v4.19.13 snapshot.
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig
new file mode 100644
index 0000000..39ec32a
--- /dev/null
+++ b/drivers/mtd/chips/Kconfig
@@ -0,0 +1,240 @@
+menu "RAM/ROM/Flash chip drivers"
+	depends on MTD!=n
+
+config MTD_CFI
+	tristate "Detect flash chips by Common Flash Interface (CFI) probe"
+	select MTD_GEN_PROBE
+	select MTD_CFI_UTIL
+	help
+	  The Common Flash Interface specification was developed by Intel,
+	  AMD and other flash manufactures that provides a universal method
+	  for probing the capabilities of flash devices. If you wish to
+	  support any device that is CFI-compliant, you need to enable this
+	  option. Visit <http://www.amd.com/products/nvd/overview/cfi.html>
+	  for more information on CFI.
+
+config MTD_JEDECPROBE
+	tristate "Detect non-CFI AMD/JEDEC-compatible flash chips"
+	select MTD_GEN_PROBE
+	select MTD_CFI_UTIL
+	help
+	  This option enables JEDEC-style probing of flash chips which are not
+	  compatible with the Common Flash Interface, but will use the common
+	  CFI-targeted flash drivers for any chips which are identified which
+	  are in fact compatible in all but the probe method. This actually
+	  covers most AMD/Fujitsu-compatible chips and also non-CFI
+	  Intel chips.
+
+config MTD_GEN_PROBE
+	tristate
+
+config MTD_CFI_ADV_OPTIONS
+	bool "Flash chip driver advanced configuration options"
+	depends on MTD_GEN_PROBE
+	help
+	  If you need to specify a specific endianness for access to flash
+	  chips, or if you wish to reduce the size of the kernel by including
+	  support for only specific arrangements of flash chips, say 'Y'. This
+	  option does not directly affect the code, but will enable other
+	  configuration options which allow you to do so.
+
+	  If unsure, say 'N'.
+
+choice
+	prompt "Flash cmd/query data swapping"
+	depends on MTD_CFI_ADV_OPTIONS
+	default MTD_CFI_NOSWAP
+	help
+	  This option defines the way in which the CPU attempts to arrange
+	  data bits when writing the 'magic' commands to the chips. Saying
+	  'NO', which is the default when CONFIG_MTD_CFI_ADV_OPTIONS isn't
+	  enabled, means that the CPU will not do any swapping; the chips
+	  are expected to be wired to the CPU in 'host-endian' form.
+	  Specific arrangements are possible with the BIG_ENDIAN_BYTE and
+	  LITTLE_ENDIAN_BYTE, if the bytes are reversed.
+
+config MTD_CFI_NOSWAP
+	bool "NO"
+
+config MTD_CFI_BE_BYTE_SWAP
+	bool "BIG_ENDIAN_BYTE"
+
+config MTD_CFI_LE_BYTE_SWAP
+	bool "LITTLE_ENDIAN_BYTE"
+
+endchoice
+
+config MTD_CFI_GEOMETRY
+	bool "Specific CFI Flash geometry selection"
+	depends on MTD_CFI_ADV_OPTIONS
+	select MTD_MAP_BANK_WIDTH_1 if  !(MTD_MAP_BANK_WIDTH_2 || \
+		 MTD_MAP_BANK_WIDTH_4  || MTD_MAP_BANK_WIDTH_8 || \
+		 MTD_MAP_BANK_WIDTH_16 || MTD_MAP_BANK_WIDTH_32)
+	select MTD_CFI_I1 if !(MTD_CFI_I2 || MTD_CFI_I4 || MTD_CFI_I8)
+	help
+	  This option does not affect the code directly, but will enable
+	  some other configuration options which would allow you to reduce
+	  the size of the kernel by including support for only certain
+	  arrangements of CFI chips. If unsure, say 'N' and all options
+	  which are supported by the current code will be enabled.
+
+config MTD_MAP_BANK_WIDTH_1
+	bool "Support  8-bit buswidth" if MTD_CFI_GEOMETRY
+	default y
+	help
+	  If you wish to support CFI devices on a physical bus which is
+	  8 bits wide, say 'Y'.
+
+config MTD_MAP_BANK_WIDTH_2
+	bool "Support 16-bit buswidth" if MTD_CFI_GEOMETRY
+	default y
+	help
+	  If you wish to support CFI devices on a physical bus which is
+	  16 bits wide, say 'Y'.
+
+config MTD_MAP_BANK_WIDTH_4
+	bool "Support 32-bit buswidth" if MTD_CFI_GEOMETRY
+	default y
+	help
+	  If you wish to support CFI devices on a physical bus which is
+	  32 bits wide, say 'Y'.
+
+config MTD_MAP_BANK_WIDTH_8
+	bool "Support 64-bit buswidth" if MTD_CFI_GEOMETRY
+	default n
+	help
+	  If you wish to support CFI devices on a physical bus which is
+	  64 bits wide, say 'Y'.
+
+config MTD_MAP_BANK_WIDTH_16
+	bool "Support 128-bit buswidth" if MTD_CFI_GEOMETRY
+	default n
+	help
+	  If you wish to support CFI devices on a physical bus which is
+	  128 bits wide, say 'Y'.
+
+config MTD_MAP_BANK_WIDTH_32
+	bool "Support 256-bit buswidth" if MTD_CFI_GEOMETRY
+	select MTD_COMPLEX_MAPPINGS if HAS_IOMEM
+	default n
+	help
+	  If you wish to support CFI devices on a physical bus which is
+	  256 bits wide, say 'Y'.
+
+config MTD_CFI_I1
+	bool "Support 1-chip flash interleave" if MTD_CFI_GEOMETRY
+	default y
+	help
+	  If your flash chips are not interleaved - i.e. you only have one
+	  flash chip addressed by each bus cycle, then say 'Y'.
+
+config MTD_CFI_I2
+	bool "Support 2-chip flash interleave" if MTD_CFI_GEOMETRY
+	default y
+	help
+	  If your flash chips are interleaved in pairs - i.e. you have two
+	  flash chips addressed by each bus cycle, then say 'Y'.
+
+config MTD_CFI_I4
+	bool "Support 4-chip flash interleave" if MTD_CFI_GEOMETRY
+	default n
+	help
+	  If your flash chips are interleaved in fours - i.e. you have four
+	  flash chips addressed by each bus cycle, then say 'Y'.
+
+config MTD_CFI_I8
+	bool "Support 8-chip flash interleave" if MTD_CFI_GEOMETRY
+	default n
+	help
+	  If your flash chips are interleaved in eights - i.e. you have eight
+	  flash chips addressed by each bus cycle, then say 'Y'.
+
+config MTD_OTP
+	bool "Protection Registers aka one-time programmable (OTP) bits"
+	depends on MTD_CFI_ADV_OPTIONS
+	default n
+	help
+	  This enables support for reading, writing and locking so called
+	  "Protection Registers" present on some flash chips.
+	  A subset of them are pre-programmed at the factory with a
+	  unique set of values. The rest is user-programmable.
+
+	  The user-programmable Protection Registers contain one-time
+	  programmable (OTP) bits; when programmed, register bits cannot be
+	  erased. Each Protection Register can be accessed multiple times to
+	  program individual bits, as long as the register remains unlocked.
+
+	  Each Protection Register has an associated Lock Register bit. When a
+	  Lock Register bit is programmed, the associated Protection Register
+	  can only be read; it can no longer be programmed. Additionally,
+	  because the Lock Register bits themselves are OTP, when programmed,
+	  Lock Register bits cannot be erased. Therefore, when a Protection
+	  Register is locked, it cannot be unlocked.
+
+	  This feature should therefore be used with extreme care. Any mistake
+	  in the programming of OTP bits will waste them.
+
+config MTD_CFI_INTELEXT
+	tristate "Support for CFI command set 0001 (Intel/Sharp chips)"
+	depends on MTD_GEN_PROBE
+	select MTD_CFI_UTIL
+	help
+	  The Common Flash Interface defines a number of different command
+	  sets which a CFI-compliant chip may claim to implement. This code
+	  provides support for command set 0001, used on Intel StrataFlash
+	  and other parts.
+
+config MTD_CFI_AMDSTD
+	tristate "Support for CFI command set 0002 (AMD/Fujitsu/Spansion chips)"
+	depends on MTD_GEN_PROBE
+	select MTD_CFI_UTIL
+	help
+	  The Common Flash Interface defines a number of different command
+	  sets which a CFI-compliant chip may claim to implement. This code
+	  provides support for command set 0002, used on chips including
+	  the AMD Am29LV320.
+
+config MTD_CFI_STAA
+	tristate "Support for CFI command set 0020 (ST (Advanced Architecture) chips)"
+	depends on MTD_GEN_PROBE
+	select MTD_CFI_UTIL
+	help
+	  The Common Flash Interface defines a number of different command
+	  sets which a CFI-compliant chip may claim to implement. This code
+	  provides support for command set 0020.
+
+config MTD_CFI_UTIL
+	tristate
+
+config MTD_RAM
+	tristate "Support for RAM chips in bus mapping"
+	help
+	  This option enables basic support for RAM chips accessed through
+	  a bus mapping driver.
+
+config MTD_ROM
+	tristate "Support for ROM chips in bus mapping"
+	help
+	  This option enables basic support for ROM chips accessed through
+	  a bus mapping driver.
+
+config MTD_ABSENT
+	tristate "Support for absent chips in bus mapping"
+	help
+	  This option enables support for a dummy probing driver used to
+	  allocated placeholder MTD devices on systems that have socketed
+	  or removable media.  Use of this driver as a fallback chip probe
+	  preserves the expected registration order of MTD device nodes on
+	  the system regardless of media presence.  Device nodes created
+	  with this driver will return -ENODEV upon access.
+
+config MTD_XIP
+	bool "XIP aware MTD support"
+	depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && ARCH_MTD_XIP
+	default y if XIP_KERNEL
+	help
+	  This allows MTD support to work with flash memory which is also
+	  used for XIP purposes.  If you're not sure what this is all about
+	  then say N.
+
+endmenu
diff --git a/drivers/mtd/chips/Makefile b/drivers/mtd/chips/Makefile
new file mode 100644
index 0000000..1f4e84f
--- /dev/null
+++ b/drivers/mtd/chips/Makefile
@@ -0,0 +1,16 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# linux/drivers/chips/Makefile
+#
+
+obj-$(CONFIG_MTD)		+= chipreg.o
+obj-$(CONFIG_MTD_CFI)		+= cfi_probe.o
+obj-$(CONFIG_MTD_CFI_UTIL)	+= cfi_util.o
+obj-$(CONFIG_MTD_CFI_STAA)	+= cfi_cmdset_0020.o
+obj-$(CONFIG_MTD_CFI_AMDSTD)	+= cfi_cmdset_0002.o
+obj-$(CONFIG_MTD_CFI_INTELEXT)	+= cfi_cmdset_0001.o
+obj-$(CONFIG_MTD_GEN_PROBE)	+= gen_probe.o
+obj-$(CONFIG_MTD_JEDECPROBE)	+= jedec_probe.o
+obj-$(CONFIG_MTD_RAM)		+= map_ram.o
+obj-$(CONFIG_MTD_ROM)		+= map_rom.o
+obj-$(CONFIG_MTD_ABSENT)	+= map_absent.o
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c
new file mode 100644
index 0000000..6e8e7b1
--- /dev/null
+++ b/drivers/mtd/chips/cfi_cmdset_0001.c
@@ -0,0 +1,2686 @@
+/*
+ * Common Flash Interface support:
+ *   Intel Extended Vendor Command Set (ID 0x0001)
+ *
+ * (C) 2000 Red Hat. GPL'd
+ *
+ *
+ * 10/10/2000	Nicolas Pitre <nico@fluxnic.net>
+ * 	- completely revamped method functions so they are aware and
+ * 	  independent of the flash geometry (buswidth, interleave, etc.)
+ * 	- scalability vs code size is completely set at compile-time
+ * 	  (see include/linux/mtd/cfi.h for selection)
+ *	- optimized write buffer method
+ * 02/05/2002	Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
+ *	- reworked lock/unlock/erase support for var size flash
+ * 21/03/2007   Rodolfo Giometti <giometti@linux.it>
+ * 	- auto unlock sectors on resume for auto locking flash on power up
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/reboot.h>
+#include <linux/bitmap.h>
+#include <linux/mtd/xip.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/cfi.h>
+
+/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
+/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
+
+// debugging, turns off buffer write mode if set to 1
+#define FORCE_WORD_WRITE 0
+
+/* Intel chips */
+#define I82802AB	0x00ad
+#define I82802AC	0x00ac
+#define PF38F4476	0x881c
+#define M28F00AP30	0x8963
+/* STMicroelectronics chips */
+#define M50LPW080       0x002F
+#define M50FLW080A	0x0080
+#define M50FLW080B	0x0081
+/* Atmel chips */
+#define AT49BV640D	0x02de
+#define AT49BV640DT	0x02db
+/* Sharp chips */
+#define LH28F640BFHE_PTTL90	0x00b0
+#define LH28F640BFHE_PBTL90	0x00b1
+#define LH28F640BFHE_PTTL70A	0x00b2
+#define LH28F640BFHE_PBTL70A	0x00b3
+
+static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
+static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
+static void cfi_intelext_sync (struct mtd_info *);
+static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
+				  uint64_t len);
+#ifdef CONFIG_MTD_OTP
+static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
+static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t,
+					   size_t *, struct otp_info *);
+static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t,
+					   size_t *, struct otp_info *);
+#endif
+static int cfi_intelext_suspend (struct mtd_info *);
+static void cfi_intelext_resume (struct mtd_info *);
+static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
+
+static void cfi_intelext_destroy(struct mtd_info *);
+
+struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
+
+static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
+static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
+
+static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
+		     size_t *retlen, void **virt, resource_size_t *phys);
+static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
+
+static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
+static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
+static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
+#include "fwh_lock.h"
+
+
+
+/*
+ *  *********** SETUP AND PROBE BITS  ***********
+ */
+
+static struct mtd_chip_driver cfi_intelext_chipdrv = {
+	.probe		= NULL, /* Not usable directly */
+	.destroy	= cfi_intelext_destroy,
+	.name		= "cfi_cmdset_0001",
+	.module		= THIS_MODULE
+};
+
+/* #define DEBUG_LOCK_BITS */
+/* #define DEBUG_CFI_FEATURES */
+
+#ifdef DEBUG_CFI_FEATURES
+static void cfi_tell_features(struct cfi_pri_intelext *extp)
+{
+	int i;
+	printk("  Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
+	printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
+	printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
+	printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
+	printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
+	printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
+	printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
+	printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
+	printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
+	printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
+	printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
+	printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
+	printk("     - Extended Flash Array:    %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
+	for (i=11; i<32; i++) {
+		if (extp->FeatureSupport & (1<<i))
+			printk("     - Unknown Bit %X:      supported\n", i);
+	}
+
+	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
+	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
+	for (i=1; i<8; i++) {
+		if (extp->SuspendCmdSupport & (1<<i))
+			printk("     - Unknown Bit %X:               supported\n", i);
+	}
+
+	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
+	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
+	printk("     - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
+	for (i=2; i<3; i++) {
+		if (extp->BlkStatusRegMask & (1<<i))
+			printk("     - Unknown Bit %X Active: yes\n",i);
+	}
+	printk("     - EFA Lock Bit:         %s\n", extp->BlkStatusRegMask&16?"yes":"no");
+	printk("     - EFA Lock-Down Bit:    %s\n", extp->BlkStatusRegMask&32?"yes":"no");
+	for (i=6; i<16; i++) {
+		if (extp->BlkStatusRegMask & (1<<i))
+			printk("     - Unknown Bit %X Active: yes\n",i);
+	}
+
+	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
+	       extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
+	if (extp->VppOptimal)
+		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
+		       extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
+}
+#endif
+
+/* Atmel chips don't use the same PRI format as Intel chips */
+static void fixup_convert_atmel_pri(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+	struct cfi_pri_atmel atmel_pri;
+	uint32_t features = 0;
+
+	/* Reverse byteswapping */
+	extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
+	extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
+	extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
+
+	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
+	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
+
+	printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
+
+	if (atmel_pri.Features & 0x01) /* chip erase supported */
+		features |= (1<<0);
+	if (atmel_pri.Features & 0x02) /* erase suspend supported */
+		features |= (1<<1);
+	if (atmel_pri.Features & 0x04) /* program suspend supported */
+		features |= (1<<2);
+	if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
+		features |= (1<<9);
+	if (atmel_pri.Features & 0x20) /* page mode read supported */
+		features |= (1<<7);
+	if (atmel_pri.Features & 0x40) /* queued erase supported */
+		features |= (1<<4);
+	if (atmel_pri.Features & 0x80) /* Protection bits supported */
+		features |= (1<<6);
+
+	extp->FeatureSupport = features;
+
+	/* burst write mode not supported */
+	cfi->cfiq->BufWriteTimeoutTyp = 0;
+	cfi->cfiq->BufWriteTimeoutMax = 0;
+}
+
+static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+
+	cfip->FeatureSupport |= (1 << 5);
+	mtd->flags |= MTD_POWERUP_LOCK;
+}
+
+#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
+/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
+static void fixup_intel_strataflash(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+
+	printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
+	                    "erase on write disabled.\n");
+	extp->SuspendCmdSupport &= ~1;
+}
+#endif
+
+#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
+static void fixup_no_write_suspend(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+
+	if (cfip && (cfip->FeatureSupport&4)) {
+		cfip->FeatureSupport &= ~4;
+		printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
+	}
+}
+#endif
+
+static void fixup_st_m28w320ct(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	cfi->cfiq->BufWriteTimeoutTyp = 0;	/* Not supported */
+	cfi->cfiq->BufWriteTimeoutMax = 0;	/* Not supported */
+}
+
+static void fixup_st_m28w320cb(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	/* Note this is done after the region info is endian swapped */
+	cfi->cfiq->EraseRegionInfo[1] =
+		(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
+};
+
+static int is_LH28F640BF(struct cfi_private *cfi)
+{
+	/* Sharp LH28F640BF Family */
+	if (cfi->mfr == CFI_MFR_SHARP && (
+	    cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 ||
+	    cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A))
+		return 1;
+	return 0;
+}
+
+static void fixup_LH28F640BF(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+
+	/* Reset the Partition Configuration Register on LH28F640BF
+	 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
+	if (is_LH28F640BF(cfi)) {
+		printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n");
+		map_write(map, CMD(0x60), 0);
+		map_write(map, CMD(0x04), 0);
+
+		/* We have set one single partition thus
+		 * Simultaneous Operations are not allowed */
+		printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n");
+		extp->FeatureSupport &= ~512;
+	}
+}
+
+static void fixup_use_point(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	if (!mtd->_point && map_is_linear(map)) {
+		mtd->_point   = cfi_intelext_point;
+		mtd->_unpoint = cfi_intelext_unpoint;
+	}
+}
+
+static void fixup_use_write_buffers(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	if (cfi->cfiq->BufWriteTimeoutTyp) {
+		printk(KERN_INFO "Using buffer write method\n" );
+		mtd->_write = cfi_intelext_write_buffers;
+		mtd->_writev = cfi_intelext_writev;
+	}
+}
+
+/*
+ * Some chips power-up with all sectors locked by default.
