v4.19.13 snapshot.
diff --git a/drivers/spi/spi-pxa2xx.c b/drivers/spi/spi-pxa2xx.c
new file mode 100644
index 0000000..14f4ea5
--- /dev/null
+++ b/drivers/spi/spi-pxa2xx.c
@@ -0,0 +1,1867 @@
+/*
+ * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
+ * Copyright (C) 2013, Intel Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/bitops.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/ioport.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/platform_device.h>
+#include <linux/spi/pxa2xx_spi.h>
+#include <linux/spi/spi.h>
+#include <linux/delay.h>
+#include <linux/gpio.h>
+#include <linux/gpio/consumer.h>
+#include <linux/slab.h>
+#include <linux/clk.h>
+#include <linux/pm_runtime.h>
+#include <linux/acpi.h>
+
+#include "spi-pxa2xx.h"
+
+MODULE_AUTHOR("Stephen Street");
+MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:pxa2xx-spi");
+
+#define TIMOUT_DFLT		1000
+
+/*
+ * for testing SSCR1 changes that require SSP restart, basically
+ * everything except the service and interrupt enables, the pxa270 developer
+ * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
+ * list, but the PXA255 dev man says all bits without really meaning the
+ * service and interrupt enables
+ */
+#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
+				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
+				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
+				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
+				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
+				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
+
+#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
+				| QUARK_X1000_SSCR1_EFWR	\
+				| QUARK_X1000_SSCR1_RFT		\
+				| QUARK_X1000_SSCR1_TFT		\
+				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
+
+#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
+				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
+				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
+				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
+				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
+				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
+
+#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
+#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
+#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
+#define LPSS_CAPS_CS_EN_SHIFT			9
+#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
+
+struct lpss_config {
+	/* LPSS offset from drv_data->ioaddr */
+	unsigned offset;
+	/* Register offsets from drv_data->lpss_base or -1 */
+	int reg_general;
+	int reg_ssp;
+	int reg_cs_ctrl;
+	int reg_capabilities;
+	/* FIFO thresholds */
+	u32 rx_threshold;
+	u32 tx_threshold_lo;
+	u32 tx_threshold_hi;
+	/* Chip select control */
+	unsigned cs_sel_shift;
+	unsigned cs_sel_mask;
+	unsigned cs_num;
+};
+
+/* Keep these sorted with enum pxa_ssp_type */
+static const struct lpss_config lpss_platforms[] = {
+	{	/* LPSS_LPT_SSP */
+		.offset = 0x800,
+		.reg_general = 0x08,
+		.reg_ssp = 0x0c,
+		.reg_cs_ctrl = 0x18,
+		.reg_capabilities = -1,
+		.rx_threshold = 64,
+		.tx_threshold_lo = 160,
+		.tx_threshold_hi = 224,
+	},
+	{	/* LPSS_BYT_SSP */
+		.offset = 0x400,
+		.reg_general = 0x08,
+		.reg_ssp = 0x0c,
+		.reg_cs_ctrl = 0x18,
+		.reg_capabilities = -1,
+		.rx_threshold = 64,
+		.tx_threshold_lo = 160,
+		.tx_threshold_hi = 224,
+	},
+	{	/* LPSS_BSW_SSP */
+		.offset = 0x400,
+		.reg_general = 0x08,
+		.reg_ssp = 0x0c,
+		.reg_cs_ctrl = 0x18,
+		.reg_capabilities = -1,
+		.rx_threshold = 64,
+		.tx_threshold_lo = 160,
+		.tx_threshold_hi = 224,
+		.cs_sel_shift = 2,
+		.cs_sel_mask = 1 << 2,
+		.cs_num = 2,
+	},
+	{	/* LPSS_SPT_SSP */
+		.offset = 0x200,
+		.reg_general = -1,
+		.reg_ssp = 0x20,
+		.reg_cs_ctrl = 0x24,
+		.reg_capabilities = -1,
+		.rx_threshold = 1,
+		.tx_threshold_lo = 32,
+		.tx_threshold_hi = 56,
+	},
+	{	/* LPSS_BXT_SSP */
+		.offset = 0x200,
+		.reg_general = -1,
+		.reg_ssp = 0x20,
+		.reg_cs_ctrl = 0x24,
+		.reg_capabilities = 0xfc,
+		.rx_threshold = 1,
+		.tx_threshold_lo = 16,
+		.tx_threshold_hi = 48,
+		.cs_sel_shift = 8,
+		.cs_sel_mask = 3 << 8,
+	},
+	{	/* LPSS_CNL_SSP */
+		.offset = 0x200,
+		.reg_general = -1,
+		.reg_ssp = 0x20,
+		.reg_cs_ctrl = 0x24,
+		.reg_capabilities = 0xfc,
+		.rx_threshold = 1,
+		.tx_threshold_lo = 32,
+		.tx_threshold_hi = 56,
+		.cs_sel_shift = 8,
+		.cs_sel_mask = 3 << 8,
+	},
+};
+
+static inline const struct lpss_config
+*lpss_get_config(const struct driver_data *drv_data)
+{
+	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
+}
+
+static bool is_lpss_ssp(const struct driver_data *drv_data)
+{
+	switch (drv_data->ssp_type) {
+	case LPSS_LPT_SSP:
+	case LPSS_BYT_SSP:
+	case LPSS_BSW_SSP:
+	case LPSS_SPT_SSP:
+	case LPSS_BXT_SSP:
+	case LPSS_CNL_SSP:
+		return true;
+	default:
+		return false;
+	}
+}
+
+static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
+{
+	return drv_data->ssp_type == QUARK_X1000_SSP;
+}
+
+static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
+{
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		return QUARK_X1000_SSCR1_CHANGE_MASK;
+	case CE4100_SSP:
+		return CE4100_SSCR1_CHANGE_MASK;
+	default:
+		return SSCR1_CHANGE_MASK;
+	}
+}
+
+static u32
+pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
+{
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		return RX_THRESH_QUARK_X1000_DFLT;
+	case CE4100_SSP:
+		return RX_THRESH_CE4100_DFLT;
+	default:
+		return RX_THRESH_DFLT;
+	}
+}
+
+static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
+{
+	u32 mask;
+
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		mask = QUARK_X1000_SSSR_TFL_MASK;
+		break;
+	case CE4100_SSP:
+		mask = CE4100_SSSR_TFL_MASK;
+		break;
+	default:
+		mask = SSSR_TFL_MASK;
+		break;
+	}
+
+	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
+}
+
+static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
+				     u32 *sccr1_reg)
+{
+	u32 mask;
+
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		mask = QUARK_X1000_SSCR1_RFT;
+		break;
+	case CE4100_SSP:
+		mask = CE4100_SSCR1_RFT;
+		break;
+	default:
+		mask = SSCR1_RFT;
+		break;
+	}
+	*sccr1_reg &= ~mask;
+}
+
+static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
+				   u32 *sccr1_reg, u32 threshold)
+{
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
+		break;
+	case CE4100_SSP:
+		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
+		break;
+	default:
+		*sccr1_reg |= SSCR1_RxTresh(threshold);
+		break;
+	}
+}
+
+static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
+				  u32 clk_div, u8 bits)
+{
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		return clk_div
+			| QUARK_X1000_SSCR0_Motorola
+			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
+			| SSCR0_SSE;
+	default:
+		return clk_div
+			| SSCR0_Motorola
+			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
+			| SSCR0_SSE
+			| (bits > 16 ? SSCR0_EDSS : 0);
+	}
+}
+
+/*
+ * Read and write LPSS SSP private registers. Caller must first check that
+ * is_lpss_ssp() returns true before these can be called.
