(struct thermal_zone_device *tz,
+			       struct power_allocator_params *params)
+{
+	int i, last_active, last_passive;
+	bool found_first_passive;
+
+	found_first_passive = false;
+	last_active = INVALID_TRIP;
+	last_passive = INVALID_TRIP;
+
+	for (i = 0; i < tz->trips; i++) {
+		enum thermal_trip_type type;
+		int ret;
+
+		ret = tz->ops->get_trip_type(tz, i, &type);
+		if (ret) {
+			dev_warn(&tz->device,
+				 "Failed to get trip point %d type: %d\n", i,
+				 ret);
+			continue;
+		}
+
+		if (type == THERMAL_TRIP_PASSIVE) {
+			if (!found_first_passive) {
+				params->trip_switch_on = i;
+				found_first_passive = true;
+			} else  {
+				last_passive = i;
+			}
+		} else if (type == THERMAL_TRIP_ACTIVE) {
+			last_active = i;
+		} else {
+			break;
+		}
+	}
+
+	if (last_passive != INVALID_TRIP) {
+		params->trip_max_desired_temperature = last_passive;
+	} else if (found_first_passive) {
+		params->trip_max_desired_temperature = params->trip_switch_on;
+		params->trip_switch_on = INVALID_TRIP;
+	} else {
+		params->trip_switch_on = INVALID_TRIP;
+		params->trip_max_desired_temperature = last_active;
+	}
+}
+
+static void reset_pid_controller(struct power_allocator_params *params)
+{
+	params->err_integral = 0;
+	params->prev_err = 0;
+}
+
+static void allow_maximum_power(struct thermal_zone_device *tz)
+{
+	struct thermal_instance *instance;
+	struct power_allocator_params *params = tz->governor_data;
+
+	mutex_lock(&tz->lock);
+	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
+		if ((instance->trip != params->trip_max_desired_temperature) ||
+		    (!cdev_is_power_actor(instance->cdev)))
+			continue;
+
+		instance->target = 0;
+		mutex_lock(&instance->cdev->lock);
+		instance->cdev->updated = false;
+		mutex_unlock(&instance->cdev->lock);
+		thermal_cdev_update(instance->cdev);
+	}
+	mutex_unlock(&tz->lock);
+}
+
+/**
+ * power_allocator_bind() - bind the power_allocator governor to a thermal zone
+ * @tz:	thermal zone to bind it to
+ *
+ * Initialize the PID controller parameters and bind it to the thermal
+ * zone.
+ *
+ * Return: 0 on success, or -ENOMEM if we ran out of memory.
+ */
+static int power_allocator_bind(struct thermal_zone_device *tz)
+{
+	int ret;
+	struct power_allocator_params *params;
+	int control_temp;
+
+	params = kzalloc(sizeof(*params), GFP_KERNEL);
+	if (!params)
+		return -ENOMEM;
+
+	if (!tz->tzp) {
+		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
+		if (!tz->tzp) {
+			ret = -ENOMEM;
+			goto free_params;
+		}
+
+		params->allocated_tzp = true;
+	}
+
+	if (!tz->tzp->sustainable_power)
+		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
+
+	get_governor_trips(tz, params);
+
+	if (tz->trips > 0) {
+		ret = tz->ops->get_trip_temp(tz,
+					params->trip_max_desired_temperature,
+					&control_temp);
+		if (!ret)
+			estimate_pid_constants(tz, tz->tzp->sustainable_power,
+					       params->trip_switch_on,
+					       control_temp, false);
+	}
+
+	reset_pid_controller(params);
+
+	tz->governor_data = params;
+
+	return 0;
+
+free_params:
+	kfree(params);
+
+	return ret;
+}
+
+static void power_allocator_unbind(struct thermal_zone_device *tz)
+{
+	struct power_allocator_params *params = tz->governor_data;
+
+	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
+
+	if (params->allocated_tzp) {
+		kfree(tz->tzp);
+		tz->tzp = NULL;
+	}
+
+	kfree(tz->governor_data);
+	tz->governor_data = NULL;
+}
+
+static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
+{
+	int ret;
+	int switch_on_temp, control_temp;
+	struct power_allocator_params *params = tz->governor_data;
+
+	/*
+	 * We get called for every trip point but we only need to do
+	 * our calculations once
+	 */
+	if (trip != params->trip_max_desired_temperature)
+		return 0;
+
+	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
+				     &switch_on_temp);
+	if (!ret && (tz->temperature < switch_on_temp)) {
+		tz->passive = 0;
+		reset_pid_controller(params);
+		allow_maximum_power(tz);
+		return 0;
+	}
+
+	tz->passive = 1;
+
+	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
+				&control_temp);
+	if (ret) {
+		dev_warn(&tz->device,
+			 "Failed to get the maximum desired temperature: %d\n",
+			 ret);
+		return ret;
+	}
+
+	return allocate_power(tz, control_temp);
+}
+
+static struct thermal_governor thermal_gov_power_allocator = {
+	.name		= "power_allocator",
+	.bind_to_tz	= power_allocator_bind,
+	.unbind_from_tz	= power_allocator_unbind,
+	.throttle	= power_allocator_throttle,
+};
+
+int thermal_gov_power_allocator_register(void)
+{
+	return thermal_register_governor(&thermal_gov_power_allocator);
+}
+
+void thermal_gov_power_allocator_unregister(void)
+{
+	thermal_unregister_governor(&thermal_gov_power_allocator);
+}