+ */
+static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+
+	if (cfip->FeatureSupport&32) {
+		printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
+		mtd->flags |= MTD_POWERUP_LOCK;
+	}
+}
+
+static struct cfi_fixup cfi_fixup_table[] = {
+	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
+	{ CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
+	{ CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
+#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
+#endif
+#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
+#endif
+#if !FORCE_WORD_WRITE
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
+#endif
+	{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
+	{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
+	{ CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
+	{ CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock },
+	{ CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF },
+	{ 0, 0, NULL }
+};
+
+static struct cfi_fixup jedec_fixup_table[] = {
+	{ CFI_MFR_INTEL, I82802AB,   fixup_use_fwh_lock },
+	{ CFI_MFR_INTEL, I82802AC,   fixup_use_fwh_lock },
+	{ CFI_MFR_ST,    M50LPW080,  fixup_use_fwh_lock },
+	{ CFI_MFR_ST,    M50FLW080A, fixup_use_fwh_lock },
+	{ CFI_MFR_ST,    M50FLW080B, fixup_use_fwh_lock },
+	{ 0, 0, NULL }
+};
+static struct cfi_fixup fixup_table[] = {
+	/* The CFI vendor ids and the JEDEC vendor IDs appear
+	 * to be common.  It is like the devices id's are as
+	 * well.  This table is to pick all cases where
+	 * we know that is the case.
+	 */
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
+	{ 0, 0, NULL }
+};
+
+static void cfi_fixup_major_minor(struct cfi_private *cfi,
+						struct cfi_pri_intelext *extp)
+{
+	if (cfi->mfr == CFI_MFR_INTEL &&
+			cfi->id == PF38F4476 && extp->MinorVersion == '3')
+		extp->MinorVersion = '1';
+}
+
+static int cfi_is_micron_28F00AP30(struct cfi_private *cfi, struct flchip *chip)
+{
+	/*
+	 * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t
+	 * Erase Supend for their small Erase Blocks(0x8000)
+	 */
+	if (cfi->mfr == CFI_MFR_INTEL && cfi->id == M28F00AP30)
+		return 1;
+	return 0;
+}
+
+static inline struct cfi_pri_intelext *
+read_pri_intelext(struct map_info *map, __u16 adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp;
+	unsigned int extra_size = 0;
+	unsigned int extp_size = sizeof(*extp);
+
+ again:
+	extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
+	if (!extp)
+		return NULL;
+
+	cfi_fixup_major_minor(cfi, extp);
+
+	if (extp->MajorVersion != '1' ||
+	    (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
+		printk(KERN_ERR "  Unknown Intel/Sharp Extended Query "
+		       "version %c.%c.\n",  extp->MajorVersion,
+		       extp->MinorVersion);
+		kfree(extp);
+		return NULL;
+	}
+
+	/* Do some byteswapping if necessary */
+	extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
+	extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
+	extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
+
+	if (extp->MinorVersion >= '0') {
+		extra_size = 0;
+
+		/* Protection Register info */
+		extra_size += (extp->NumProtectionFields - 1) *
+			      sizeof(struct cfi_intelext_otpinfo);
+	}
+
+	if (extp->MinorVersion >= '1') {
+		/* Burst Read info */
+		extra_size += 2;
+		if (extp_size < sizeof(*extp) + extra_size)
+			goto need_more;
+		extra_size += extp->extra[extra_size - 1];
+	}
+
+	if (extp->MinorVersion >= '3') {
+		int nb_parts, i;
+
+		/* Number of hardware-partitions */
+		extra_size += 1;
+		if (extp_size < sizeof(*extp) + extra_size)
+			goto need_more;
+		nb_parts = extp->extra[extra_size - 1];
+
+		/* skip the sizeof(partregion) field in CFI 1.4 */
+		if (extp->MinorVersion >= '4')
+			extra_size += 2;
+
+		for (i = 0; i < nb_parts; i++) {
+			struct cfi_intelext_regioninfo *rinfo;
+			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
+			extra_size += sizeof(*rinfo);
+			if (extp_size < sizeof(*extp) + extra_size)
+				goto need_more;
+			rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
+			extra_size += (rinfo->NumBlockTypes - 1)
+				      * sizeof(struct cfi_intelext_blockinfo);
+		}
+
+		if (extp->MinorVersion >= '4')
+			extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
+
+		if (extp_size < sizeof(*extp) + extra_size) {
+			need_more:
+			extp_size = sizeof(*extp) + extra_size;
+			kfree(extp);
+			if (extp_size > 4096) {
+				printk(KERN_ERR
+					"%s: cfi_pri_intelext is too fat\n",
+					__func__);
+				return NULL;
+			}
+			goto again;
+		}
+	}
+
+	return extp;
+}
+
+struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct mtd_info *mtd;
+	int i;
+
+	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
+	if (!mtd)
+		return NULL;
+	mtd->priv = map;
+	mtd->type = MTD_NORFLASH;
+
+	/* Fill in the default mtd operations */
+	mtd->_erase   = cfi_intelext_erase_varsize;
+	mtd->_read    = cfi_intelext_read;
+	mtd->_write   = cfi_intelext_write_words;
+	mtd->_sync    = cfi_intelext_sync;
+	mtd->_lock    = cfi_intelext_lock;
+	mtd->_unlock  = cfi_intelext_unlock;
+	mtd->_is_locked = cfi_intelext_is_locked;
+	mtd->_suspend = cfi_intelext_suspend;
+	mtd->_resume  = cfi_intelext_resume;
+	mtd->flags   = MTD_CAP_NORFLASH;
+	mtd->name    = map->name;
+	mtd->writesize = 1;
+	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+
+	mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
+
+	if (cfi->cfi_mode == CFI_MODE_CFI) {
+		/*
+		 * It's a real CFI chip, not one for which the probe
+		 * routine faked a CFI structure. So we read the feature
+		 * table from it.
+		 */
+		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
+		struct cfi_pri_intelext *extp;
+
+		extp = read_pri_intelext(map, adr);
+		if (!extp) {
+			kfree(mtd);
+			return NULL;
+		}
+
+		/* Install our own private info structure */
+		cfi->cmdset_priv = extp;
+
+		cfi_fixup(mtd, cfi_fixup_table);
+
+#ifdef DEBUG_CFI_FEATURES
+		/* Tell the user about it in lots of lovely detail */
+		cfi_tell_features(extp);
+#endif
+
+		if(extp->SuspendCmdSupport & 1) {
+			printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
+		}
+	}
+	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
+		/* Apply jedec specific fixups */
+		cfi_fixup(mtd, jedec_fixup_table);
+	}
+	/* Apply generic fixups */
+	cfi_fixup(mtd, fixup_table);
+
+	for (i=0; i< cfi->numchips; i++) {
+		if (cfi->cfiq->WordWriteTimeoutTyp)
+			cfi->chips[i].word_write_time =
+				1<<cfi->cfiq->WordWriteTimeoutTyp;
+		else
+			cfi->chips[i].word_write_time = 50000;
+
+		if (cfi->cfiq->BufWriteTimeoutTyp)
+			cfi->chips[i].buffer_write_time =
+				1<<cfi->cfiq->BufWriteTimeoutTyp;
+		/* No default; if it isn't specified, we won't use it */
+
+		if (cfi->cfiq->BlockEraseTimeoutTyp)
+			cfi->chips[i].erase_time =
+				1000<<cfi->cfiq->BlockEraseTimeoutTyp;
+		else
+			cfi->chips[i].erase_time = 2000000;
+
+		if (cfi->cfiq->WordWriteTimeoutTyp &&
+		    cfi->cfiq->WordWriteTimeoutMax)
+			cfi->chips[i].word_write_time_max =
+				1<<(cfi->cfiq->WordWriteTimeoutTyp +
+				    cfi->cfiq->WordWriteTimeoutMax);
+		else
+			cfi->chips[i].word_write_time_max = 50000 * 8;
+
+		if (cfi->cfiq->BufWriteTimeoutTyp &&
+		    cfi->cfiq->BufWriteTimeoutMax)
+			cfi->chips[i].buffer_write_time_max =
+				1<<(cfi->cfiq->BufWriteTimeoutTyp +
+				    cfi->cfiq->BufWriteTimeoutMax);
+
+		if (cfi->cfiq->BlockEraseTimeoutTyp &&
+		    cfi->cfiq->BlockEraseTimeoutMax)
+			cfi->chips[i].erase_time_max =
+				1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
+				       cfi->cfiq->BlockEraseTimeoutMax);
+		else
+			cfi->chips[i].erase_time_max = 2000000 * 8;
+
+		cfi->chips[i].ref_point_counter = 0;
+		init_waitqueue_head(&(cfi->chips[i].wq));
+	}
+
+	map->fldrv = &cfi_intelext_chipdrv;
+
+	return cfi_intelext_setup(mtd);
+}
+struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
+struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
+EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
+EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
+EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
+
+static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long offset = 0;
+	int i,j;
+	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
+
+	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
+
+	mtd->size = devsize * cfi->numchips;
+
+	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
+	mtd->eraseregions = kcalloc(mtd->numeraseregions,
+				    sizeof(struct mtd_erase_region_info),
+				    GFP_KERNEL);
+	if (!mtd->eraseregions)
+		goto setup_err;
+
+	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
+		unsigned long ernum, ersize;
+		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
+		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
+
+		if (mtd->erasesize < ersize) {
+			mtd->erasesize = ersize;
+		}
+		for (j=0; j<cfi->numchips; j++) {
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
+			if (!mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap)
+				goto setup_err;
+		}
+		offset += (ersize * ernum);
+	}
+
+	if (offset != devsize) {
+		/* Argh */
+		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
+		goto setup_err;
+	}
+
+	for (i=0; i<mtd->numeraseregions;i++){
+		printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
+		       i,(unsigned long long)mtd->eraseregions[i].offset,
+		       mtd->eraseregions[i].erasesize,
+		       mtd->eraseregions[i].numblocks);
+	}
+
+#ifdef CONFIG_MTD_OTP
+	mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
+	mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
+	mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
+	mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
+	mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
+	mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
+#endif
+
+	/* This function has the potential to distort the reality
+	   a bit and therefore should be called last. */
+	if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
+		goto setup_err;
+
+	__module_get(THIS_MODULE);
+	register_reboot_notifier(&mtd->reboot_notifier);
+	return mtd;
+
+ setup_err:
+	if (mtd->eraseregions)
+		for (i=0; i<cfi->cfiq->NumEraseRegions; i++)
+			for (j=0; j<cfi->numchips; j++)
+				kfree(mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap);
+	kfree(mtd->eraseregions);
+	kfree(mtd);
+	kfree(cfi->cmdset_priv);
+	return NULL;
+}
+
+static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
+					struct cfi_private **pcfi)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = *pcfi;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+
+	/*
+	 * Probing of multi-partition flash chips.
+	 *
+	 * To support multiple partitions when available, we simply arrange
+	 * for each of them to have their own flchip structure even if they
+	 * are on the same physical chip.  This means completely recreating
+	 * a new cfi_private structure right here which is a blatent code
+	 * layering violation, but this is still the least intrusive
+	 * arrangement at this point. This can be rearranged in the future
+	 * if someone feels motivated enough.  --nico
+	 */
+	if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
+	    && extp->FeatureSupport & (1 << 9)) {
+		struct cfi_private *newcfi;
+		struct flchip *chip;
+		struct flchip_shared *shared;
+		int offs, numregions, numparts, partshift, numvirtchips, i, j;
+
+		/* Protection Register info */
+		offs = (extp->NumProtectionFields - 1) *
+		       sizeof(struct cfi_intelext_otpinfo);
+
+		/* Burst Read info */
+		offs += extp->extra[offs+1]+2;
+
+		/* Number of partition regions */
+		numregions = extp->extra[offs];
+		offs += 1;
+
+		/* skip the sizeof(partregion) field in CFI 1.4 */
+		if (extp->MinorVersion >= '4')
+			offs += 2;
+
+		/* Number of hardware partitions */
+		numparts = 0;
+		for (i = 0; i < numregions; i++) {
+			struct cfi_intelext_regioninfo *rinfo;
+			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
+			numparts += rinfo->NumIdentPartitions;
+			offs += sizeof(*rinfo)
+				+ (rinfo->NumBlockTypes - 1) *
+				  sizeof(struct cfi_intelext_blockinfo);
+		}
+
+		if (!numparts)
+			numparts = 1;
+
+		/* Programming Region info */
+		if (extp->MinorVersion >= '4') {
+			struct cfi_intelext_programming_regioninfo *prinfo;
+			prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
+			mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
+			mtd->flags &= ~MTD_BIT_WRITEABLE;
+			printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
+			       map->name, mtd->writesize,
+			       cfi->interleave * prinfo->ControlValid,
+			       cfi->interleave * prinfo->ControlInvalid);
+		}
+
+		/*
+		 * All functions below currently rely on all chips having
+		 * the same geometry so we'll just assume that all hardware
+		 * partitions are of the same size too.