+ */
+static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
+{
+	WARN_ON(!drv_data->lpss_base);
+	return readl(drv_data->lpss_base + offset);
+}
+
+static void __lpss_ssp_write_priv(struct driver_data *drv_data,
+				  unsigned offset, u32 value)
+{
+	WARN_ON(!drv_data->lpss_base);
+	writel(value, drv_data->lpss_base + offset);
+}
+
+/*
+ * lpss_ssp_setup - perform LPSS SSP specific setup
+ * @drv_data: pointer to the driver private data
+ *
+ * Perform LPSS SSP specific setup. This function must be called first if
+ * one is going to use LPSS SSP private registers.
+ */
+static void lpss_ssp_setup(struct driver_data *drv_data)
+{
+	const struct lpss_config *config;
+	u32 value;
+
+	config = lpss_get_config(drv_data);
+	drv_data->lpss_base = drv_data->ioaddr + config->offset;
+
+	/* Enable software chip select control */
+	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
+	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
+	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
+	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
+
+	/* Enable multiblock DMA transfers */
+	if (drv_data->master_info->enable_dma) {
+		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
+
+		if (config->reg_general >= 0) {
+			value = __lpss_ssp_read_priv(drv_data,
+						     config->reg_general);
+			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
+			__lpss_ssp_write_priv(drv_data,
+					      config->reg_general, value);
+		}
+	}
+}
+
+static void lpss_ssp_select_cs(struct spi_device *spi,
+			       const struct lpss_config *config)
+{
+	struct driver_data *drv_data =
+		spi_controller_get_devdata(spi->controller);
+	u32 value, cs;
+
+	if (!config->cs_sel_mask)
+		return;
+
+	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
+
+	cs = spi->chip_select;
+	cs <<= config->cs_sel_shift;
+	if (cs != (value & config->cs_sel_mask)) {
+		/*
+		 * When switching another chip select output active the
+		 * output must be selected first and wait 2 ssp_clk cycles
+		 * before changing state to active. Otherwise a short
+		 * glitch will occur on the previous chip select since
+		 * output select is latched but state control is not.
+		 */
+		value &= ~config->cs_sel_mask;
+		value |= cs;
+		__lpss_ssp_write_priv(drv_data,
+				      config->reg_cs_ctrl, value);
+		ndelay(1000000000 /
+		       (drv_data->master->max_speed_hz / 2));
+	}
+}
+
+static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
+{
+	struct driver_data *drv_data =
+		spi_controller_get_devdata(spi->controller);
+	const struct lpss_config *config;
+	u32 value;
+
+	config = lpss_get_config(drv_data);
+
+	if (enable)
+		lpss_ssp_select_cs(spi, config);
+
+	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
+	if (enable)
+		value &= ~LPSS_CS_CONTROL_CS_HIGH;
+	else
+		value |= LPSS_CS_CONTROL_CS_HIGH;
+	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
+}
+
+static void cs_assert(struct spi_device *spi)
+{
+	struct chip_data *chip = spi_get_ctldata(spi);
+	struct driver_data *drv_data =
+		spi_controller_get_devdata(spi->controller);
+
+	if (drv_data->ssp_type == CE4100_SSP) {
+		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
+		return;
+	}
+
+	if (chip->cs_control) {
+		chip->cs_control(PXA2XX_CS_ASSERT);
+		return;
+	}
+
+	if (chip->gpiod_cs) {
+		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
+		return;
+	}
+
+	if (is_lpss_ssp(drv_data))
+		lpss_ssp_cs_control(spi, true);
+}
+
+static void cs_deassert(struct spi_device *spi)
+{
+	struct chip_data *chip = spi_get_ctldata(spi);
+	struct driver_data *drv_data =
+		spi_controller_get_devdata(spi->controller);
+	unsigned long timeout;
+
+	if (drv_data->ssp_type == CE4100_SSP)
+		return;
+
+	/* Wait until SSP becomes idle before deasserting the CS */
+	timeout = jiffies + msecs_to_jiffies(10);
+	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
+	       !time_after(jiffies, timeout))
+		cpu_relax();
+
+	if (chip->cs_control) {
+		chip->cs_control(PXA2XX_CS_DEASSERT);
+		return;
+	}
+
+	if (chip->gpiod_cs) {
+		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
+		return;
+	}
+
+	if (is_lpss_ssp(drv_data))
+		lpss_ssp_cs_control(spi, false);
+}
+
+static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
+{
+	if (level)
+		cs_deassert(spi);
+	else
+		cs_assert(spi);
+}
+
+int pxa2xx_spi_flush(struct driver_data *drv_data)
+{
+	unsigned long limit = loops_per_jiffy << 1;
+
+	do {
+		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
+			pxa2xx_spi_read(drv_data, SSDR);
+	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
+	write_SSSR_CS(drv_data, SSSR_ROR);
+
+	return limit;
+}
+
+static int null_writer(struct driver_data *drv_data)
+{
+	u8 n_bytes = drv_data->n_bytes;
+
+	if (pxa2xx_spi_txfifo_full(drv_data)
+		|| (drv_data->tx == drv_data->tx_end))
+		return 0;
+
+	pxa2xx_spi_write(drv_data, SSDR, 0);
+	drv_data->tx += n_bytes;
+
+	return 1;
+}
+
+static int null_reader(struct driver_data *drv_data)
+{
+	u8 n_bytes = drv_data->n_bytes;
+
+	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
+	       && (drv_data->rx < drv_data->rx_end)) {
+		pxa2xx_spi_read(drv_data, SSDR);
+		drv_data->rx += n_bytes;
+	}
+
+	return drv_data->rx == drv_data->rx_end;
+}
+
+static int u8_writer(struct driver_data *drv_data)
+{
+	if (pxa2xx_spi_txfifo_full(drv_data)
+		|| (drv_data->tx == drv_data->tx_end))
+		return 0;
+
+	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
+	++drv_data->tx;
+
+	return 1;
+}
+