+		 */
+		partshift = cfi->chipshift - __ffs(numparts);
+
+		if ((1 << partshift) < mtd->erasesize) {
+			printk( KERN_ERR
+				"%s: bad number of hw partitions (%d)\n",
+				__func__, numparts);
+			return -EINVAL;
+		}
+
+		numvirtchips = cfi->numchips * numparts;
+		newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
+		if (!newcfi)
+			return -ENOMEM;
+		shared = kmalloc_array(cfi->numchips,
+				       sizeof(struct flchip_shared),
+				       GFP_KERNEL);
+		if (!shared) {
+			kfree(newcfi);
+			return -ENOMEM;
+		}
+		memcpy(newcfi, cfi, sizeof(struct cfi_private));
+		newcfi->numchips = numvirtchips;
+		newcfi->chipshift = partshift;
+
+		chip = &newcfi->chips[0];
+		for (i = 0; i < cfi->numchips; i++) {
+			shared[i].writing = shared[i].erasing = NULL;
+			mutex_init(&shared[i].lock);
+			for (j = 0; j < numparts; j++) {
+				*chip = cfi->chips[i];
+				chip->start += j << partshift;
+				chip->priv = &shared[i];
+				/* those should be reset too since
+				   they create memory references. */
+				init_waitqueue_head(&chip->wq);
+				mutex_init(&chip->mutex);
+				chip++;
+			}
+		}
+
+		printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
+				  "--> %d partitions of %d KiB\n",
+				  map->name, cfi->numchips, cfi->interleave,
+				  newcfi->numchips, 1<<(newcfi->chipshift-10));
+
+		map->fldrv_priv = newcfi;
+		*pcfi = newcfi;
+		kfree(cfi);
+	}
+
+	return 0;
+}
+
+/*
+ *  *********** CHIP ACCESS FUNCTIONS ***********
+ */
+static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
+{
+	DECLARE_WAITQUEUE(wait, current);
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+	unsigned long timeo = jiffies + HZ;
+
+	/* Prevent setting state FL_SYNCING for chip in suspended state. */
+	if (mode == FL_SYNCING && chip->oldstate != FL_READY)
+		goto sleep;
+
+	switch (chip->state) {
+
+	case FL_STATUS:
+		for (;;) {
+			status = map_read(map, adr);
+			if (map_word_andequal(map, status, status_OK, status_OK))
+				break;
+
+			/* At this point we're fine with write operations
+			   in other partitions as they don't conflict. */
+			if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
+				break;
+
+			mutex_unlock(&chip->mutex);
+			cfi_udelay(1);
+			mutex_lock(&chip->mutex);
+			/* Someone else might have been playing with it. */
+			return -EAGAIN;
+		}
+		/* Fall through */
+	case FL_READY:
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+		return 0;
+
+	case FL_ERASING:
+		if (!cfip ||
+		    !(cfip->FeatureSupport & 2) ||
+		    !(mode == FL_READY || mode == FL_POINT ||
+		     (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
+			goto sleep;
+
+		/* Do not allow suspend iff read/write to EB address */
+		if ((adr & chip->in_progress_block_mask) ==
+		    chip->in_progress_block_addr)
+			goto sleep;
+
+		/* do not suspend small EBs, buggy Micron Chips */
+		if (cfi_is_micron_28F00AP30(cfi, chip) &&
+		    (chip->in_progress_block_mask == ~(0x8000-1)))
+			goto sleep;
+
+		/* Erase suspend */
+		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
+
+		/* If the flash has finished erasing, then 'erase suspend'
+		 * appears to make some (28F320) flash devices switch to
+		 * 'read' mode.  Make sure that we switch to 'read status'
+		 * mode so we get the right data. --rmk
+		 */
+		map_write(map, CMD(0x70), chip->in_progress_block_addr);
+		chip->oldstate = FL_ERASING;
+		chip->state = FL_ERASE_SUSPENDING;
+		chip->erase_suspended = 1;
+		for (;;) {
+			status = map_read(map, chip->in_progress_block_addr);
+			if (map_word_andequal(map, status, status_OK, status_OK))
+			        break;
+
+			if (time_after(jiffies, timeo)) {
+				/* Urgh. Resume and pretend we weren't here.
+				 * Make sure we're in 'read status' mode if it had finished */
+				put_chip(map, chip, adr);
+				printk(KERN_ERR "%s: Chip not ready after erase "
+				       "suspended: status = 0x%lx\n", map->name, status.x[0]);
+				return -EIO;
+			}
+
+			mutex_unlock(&chip->mutex);
+			cfi_udelay(1);
+			mutex_lock(&chip->mutex);
+			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
+			   So we can just loop here. */
+		}
+		chip->state = FL_STATUS;
+		return 0;
+
+	case FL_XIP_WHILE_ERASING:
+		if (mode != FL_READY && mode != FL_POINT &&
+		    (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
+			goto sleep;
+		chip->oldstate = chip->state;
+		chip->state = FL_READY;
+		return 0;
+
+	case FL_SHUTDOWN:
+		/* The machine is rebooting now,so no one can get chip anymore */
+		return -EIO;
+	case FL_POINT:
+		/* Only if there's no operation suspended... */
+		if (mode == FL_READY && chip->oldstate == FL_READY)
+			return 0;
+		/* Fall through */
+	default:
+	sleep:
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		mutex_unlock(&chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		mutex_lock(&chip->mutex);
+		return -EAGAIN;
+	}
+}
+
+static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
+{
+	int ret;
+	DECLARE_WAITQUEUE(wait, current);
+
+ retry:
+	if (chip->priv &&
+	    (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
+	    || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
+		/*
+		 * OK. We have possibility for contention on the write/erase
+		 * operations which are global to the real chip and not per
+		 * partition.  So let's fight it over in the partition which
+		 * currently has authority on the operation.
+		 *
+		 * The rules are as follows:
+		 *
+		 * - any write operation must own shared->writing.
+		 *
+		 * - any erase operation must own _both_ shared->writing and
+		 *   shared->erasing.
+		 *
+		 * - contention arbitration is handled in the owner's context.
+		 *
+		 * The 'shared' struct can be read and/or written only when
+		 * its lock is taken.
+		 */
+		struct flchip_shared *shared = chip->priv;
+		struct flchip *contender;
+		mutex_lock(&shared->lock);
+		contender = shared->writing;
+		if (contender && contender != chip) {
+			/*
+			 * The engine to perform desired operation on this
+			 * partition is already in use by someone else.
+			 * Let's fight over it in the context of the chip
+			 * currently using it.  If it is possible to suspend,
+			 * that other partition will do just that, otherwise
+			 * it'll happily send us to sleep.  In any case, when
+			 * get_chip returns success we're clear to go ahead.
+			 */
+			ret = mutex_trylock(&contender->mutex);
+			mutex_unlock(&shared->lock);
+			if (!ret)
+				goto retry;
+			mutex_unlock(&chip->mutex);
+			ret = chip_ready(map, contender, contender->start, mode);
+			mutex_lock(&chip->mutex);
+
+			if (ret == -EAGAIN) {
+				mutex_unlock(&contender->mutex);
+				goto retry;
+			}
+			if (ret) {
+				mutex_unlock(&contender->mutex);
+				return ret;
+			}
+			mutex_lock(&shared->lock);
+
+			/* We should not own chip if it is already
+			 * in FL_SYNCING state. Put contender and retry. */
+			if (chip->state == FL_SYNCING) {
+				put_chip(map, contender, contender->start);
+				mutex_unlock(&contender->mutex);
+				goto retry;
+			}
+			mutex_unlock(&contender->mutex);
+		}
+
+		/* Check if we already have suspended erase
+		 * on this chip. Sleep. */
+		if (mode == FL_ERASING && shared->erasing
+		    && shared->erasing->oldstate == FL_ERASING) {
+			mutex_unlock(&shared->lock);
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			mutex_lock(&chip->mutex);
+			goto retry;
+		}
+
+		/* We now own it */
+		shared->writing = chip;
+		if (mode == FL_ERASING)
+			shared->erasing = chip;
+		mutex_unlock(&shared->lock);
+	}
+	ret = chip_ready(map, chip, adr, mode);
+	if (ret == -EAGAIN)
+		goto retry;
+
+	return ret;
+}
+
+static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	if (chip->priv) {
+		struct flchip_shared *shared = chip->priv;
+		mutex_lock(&shared->lock);
+		if (shared->writing == chip && chip->oldstate == FL_READY) {
+			/* We own the ability to write, but we're done */
+			shared->writing = shared->erasing;
+			if (shared->writing && shared->writing != chip) {
+				/* give back ownership to who we loaned it from */
+				struct flchip *loaner = shared->writing;
+				mutex_lock(&loaner->mutex);
+				mutex_unlock(&shared->lock);
+				mutex_unlock(&chip->mutex);
+				put_chip(map, loaner, loaner->start);
+				mutex_lock(&chip->mutex);
+				mutex_unlock(&loaner->mutex);
+				wake_up(&chip->wq);
+				return;
+			}
+			shared->erasing = NULL;
+			shared->writing = NULL;
+		} else if (shared->erasing == chip && shared->writing != chip) {
+			/*
+			 * We own the ability to erase without the ability
+			 * to write, which means the erase was suspended
+			 * and some other partition is currently writing.
+			 * Don't let the switch below mess things up since
+			 * we don't have ownership to resume anything.
+			 */
+			mutex_unlock(&shared->lock);
+			wake_up(&chip->wq);
+			return;
+		}
+		mutex_unlock(&shared->lock);
+	}
+
+	switch(chip->oldstate) {
+	case FL_ERASING:
+		/* What if one interleaved chip has finished and the
+		   other hasn't? The old code would leave the finished
+		   one in READY mode. That's bad, and caused -EROFS
+		   errors to be returned from do_erase_oneblock because
+		   that's the only bit it checked for at the time.
+		   As the state machine appears to explicitly allow
+		   sending the 0x70 (Read Status) command to an erasing
+		   chip and expecting it to be ignored, that's what we
+		   do. */
+		map_write(map, CMD(0xd0), chip->in_progress_block_addr);
+		map_write(map, CMD(0x70), chip->in_progress_block_addr);
+		chip->oldstate = FL_READY;
+		chip->state = FL_ERASING;
+		break;
+
+	case FL_XIP_WHILE_ERASING:
+		chip->state = chip->oldstate;
+		chip->oldstate = FL_READY;
+		break;
+
+	case FL_READY:
+	case FL_STATUS:
+	case FL_JEDEC_QUERY:
+		break;
+	default:
+		printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
+	}
+	wake_up(&chip->wq);
+}
+
+#ifdef CONFIG_MTD_XIP
+
+/*
+ * No interrupt what so ever can be serviced while the flash isn't in array
+ * mode.  This is ensured by the xip_disable() and xip_enable() functions
+ * enclosing any code path where the flash is known not to be in array mode.
+ * And within a XIP disabled code path, only functions marked with __xipram
+ * may be called and nothing else (it's a good thing to inspect generated
+ * assembly to make sure inline functions were actually inlined and that gcc
+ * didn't emit calls to its own support functions). Also configuring MTD CFI
+ * support to a single buswidth and a single interleave is also recommended.
+ */
+
+static void xip_disable(struct map_info *map, struct flchip *chip,
+			unsigned long adr)
+{
+	/* TODO: chips with no XIP use should ignore and return */
+	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
+	local_irq_disable();
+}
+
+static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
+				unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	if (chip->state != FL_POINT && chip->state != FL_READY) {
+		map_write(map, CMD(0xff), adr);
+		chip->state = FL_READY;
+	}
+	(void) map_read(map, adr);
+	xip_iprefetch();
+	local_irq_enable();
+}
+
+/*
+ * When a delay is required for the flash operation to complete, the
+ * xip_wait_for_operation() function is polling for both the given timeout
+ * and pending (but still masked) hardware interrupts.  Whenever there is an
+ * interrupt pending then the flash erase or write operation is suspended,
+ * array mode restored and interrupts unmasked.  Task scheduling might also
+ * happen at that point.  The CPU eventually returns from the interrupt or
+ * the call to schedule() and the suspended flash operation is resumed for
+ * the remaining of the delay period.
+ *
+ * Warning: this function _will_ fool interrupt latency tracing tools.
+ */
+
+static int __xipram xip_wait_for_operation(
+		struct map_info *map, struct flchip *chip,
+		unsigned long adr, unsigned int chip_op_time_max)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+	map_word status, OK = CMD(0x80);
+	unsigned long usec, suspended, start, done;
+	flstate_t oldstate, newstate;
+
+       	start = xip_currtime();
+	usec = chip_op_time_max;
+	if (usec == 0)
+		usec = 500000;
+	done = 0;
+
+	do {
+		cpu_relax();
+		if (xip_irqpending() && cfip &&
+		    ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
+		     (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
+		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
+			/*
+			 * Let's suspend the erase or write operation when
+			 * supported.  Note that we currently don't try to
+			 * suspend interleaved chips if there is already
+			 * another operation suspended (imagine what happens
+			 * when one chip was already done with the current
+			 * operation while another chip suspended it, then
+			 * we resume the whole thing at once).  Yes, it
+			 * can happen!
+			 */
+			usec -= done;
+			map_write(map, CMD(0xb0), adr);
+			map_write(map, CMD(0x70), adr);
+			suspended = xip_currtime();
+			do {
+				if (xip_elapsed_since(suspended) > 100000) {
+					/*
+					 * The chip doesn't want to suspend
+					 * after waiting for 100 msecs.
+					 * This is a critical error but there
+					 * is not much we can do here.
+					 */
+					return -EIO;
+				}
+				status = map_read(map, adr);
+			} while (!map_word_andequal(map, status, OK, OK));
+
+			/* Suspend succeeded */
+			oldstate = chip->state;
+			if (oldstate == FL_ERASING) {
+				if (!map_word_bitsset(map, status, CMD(0x40)))
+					break;
+				newstate = FL_XIP_WHILE_ERASING;
+				chip->erase_suspended = 1;
+			} else {
+				if (!map_word_bitsset(map, status, CMD(0x04)))
+					break;
+				newstate = FL_XIP_WHILE_WRITING;
+				chip->write_suspended = 1;
+			}
+			chip->state = newstate;
+			map_write(map, CMD(0xff), adr);
+			(void) map_read(map, adr);
+			xip_iprefetch();
+			local_irq_enable();
+			mutex_unlock(&chip->mutex);
+			xip_iprefetch();
+			cond_resched();
+
+			/*
+			 * We're back.  However someone else might have
+			 * decided to go write to the chip if we are in
+			 * a suspended erase state.  If so let's wait
+			 * until it's done.
+			 */
+			mutex_lock(&chip->mutex);
+			while (chip->state != newstate) {
+				DECLARE_WAITQUEUE(wait, current);
+				set_current_state(TASK_UNINTERRUPTIBLE);
+				add_wait_queue(&chip->wq, &wait);
+				mutex_unlock(&chip->mutex);
+				schedule();
+				remove_wait_queue(&chip->wq, &wait);
+				mutex_lock(&chip->mutex);
+			}
+			/* Disallow XIP again */
+			local_irq_disable();
+
+			/* Resume the write or erase operation */
+			map_write(map, CMD(0xd0), adr);
+			map_write(map, CMD(0x70), adr);
+			chip->state = oldstate;
+			start = xip_currtime();
+		} else if (usec >= 1000000/HZ) {
+			/*
+			 * Try to save on CPU power when waiting delay
+			 * is at least a system timer tick period.
+			 * No need to be extremely accurate here.
+			 */
+			xip_cpu_idle();
+		}
+		status = map_read(map, adr);
+		done = xip_elapsed_since(start);
+	} while (!map_word_andequal(map, status, OK, OK)
+		 && done < usec);
+
+	return (done >= usec) ? -ETIME : 0;
+}
+
+/*
+ * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
+ * the flash is actively programming or erasing since we have to poll for
+ * the operation to complete anyway.  We can't do that in a generic way with
+ * a XIP setup so do it before the actual flash operation in this case
+ * and stub it out from INVAL_CACHE_AND_WAIT.
+ */
+#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
+	INVALIDATE_CACHED_RANGE(map, from, size)
+
+#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
+	xip_wait_for_operation(map, chip, cmd_adr, usec_max)
+
+#else
+
+#define xip_disable(map, chip, adr)
+#define xip_enable(map, chip, adr)
+#define XIP_INVAL_CACHED_RANGE(x...)
+#define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
+
+static int inval_cache_and_wait_for_operation(
+		struct map_info *map, struct flchip *chip,
+		unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
+		unsigned int chip_op_time, unsigned int chip_op_time_max)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK = CMD(0x80);
+	int chip_state = chip->state;
+	unsigned int timeo, sleep_time, reset_timeo;
+
+	mutex_unlock(&chip->mutex);
+	if (inval_len)
+		INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
+	mutex_lock(&chip->mutex);
+
+	timeo = chip_op_time_max;
+	if (!timeo)
+		timeo = 500000;
+	reset_timeo = timeo;
+	sleep_time = chip_op_time / 2;
+
+	for (;;) {
+		if (chip->state != chip_state) {
+			/* Someone's suspended the operation: sleep */
+			DECLARE_WAITQUEUE(wait, current);
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			mutex_lock(&chip->mutex);
+			continue;
+		}
+
+		status = map_read(map, cmd_adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		if (chip->erase_suspended && chip_state == FL_ERASING)  {
+			/* Erase suspend occurred while sleep: reset timeout */
+			timeo = reset_timeo;
+			chip->erase_suspended = 0;
+		}
+		if (chip->write_suspended && chip_state == FL_WRITING)  {
+			/* Write suspend occurred while sleep: reset timeout */
+			timeo = reset_timeo;
+			chip->write_suspended = 0;
+		}
+		if (!timeo) {
+			map_write(map, CMD(0x70), cmd_adr);
+			chip->state = FL_STATUS;
+			return -ETIME;
+		}
+
+		/* OK Still waiting. Drop the lock, wait a while and retry. */
+		mutex_unlock(&chip->mutex);
+		if (sleep_time >= 1000000/HZ) {
+			/*
+			 * Half of the normal delay still remaining
+			 * can be performed with a sleeping delay instead
+			 * of busy waiting.
+			 */
+			msleep(sleep_time/1000);
+			timeo -= sleep_time;
+			sleep_time = 1000000/HZ;
+		} else {
+			udelay(1);
+			cond_resched();
+			timeo--;
+		}
+		mutex_lock(&chip->mutex);
+	}
+
+	/* Done and happy. */
+ 	chip->state = FL_STATUS;
+	return 0;
+}
+
+#endif
+
+#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
+	INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
+
+
+static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
+{
+	unsigned long cmd_addr;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret = 0;
+
+	adr += chip->start;
+
+	/* Ensure cmd read/writes are aligned. */
+	cmd_addr = adr & ~(map_bankwidth(map)-1);
+
+	mutex_lock(&chip->mutex);
+
+	ret = get_chip(map, chip, cmd_addr, FL_POINT);
+
+	if (!ret) {
+		if (chip->state != FL_POINT && chip->state != FL_READY)
+			map_write(map, CMD(0xff), cmd_addr);
+
+		chip->state = FL_POINT;
+		chip->ref_point_counter++;
+	}
+	mutex_unlock(&chip->mutex);
+
+	return ret;
+}
+
+static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
+		size_t *retlen, void **virt, resource_size_t *phys)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs, last_end = 0;
+	int chipnum;
+	int ret = 0;
+
+	if (!map->virt)
+		return -EINVAL;
+
+	/* Now lock the chip(s) to POINT state */
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum << cfi->chipshift);
+
+	*virt = map->virt + cfi->chips[chipnum].start + ofs;
+	if (phys)
+		*phys = map->phys + cfi->chips[chipnum].start + ofs;
+
+	while (len) {
+		unsigned long thislen;
+
+		if (chipnum >= cfi->numchips)
+			break;
+
+		/* We cannot point across chips that are virtually disjoint */
+		if (!last_end)
+			last_end = cfi->chips[chipnum].start;
+		else if (cfi->chips[chipnum].start != last_end)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
+		if (ret)
+			break;
+
+		*retlen += thislen;
+		len -= thislen;
+
+		ofs = 0;
+		last_end += 1 << cfi->chipshift;
+		chipnum++;
+	}
+	return 0;
+}
+
+static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum, err = 0;
+
+	/* Now unlock the chip(s) POINT state */
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum <<  cfi->chipshift);
+
+	while (len && !err) {
+		unsigned long thislen;
+		struct flchip *chip;
+
+		chip = &cfi->chips[chipnum];
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		mutex_lock(&chip->mutex);
+		if (chip->state == FL_POINT) {
+			chip->ref_point_counter--;
+			if(chip->ref_point_counter == 0)
+				chip->state = FL_READY;
+		} else {
+			printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
+			err = -EINVAL;
+		}
+
+		put_chip(map, chip, chip->start);
+		mutex_unlock(&chip->mutex);
+
+		len -= thislen;
+		ofs = 0;
+		chipnum++;
+	}
+
+	return err;
+}
+
+static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
+{
+	unsigned long cmd_addr;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret;
+
+	adr += chip->start;
+
+	/* Ensure cmd read/writes are aligned. */
+	cmd_addr = adr & ~(map_bankwidth(map)-1);
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, cmd_addr, FL_READY);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	if (chip->state != FL_POINT && chip->state != FL_READY) {
+		map_write(map, CMD(0xff), cmd_addr);
+
+		chip->state = FL_READY;
+	}
+
+	map_copy_from(map, buf, adr, len);
+
+	put_chip(map, chip, cmd_addr);
+
+	mutex_unlock(&chip->mutex);
+	return 0;
+}
+
+static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum;
+	int ret = 0;
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum <<  cfi->chipshift);
+
+	while (len) {
+		unsigned long thislen;
+
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
+		if (ret)
+			break;
+
+		*retlen += thislen;
+		len -= thislen;
+		buf += thislen;
+
+		ofs = 0;
+		chipnum++;
+	}
+	return ret;
+}
+
+static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
+				     unsigned long adr, map_word datum, int mode)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, write_cmd;
+	int ret=0;
+
+	adr += chip->start;
+
+	switch (mode) {
+	case FL_WRITING:
+		write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
+		break;
+	case FL_OTP_WRITE:
+		write_cmd = CMD(0xc0);
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, mode);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+	map_write(map, write_cmd, adr);
+	map_write(map, datum, adr);
+	chip->state = mode;
+
+	ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
+				   adr, map_bankwidth(map),
+				   chip->word_write_time,
+				   chip->word_write_time_max);
+	if (ret) {
+		xip_enable(map, chip, adr);
+		printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
+		goto out;
+	}
+
+	/* check for errors */
+	status = map_read(map, adr);
+	if (map_word_bitsset(map, status, CMD(0x1a))) {
+		unsigned long chipstatus = MERGESTATUS(status);
+
+		/* reset status */
+		map_write(map, CMD(0x50), adr);
+		map_write(map, CMD(0x70), adr);
+		xip_enable(map, chip, adr);
+
+		if (chipstatus & 0x02) {
+			ret = -EROFS;
+		} else if (chipstatus & 0x08) {
+			printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
+			ret = -EIO;
+		} else {
+			printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
+			ret = -EINVAL;
+		}
+
+		goto out;
+	}
+
+	xip_enable(map, chip, adr);
+ out:	DISABLE_VPP(map);
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+
+static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret = 0;
+	int chipnum;
+	unsigned long ofs;
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to  - (chipnum << cfi->chipshift);
+
+	/* If it's not bus-aligned, do the first byte write */
+	if (ofs & (map_bankwidth(map)-1)) {
+		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
+		int gap = ofs - bus_ofs;
+		int n;
+		map_word datum;
+
+		n = min_t(int, len, map_bankwidth(map)-gap);
+		datum = map_word_ff(map);
+		datum = map_word_load_partial(map, datum, buf, gap, n);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+					       bus_ofs, datum, FL_WRITING);
+		if (ret)
+			return ret;
+
+		len -= n;
+		ofs += n;
+		buf += n;
+		(*retlen) += n;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	while(len >= map_bankwidth(map)) {
+		map_word datum = map_word_load(map, buf);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+				       ofs, datum, FL_WRITING);
+		if (ret)
+			return ret;
+
+		ofs += map_bankwidth(map);
+		buf += map_bankwidth(map);
+		(*retlen) += map_bankwidth(map);
+		len -= map_bankwidth(map);
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	if (len & (map_bankwidth(map)-1)) {
+		map_word datum;
+
+		datum = map_word_ff(map);
+		datum = map_word_load_partial(map, datum, buf, 0, len);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+				       ofs, datum, FL_WRITING);
+		if (ret)
+			return ret;
+
+		(*retlen) += len;
+	}
+
+	return 0;
+}
+
+
+static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
+				    unsigned long adr, const struct kvec **pvec,
+				    unsigned long *pvec_seek, int len)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, write_cmd, datum;
+	unsigned long cmd_adr;
+	int ret, wbufsize, word_gap, words;
+	const struct kvec *vec;
+	unsigned long vec_seek;
+	unsigned long initial_adr;
+	int initial_len = len;
+
+	wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+	adr += chip->start;
+	initial_adr = adr;
+	cmd_adr = adr & ~(wbufsize-1);
+
+	/* Sharp LH28F640BF chips need the first address for the
+	 * Page Buffer Program command. See Table 5 of
+	 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
+	if (is_LH28F640BF(cfi))
+		cmd_adr = adr;
+
+	/* Let's determine this according to the interleave only once */
+	write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, cmd_adr, FL_WRITING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
+	ENABLE_VPP(map);
+	xip_disable(map, chip, cmd_adr);
+
+	/* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
+	   [...], the device will not accept any more Write to Buffer commands".
+	   So we must check here and reset those bits if they're set. Otherwise
+	   we're just pissing in the wind */
+	if (chip->state != FL_STATUS) {
+		map_write(map, CMD(0x70), cmd_adr);
+		chip->state = FL_STATUS;
+	}
+	status = map_read(map, cmd_adr);
+	if (map_word_bitsset(map, status, CMD(0x30))) {
+		xip_enable(map, chip, cmd_adr);
+		printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
+		xip_disable(map, chip, cmd_adr);
+		map_write(map, CMD(0x50), cmd_adr);
+		map_write(map, CMD(0x70), cmd_adr);
+	}
+
+	chip->state = FL_WRITING_TO_BUFFER;
+	map_write(map, write_cmd, cmd_adr);
+	ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
+	if (ret) {
+		/* Argh. Not ready for write to buffer */
+		map_word Xstatus = map_read(map, cmd_adr);
+		map_write(map, CMD(0x70), cmd_adr);
+		chip->state = FL_STATUS;
+		status = map_read(map, cmd_adr);
+		map_write(map, CMD(0x50), cmd_adr);
+		map_write(map, CMD(0x70), cmd_adr);
+		xip_enable(map, chip, cmd_adr);
+		printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
+				map->name, Xstatus.x[0], status.x[0]);
+		goto out;
+	}
+
+	/* Figure out the number of words to write */
+	word_gap = (-adr & (map_bankwidth(map)-1));
+	words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
+	if (!word_gap) {
+		words--;
+	} else {
+		word_gap = map_bankwidth(map) - word_gap;
+		adr -= word_gap;
+		datum = map_word_ff(map);
+	}
+
+	/* Write length of data to come */
+	map_write(map, CMD(words), cmd_adr );
+
+	/* Write data */
+	vec = *pvec;
+	vec_seek = *pvec_seek;
+	do {
+		int n = map_bankwidth(map) - word_gap;
+		if (n > vec->iov_len - vec_seek)
+			n = vec->iov_len - vec_seek;
+		if (n > len)
+			n = len;
+
+		if (!word_gap && len < map_bankwidth(map))
+			datum = map_word_ff(map);
+
+		datum = map_word_load_partial(map, datum,
+					      vec->iov_base + vec_seek,
+					      word_gap, n);
+
+		len -= n;
+		word_gap += n;
+		if (!len || word_gap == map_bankwidth(map)) {
+			map_write(map, datum, adr);
+			adr += map_bankwidth(map);
+			word_gap = 0;
+		}
+
+		vec_seek += n;
+		if (vec_seek == vec->iov_len) {
+			vec++;
+			vec_seek = 0;
+		}
+	} while (len);
+	*pvec = vec;
+	*pvec_seek = vec_seek;
+
+	/* GO GO GO */
+	map_write(map, CMD(0xd0), cmd_adr);
+	chip->state = FL_WRITING;
+
+	ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
+				   initial_adr, initial_len,
+				   chip->buffer_write_time,
+				   chip->buffer_write_time_max);
+	if (ret) {
+		map_write(map, CMD(0x70), cmd_adr);
+		chip->state = FL_STATUS;
+		xip_enable(map, chip, cmd_adr);
+		printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
+		goto out;
+	}
+
+	/* check for errors */
+	status = map_read(map, cmd_adr);
+	if (map_word_bitsset(map, status, CMD(0x1a))) {
+		unsigned long chipstatus = MERGESTATUS(status);
+
+		/* reset status */
+		map_write(map, CMD(0x50), cmd_adr);
+		map_write(map, CMD(0x70), cmd_adr);
+		xip_enable(map, chip, cmd_adr);
+
+		if (chipstatus & 0x02) {
+			ret = -EROFS;
+		} else if (chipstatus & 0x08) {
+			printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
+			ret = -EIO;
+		} else {
+			printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
+			ret = -EINVAL;
+		}
+
+		goto out;
+	}
+
+	xip_enable(map, chip, cmd_adr);
+ out:	DISABLE_VPP(map);
+	put_chip(map, chip, cmd_adr);
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
+				unsigned long count, loff_t to, size_t *retlen)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+	int ret = 0;
+	int chipnum;
+	unsigned long ofs, vec_seek, i;
+	size_t len = 0;
+
+	for (i = 0; i < count; i++)
+		len += vecs[i].iov_len;
+
+	if (!len)
+		return 0;
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to - (chipnum << cfi->chipshift);
+	vec_seek = 0;
+
+	do {
+		/* We must not cross write block boundaries */
+		int size = wbufsize - (ofs & (wbufsize-1));
+
+		if (size > len)
+			size = len;
+		ret = do_write_buffer(map, &cfi->chips[chipnum],
+				      ofs, &vecs, &vec_seek, size);
+		if (ret)
+			return ret;
+
+		ofs += size;
+		(*retlen) += size;
+		len -= size;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+
+		/* Be nice and reschedule with the chip in a usable state for other
+		   processes. */
+		cond_resched();
+
+	} while (len);
+
+	return 0;
+}
+
+static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
+				       size_t len, size_t *retlen, const u_char *buf)
+{
+	struct kvec vec;
+
+	vec.iov_base = (void *) buf;
+	vec.iov_len = len;
+
+	return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
+}
+
+static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
+				      unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status;
+	int retries = 3;
+	int ret;
+
+	adr += chip->start;
+
+ retry:
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, FL_ERASING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	XIP_INVAL_CACHED_RANGE(map, adr, len);
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+
+	/* Clear the status register first */
+	map_write(map, CMD(0x50), adr);
+
+	/* Now erase */
+	map_write(map, CMD(0x20), adr);
+	map_write(map, CMD(0xD0), adr);
+	chip->state = FL_ERASING;
+	chip->erase_suspended = 0;
+	chip->in_progress_block_addr = adr;
+	chip->in_progress_block_mask = ~(len - 1);
+
+	ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
+				   adr, len,
+				   chip->erase_time,
+				   chip->erase_time_max);
+	if (ret) {
+		map_write(map, CMD(0x70), adr);
+		chip->state = FL_STATUS;
+		xip_enable(map, chip, adr);
+		printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
+		goto out;
+	}
+
+	/* We've broken this before. It doesn't hurt to be safe */
+	map_write(map, CMD(0x70), adr);
+	chip->state = FL_STATUS;
+	status = map_read(map, adr);
+
+	/* check for errors */
+	if (map_word_bitsset(map, status, CMD(0x3a))) {
+		unsigned long chipstatus = MERGESTATUS(status);
+
+		/* Reset the error bits */
+		map_write(map, CMD(0x50), adr);
+		map_write(map, CMD(0x70), adr);
+		xip_enable(map, chip, adr);
+
+		if ((chipstatus & 0x30) == 0x30) {
+			printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
+			ret = -EINVAL;
+		} else if (chipstatus & 0x02) {
+			/* Protection bit set */
+			ret = -EROFS;
+		} else if (chipstatus & 0x8) {
+			/* Voltage */
+			printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
+			ret = -EIO;
+		} else if (chipstatus & 0x20 && retries--) {
+			printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
+			DISABLE_VPP(map);
+			put_chip(map, chip, adr);
+			mutex_unlock(&chip->mutex);
+			goto retry;
+		} else {
+			printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
+			ret = -EIO;
+		}
+
+		goto out;
+	}
+
+	xip_enable(map, chip, adr);
+ out:	DISABLE_VPP(map);
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
+{
+	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
+				instr->len, NULL);
+}
+
+static void cfi_intelext_sync (struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+		ret = get_chip(map, chip, chip->start, FL_SYNCING);
+
+		if (!ret) {
+			chip->oldstate = chip->state;
+			chip->state = FL_SYNCING;
+			/* No need to wake_up() on this state change -
+			 * as the whole point is that nobody can do anything
+			 * with the chip now anyway.
+			 */
+		}
+		mutex_unlock(&chip->mutex);
+	}
+
+	/* Unlock the chips again */
+
+	for (i--; i >=0; i--) {
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		if (chip->state == FL_SYNCING) {
+			chip->state = chip->oldstate;
+			chip->oldstate = FL_READY;
+			wake_up(&chip->wq);
+		}
+		mutex_unlock(&chip->mutex);
+	}
+}
+
+static int __xipram do_getlockstatus_oneblock(struct map_info *map,
+						struct flchip *chip,
+						unsigned long adr,
+						int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	int status, ofs_factor = cfi->interleave * cfi->device_type;
+
+	adr += chip->start;
+	xip_disable(map, chip, adr+(2*ofs_factor));
+	map_write(map, CMD(0x90), adr+(2*ofs_factor));
+	chip->state = FL_JEDEC_QUERY;
+	status = cfi_read_query(map, adr+(2*ofs_factor));
+	xip_enable(map, chip, 0);
+	return status;
+}
+
+#ifdef DEBUG_LOCK_BITS
+static int __xipram do_printlockstatus_oneblock(struct map_info *map,
+						struct flchip *chip,
+						unsigned long adr,
+						int len, void *thunk)
+{
+	printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
+	       adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
+	return 0;
+}
+#endif
+
+#define DO_XXLOCK_ONEBLOCK_LOCK		((void *) 1)
+#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *) 2)
+
+static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
+				       unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+	int mdelay;
+	int ret;
+
+	adr += chip->start;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, FL_LOCKING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+
+	map_write(map, CMD(0x60), adr);
+	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
+		map_write(map, CMD(0x01), adr);
+		chip->state = FL_LOCKING;
+	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
+		map_write(map, CMD(0xD0), adr);
+		chip->state = FL_UNLOCKING;
+	} else
+		BUG();
+
+	/*
+	 * If Instant Individual Block Locking supported then no need
+	 * to delay.