+static int u8_reader(struct driver_data *drv_data)
+{
+	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
+	       && (drv_data->rx < drv_data->rx_end)) {
+		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
+		++drv_data->rx;
+	}
+
+	return drv_data->rx == drv_data->rx_end;
+}
+
+static int u16_writer(struct driver_data *drv_data)
+{
+	if (pxa2xx_spi_txfifo_full(drv_data)
+		|| (drv_data->tx == drv_data->tx_end))
+		return 0;
+
+	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
+	drv_data->tx += 2;
+
+	return 1;
+}
+
+static int u16_reader(struct driver_data *drv_data)
+{
+	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
+	       && (drv_data->rx < drv_data->rx_end)) {
+		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
+		drv_data->rx += 2;
+	}
+
+	return drv_data->rx == drv_data->rx_end;
+}
+
+static int u32_writer(struct driver_data *drv_data)
+{
+	if (pxa2xx_spi_txfifo_full(drv_data)
+		|| (drv_data->tx == drv_data->tx_end))
+		return 0;
+
+	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
+	drv_data->tx += 4;
+
+	return 1;
+}
+
+static int u32_reader(struct driver_data *drv_data)
+{
+	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
+	       && (drv_data->rx < drv_data->rx_end)) {
+		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
+		drv_data->rx += 4;
+	}
+
+	return drv_data->rx == drv_data->rx_end;
+}
+
+static void reset_sccr1(struct driver_data *drv_data)
+{
+	struct chip_data *chip =
+		spi_get_ctldata(drv_data->master->cur_msg->spi);
+	u32 sccr1_reg;
+
+	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
+		break;
+	case CE4100_SSP:
+		sccr1_reg &= ~CE4100_SSCR1_RFT;
+		break;
+	default:
+		sccr1_reg &= ~SSCR1_RFT;
+		break;
+	}
+	sccr1_reg |= chip->threshold;
+	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
+}
+
+static void int_error_stop(struct driver_data *drv_data, const char* msg)
+{
+	/* Stop and reset SSP */
+	write_SSSR_CS(drv_data, drv_data->clear_sr);
+	reset_sccr1(drv_data);
+	if (!pxa25x_ssp_comp(drv_data))
+		pxa2xx_spi_write(drv_data, SSTO, 0);
+	pxa2xx_spi_flush(drv_data);
+	pxa2xx_spi_write(drv_data, SSCR0,
+			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
+
+	dev_err(&drv_data->pdev->dev, "%s\n", msg);
+
+	drv_data->master->cur_msg->status = -EIO;
+	spi_finalize_current_transfer(drv_data->master);
+}
+
+static void int_transfer_complete(struct driver_data *drv_data)
+{
+	/* Clear and disable interrupts */
+	write_SSSR_CS(drv_data, drv_data->clear_sr);
+	reset_sccr1(drv_data);
+	if (!pxa25x_ssp_comp(drv_data))
+		pxa2xx_spi_write(drv_data, SSTO, 0);
+
+	spi_finalize_current_transfer(drv_data->master);
+}
+
+static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
+{
+	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
+		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
+
+	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
+
+	if (irq_status & SSSR_ROR) {
+		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
+		return IRQ_HANDLED;
+	}
+
+	if (irq_status & SSSR_TINT) {
+		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
+		if (drv_data->read(drv_data)) {
+			int_transfer_complete(drv_data);
+			return IRQ_HANDLED;
+		}
+	}
+
+	/* Drain rx fifo, Fill tx fifo and prevent overruns */
+	do {
+		if (drv_data->read(drv_data)) {
+			int_transfer_complete(drv_data);
+			return IRQ_HANDLED;
+		}
+	} while (drv_data->write(drv_data));
+
+	if (drv_data->read(drv_data)) {
+		int_transfer_complete(drv_data);
+		return IRQ_HANDLED;
+	}
+
+	if (drv_data->tx == drv_data->tx_end) {
+		u32 bytes_left;
+		u32 sccr1_reg;
+
+		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
+		sccr1_reg &= ~SSCR1_TIE;
+
+		/*
+		 * PXA25x_SSP has no timeout, set up rx threshould for the
+		 * remaining RX bytes.
+		 */
+		if (pxa25x_ssp_comp(drv_data)) {
+			u32 rx_thre;
+
+			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
+
+			bytes_left = drv_data->rx_end - drv_data->rx;
+			switch (drv_data->n_bytes) {
+			case 4:
+				bytes_left >>= 1;
+			case 2:
+				bytes_left >>= 1;
+			}
+
+			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
+			if (rx_thre > bytes_left)
+				rx_thre = bytes_left;
+
+			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
+		}
+		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
+	}
+
+	/* We did something */
+	return IRQ_HANDLED;
+}
+
+static void handle_bad_msg(struct driver_data *drv_data)
+{
+	pxa2xx_spi_write(drv_data, SSCR0,
+			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
+	pxa2xx_spi_write(drv_data, SSCR1,
+			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
+	if (!pxa25x_ssp_comp(drv_data))
+		pxa2xx_spi_write(drv_data, SSTO, 0);
+	write_SSSR_CS(drv_data, drv_data->clear_sr);
+
+	dev_err(&drv_data->pdev->dev,
+		"bad message state in interrupt handler\n");
+}
+
+static irqreturn_t ssp_int(int irq, void *dev_id)
+{
+	struct driver_data *drv_data = dev_id;
+	u32 sccr1_reg;
+	u32 mask = drv_data->mask_sr;
+	u32 status;
+
+	/*
+	 * The IRQ might be shared with other peripherals so we must first
+	 * check that are we RPM suspended or not. If we are we assume that
+	 * the IRQ was not for us (we shouldn't be RPM suspended when the
+	 * interrupt is enabled).
+	 */
+	if (pm_runtime_suspended(&drv_data->pdev->dev))
+		return IRQ_NONE;
+
+	/*
+	 * If the device is not yet in RPM suspended state and we get an
+	 * interrupt that is meant for another device, check if status bits
+	 * are all set to one. That means that the device is already
+	 * powered off.
+	 */
+	status = pxa2xx_spi_read(drv_data, SSSR);
+	if (status == ~0)
+		return IRQ_NONE;
+
+	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
+
+	/* Ignore possible writes if we don't need to write */
+	if (!(sccr1_reg & SSCR1_TIE))
+		mask &= ~SSSR_TFS;
+
+	/* Ignore RX timeout interrupt if it is disabled */
+	if (!(sccr1_reg & SSCR1_TINTE))
+		mask &= ~SSSR_TINT;
+
+	if (!(status & mask))
+		return IRQ_NONE;
+
+	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
+	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
+
+	if (!drv_data->master->cur_msg) {
+		handle_bad_msg(drv_data);
+		/* Never fail */
+		return IRQ_HANDLED;
+	}
+
+	return drv_data->transfer_handler(drv_data);
+}
+
+/*
+ * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
+ * input frequency by fractions of 2^24. It also has a divider by 5.
+ *
+ * There are formulas to get baud rate value for given input frequency and
+ * divider parameters, such as DDS_CLK_RATE and SCR:
+ *
+ * Fsys = 200MHz
+ *
+ * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
+ * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
+ *
+ * DDS_CLK_RATE either 2^n or 2^n / 5.
+ * SCR is in range 0 .. 255
+ *
+ * Divisor = 5^i * 2^j * 2 * k
+ *       i = [0, 1]      i = 1 iff j = 0 or j > 3
+ *       j = [0, 23]     j = 0 iff i = 1
+ *       k = [1, 256]
+ * Special case: j = 0, i = 1: Divisor = 2 / 5
+ *
+ * Accordingly to the specification the recommended values for DDS_CLK_RATE
+ * are:
+ *	Case 1:		2^n, n = [0, 23]
+ *	Case 2:		2^24 * 2 / 5 (0x666666)
+ *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
+ *
+ * In all cases the lowest possible value is better.
+ *
+ * The function calculates parameters for all cases and chooses the one closest
+ * to the asked baud rate.
+ */
+static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
+{
+	unsigned long xtal = 200000000;
+	unsigned long fref = xtal / 2;		/* mandatory division by 2,
+						   see (2) */
+						/* case 3 */
+	unsigned long fref1 = fref / 2;		/* case 1 */
+	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
+	unsigned long scale;
+	unsigned long q, q1, q2;
+	long r, r1, r2;
+	u32 mul;
+
+	/* Case 1 */
+
+	/* Set initial value for DDS_CLK_RATE */
+	mul = (1 << 24) >> 1;
+
+	/* Calculate initial quot */
+	q1 = DIV_ROUND_UP(fref1, rate);
+
+	/* Scale q1 if it's too big */
+	if (q1 > 256) {
+		/* Scale q1 to range [1, 512] */
+		scale = fls_long(q1 - 1);
+		if (scale > 9) {
+			q1 >>= scale - 9;
+			mul >>= scale - 9;
+		}
+
+		/* Round the result if we have a remainder */
+		q1 += q1 & 1;
+	}
+
+	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
+	scale = __ffs(q1);
+	q1 >>= scale;
+	mul >>= scale;
+
+	/* Get the remainder */
+	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
+
+	/* Case 2 */
+
+	q2 = DIV_ROUND_UP(fref2, rate);
+	r2 = abs(fref2 / q2 - rate);
+
+	/*
+	 * Choose the best between two: less remainder we have the better. We
+	 * can't go case 2 if q2 is greater than 256 since SCR register can
+	 * hold only values 0 .. 255.
+	 */
+	if (r2 >= r1 || q2 > 256) {
+		/* case 1 is better */
+		r = r1;
+		q = q1;
+	} else {
+		/* case 2 is better */
+		r = r2;
+		q = q2;
+		mul = (1 << 24) * 2 / 5;
+	}
+
+	/* Check case 3 only if the divisor is big enough */
+	if (fref / rate >= 80) {
+		u64 fssp;
+		u32 m;
+
+		/* Calculate initial quot */
+		q1 = DIV_ROUND_UP(fref, rate);
+		m = (1 << 24) / q1;
+
+		/* Get the remainder */
+		fssp = (u64)fref * m;
+		do_div(fssp, 1 << 24);
+		r1 = abs(fssp - rate);
+
+		/* Choose this one if it suits better */
+		if (r1 < r) {
+			/* case 3 is better */
+			q = 1;
+			mul = m;
+		}
+	}
+
+	*dds = mul;
+	return q - 1;
+}
+
+static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
+{
+	unsigned long ssp_clk = drv_data->master->max_speed_hz;
+	const struct ssp_device *ssp = drv_data->ssp;
+
+	rate = min_t(int, ssp_clk, rate);
+
+	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
+		return (ssp_clk / (2 * rate) - 1) & 0xff;
+	else
+		return (ssp_clk / rate - 1) & 0xfff;
+}
+
+static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
+					   int rate)
+{
+	struct chip_data *chip =
+		spi_get_ctldata(drv_data->master->cur_msg->spi);
+	unsigned int clk_div;
+
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
+		break;
+	default:
+		clk_div = ssp_get_clk_div(drv_data, rate);
+		break;
+	}
+	return clk_div << 8;
+}
+
+static bool pxa2xx_spi_can_dma(struct spi_controller *master,
+			       struct spi_device *spi,
+			       struct spi_transfer *xfer)
+{
+	struct chip_data *chip = spi_get_ctldata(spi);
+
+	return chip->enable_dma &&
+	       xfer->len <= MAX_DMA_LEN &&
+	       xfer->len >= chip->dma_burst_size;
+}
+
+static int pxa2xx_spi_transfer_one(struct spi_controller *master,
+				   struct spi_device *spi,
+				   struct spi_transfer *transfer)
+{
+	struct driver_data *drv_data = spi_controller_get_devdata(master);
+	struct spi_message *message = master->cur_msg;
+	struct chip_data *chip = spi_get_ctldata(message->spi);
+	u32 dma_thresh = chip->dma_threshold;
+	u32 dma_burst = chip->dma_burst_size;
+	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
+	u32 clk_div;
+	u8 bits;
+	u32 speed;
+	u32 cr0;
+	u32 cr1;
+	int err;
+	int dma_mapped;
+
+	/* Check if we can DMA this transfer */
+	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
+
+		/* reject already-mapped transfers; PIO won't always work */
+		if (message->is_dma_mapped
+				|| transfer->rx_dma || transfer->tx_dma) {
+			dev_err(&drv_data->pdev->dev,
+				"Mapped transfer length of %u is greater than %d\n",
+				transfer->len, MAX_DMA_LEN);
+			return -EINVAL;
+		}
+
+		/* warn ... we force this to PIO mode */
+		dev_warn_ratelimited(&message->spi->dev,
+				     "DMA disabled for transfer length %ld greater than %d\n",
+				     (long)transfer->len, MAX_DMA_LEN);
+	}
+
+	/* Setup the transfer state based on the type of transfer */
+	if (pxa2xx_spi_flush(drv_data) == 0) {
+		dev_err(&drv_data->pdev->dev, "Flush failed\n");
+		return -EIO;
+	}
+	drv_data->n_bytes = chip->n_bytes;
+	drv_data->tx = (void *)transfer->tx_buf;
+	drv_data->tx_end = drv_data->tx + transfer->len;
+	drv_data->rx = transfer->rx_buf;
+	drv_data->rx_end = drv_data->rx + transfer->len;
+	drv_data->write = drv_data->tx ? chip->write : null_writer;
+	drv_data->read = drv_data->rx ? chip->read : null_reader;
+
+	/* Change speed and bit per word on a per transfer */
+	bits = transfer->bits_per_word;
+	speed = transfer->speed_hz;
+
+	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
+
+	if (bits <= 8) {
+		drv_data->n_bytes = 1;
+		drv_data->read = drv_data->read != null_reader ?