+	 */
+	/*
+	 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
+	 * lets use a max of 1.5 seconds (1500ms) as timeout.
+	 *
+	 * See "Clear Block Lock-Bits Time" on page 40 in
+	 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
+	 * from February 2003
+	 */
+	mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
+
+	ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
+	if (ret) {
+		map_write(map, CMD(0x70), adr);
+		chip->state = FL_STATUS;
+		xip_enable(map, chip, adr);
+		printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
+		goto out;
+	}
+
+	xip_enable(map, chip, adr);
+ out:	DISABLE_VPP(map);
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
+	       __func__, ofs, len);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
+		ofs, len, NULL);
+#endif
+
+	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
+		ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
+
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
+	       __func__, ret);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
+		ofs, len, NULL);
+#endif
+
+	return ret;
+}
+
+static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
+	       __func__, ofs, len);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
+		ofs, len, NULL);
+#endif
+
+	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
+					ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
+
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
+	       __func__, ret);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
+		ofs, len, NULL);
+#endif
+
+	return ret;
+}
+
+static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
+				  uint64_t len)
+{
+	return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
+				ofs, len, NULL) ? 1 : 0;
+}
+
+#ifdef CONFIG_MTD_OTP
+
+typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
+			u_long data_offset, u_char *buf, u_int size,
+			u_long prot_offset, u_int groupno, u_int groupsize);
+
+static int __xipram
+do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
+	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	/* let's ensure we're not reading back cached data from array mode */
+	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
+
+	xip_disable(map, chip, chip->start);
+	if (chip->state != FL_JEDEC_QUERY) {
+		map_write(map, CMD(0x90), chip->start);
+		chip->state = FL_JEDEC_QUERY;
+	}
+	map_copy_from(map, buf, chip->start + offset, size);
+	xip_enable(map, chip, chip->start);
+
+	/* then ensure we don't keep OTP data in the cache */
+	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
+
+	put_chip(map, chip, chip->start);
+	mutex_unlock(&chip->mutex);
+	return 0;
+}
+
+static int
+do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
+	     u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
+{
+	int ret;
+
+	while (size) {
+		unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
+		int gap = offset - bus_ofs;
+		int n = min_t(int, size, map_bankwidth(map)-gap);
+		map_word datum = map_word_ff(map);
+
+		datum = map_word_load_partial(map, datum, buf, gap, n);
+		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
+		if (ret)
+			return ret;
+
+		offset += n;
+		buf += n;
+		size -= n;
+	}
+
+	return 0;
+}
+
+static int
+do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
+	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word datum;
+
+	/* make sure area matches group boundaries */
+	if (size != grpsz)
+		return -EXDEV;
+
+	datum = map_word_ff(map);
+	datum = map_word_clr(map, datum, CMD(1 << grpno));
+	return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
+}
+
+static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
+				 size_t *retlen, u_char *buf,
+				 otp_op_t action, int user_regs)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+	struct flchip *chip;
+	struct cfi_intelext_otpinfo *otp;
+	u_long devsize, reg_prot_offset, data_offset;
+	u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
+	u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
+	int ret;
+
+	*retlen = 0;
+
+	/* Check that we actually have some OTP registers */
+	if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
+		return -ENODATA;
+
+	/* we need real chips here not virtual ones */
+	devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
+	chip_step = devsize >> cfi->chipshift;
+	chip_num = 0;
+
+	/* Some chips have OTP located in the _top_ partition only.
+	   For example: Intel 28F256L18T (T means top-parameter device) */
+	if (cfi->mfr == CFI_MFR_INTEL) {
+		switch (cfi->id) {
+		case 0x880b:
+		case 0x880c:
+		case 0x880d:
+			chip_num = chip_step - 1;
+		}
+	}
+
+	for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
+		chip = &cfi->chips[chip_num];
+		otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
+
+		/* first OTP region */
+		field = 0;
+		reg_prot_offset = extp->ProtRegAddr;
+		reg_fact_groups = 1;
+		reg_fact_size = 1 << extp->FactProtRegSize;
+		reg_user_groups = 1;
+		reg_user_size = 1 << extp->UserProtRegSize;
+
+		while (len > 0) {
+			/* flash geometry fixup */
+			data_offset = reg_prot_offset + 1;
+			data_offset *= cfi->interleave * cfi->device_type;
+			reg_prot_offset *= cfi->interleave * cfi->device_type;
+			reg_fact_size *= cfi->interleave;
+			reg_user_size *= cfi->interleave;
+
+			if (user_regs) {
+				groups = reg_user_groups;
+				groupsize = reg_user_size;
+				/* skip over factory reg area */
+				groupno = reg_fact_groups;
+				data_offset += reg_fact_groups * reg_fact_size;
+			} else {
+				groups = reg_fact_groups;
+				groupsize = reg_fact_size;
+				groupno = 0;
+			}
+
+			while (len > 0 && groups > 0) {
+				if (!action) {
+					/*
+					 * Special case: if action is NULL
+					 * we fill buf with otp_info records.
+					 */
+					struct otp_info *otpinfo;
+					map_word lockword;
+					len -= sizeof(struct otp_info);
+					if (len <= 0)
+						return -ENOSPC;
+					ret = do_otp_read(map, chip,
+							  reg_prot_offset,
+							  (u_char *)&lockword,
+							  map_bankwidth(map),
+							  0, 0,  0);
+					if (ret)
+						return ret;
+					otpinfo = (struct otp_info *)buf;
+					otpinfo->start = from;
+					otpinfo->length = groupsize;
+					otpinfo->locked =
+					   !map_word_bitsset(map, lockword,
+							     CMD(1 << groupno));
+					from += groupsize;
+					buf += sizeof(*otpinfo);
+					*retlen += sizeof(*otpinfo);
+				} else if (from >= groupsize) {
+					from -= groupsize;
+					data_offset += groupsize;
+				} else {
+					int size = groupsize;
+					data_offset += from;
+					size -= from;
+					from = 0;
+					if (size > len)
+						size = len;
+					ret = action(map, chip, data_offset,
+						     buf, size, reg_prot_offset,
+						     groupno, groupsize);
+					if (ret < 0)
+						return ret;
+					buf += size;
+					len -= size;
+					*retlen += size;
+					data_offset += size;
+				}
+				groupno++;
+				groups--;
+			}
+
+			/* next OTP region */
+			if (++field == extp->NumProtectionFields)
+				break;
+			reg_prot_offset = otp->ProtRegAddr;
+			reg_fact_groups = otp->FactGroups;
+			reg_fact_size = 1 << otp->FactProtRegSize;
+			reg_user_groups = otp->UserGroups;
+			reg_user_size = 1 << otp->UserProtRegSize;
+			otp++;
+		}
+	}
+
+	return 0;
+}
+
+static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
+					   size_t len, size_t *retlen,
+					    u_char *buf)
+{
+	return cfi_intelext_otp_walk(mtd, from, len, retlen,
+				     buf, do_otp_read, 0);
+}
+
+static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
+					   size_t len, size_t *retlen,
+					    u_char *buf)
+{
+	return cfi_intelext_otp_walk(mtd, from, len, retlen,
+				     buf, do_otp_read, 1);
+}
+
+static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
+					    size_t len, size_t *retlen,
+					     u_char *buf)
+{
+	return cfi_intelext_otp_walk(mtd, from, len, retlen,
+				     buf, do_otp_write, 1);
+}
+
+static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
+					   loff_t from, size_t len)
+{
+	size_t retlen;
+	return cfi_intelext_otp_walk(mtd, from, len, &retlen,
+				     NULL, do_otp_lock, 1);
+}
+
+static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len,
+					   size_t *retlen, struct otp_info *buf)
+
+{
+	return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
+				     NULL, 0);
+}
+
+static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len,
+					   size_t *retlen, struct otp_info *buf)
+{
+	return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
+				     NULL, 1);
+}
+
+#endif
+
+static void cfi_intelext_save_locks(struct mtd_info *mtd)
+{
+	struct mtd_erase_region_info *region;
+	int block, status, i;
+	unsigned long adr;
+	size_t len;
+
+	for (i = 0; i < mtd->numeraseregions; i++) {
+		region = &mtd->eraseregions[i];
+		if (!region->lockmap)
+			continue;
+
+		for (block = 0; block < region->numblocks; block++){
+			len = region->erasesize;
+			adr = region->offset + block * len;
+
+			status = cfi_varsize_frob(mtd,
+					do_getlockstatus_oneblock, adr, len, NULL);
+			if (status)
+				set_bit(block, region->lockmap);
+			else
+				clear_bit(block, region->lockmap);
+		}
+	}
+}
+
+static int cfi_intelext_suspend(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+
+	if ((mtd->flags & MTD_POWERUP_LOCK)
+	    && extp && (extp->FeatureSupport & (1 << 5)))
+		cfi_intelext_save_locks(mtd);
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		switch (chip->state) {
+		case FL_READY:
+		case FL_STATUS:
+		case FL_CFI_QUERY:
+		case FL_JEDEC_QUERY:
+			if (chip->oldstate == FL_READY) {
+				/* place the chip in a known state before suspend */
+				map_write(map, CMD(0xFF), cfi->chips[i].start);
+				chip->oldstate = chip->state;
+				chip->state = FL_PM_SUSPENDED;
+				/* No need to wake_up() on this state change -
+				 * as the whole point is that nobody can do anything
+				 * with the chip now anyway.
+				 */
+			} else {
+				/* There seems to be an operation pending. We must wait for it. */
+				printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
+				ret = -EAGAIN;
+			}
+			break;
+		default:
+			/* Should we actually wait? Once upon a time these routines weren't
+			   allowed to. Or should we return -EAGAIN, because the upper layers
+			   ought to have already shut down anything which was using the device
+			   anyway? The latter for now. */
+			printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
+			ret = -EAGAIN;
+		case FL_PM_SUSPENDED:
+			break;
+		}
+		mutex_unlock(&chip->mutex);
+	}
+
+	/* Unlock the chips again */
+
+	if (ret) {
+		for (i--; i >=0; i--) {
+			chip = &cfi->chips[i];
+
+			mutex_lock(&chip->mutex);
+
+			if (chip->state == FL_PM_SUSPENDED) {
+				/* No need to force it into a known state here,
+				   because we're returning failure, and it didn't
+				   get power cycled */
+				chip->state = chip->oldstate;
+				chip->oldstate = FL_READY;
+				wake_up(&chip->wq);
+			}
+			mutex_unlock(&chip->mutex);
+		}
+	}
+
+	return ret;
+}
+
+static void cfi_intelext_restore_locks(struct mtd_info *mtd)
+{
+	struct mtd_erase_region_info *region;
+	int block, i;
+	unsigned long adr;
+	size_t len;
+
+	for (i = 0; i < mtd->numeraseregions; i++) {
+		region = &mtd->eraseregions[i];
+		if (!region->lockmap)
+			continue;
+
+		for_each_clear_bit(block, region->lockmap, region->numblocks) {
+			len = region->erasesize;
+			adr = region->offset + block * len;
+			cfi_intelext_unlock(mtd, adr, len);
+		}
+	}
+}
+
+static void cfi_intelext_resume(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+	int i;
+	struct flchip *chip;
+
+	for (i=0; i<cfi->numchips; i++) {
+
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		/* Go to known state. Chip may have been power cycled */
+		if (chip->state == FL_PM_SUSPENDED) {
+			/* Refresh LH28F640BF Partition Config. Register */
+			fixup_LH28F640BF(mtd);
+			map_write(map, CMD(0xFF), cfi->chips[i].start);
+			chip->oldstate = chip->state = FL_READY;
+			wake_up(&chip->wq);
+		}
+
+		mutex_unlock(&chip->mutex);
+	}
+
+	if ((mtd->flags & MTD_POWERUP_LOCK)
+	    && extp && (extp->FeatureSupport & (1 << 5)))
+		cfi_intelext_restore_locks(mtd);
+}
+
+static int cfi_intelext_reset(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i, ret;
+
+	for (i=0; i < cfi->numchips; i++) {
+		struct flchip *chip = &cfi->chips[i];
+
+		/* force the completion of any ongoing operation
+		   and switch to array mode so any bootloader in
+		   flash is accessible for soft reboot. */
+		mutex_lock(&chip->mutex);
+		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
+		if (!ret) {
+			map_write(map, CMD(0xff), chip->start);
+			chip->state = FL_SHUTDOWN;
+			put_chip(map, chip, chip->start);
+		}
+		mutex_unlock(&chip->mutex);
+	}
+
+	return 0;
+}
+
+static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
+			       void *v)
+{
+	struct mtd_info *mtd;
+
+	mtd = container_of(nb, struct mtd_info, reboot_notifier);
+	cfi_intelext_reset(mtd);
+	return NOTIFY_DONE;
+}
+
+static void cfi_intelext_destroy(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct mtd_erase_region_info *region;
+	int i;
+	cfi_intelext_reset(mtd);
+	unregister_reboot_notifier(&mtd->reboot_notifier);
+	kfree(cfi->cmdset_priv);
+	kfree(cfi->cfiq);
+	kfree(cfi->chips[0].priv);
+	kfree(cfi);
+	for (i = 0; i < mtd->numeraseregions; i++) {
+		region = &mtd->eraseregions[i];
+		kfree(region->lockmap);
+	}
+	kfree(mtd->eraseregions);
+}
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
+MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
+MODULE_ALIAS("cfi_cmdset_0003");
+MODULE_ALIAS("cfi_cmdset_0200");
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c
new file mode 100644
index 0000000..72428b6
--- /dev/null
+++ b/drivers/mtd/chips/cfi_cmdset_0002.c
@@ -0,0 +1,2926 @@
+/*
+ * Common Flash Interface support:
+ *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
+ *
+ * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
+ * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
+ * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
+ *
+ * 2_by_8 routines added by Simon Munton
+ *
+ * 4_by_16 work by Carolyn J. Smith
+ *
+ * XIP support hooks by Vitaly Wool (based on code for Intel flash
+ * by Nicolas Pitre)
+ *
+ * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
+ *
+ * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
+ *
+ * This code is GPL
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/reboot.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/xip.h>
+
+#define AMD_BOOTLOC_BUG
+#define FORCE_WORD_WRITE 0
+
+#define MAX_RETRIES 3
+
+#define SST49LF004B		0x0060
+#define SST49LF040B		0x0050
+#define SST49LF008A		0x005a
+#define AT49BV6416		0x00d6
+
+static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
+static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
+static void cfi_amdstd_sync (struct mtd_info *);
+static int cfi_amdstd_suspend (struct mtd_info *);
+static void cfi_amdstd_resume (struct mtd_info *);
+static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
+static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
+					 size_t *, struct otp_info *);
+static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
+					 size_t *, struct otp_info *);
+static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
+					 size_t *, u_char *);
+static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
+					 size_t *, u_char *);
+static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
+					  size_t *, u_char *);
+static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
+
+static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
+				  size_t *retlen, const u_char *buf);
+
+static void cfi_amdstd_destroy(struct mtd_info *);
+
+struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
+static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
+
+static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
+static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
+#include "fwh_lock.h"
+
+static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+
+static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+
+static struct mtd_chip_driver cfi_amdstd_chipdrv = {
+	.probe		= NULL, /* Not usable directly */
+	.destroy	= cfi_amdstd_destroy,
+	.name		= "cfi_cmdset_0002",
+	.module		= THIS_MODULE
+};
+
+
+/* #define DEBUG_CFI_FEATURES */
+
+
+#ifdef DEBUG_CFI_FEATURES
+static void cfi_tell_features(struct cfi_pri_amdstd *extp)
+{
+	const char* erase_suspend[3] = {
+		"Not supported", "Read only", "Read/write"
+	};
+	const char* top_bottom[6] = {
+		"No WP", "8x8KiB sectors at top & bottom, no WP",
+		"Bottom boot", "Top boot",
+		"Uniform, Bottom WP", "Uniform, Top WP"
+	};
+
+	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
+	printk("  Address sensitive unlock: %s\n",
+	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
+
+	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
+		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
+	else
+		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
+
+	if (extp->BlkProt == 0)
+		printk("  Block protection: Not supported\n");
+	else
+		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
+
+
+	printk("  Temporary block unprotect: %s\n",
+	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
+	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
+	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
+	printk("  Burst mode: %s\n",
+	       extp->BurstMode ? "Supported" : "Not supported");
+	if (extp->PageMode == 0)
+		printk("  Page mode: Not supported\n");
+	else
+		printk("  Page mode: %d word page\n", extp->PageMode << 2);
+
+	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
+	       extp->VppMin >> 4, extp->VppMin & 0xf);
+	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
+	       extp->VppMax >> 4, extp->VppMax & 0xf);
+
+	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
+		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
+	else
+		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
+}
+#endif
+
+#ifdef AMD_BOOTLOC_BUG
+/* Wheee. Bring me the head of someone at AMD. */
+static void fixup_amd_bootblock(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
+	__u8 major = extp->MajorVersion;
+	__u8 minor = extp->MinorVersion;
+
+	if (((major << 8) | minor) < 0x3131) {
+		/* CFI version 1.0 => don't trust bootloc */
+
+		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
+			map->name, cfi->mfr, cfi->id);
+
+		/* AFAICS all 29LV400 with a bottom boot block have a device ID
+		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
+		 * These were badly detected as they have the 0x80 bit set
+		 * so treat them as a special case.