+					u8_reader : null_reader;
+		drv_data->write = drv_data->write != null_writer ?
+					u8_writer : null_writer;
+	} else if (bits <= 16) {
+		drv_data->n_bytes = 2;
+		drv_data->read = drv_data->read != null_reader ?
+					u16_reader : null_reader;
+		drv_data->write = drv_data->write != null_writer ?
+					u16_writer : null_writer;
+	} else if (bits <= 32) {
+		drv_data->n_bytes = 4;
+		drv_data->read = drv_data->read != null_reader ?
+					u32_reader : null_reader;
+		drv_data->write = drv_data->write != null_writer ?
+					u32_writer : null_writer;
+	}
+	/*
+	 * if bits/word is changed in dma mode, then must check the
+	 * thresholds and burst also
+	 */
+	if (chip->enable_dma) {
+		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
+						message->spi,
+						bits, &dma_burst,
+						&dma_thresh))
+			dev_warn_ratelimited(&message->spi->dev,
+					     "DMA burst size reduced to match bits_per_word\n");
+	}
+
+	dma_mapped = master->can_dma &&
+		     master->can_dma(master, message->spi, transfer) &&
+		     master->cur_msg_mapped;
+	if (dma_mapped) {
+
+		/* Ensure we have the correct interrupt handler */
+		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
+
+		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
+		if (err)
+			return err;
+
+		/* Clear status and start DMA engine */
+		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
+		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
+
+		pxa2xx_spi_dma_start(drv_data);
+	} else {
+		/* Ensure we have the correct interrupt handler	*/
+		drv_data->transfer_handler = interrupt_transfer;
+
+		/* Clear status  */
+		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
+		write_SSSR_CS(drv_data, drv_data->clear_sr);
+	}
+
+	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
+	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
+	if (!pxa25x_ssp_comp(drv_data))
+		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
+			master->max_speed_hz
+				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
+			dma_mapped ? "DMA" : "PIO");
+	else
+		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
+			master->max_speed_hz / 2
+				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
+			dma_mapped ? "DMA" : "PIO");
+
+	if (is_lpss_ssp(drv_data)) {
+		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
+		    != chip->lpss_rx_threshold)
+			pxa2xx_spi_write(drv_data, SSIRF,
+					 chip->lpss_rx_threshold);
+		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
+		    != chip->lpss_tx_threshold)
+			pxa2xx_spi_write(drv_data, SSITF,
+					 chip->lpss_tx_threshold);
+	}
+
+	if (is_quark_x1000_ssp(drv_data) &&
+	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
+		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
+
+	/* see if we need to reload the config registers */
+	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
+	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
+	    != (cr1 & change_mask)) {
+		/* stop the SSP, and update the other bits */
+		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
+		if (!pxa25x_ssp_comp(drv_data))
+			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
+		/* first set CR1 without interrupt and service enables */
+		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
+		/* restart the SSP */
+		pxa2xx_spi_write(drv_data, SSCR0, cr0);
+
+	} else {
+		if (!pxa25x_ssp_comp(drv_data))
+			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
+	}
+
+	/*
+	 * Release the data by enabling service requests and interrupts,
+	 * without changing any mode bits
+	 */
+	pxa2xx_spi_write(drv_data, SSCR1, cr1);
+
+	return 1;
+}
+
+static void pxa2xx_spi_handle_err(struct spi_controller *master,
+				 struct spi_message *msg)
+{
+	struct driver_data *drv_data = spi_controller_get_devdata(master);
+
+	/* Disable the SSP */
+	pxa2xx_spi_write(drv_data, SSCR0,
+			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
+	/* Clear and disable interrupts and service requests */
+	write_SSSR_CS(drv_data, drv_data->clear_sr);
+	pxa2xx_spi_write(drv_data, SSCR1,
+			 pxa2xx_spi_read(drv_data, SSCR1)
+			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
+	if (!pxa25x_ssp_comp(drv_data))
+		pxa2xx_spi_write(drv_data, SSTO, 0);
+
+	/*
+	 * Stop the DMA if running. Note DMA callback handler may have unset
+	 * the dma_running already, which is fine as stopping is not needed
+	 * then but we shouldn't rely this flag for anything else than
+	 * stopping. For instance to differentiate between PIO and DMA
+	 * transfers.
+	 */
+	if (atomic_read(&drv_data->dma_running))
+		pxa2xx_spi_dma_stop(drv_data);
+}
+
+static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
+{
+	struct driver_data *drv_data = spi_controller_get_devdata(master);
+
+	/* Disable the SSP now */
+	pxa2xx_spi_write(drv_data, SSCR0,
+			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
+
+	return 0;
+}
+
+static int setup_cs(struct spi_device *spi, struct chip_data *chip,
+		    struct pxa2xx_spi_chip *chip_info)
+{
+	struct driver_data *drv_data =
+		spi_controller_get_devdata(spi->controller);
+	struct gpio_desc *gpiod;
+	int err = 0;
+
+	if (chip == NULL)
+		return 0;
+
+	if (drv_data->cs_gpiods) {
+		gpiod = drv_data->cs_gpiods[spi->chip_select];
+		if (gpiod) {
+			chip->gpiod_cs = gpiod;
+			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
+			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
+		}
+
+		return 0;
+	}
+
+	if (chip_info == NULL)
+		return 0;
+
+	/* NOTE: setup() can be called multiple times, possibly with
+	 * different chip_info, release previously requested GPIO
+	 */
+	if (chip->gpiod_cs) {
+		gpiod_put(chip->gpiod_cs);
+		chip->gpiod_cs = NULL;
+	}
+
+	/* If (*cs_control) is provided, ignore GPIO chip select */
+	if (chip_info->cs_control) {
+		chip->cs_control = chip_info->cs_control;
+		return 0;
+	}
+
+	if (gpio_is_valid(chip_info->gpio_cs)) {
+		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
+		if (err) {
+			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
+				chip_info->gpio_cs);
+			return err;
+		}
+
+		gpiod = gpio_to_desc(chip_info->gpio_cs);
+		chip->gpiod_cs = gpiod;
+		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
+
+		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
+	}
+
+	return err;
+}
+
+static int setup(struct spi_device *spi)
+{
+	struct pxa2xx_spi_chip *chip_info;
+	struct chip_data *chip;
+	const struct lpss_config *config;
+	struct driver_data *drv_data =
+		spi_controller_get_devdata(spi->controller);
+	uint tx_thres, tx_hi_thres, rx_thres;
+
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
+		tx_hi_thres = 0;
+		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
+		break;
+	case CE4100_SSP:
+		tx_thres = TX_THRESH_CE4100_DFLT;
+		tx_hi_thres = 0;
+		rx_thres = RX_THRESH_CE4100_DFLT;
+		break;
+	case LPSS_LPT_SSP:
+	case LPSS_BYT_SSP:
+	case LPSS_BSW_SSP:
+	case LPSS_SPT_SSP:
+	case LPSS_BXT_SSP:
+	case LPSS_CNL_SSP:
+		config = lpss_get_config(drv_data);
+		tx_thres = config->tx_threshold_lo;
+		tx_hi_thres = config->tx_threshold_hi;
+		rx_thres = config->rx_threshold;
+		break;
+	default:
+		tx_thres = TX_THRESH_DFLT;
+		tx_hi_thres = 0;
+		rx_thres = RX_THRESH_DFLT;
+		break;
+	}
+
+	/* Only alloc on first setup */
+	chip = spi_get_ctldata(spi);
+	if (!chip) {
+		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
+		if (!chip)
+			return -ENOMEM;
+
+		if (drv_data->ssp_type == CE4100_SSP) {
+			if (spi->chip_select > 4) {
+				dev_err(&spi->dev,
+					"failed setup: cs number must not be > 4.\n");
+				kfree(chip);
+				return -EINVAL;
+			}
+
+			chip->frm = spi->chip_select;
+		}
+		chip->enable_dma = drv_data->master_info->enable_dma;
+		chip->timeout = TIMOUT_DFLT;
+	}
+
+	/* protocol drivers may change the chip settings, so...
+	 * if chip_info exists, use it */
+	chip_info = spi->controller_data;
+
+	/* chip_info isn't always needed */
+	chip->cr1 = 0;
+	if (chip_info) {
+		if (chip_info->timeout)
+			chip->timeout = chip_info->timeout;
+		if (chip_info->tx_threshold)
+			tx_thres = chip_info->tx_threshold;
+		if (chip_info->tx_hi_threshold)
+			tx_hi_thres = chip_info->tx_hi_threshold;
+		if (chip_info->rx_threshold)
+			rx_thres = chip_info->rx_threshold;
+		chip->dma_threshold = 0;
+		if (chip_info->enable_loopback)
+			chip->cr1 = SSCR1_LBM;
+	}
+
+	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
+	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
+				| SSITF_TxHiThresh(tx_hi_thres);
+
+	/* set dma burst and threshold outside of chip_info path so that if
+	 * chip_info goes away after setting chip->enable_dma, the
+	 * burst and threshold can still respond to changes in bits_per_word */
+	if (chip->enable_dma) {
+		/* set up legal burst and threshold for dma */
+		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
+						spi->bits_per_word,
+						&chip->dma_burst_size,
+						&chip->dma_threshold)) {
+			dev_warn(&spi->dev,
+				 "in setup: DMA burst size reduced to match bits_per_word\n");
+		}
+	}
+
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
+				   & QUARK_X1000_SSCR1_RFT)
+				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
+				   & QUARK_X1000_SSCR1_TFT);
+		break;
+	case CE4100_SSP:
+		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
+			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
+		break;
+	default:
+		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
+			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
+		break;
+	}
+
+	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
+	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
+			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
+
+	if (spi->mode & SPI_LOOP)
+		chip->cr1 |= SSCR1_LBM;
+
+	if (spi->bits_per_word <= 8) {
+		chip->n_bytes = 1;
+		chip->read = u8_reader;
+		chip->write = u8_writer;
+	} else if (spi->bits_per_word <= 16) {
+		chip->n_bytes = 2;
+		chip->read = u16_reader;
+		chip->write = u16_writer;
+	} else if (spi->bits_per_word <= 32) {
+		chip->n_bytes = 4;
+		chip->read = u32_reader;
+		chip->write = u32_writer;
+	}
+
+	spi_set_ctldata(spi, chip);
+
+	if (drv_data->ssp_type == CE4100_SSP)
+		return 0;
+
+	return setup_cs(spi, chip, chip_info);
+}
+
+static void cleanup(struct spi_device *spi)
+{
+	struct chip_data *chip = spi_get_ctldata(spi);
+	struct driver_data *drv_data =
+		spi_controller_get_devdata(spi->controller);
+
+	if (!chip)
+		return;
+
+	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
+	    chip->gpiod_cs)
+		gpiod_put(chip->gpiod_cs);
+
+	kfree(chip);
+}
+
+#ifdef CONFIG_PCI
+#ifdef CONFIG_ACPI
+
+static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
+	{ "INT33C0", LPSS_LPT_SSP },
+	{ "INT33C1", LPSS_LPT_SSP },
+	{ "INT3430", LPSS_LPT_SSP },
+	{ "INT3431", LPSS_LPT_SSP },
+	{ "80860F0E", LPSS_BYT_SSP },
+	{ "8086228E", LPSS_BSW_SSP },
+	{ },
+};
+MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
+
+static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
+{
+	unsigned int devid;
+	int port_id = -1;
+
+	if (adev && adev->pnp.unique_id &&
+	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
+		port_id = devid;
+	return port_id;
+}
+#else /* !CONFIG_ACPI */
+static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
+{
+	return -1;
+}
+#endif
+
+/*
+ * PCI IDs of compound devices that integrate both host controller and private
+ * integrated DMA engine. Please note these are not used in module
+ * autoloading and probing in this module but matching the LPSS SSP type.