+		 */
+		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
+
+			/* Macronix added CFI to their 2nd generation
+			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
+			 * Fujitsu, Spansion, EON, ESI and older Macronix)
+			 * has CFI.
+			 *
+			 * Therefore also check the manufacturer.
+			 * This reduces the risk of false detection due to
+			 * the 8-bit device ID.
+			 */
+			(cfi->mfr == CFI_MFR_MACRONIX)) {
+			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
+				" detected\n", map->name);
+			extp->TopBottom = 2;	/* bottom boot */
+		} else
+		if (cfi->id & 0x80) {
+			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
+			extp->TopBottom = 3;	/* top boot */
+		} else {
+			extp->TopBottom = 2;	/* bottom boot */
+		}
+
+		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
+			" deduced %s from Device ID\n", map->name, major, minor,
+			extp->TopBottom == 2 ? "bottom" : "top");
+	}
+}
+#endif
+
+static void fixup_use_write_buffers(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	if (cfi->cfiq->BufWriteTimeoutTyp) {
+		pr_debug("Using buffer write method\n");
+		mtd->_write = cfi_amdstd_write_buffers;
+	}
+}
+
+/* Atmel chips don't use the same PRI format as AMD chips */
+static void fixup_convert_atmel_pri(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
+	struct cfi_pri_atmel atmel_pri;
+
+	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
+	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
+
+	if (atmel_pri.Features & 0x02)
+		extp->EraseSuspend = 2;
+
+	/* Some chips got it backwards... */
+	if (cfi->id == AT49BV6416) {
+		if (atmel_pri.BottomBoot)
+			extp->TopBottom = 3;
+		else
+			extp->TopBottom = 2;
+	} else {
+		if (atmel_pri.BottomBoot)
+			extp->TopBottom = 2;
+		else
+			extp->TopBottom = 3;
+	}
+
+	/* burst write mode not supported */
+	cfi->cfiq->BufWriteTimeoutTyp = 0;
+	cfi->cfiq->BufWriteTimeoutMax = 0;
+}
+
+static void fixup_use_secsi(struct mtd_info *mtd)
+{
+	/* Setup for chips with a secsi area */
+	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
+	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
+}
+
+static void fixup_use_erase_chip(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	if ((cfi->cfiq->NumEraseRegions == 1) &&
+		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
+		mtd->_erase = cfi_amdstd_erase_chip;
+	}
+
+}
+
+/*
+ * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
+ * locked by default.
+ */
+static void fixup_use_atmel_lock(struct mtd_info *mtd)
+{
+	mtd->_lock = cfi_atmel_lock;
+	mtd->_unlock = cfi_atmel_unlock;
+	mtd->flags |= MTD_POWERUP_LOCK;
+}
+
+static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	/*
+	 * These flashes report two separate eraseblock regions based on the
+	 * sector_erase-size and block_erase-size, although they both operate on the
+	 * same memory. This is not allowed according to CFI, so we just pick the
+	 * sector_erase-size.
+	 */
+	cfi->cfiq->NumEraseRegions = 1;
+}
+
+static void fixup_sst39vf(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	fixup_old_sst_eraseregion(mtd);
+
+	cfi->addr_unlock1 = 0x5555;
+	cfi->addr_unlock2 = 0x2AAA;
+}
+
+static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	fixup_old_sst_eraseregion(mtd);
+
+	cfi->addr_unlock1 = 0x555;
+	cfi->addr_unlock2 = 0x2AA;
+
+	cfi->sector_erase_cmd = CMD(0x50);
+}
+
+static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	fixup_sst39vf_rev_b(mtd);
+
+	/*
+	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
+	 * it should report a size of 8KBytes (0x0020*256).
+	 */
+	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
+	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
+		mtd->name);
+}
+
+static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
+		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
+		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
+			mtd->name);
+	}
+}
+
+static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
+		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
+		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
+			mtd->name);
+	}
+}
+
+static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	/*
+	 *  S29NS512P flash uses more than 8bits to report number of sectors,
+	 * which is not permitted by CFI.
+	 */
+	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
+	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
+		mtd->name);
+}
+
+/* Used to fix CFI-Tables of chips without Extended Query Tables */
+static struct cfi_fixup cfi_nopri_fixup_table[] = {
+	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
+	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
+	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
+	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
+	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
+	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
+	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
+	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
+	{ 0, 0, NULL }
+};
+
+static struct cfi_fixup cfi_fixup_table[] = {
+	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
+#ifdef AMD_BOOTLOC_BUG
+	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
+	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
+	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
+#endif
+	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
+	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
+	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
+	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
+	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
+	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
+	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
+	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
+	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
+	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
+	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
+	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
+	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
+	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
+	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
+#if !FORCE_WORD_WRITE
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
+#endif
+	{ 0, 0, NULL }
+};
+static struct cfi_fixup jedec_fixup_table[] = {
+	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
+	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
+	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
+	{ 0, 0, NULL }
+};
+
+static struct cfi_fixup fixup_table[] = {
+	/* The CFI vendor ids and the JEDEC vendor IDs appear
+	 * to be common.  It is like the devices id's are as
+	 * well.  This table is to pick all cases where
+	 * we know that is the case.
+	 */
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
+	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
+	{ 0, 0, NULL }
+};
+
+
+static void cfi_fixup_major_minor(struct cfi_private *cfi,
+				  struct cfi_pri_amdstd *extp)
+{
+	if (cfi->mfr == CFI_MFR_SAMSUNG) {
+		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
+		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
+			/*
+			 * Samsung K8P2815UQB and K8D6x16UxM chips
+			 * report major=0 / minor=0.
+			 * K8D3x16UxC chips report major=3 / minor=3.
+			 */
+			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
+			       " Extended Query version to 1.%c\n",
+			       extp->MinorVersion);
+			extp->MajorVersion = '1';
+		}
+	}
+
+	/*
+	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
+	 */
+	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
+		extp->MajorVersion = '1';
+		extp->MinorVersion = '0';
+	}
+}
+
+static int is_m29ew(struct cfi_private *cfi)
+{
+	if (cfi->mfr == CFI_MFR_INTEL &&
+	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
+	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
+		return 1;
+	return 0;
+}
+
+/*
+ * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
+ * Some revisions of the M29EW suffer from erase suspend hang ups. In
+ * particular, it can occur when the sequence
+ * Erase Confirm -> Suspend -> Program -> Resume
+ * causes a lockup due to internal timing issues. The consequence is that the
+ * erase cannot be resumed without inserting a dummy command after programming
+ * and prior to resuming. [...] The work-around is to issue a dummy write cycle
+ * that writes an F0 command code before the RESUME command.
+ */
+static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
+					  unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
+	if (is_m29ew(cfi))
+		map_write(map, CMD(0xF0), adr);
+}
+
+/*
+ * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
+ *
+ * Some revisions of the M29EW (for example, A1 and A2 step revisions)
+ * are affected by a problem that could cause a hang up when an ERASE SUSPEND
+ * command is issued after an ERASE RESUME operation without waiting for a
+ * minimum delay.  The result is that once the ERASE seems to be completed
+ * (no bits are toggling), the contents of the Flash memory block on which
+ * the erase was ongoing could be inconsistent with the expected values
+ * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
+ * values), causing a consequent failure of the ERASE operation.
+ * The occurrence of this issue could be high, especially when file system
+ * operations on the Flash are intensive.  As a result, it is recommended
+ * that a patch be applied.  Intensive file system operations can cause many
+ * calls to the garbage routine to free Flash space (also by erasing physical
+ * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
+ * commands can occur.  The problem disappears when a delay is inserted after
+ * the RESUME command by using the udelay() function available in Linux.
+ * The DELAY value must be tuned based on the customer's platform.
+ * The maximum value that fixes the problem in all cases is 500us.
+ * But, in our experience, a delay of 30 µs to 50 µs is sufficient
+ * in most cases.
+ * We have chosen 500µs because this latency is acceptable.
+ */
+static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
+{
+	/*
+	 * Resolving the Delay After Resume Issue see Micron TN-13-07
+	 * Worst case delay must be 500µs but 30-50µs should be ok as well
+	 */
+	if (is_m29ew(cfi))
+		cfi_udelay(500);
+}
+
+struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct device_node __maybe_unused *np = map->device_node;
+	struct mtd_info *mtd;
+	int i;
+
+	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
+	if (!mtd)
+		return NULL;
+	mtd->priv = map;
+	mtd->type = MTD_NORFLASH;
+
+	/* Fill in the default mtd operations */
+	mtd->_erase   = cfi_amdstd_erase_varsize;
+	mtd->_write   = cfi_amdstd_write_words;
+	mtd->_read    = cfi_amdstd_read;
+	mtd->_sync    = cfi_amdstd_sync;
+	mtd->_suspend = cfi_amdstd_suspend;
+	mtd->_resume  = cfi_amdstd_resume;
+	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
+	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
+	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
+	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
+	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
+	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
+	mtd->flags   = MTD_CAP_NORFLASH;
+	mtd->name    = map->name;
+	mtd->writesize = 1;
+	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+
+	pr_debug("MTD %s(): write buffer size %d\n", __func__,
+			mtd->writebufsize);
+
+	mtd->_panic_write = cfi_amdstd_panic_write;
+	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
+
+	if (cfi->cfi_mode==CFI_MODE_CFI){
+		unsigned char bootloc;
+		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
+		struct cfi_pri_amdstd *extp;
+
+		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
+		if (extp) {
+			/*
+			 * It's a real CFI chip, not one for which the probe
+			 * routine faked a CFI structure.
+			 */
+			cfi_fixup_major_minor(cfi, extp);
+
+			/*
+			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
+			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
+			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
+			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
+			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
+			 */
+			if (extp->MajorVersion != '1' ||
+			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
+				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
+				       "version %c.%c (%#02x/%#02x).\n",
+				       extp->MajorVersion, extp->MinorVersion,
+				       extp->MajorVersion, extp->MinorVersion);
+				kfree(extp);
+				kfree(mtd);
+				return NULL;
+			}
+
+			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
+			       extp->MajorVersion, extp->MinorVersion);
+
+			/* Install our own private info structure */
+			cfi->cmdset_priv = extp;
+
+			/* Apply cfi device specific fixups */
+			cfi_fixup(mtd, cfi_fixup_table);
+
+#ifdef DEBUG_CFI_FEATURES
+			/* Tell the user about it in lots of lovely detail */
+			cfi_tell_features(extp);
+#endif
+
+#ifdef CONFIG_OF
+			if (np && of_property_read_bool(
+				    np, "use-advanced-sector-protection")
+			    && extp->BlkProtUnprot == 8) {
+				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
+				mtd->_lock = cfi_ppb_lock;
+				mtd->_unlock = cfi_ppb_unlock;
+				mtd->_is_locked = cfi_ppb_is_locked;
+			}
+#endif
+
+			bootloc = extp->TopBottom;
+			if ((bootloc < 2) || (bootloc > 5)) {
+				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
+				       "bank location (%d). Assuming bottom.\n",
+				       map->name, bootloc);
+				bootloc = 2;
+			}
+
+			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
+				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
+
+				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
+					int j = (cfi->cfiq->NumEraseRegions-1)-i;
+
+					swap(cfi->cfiq->EraseRegionInfo[i],
+					     cfi->cfiq->EraseRegionInfo[j]);
+				}
+			}
+			/* Set the default CFI lock/unlock addresses */
+			cfi->addr_unlock1 = 0x555;
+			cfi->addr_unlock2 = 0x2aa;
+		}
+		cfi_fixup(mtd, cfi_nopri_fixup_table);
+
+		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
+			kfree(mtd);
+			return NULL;
+		}
+
+	} /* CFI mode */
+	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
+		/* Apply jedec specific fixups */
+		cfi_fixup(mtd, jedec_fixup_table);
+	}
+	/* Apply generic fixups */
+	cfi_fixup(mtd, fixup_table);
+
+	for (i=0; i< cfi->numchips; i++) {
+		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
+		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
+		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
+		/*
+		 * First calculate the timeout max according to timeout field
+		 * of struct cfi_ident that probed from chip's CFI aera, if
+		 * available. Specify a minimum of 2000us, in case the CFI data
+		 * is wrong.
+		 */
+		if (cfi->cfiq->BufWriteTimeoutTyp &&
+		    cfi->cfiq->BufWriteTimeoutMax)
+			cfi->chips[i].buffer_write_time_max =
+				1 << (cfi->cfiq->BufWriteTimeoutTyp +
+				      cfi->cfiq->BufWriteTimeoutMax);
+		else
+			cfi->chips[i].buffer_write_time_max = 0;
+
+		cfi->chips[i].buffer_write_time_max =
+			max(cfi->chips[i].buffer_write_time_max, 2000);
+
+		cfi->chips[i].ref_point_counter = 0;
+		init_waitqueue_head(&(cfi->chips[i].wq));
+	}
+
+	map->fldrv = &cfi_amdstd_chipdrv;
+
+	return cfi_amdstd_setup(mtd);
+}
+struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
+struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
+EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
+EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
+EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
+
+static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
+	unsigned long offset = 0;
+	int i,j;
+
+	printk(KERN_NOTICE "number of %s chips: %d\n",
+	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
+	/* Select the correct geometry setup */
+	mtd->size = devsize * cfi->numchips;
+
+	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
+	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
+					  sizeof(struct mtd_erase_region_info),
+					  GFP_KERNEL);
+	if (!mtd->eraseregions)
+		goto setup_err;
+
+	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
+		unsigned long ernum, ersize;
+		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
+		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
+
+		if (mtd->erasesize < ersize) {
+			mtd->erasesize = ersize;
+		}
+		for (j=0; j<cfi->numchips; j++) {
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
+		}
+		offset += (ersize * ernum);
+	}
+	if (offset != devsize) {
+		/* Argh */
+		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
+		goto setup_err;
+	}
+
+	__module_get(THIS_MODULE);
+	register_reboot_notifier(&mtd->reboot_notifier);
+	return mtd;
+
+ setup_err:
+	kfree(mtd->eraseregions);
+	kfree(mtd);
+	kfree(cfi->cmdset_priv);
+	kfree(cfi->cfiq);
+	return NULL;
+}
+
+/*
+ * Return true if the chip is ready.
+ *
+ * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
+ * non-suspended sector) and is indicated by no toggle bits toggling.
+ *
+ * Note that anything more complicated than checking if no bits are toggling
+ * (including checking DQ5 for an error status) is tricky to get working
+ * correctly and is therefore not done	(particularly with interleaved chips
+ * as each chip must be checked independently of the others).
+ */
+static int __xipram chip_ready(struct map_info *map, unsigned long addr)
+{
+	map_word d, t;
+
+	d = map_read(map, addr);
+	t = map_read(map, addr);
+
+	return map_word_equal(map, d, t);
+}
+
+/*
+ * Return true if the chip is ready and has the correct value.
+ *
+ * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
+ * non-suspended sector) and it is indicated by no bits toggling.
+ *
+ * Error are indicated by toggling bits or bits held with the wrong value,
+ * or with bits toggling.
+ *
+ * Note that anything more complicated than checking if no bits are toggling
+ * (including checking DQ5 for an error status) is tricky to get working
+ * correctly and is therefore not done	(particularly with interleaved chips
+ * as each chip must be checked independently of the others).
+ *
+ */
+static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
+{
+	map_word oldd, curd;
+
+	oldd = map_read(map, addr);
+	curd = map_read(map, addr);
+
+	return	map_word_equal(map, oldd, curd) &&
+		map_word_equal(map, curd, expected);
+}
+
+static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
+{
+	DECLARE_WAITQUEUE(wait, current);
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long timeo;
+	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
+
+ resettime:
+	timeo = jiffies + HZ;
+ retry:
+	switch (chip->state) {
+
+	case FL_STATUS:
+		for (;;) {
+			if (chip_ready(map, adr))
+				break;
+
+			if (time_after(jiffies, timeo)) {
+				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
+				return -EIO;
+			}
+			mutex_unlock(&chip->mutex);
+			cfi_udelay(1);
+			mutex_lock(&chip->mutex);
+			/* Someone else might have been playing with it. */
+			goto retry;
+		}
+
+	case FL_READY:
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+		return 0;
+
+	case FL_ERASING:
+		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
+		    !(mode == FL_READY || mode == FL_POINT ||
+		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
+			goto sleep;
+
+		/* Do not allow suspend iff read/write to EB address */
+		if ((adr & chip->in_progress_block_mask) ==
+		    chip->in_progress_block_addr)
+			goto sleep;
+
+		/* Erase suspend */
+		/* It's harmless to issue the Erase-Suspend and Erase-Resume
+		 * commands when the erase algorithm isn't in progress. */
+		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
+		chip->oldstate = FL_ERASING;
+		chip->state = FL_ERASE_SUSPENDING;
+		chip->erase_suspended = 1;
+		for (;;) {
+			if (chip_ready(map, adr))
+				break;
+
+			if (time_after(jiffies, timeo)) {
+				/* Should have suspended the erase by now.
+				 * Send an Erase-Resume command as either
+				 * there was an error (so leave the erase
+				 * routine to recover from it) or we trying to
+				 * use the erase-in-progress sector. */
+				put_chip(map, chip, adr);
+				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
+				return -EIO;
+			}
+
+			mutex_unlock(&chip->mutex);
+			cfi_udelay(1);
+			mutex_lock(&chip->mutex);
+			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
+			   So we can just loop here. */
+		}
+		chip->state = FL_READY;
+		return 0;
+
+	case FL_XIP_WHILE_ERASING:
+		if (mode != FL_READY && mode != FL_POINT &&
+		    (!cfip || !(cfip->EraseSuspend&2)))
+			goto sleep;
+		chip->oldstate = chip->state;
+		chip->state = FL_READY;
+		return 0;
+
+	case FL_SHUTDOWN:
+		/* The machine is rebooting */
+		return -EIO;
+
+	case FL_POINT:
+		/* Only if there's no operation suspended... */
+		if (mode == FL_READY && chip->oldstate == FL_READY)
+			return 0;
+
+	default:
+	sleep:
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		mutex_unlock(&chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		mutex_lock(&chip->mutex);
+		goto resettime;
+	}
+}
+
+
+static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	switch(chip->oldstate) {
+	case FL_ERASING:
+		cfi_fixup_m29ew_erase_suspend(map,
+			chip->in_progress_block_addr);
+		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
+		cfi_fixup_m29ew_delay_after_resume(cfi);
+		chip->oldstate = FL_READY;
+		chip->state = FL_ERASING;
+		break;
+
+	case FL_XIP_WHILE_ERASING:
+		chip->state = chip->oldstate;
+		chip->oldstate = FL_READY;
+		break;
+
+	case FL_READY:
+	case FL_STATUS:
+		break;
+	default:
+		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
+	}
+	wake_up(&chip->wq);
+}
+
+#ifdef CONFIG_MTD_XIP
+
+/*
+ * No interrupt what so ever can be serviced while the flash isn't in array
+ * mode.  This is ensured by the xip_disable() and xip_enable() functions
+ * enclosing any code path where the flash is known not to be in array mode.
+ * And within a XIP disabled code path, only functions marked with __xipram
+ * may be called and nothing else (it's a good thing to inspect generated
+ * assembly to make sure inline functions were actually inlined and that gcc
+ * didn't emit calls to its own support functions). Also configuring MTD CFI
+ * support to a single buswidth and a single interleave is also recommended.
+ */
+
+static void xip_disable(struct map_info *map, struct flchip *chip,
+			unsigned long adr)
+{
+	/* TODO: chips with no XIP use should ignore and return */
+	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
+	local_irq_disable();
+}
+
+static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
+				unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	if (chip->state != FL_POINT && chip->state != FL_READY) {
+		map_write(map, CMD(0xf0), adr);
+		chip->state = FL_READY;
+	}
+	(void) map_read(map, adr);
+	xip_iprefetch();
+	local_irq_enable();
+}
+
+/*
+ * When a delay is required for the flash operation to complete, the
+ * xip_udelay() function is polling for both the given timeout and pending
+ * (but still masked) hardware interrupts.  Whenever there is an interrupt
+ * pending then the flash erase operation is suspended, array mode restored
+ * and interrupts unmasked.  Task scheduling might also happen at that
+ * point.  The CPU eventually returns from the interrupt or the call to
+ * schedule() and the suspended flash operation is resumed for the remaining
+ * of the delay period.
+ *
+ * Warning: this function _will_ fool interrupt latency tracing tools.
+ */
+
+static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
+				unsigned long adr, int usec)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
+	map_word status, OK = CMD(0x80);
+	unsigned long suspended, start = xip_currtime();
+	flstate_t oldstate;
+
+	do {
+		cpu_relax();
+		if (xip_irqpending() && extp &&
+		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
+		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
+			/*
+			 * Let's suspend the erase operation when supported.
+			 * Note that we currently don't try to suspend
+			 * interleaved chips if there is already another
+			 * operation suspended (imagine what happens
+			 * when one chip was already done with the current
+			 * operation while another chip suspended it, then
+			 * we resume the whole thing at once).  Yes, it
+			 * can happen!
+			 */
+			map_write(map, CMD(0xb0), adr);
+			usec -= xip_elapsed_since(start);
+			suspended = xip_currtime();
+			do {
+				if (xip_elapsed_since(suspended) > 100000) {
+					/*
+					 * The chip doesn't want to suspend
+					 * after waiting for 100 msecs.
+					 * This is a critical error but there
+					 * is not much we can do here.
+					 */
+					return;
+				}
+				status = map_read(map, adr);
+			} while (!map_word_andequal(map, status, OK, OK));
+
+			/* Suspend succeeded */
+			oldstate = chip->state;
+			if (!map_word_bitsset(map, status, CMD(0x40)))
+				break;
+			chip->state = FL_XIP_WHILE_ERASING;
+			chip->erase_suspended = 1;
+			map_write(map, CMD(0xf0), adr);
+			(void) map_read(map, adr);
+			xip_iprefetch();
+			local_irq_enable();
+			mutex_unlock(&chip->mutex);
+			xip_iprefetch();
+			cond_resched();
+
+			/*
+			 * We're back.  However someone else might have
+			 * decided to go write to the chip if we are in
+			 * a suspended erase state.  If so let's wait
+			 * until it's done.
+			 */
+			mutex_lock(&chip->mutex);
+			while (chip->state != FL_XIP_WHILE_ERASING) {
+				DECLARE_WAITQUEUE(wait, current);
+				set_current_state(TASK_UNINTERRUPTIBLE);
+				add_wait_queue(&chip->wq, &wait);
+				mutex_unlock(&chip->mutex);
+				schedule();
+				remove_wait_queue(&chip->wq, &wait);
+				mutex_lock(&chip->mutex);
+			}
+			/* Disallow XIP again */
+			local_irq_disable();
+
+			/* Correct Erase Suspend Hangups for M29EW */
+			cfi_fixup_m29ew_erase_suspend(map, adr);
+			/* Resume the write or erase operation */
+			map_write(map, cfi->sector_erase_cmd, adr);
+			chip->state = oldstate;
+			start = xip_currtime();
+		} else if (usec >= 1000000/HZ) {
+			/*
+			 * Try to save on CPU power when waiting delay
+			 * is at least a system timer tick period.
+			 * No need to be extremely accurate here.
+			 */
+			xip_cpu_idle();
+		}
+		status = map_read(map, adr);
+	} while (!map_word_andequal(map, status, OK, OK)
+		 && xip_elapsed_since(start) < usec);
+}
+
+#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
+
+/*
+ * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
+ * the flash is actively programming or erasing since we have to poll for
+ * the operation to complete anyway.  We can't do that in a generic way with
+ * a XIP setup so do it before the actual flash operation in this case
+ * and stub it out from INVALIDATE_CACHE_UDELAY.
+ */
+#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
+	INVALIDATE_CACHED_RANGE(map, from, size)
+
+#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
+	UDELAY(map, chip, adr, usec)
+
+/*
+ * Extra notes:
+ *
+ * Activating this XIP support changes the way the code works a bit.  For
+ * example the code to suspend the current process when concurrent access
+ * happens is never executed because xip_udelay() will always return with the
+ * same chip state as it was entered with.  This is why there is no care for
+ * the presence of add_wait_queue() or schedule() calls from within a couple
+ * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
+ * The queueing and scheduling are always happening within xip_udelay().
+ *
+ * Similarly, get_chip() and put_chip() just happen to always be executed
+ * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
+ * is in array mode, therefore never executing many cases therein and not
+ * causing any problem with XIP.
+ */
+
+#else
+
+#define xip_disable(map, chip, adr)
+#define xip_enable(map, chip, adr)
+#define XIP_INVAL_CACHED_RANGE(x...)
+
+#define UDELAY(map, chip, adr, usec)  \
+do {  \
+	mutex_unlock(&chip->mutex);  \
+	cfi_udelay(usec);  \
+	mutex_lock(&chip->mutex);  \
+} while (0)
+
+#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
+do {  \
+	mutex_unlock(&chip->mutex);  \
+	INVALIDATE_CACHED_RANGE(map, adr, len);  \
+	cfi_udelay(usec);  \
+	mutex_lock(&chip->mutex);  \
+} while (0)
+
+#endif
+
+static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
+{
+	unsigned long cmd_addr;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret;
+
+	adr += chip->start;
+
+	/* Ensure cmd read/writes are aligned. */
+	cmd_addr = adr & ~(map_bankwidth(map)-1);
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, cmd_addr, FL_READY);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	if (chip->state != FL_POINT && chip->state != FL_READY) {
+		map_write(map, CMD(0xf0), cmd_addr);
+		chip->state = FL_READY;
+	}
+
+	map_copy_from(map, buf, adr, len);
+
+	put_chip(map, chip, cmd_addr);
+
+	mutex_unlock(&chip->mutex);
+	return 0;
+}
+
+
+static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum;
+	int ret = 0;
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum <<  cfi->chipshift);
+
+	while (len) {
+		unsigned long thislen;
+
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
+		if (ret)
+			break;
+
+		*retlen += thislen;
+		len -= thislen;
+		buf += thislen;
+
+		ofs = 0;
+		chipnum++;
+	}
+	return ret;
+}
+
+typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
+			loff_t adr, size_t len, u_char *buf, size_t grouplen);
+
+static inline void otp_enter(struct map_info *map, struct flchip *chip,
+			     loff_t adr, size_t len)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+
+	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
+}
+
+static inline void otp_exit(struct map_info *map, struct flchip *chip,
+			    loff_t adr, size_t len)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+
+	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
+}
+
+static inline int do_read_secsi_onechip(struct map_info *map,
+					struct flchip *chip, loff_t adr,
+					size_t len, u_char *buf,
+					size_t grouplen)
+{
+	DECLARE_WAITQUEUE(wait, current);
+
+ retry:
+	mutex_lock(&chip->mutex);
+
+	if (chip->state != FL_READY){
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+
+		mutex_unlock(&chip->mutex);
+
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+
+		goto retry;
+	}
+
+	adr += chip->start;
+
+	chip->state = FL_READY;
+
+	otp_enter(map, chip, adr, len);
+	map_copy_from(map, buf, adr, len);
+	otp_exit(map, chip, adr, len);
+
+	wake_up(&chip->wq);
+	mutex_unlock(&chip->mutex);
+
+	return 0;
+}
+
+static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum;
+	int ret = 0;
+
+	/* ofs: offset within the first chip that the first read should start */
+	/* 8 secsi bytes per chip */
+	chipnum=from>>3;
+	ofs=from & 7;
+
+	while (len) {
+		unsigned long thislen;
+
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> 3)
+			thislen = (1<<3) - ofs;
+		else
+			thislen = len;
+
+		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
+					    thislen, buf, 0);
+		if (ret)
+			break;
+
+		*retlen += thislen;
+		len -= thislen;
+		buf += thislen;
+
+		ofs = 0;
+		chipnum++;
+	}
+	return ret;
+}
+
+static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
+				     unsigned long adr, map_word datum,
+				     int mode);
+
+static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
+			size_t len, u_char *buf, size_t grouplen)
+{
+	int ret;
+	while (len) {
+		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
+		int gap = adr - bus_ofs;
+		int n = min_t(int, len, map_bankwidth(map) - gap);
+		map_word datum = map_word_ff(map);
+
+		if (n != map_bankwidth(map)) {
+			/* partial write of a word, load old contents */
+			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
+			datum = map_read(map, bus_ofs);
+			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
+		}
+
+		datum = map_word_load_partial(map, datum, buf, gap, n);
+		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
+		if (ret)
+			return ret;
+
+		adr += n;
+		buf += n;
+		len -= n;
+	}
+
+	return 0;
+}
+
+static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
+		       size_t len, u_char *buf, size_t grouplen)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	uint8_t lockreg;
+	unsigned long timeo;
+	int ret;
+
+	/* make sure area matches group boundaries */
+	if ((adr != 0) || (len != grouplen))
+		return -EINVAL;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, chip->start, FL_LOCKING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+	chip->state = FL_LOCKING;
+
+	/* Enter lock register command */
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+
+	/* read lock register */
+	lockreg = cfi_read_query(map, 0);
+
+	/* set bit 0 to protect extended memory block */
+	lockreg &= ~0x01;
+
+	/* set bit 0 to protect extended memory block */
+	/* write lock register */
+	map_write(map, CMD(0xA0), chip->start);
+	map_write(map, CMD(lockreg), chip->start);
+
+	/* wait for chip to become ready */
+	timeo = jiffies + msecs_to_jiffies(2);
+	for (;;) {
+		if (chip_ready(map, adr))
+			break;
+
+		if (time_after(jiffies, timeo)) {
+			pr_err("Waiting for chip to be ready timed out.\n");
+			ret = -EIO;
+			break;
+		}
+		UDELAY(map, chip, 0, 1);
+	}
+
+	/* exit protection commands */
+	map_write(map, CMD(0x90), chip->start);
+	map_write(map, CMD(0x00), chip->start);
+
+	chip->state = FL_READY;
+	put_chip(map, chip, chip->start);
+	mutex_unlock(&chip->mutex);
+
+	return ret;
+}
+
+static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
+			       size_t *retlen, u_char *buf,
+			       otp_op_t action, int user_regs)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ofs_factor = cfi->interleave * cfi->device_type;
+	unsigned long base;
+	int chipnum;
+	struct flchip *chip;
+	uint8_t otp, lockreg;
+	int ret;
+
+	size_t user_size, factory_size, otpsize;
+	loff_t user_offset, factory_offset, otpoffset;
+	int user_locked = 0, otplocked;
+
+	*retlen = 0;
+
+	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
+		chip = &cfi->chips[chipnum];
+		factory_size = 0;
+		user_size = 0;
+
+		/* Micron M29EW family */
+		if (is_m29ew(cfi)) {
+			base = chip->start;
+
+			/* check whether secsi area is factory locked
+			   or user lockable */
+			mutex_lock(&chip->mutex);
+			ret = get_chip(map, chip, base, FL_CFI_QUERY);
+			if (ret) {
+				mutex_unlock(&chip->mutex);
+				return ret;
+			}
+			cfi_qry_mode_on(base, map, cfi);
+			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
+			cfi_qry_mode_off(base, map, cfi);
+			put_chip(map, chip, base);
+			mutex_unlock(&chip->mutex);
+
+			if (otp & 0x80) {
+				/* factory locked */
+				factory_offset = 0;
+				factory_size = 0x100;
+			} else {
+				/* customer lockable */
+				user_offset = 0;
+				user_size = 0x100;
+
+				mutex_lock(&chip->mutex);
+				ret = get_chip(map, chip, base, FL_LOCKING);
+				if (ret) {
+					mutex_unlock(&chip->mutex);
+					return ret;
+				}
+
+				/* Enter lock register command */
+				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
+						 chip->start, map, cfi,
+						 cfi->device_type, NULL);
+				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
+						 chip->start, map, cfi,
+						 cfi->device_type, NULL);
+				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
+						 chip->start, map, cfi,
+						 cfi->device_type, NULL);
+				/* read lock register */
+				lockreg = cfi_read_query(map, 0);
+				/* exit protection commands */
+				map_write(map, CMD(0x90), chip->start);
+				map_write(map, CMD(0x00), chip->start);
+				put_chip(map, chip, chip->start);
+				mutex_unlock(&chip->mutex);
+
+				user_locked = ((lockreg & 0x01) == 0x00);
+			}
+		}
+
+		otpsize = user_regs ? user_size : factory_size;
+		if (!otpsize)
+			continue;
+		otpoffset = user_regs ? user_offset : factory_offset;
+		otplocked = user_regs ? user_locked : 1;
+
+		if (!action) {
+			/* return otpinfo */
+			struct otp_info *otpinfo;
+			len -= sizeof(*otpinfo);
+			if (len <= 0)
+				return -ENOSPC;
+			otpinfo = (struct otp_info *)buf;
+			otpinfo->start = from;
+			otpinfo->length = otpsize;
+			otpinfo->locked = otplocked;
+			buf += sizeof(*otpinfo);
+			*retlen += sizeof(*otpinfo);
+			from += otpsize;
+		} else if ((from < otpsize) && (len > 0)) {
+			size_t size;
+			size = (len < otpsize - from) ? len : otpsize - from;
+			ret = action(map, chip, otpoffset + from, size, buf,
+				     otpsize);
+			if (ret < 0)
+				return ret;
+
+			buf += size;
+			len -= size;
+			*retlen += size;
+			from = 0;
+		} else {
+			from -= otpsize;
+		}
+	}
+	return 0;
+}
+
+static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
+					 size_t *retlen, struct otp_info *buf)
+{
+	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
+				   NULL, 0);
+}
+
+static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
+					 size_t *retlen, struct otp_info *buf)
+{
+	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
+				   NULL, 1);
+}
+
+static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
+					 size_t len, size_t *retlen,
+					 u_char *buf)
+{
+	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
+				   buf, do_read_secsi_onechip, 0);
+}
+
+static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
+					 size_t len, size_t *retlen,
+					 u_char *buf)
+{
+	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
+				   buf, do_read_secsi_onechip, 1);
+}
+
+static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
+					  size_t len, size_t *retlen,
+					  u_char *buf)
+{
+	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
+				   do_otp_write, 1);
+}
+
+static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
+					 size_t len)
+{
+	size_t retlen;
+	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
+				   do_otp_lock, 1);
+}
+
+static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
+				     unsigned long adr, map_word datum,
+				     int mode)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long timeo = jiffies + HZ;
+	/*
+	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
+	 * have a max write time of a few hundreds usec). However, we should
+	 * use the maximum timeout value given by the chip at probe time
+	 * instead.  Unfortunately, struct flchip does have a field for
+	 * maximum timeout, only for typical which can be far too short
+	 * depending of the conditions.	 The ' + 1' is to avoid having a
+	 * timeout of 0 jiffies if HZ is smaller than 1000.