+ */
+static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
+	/* SPT-LP */
+	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
+	/* SPT-H */
+	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
+	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
+	/* KBL-H */
+	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
+	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
+	/* BXT A-Step */
+	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
+	/* BXT B-Step */
+	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
+	/* GLK */
+	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
+	/* ICL-LP */
+	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
+	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
+	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
+	/* APL */
+	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
+	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
+	/* CNL-LP */
+	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
+	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
+	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
+	/* CNL-H */
+	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
+	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
+	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
+	{ },
+};
+
+static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
+{
+	struct device *dev = param;
+
+	if (dev != chan->device->dev->parent)
+		return false;
+
+	return true;
+}
+
+static struct pxa2xx_spi_master *
+pxa2xx_spi_init_pdata(struct platform_device *pdev)
+{
+	struct pxa2xx_spi_master *pdata;
+	struct acpi_device *adev;
+	struct ssp_device *ssp;
+	struct resource *res;
+	const struct acpi_device_id *adev_id = NULL;
+	const struct pci_device_id *pcidev_id = NULL;
+	int type;
+
+	adev = ACPI_COMPANION(&pdev->dev);
+
+	if (dev_is_pci(pdev->dev.parent))
+		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
+					 to_pci_dev(pdev->dev.parent));
+	else if (adev)
+		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
+					    &pdev->dev);
+	else
+		return NULL;
+
+	if (adev_id)
+		type = (int)adev_id->driver_data;
+	else if (pcidev_id)
+		type = (int)pcidev_id->driver_data;
+	else
+		return NULL;
+
+	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+	if (!pdata)
+		return NULL;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res)
+		return NULL;
+
+	ssp = &pdata->ssp;
+
+	ssp->phys_base = res->start;
+	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(ssp->mmio_base))
+		return NULL;
+
+	if (pcidev_id) {
+		pdata->tx_param = pdev->dev.parent;
+		pdata->rx_param = pdev->dev.parent;
+		pdata->dma_filter = pxa2xx_spi_idma_filter;
+	}
+
+	ssp->clk = devm_clk_get(&pdev->dev, NULL);
+	ssp->irq = platform_get_irq(pdev, 0);
+	ssp->type = type;
+	ssp->pdev = pdev;
+	ssp->port_id = pxa2xx_spi_get_port_id(adev);
+
+	pdata->num_chipselect = 1;
+	pdata->enable_dma = true;
+
+	return pdata;
+}
+
+#else /* !CONFIG_PCI */
+static inline struct pxa2xx_spi_master *
+pxa2xx_spi_init_pdata(struct platform_device *pdev)
+{
+	return NULL;
+}
+#endif
+
+static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
+				      unsigned int cs)
+{
+	struct driver_data *drv_data = spi_controller_get_devdata(master);
+
+	if (has_acpi_companion(&drv_data->pdev->dev)) {
+		switch (drv_data->ssp_type) {
+		/*
+		 * For Atoms the ACPI DeviceSelection used by the Windows
+		 * driver starts from 1 instead of 0 so translate it here
+		 * to match what Linux expects.
+		 */
+		case LPSS_BYT_SSP:
+		case LPSS_BSW_SSP:
+			return cs - 1;
+
+		default:
+			break;
+		}
+	}
+
+	return cs;
+}
+
+static int pxa2xx_spi_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct pxa2xx_spi_master *platform_info;
+	struct spi_controller *master;
+	struct driver_data *drv_data;
+	struct ssp_device *ssp;
+	const struct lpss_config *config;
+	int status, count;
+	u32 tmp;
+
+	platform_info = dev_get_platdata(dev);
+	if (!platform_info) {
+		platform_info = pxa2xx_spi_init_pdata(pdev);
+		if (!platform_info) {
+			dev_err(&pdev->dev, "missing platform data\n");
+			return -ENODEV;
+		}
+	}
+
+	ssp = pxa_ssp_request(pdev->id, pdev->name);
+	if (!ssp)
+		ssp = &platform_info->ssp;
+
+	if (!ssp->mmio_base) {
+		dev_err(&pdev->dev, "failed to get ssp\n");
+		return -ENODEV;
+	}
+
+	master = spi_alloc_master(dev, sizeof(struct driver_data));
+	if (!master) {
+		dev_err(&pdev->dev, "cannot alloc spi_master\n");
+		pxa_ssp_free(ssp);
+		return -ENOMEM;
+	}
+	drv_data = spi_controller_get_devdata(master);
+	drv_data->master = master;
+	drv_data->master_info = platform_info;
+	drv_data->pdev = pdev;
+	drv_data->ssp = ssp;
+
+	master->dev.of_node = pdev->dev.of_node;
+	/* the spi->mode bits understood by this driver: */
+	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
+
+	master->bus_num = ssp->port_id;
+	master->dma_alignment = DMA_ALIGNMENT;
+	master->cleanup = cleanup;
+	master->setup = setup;
+	master->set_cs = pxa2xx_spi_set_cs;
+	master->transfer_one = pxa2xx_spi_transfer_one;
+	master->handle_err = pxa2xx_spi_handle_err;
+	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
+	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
+	master->auto_runtime_pm = true;
+	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
+
+	drv_data->ssp_type = ssp->type;
+
+	drv_data->ioaddr = ssp->mmio_base;
+	drv_data->ssdr_physical = ssp->phys_base + SSDR;
+	if (pxa25x_ssp_comp(drv_data)) {
+		switch (drv_data->ssp_type) {
+		case QUARK_X1000_SSP:
+			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
+			break;
+		default:
+			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
+			break;
+		}
+
+		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
+		drv_data->dma_cr1 = 0;
+		drv_data->clear_sr = SSSR_ROR;
+		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
+	} else {
+		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
+		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
+		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
+		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
+		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
+	}
+
+	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
+			drv_data);
+	if (status < 0) {
+		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
+		goto out_error_master_alloc;
+	}
+
+	/* Setup DMA if requested */
+	if (platform_info->enable_dma) {
+		status = pxa2xx_spi_dma_setup(drv_data);
+		if (status) {
+			dev_dbg(dev, "no DMA channels available, using PIO\n");
+			platform_info->enable_dma = false;
+		} else {
+			master->can_dma = pxa2xx_spi_can_dma;
+		}
+	}
+
+	/* Enable SOC clock */
+	status = clk_prepare_enable(ssp->clk);
+	if (status)
+		goto out_error_dma_irq_alloc;
+
+	master->max_speed_hz = clk_get_rate(ssp->clk);
+
+	/* Load default SSP configuration */
+	pxa2xx_spi_write(drv_data, SSCR0, 0);
+	switch (drv_data->ssp_type) {
+	case QUARK_X1000_SSP:
+		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
+		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
+		pxa2xx_spi_write(drv_data, SSCR1, tmp);
+
+		/* using the Motorola SPI protocol and use 8 bit frame */
+		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
+		pxa2xx_spi_write(drv_data, SSCR0, tmp);
+		break;
+	case CE4100_SSP:
+		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
+		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
+		pxa2xx_spi_write(drv_data, SSCR1, tmp);
+		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
+		pxa2xx_spi_write(drv_data, SSCR0, tmp);
+		break;
+	default:
+		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
+		      SSCR1_TxTresh(TX_THRESH_DFLT);
+		pxa2xx_spi_write(drv_data, SSCR1, tmp);
+		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
+		pxa2xx_spi_write(drv_data, SSCR0, tmp);
+		break;
+	}
+
+	if (!pxa25x_ssp_comp(drv_data))
+		pxa2xx_spi_write(drv_data, SSTO, 0);
+
+	if (!is_quark_x1000_ssp(drv_data))
+		pxa2xx_spi_write(drv_data, SSPSP, 0);
+
+	if (is_lpss_ssp(drv_data)) {
+		lpss_ssp_setup(drv_data);
+		config = lpss_get_config(drv_data);
+		if (config->reg_capabilities >= 0) {
+			tmp = __lpss_ssp_read_priv(drv_data,
+						   config->reg_capabilities);
+			tmp &= LPSS_CAPS_CS_EN_MASK;
+			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
+			platform_info->num_chipselect = ffz(tmp);
+		} else if (config->cs_num) {
+			platform_info->num_chipselect = config->cs_num;
+		}
+	}
+	master->num_chipselect = platform_info->num_chipselect;
+
+	count = gpiod_count(&pdev->dev, "cs");
+	if (count > 0) {
+		int i;
+
+		master->num_chipselect = max_t(int, count,
+			master->num_chipselect);
+
+		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
+			master->num_chipselect, sizeof(struct gpio_desc *),
+			GFP_KERNEL);
+		if (!drv_data->cs_gpiods) {
+			status = -ENOMEM;
+			goto out_error_clock_enabled;
+		}
+
+		for (i = 0; i < master->num_chipselect; i++) {
+			struct gpio_desc *gpiod;
+
+			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
+			if (IS_ERR(gpiod)) {
+				/* Means use native chip select */
+				if (PTR_ERR(gpiod) == -ENOENT)
+					continue;
+
+				status = (int)PTR_ERR(gpiod);
+				goto out_error_clock_enabled;
+			} else {
+				drv_data->cs_gpiods[i] = gpiod;
+			}
+		}
+	}
+
+	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
+	pm_runtime_use_autosuspend(&pdev->dev);
+	pm_runtime_set_active(&pdev->dev);
+	pm_runtime_enable(&pdev->dev);
+
+	/* Register with the SPI framework */
+	platform_set_drvdata(pdev, drv_data);
+	status = devm_spi_register_controller(&pdev->dev, master);
+	if (status != 0) {
+		dev_err(&pdev->dev, "problem registering spi master\n");
+		goto out_error_clock_enabled;
+	}
+
+	return status;
+
+out_error_clock_enabled:
+	pm_runtime_put_noidle(&pdev->dev);
+	pm_runtime_disable(&pdev->dev);
+	clk_disable_unprepare(ssp->clk);
+
+out_error_dma_irq_alloc:
+	pxa2xx_spi_dma_release(drv_data);
+	free_irq(ssp->irq, drv_data);
+
+out_error_master_alloc:
+	spi_controller_put(master);
+	pxa_ssp_free(ssp);
+	return status;
+}
+
+static int pxa2xx_spi_remove(struct platform_device *pdev)
+{
+	struct driver_data *drv_data = platform_get_drvdata(pdev);
+	struct ssp_device *ssp;
+
+	if (!drv_data)
+		return 0;
+	ssp = drv_data->ssp;
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	/* Disable the SSP at the peripheral and SOC level */
+	pxa2xx_spi_write(drv_data, SSCR0, 0);
+	clk_disable_unprepare(ssp->clk);
+
+	/* Release DMA */
+	if (drv_data->master_info->enable_dma)
+		pxa2xx_spi_dma_release(drv_data);
+
+	pm_runtime_put_noidle(&pdev->dev);
+	pm_runtime_disable(&pdev->dev);
+
+	/* Release IRQ */
+	free_irq(ssp->irq, drv_data);
+
+	/* Release SSP */
+	pxa_ssp_free(ssp);
+
+	return 0;
+}
+
+static void pxa2xx_spi_shutdown(struct platform_device *pdev)
+{
+	int status = 0;
+
+	if ((status = pxa2xx_spi_remove(pdev)) != 0)
+		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int pxa2xx_spi_suspend(struct device *dev)
+{
+	struct driver_data *drv_data = dev_get_drvdata(dev);
+	struct ssp_device *ssp = drv_data->ssp;
+	int status;
+
+	status = spi_controller_suspend(drv_data->master);
+	if (status != 0)
+		return status;
+	pxa2xx_spi_write(drv_data, SSCR0, 0);
+
+	if (!pm_runtime_suspended(dev))
+		clk_disable_unprepare(ssp->clk);
+
+	return 0;
+}
+
+static int pxa2xx_spi_resume(struct device *dev)
+{
+	struct driver_data *drv_data = dev_get_drvdata(dev);
+	struct ssp_device *ssp = drv_data->ssp;
+	int status;
+
+	/* Enable the SSP clock */
+	if (!pm_runtime_suspended(dev)) {
+		status = clk_prepare_enable(ssp->clk);
+		if (status)
+			return status;
+	}
+
+	/* Restore LPSS private register bits */
+	if (is_lpss_ssp(drv_data))
+		lpss_ssp_setup(drv_data);
+
+	/* Start the queue running */
+	status = spi_controller_resume(drv_data->master);
+	if (status != 0) {
+		dev_err(dev, "problem starting queue (%d)\n", status);
+		return status;
+	}
+
+	return 0;
+}
+#endif
+
+#ifdef CONFIG_PM
+static int pxa2xx_spi_runtime_suspend(struct device *dev)
+{
+	struct driver_data *drv_data = dev_get_drvdata(dev);
+
+	clk_disable_unprepare(drv_data->ssp->clk);
+	return 0;
+}
+
+static int pxa2xx_spi_runtime_resume(struct device *dev)
+{
+	struct driver_data *drv_data = dev_get_drvdata(dev);
+	int status;
+
+	status = clk_prepare_enable(drv_data->ssp->clk);
+	return status;
+}
+#endif
+
+static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
+	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
+	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
+			   pxa2xx_spi_runtime_resume, NULL)
+};
+
+static struct platform_driver driver = {
+	.driver = {
+		.name	= "pxa2xx-spi",
+		.pm	= &pxa2xx_spi_pm_ops,
+		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
+	},
+	.probe = pxa2xx_spi_probe,
+	.remove = pxa2xx_spi_remove,
+	.shutdown = pxa2xx_spi_shutdown,
+};
+
+static int __init pxa2xx_spi_init(void)
+{
+	return platform_driver_register(&driver);
+}
+subsys_initcall(pxa2xx_spi_init);
+
+static void __exit pxa2xx_spi_exit(void)
+{
+	platform_driver_unregister(&driver);
+}
+module_exit(pxa2xx_spi_exit);