+	 */
+	unsigned long uWriteTimeout = (HZ / 1000) + 1;
+	int ret = 0;
+	map_word oldd;
+	int retry_cnt = 0;
+
+	adr += chip->start;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, mode);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
+		 __func__, adr, datum.x[0]);
+
+	if (mode == FL_OTP_WRITE)
+		otp_enter(map, chip, adr, map_bankwidth(map));
+
+	/*
+	 * Check for a NOP for the case when the datum to write is already
+	 * present - it saves time and works around buggy chips that corrupt
+	 * data at other locations when 0xff is written to a location that
+	 * already contains 0xff.
+	 */
+	oldd = map_read(map, adr);
+	if (map_word_equal(map, oldd, datum)) {
+		pr_debug("MTD %s(): NOP\n",
+		       __func__);
+		goto op_done;
+	}
+
+	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+
+ retry:
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	map_write(map, datum, adr);
+	chip->state = mode;
+
+	INVALIDATE_CACHE_UDELAY(map, chip,
+				adr, map_bankwidth(map),
+				chip->word_write_time);
+
+	/* See comment above for timeout value. */
+	timeo = jiffies + uWriteTimeout;
+	for (;;) {
+		if (chip->state != mode) {
+			/* Someone's suspended the write. Sleep */
+			DECLARE_WAITQUEUE(wait, current);
+
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			timeo = jiffies + (HZ / 2); /* FIXME */
+			mutex_lock(&chip->mutex);
+			continue;
+		}
+
+		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
+			xip_enable(map, chip, adr);
+			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
+			xip_disable(map, chip, adr);
+			break;
+		}
+
+		if (chip_ready(map, adr))
+			break;
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		UDELAY(map, chip, adr, 1);
+	}
+	/* Did we succeed? */
+	if (!chip_good(map, adr, datum)) {
+		/* reset on all failures. */
+		map_write(map, CMD(0xF0), chip->start);
+		/* FIXME - should have reset delay before continuing */
+
+		if (++retry_cnt <= MAX_RETRIES)
+			goto retry;
+
+		ret = -EIO;
+	}
+	xip_enable(map, chip, adr);
+ op_done:
+	if (mode == FL_OTP_WRITE)
+		otp_exit(map, chip, adr, map_bankwidth(map));
+	chip->state = FL_READY;
+	DISABLE_VPP(map);
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+
+	return ret;
+}
+
+
+static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
+				  size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret = 0;
+	int chipnum;
+	unsigned long ofs, chipstart;
+	DECLARE_WAITQUEUE(wait, current);
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to  - (chipnum << cfi->chipshift);
+	chipstart = cfi->chips[chipnum].start;
+
+	/* If it's not bus-aligned, do the first byte write */
+	if (ofs & (map_bankwidth(map)-1)) {
+		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
+		int i = ofs - bus_ofs;
+		int n = 0;
+		map_word tmp_buf;
+
+ retry:
+		mutex_lock(&cfi->chips[chipnum].mutex);
+
+		if (cfi->chips[chipnum].state != FL_READY) {
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
+
+			mutex_unlock(&cfi->chips[chipnum].mutex);
+
+			schedule();
+			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
+			goto retry;
+		}
+
+		/* Load 'tmp_buf' with old contents of flash */
+		tmp_buf = map_read(map, bus_ofs+chipstart);
+
+		mutex_unlock(&cfi->chips[chipnum].mutex);
+
+		/* Number of bytes to copy from buffer */
+		n = min_t(int, len, map_bankwidth(map)-i);
+
+		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+				       bus_ofs, tmp_buf, FL_WRITING);
+		if (ret)
+			return ret;
+
+		ofs += n;
+		buf += n;
+		(*retlen) += n;
+		len -= n;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	/* We are now aligned, write as much as possible */
+	while(len >= map_bankwidth(map)) {
+		map_word datum;
+
+		datum = map_word_load(map, buf);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+				       ofs, datum, FL_WRITING);
+		if (ret)
+			return ret;
+
+		ofs += map_bankwidth(map);
+		buf += map_bankwidth(map);
+		(*retlen) += map_bankwidth(map);
+		len -= map_bankwidth(map);
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+			chipstart = cfi->chips[chipnum].start;
+		}
+	}
+
+	/* Write the trailing bytes if any */
+	if (len & (map_bankwidth(map)-1)) {
+		map_word tmp_buf;
+
+ retry1:
+		mutex_lock(&cfi->chips[chipnum].mutex);
+
+		if (cfi->chips[chipnum].state != FL_READY) {
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
+
+			mutex_unlock(&cfi->chips[chipnum].mutex);
+
+			schedule();
+			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
+			goto retry1;
+		}
+
+		tmp_buf = map_read(map, ofs + chipstart);
+
+		mutex_unlock(&cfi->chips[chipnum].mutex);
+
+		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+				       ofs, tmp_buf, FL_WRITING);
+		if (ret)
+			return ret;
+
+		(*retlen) += len;
+	}
+
+	return 0;
+}
+
+
+/*
+ * FIXME: interleaved mode not tested, and probably not supported!
+ */
+static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
+				    unsigned long adr, const u_char *buf,
+				    int len)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long timeo = jiffies + HZ;
+	/*
+	 * Timeout is calculated according to CFI data, if available.
+	 * See more comments in cfi_cmdset_0002().
+	 */
+	unsigned long uWriteTimeout =
+				usecs_to_jiffies(chip->buffer_write_time_max);
+	int ret = -EIO;
+	unsigned long cmd_adr;
+	int z, words;
+	map_word datum;
+
+	adr += chip->start;
+	cmd_adr = adr;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, FL_WRITING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	datum = map_word_load(map, buf);
+
+	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
+		 __func__, adr, datum.x[0]);
+
+	XIP_INVAL_CACHED_RANGE(map, adr, len);
+	ENABLE_VPP(map);
+	xip_disable(map, chip, cmd_adr);
+
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
+
+	/* Write Buffer Load */
+	map_write(map, CMD(0x25), cmd_adr);
+
+	chip->state = FL_WRITING_TO_BUFFER;
+
+	/* Write length of data to come */
+	words = len / map_bankwidth(map);
+	map_write(map, CMD(words - 1), cmd_adr);
+	/* Write data */
+	z = 0;
+	while(z < words * map_bankwidth(map)) {
+		datum = map_word_load(map, buf);
+		map_write(map, datum, adr + z);
+
+		z += map_bankwidth(map);
+		buf += map_bankwidth(map);
+	}
+	z -= map_bankwidth(map);
+
+	adr += z;
+
+	/* Write Buffer Program Confirm: GO GO GO */
+	map_write(map, CMD(0x29), cmd_adr);
+	chip->state = FL_WRITING;
+
+	INVALIDATE_CACHE_UDELAY(map, chip,
+				adr, map_bankwidth(map),
+				chip->word_write_time);
+
+	timeo = jiffies + uWriteTimeout;
+
+	for (;;) {
+		if (chip->state != FL_WRITING) {
+			/* Someone's suspended the write. Sleep */
+			DECLARE_WAITQUEUE(wait, current);
+
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			timeo = jiffies + (HZ / 2); /* FIXME */
+			mutex_lock(&chip->mutex);
+			continue;
+		}
+
+		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
+			break;
+
+		if (chip_good(map, adr, datum)) {
+			xip_enable(map, chip, adr);
+			goto op_done;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		UDELAY(map, chip, adr, 1);
+	}
+
+	/*
+	 * Recovery from write-buffer programming failures requires
+	 * the write-to-buffer-reset sequence.  Since the last part
+	 * of the sequence also works as a normal reset, we can run
+	 * the same commands regardless of why we are here.
+	 * See e.g.
+	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
+	 */
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	xip_enable(map, chip, adr);
+	/* FIXME - should have reset delay before continuing */
+
+	printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
+	       __func__, adr);
+
+	ret = -EIO;
+ op_done:
+	chip->state = FL_READY;
+	DISABLE_VPP(map);
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+
+	return ret;
+}
+
+
+static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
+				    size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+	int ret = 0;
+	int chipnum;
+	unsigned long ofs;
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to  - (chipnum << cfi->chipshift);
+
+	/* If it's not bus-aligned, do the first word write */
+	if (ofs & (map_bankwidth(map)-1)) {
+		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
+		if (local_len > len)
+			local_len = len;
+		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
+					     local_len, retlen, buf);
+		if (ret)
+			return ret;
+		ofs += local_len;
+		buf += local_len;
+		len -= local_len;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	/* Write buffer is worth it only if more than one word to write... */
+	while (len >= map_bankwidth(map) * 2) {
+		/* We must not cross write block boundaries */
+		int size = wbufsize - (ofs & (wbufsize-1));
+
+		if (size > len)
+			size = len;
+		if (size % map_bankwidth(map))
+			size -= size % map_bankwidth(map);
+
+		ret = do_write_buffer(map, &cfi->chips[chipnum],
+				      ofs, buf, size);
+		if (ret)
+			return ret;
+
+		ofs += size;
+		buf += size;
+		(*retlen) += size;
+		len -= size;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	if (len) {
+		size_t retlen_dregs = 0;
+
+		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
+					     len, &retlen_dregs, buf);
+
+		*retlen += retlen_dregs;
+		return ret;
+	}
+
+	return 0;
+}
+
+/*
+ * Wait for the flash chip to become ready to write data
+ *
+ * This is only called during the panic_write() path. When panic_write()
+ * is called, the kernel is in the process of a panic, and will soon be
+ * dead. Therefore we don't take any locks, and attempt to get access
+ * to the chip as soon as possible.
+ */
+static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
+				 unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	int retries = 10;
+	int i;
+
+	/*
+	 * If the driver thinks the chip is idle, and no toggle bits
+	 * are changing, then the chip is actually idle for sure.
+	 */
+	if (chip->state == FL_READY && chip_ready(map, adr))
+		return 0;
+
+	/*
+	 * Try several times to reset the chip and then wait for it
+	 * to become idle. The upper limit of a few milliseconds of
+	 * delay isn't a big problem: the kernel is dying anyway. It
+	 * is more important to save the messages.
+	 */
+	while (retries > 0) {
+		const unsigned long timeo = (HZ / 1000) + 1;
+
+		/* send the reset command */
+		map_write(map, CMD(0xF0), chip->start);
+
+		/* wait for the chip to become ready */
+		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
+			if (chip_ready(map, adr))
+				return 0;
+
+			udelay(1);
+		}
+
+		retries--;
+	}
+
+	/* the chip never became ready */
+	return -EBUSY;
+}
+
+/*
+ * Write out one word of data to a single flash chip during a kernel panic
+ *
+ * This is only called during the panic_write() path. When panic_write()
+ * is called, the kernel is in the process of a panic, and will soon be
+ * dead. Therefore we don't take any locks, and attempt to get access
+ * to the chip as soon as possible.
+ *
+ * The implementation of this routine is intentionally similar to
+ * do_write_oneword(), in order to ease code maintenance.
+ */
+static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
+				  unsigned long adr, map_word datum)
+{
+	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int retry_cnt = 0;
+	map_word oldd;
+	int ret = 0;
+	int i;
+
+	adr += chip->start;
+
+	ret = cfi_amdstd_panic_wait(map, chip, adr);
+	if (ret)
+		return ret;
+
+	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
+			__func__, adr, datum.x[0]);
+
+	/*
+	 * Check for a NOP for the case when the datum to write is already
+	 * present - it saves time and works around buggy chips that corrupt
+	 * data at other locations when 0xff is written to a location that
+	 * already contains 0xff.
+	 */
+	oldd = map_read(map, adr);
+	if (map_word_equal(map, oldd, datum)) {
+		pr_debug("MTD %s(): NOP\n", __func__);
+		goto op_done;
+	}
+
+	ENABLE_VPP(map);
+
+retry:
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	map_write(map, datum, adr);
+
+	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
+		if (chip_ready(map, adr))
+			break;
+
+		udelay(1);
+	}
+
+	if (!chip_good(map, adr, datum)) {
+		/* reset on all failures. */
+		map_write(map, CMD(0xF0), chip->start);
+		/* FIXME - should have reset delay before continuing */
+
+		if (++retry_cnt <= MAX_RETRIES)
+			goto retry;
+
+		ret = -EIO;
+	}
+
+op_done:
+	DISABLE_VPP(map);
+	return ret;
+}
+
+/*
+ * Write out some data during a kernel panic
+ *
+ * This is used by the mtdoops driver to save the dying messages from a
+ * kernel which has panic'd.
+ *
+ * This routine ignores all of the locking used throughout the rest of the
+ * driver, in order to ensure that the data gets written out no matter what
+ * state this driver (and the flash chip itself) was in when the kernel crashed.
+ *
+ * The implementation of this routine is intentionally similar to
+ * cfi_amdstd_write_words(), in order to ease code maintenance.
+ */
+static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
+				  size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs, chipstart;
+	int ret = 0;
+	int chipnum;
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to - (chipnum << cfi->chipshift);
+	chipstart = cfi->chips[chipnum].start;
+
+	/* If it's not bus aligned, do the first byte write */
+	if (ofs & (map_bankwidth(map) - 1)) {
+		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
+		int i = ofs - bus_ofs;
+		int n = 0;
+		map_word tmp_buf;
+
+		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
+		if (ret)
+			return ret;
+
+		/* Load 'tmp_buf' with old contents of flash */
+		tmp_buf = map_read(map, bus_ofs + chipstart);
+
+		/* Number of bytes to copy from buffer */
+		n = min_t(int, len, map_bankwidth(map) - i);
+
+		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
+
+		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
+					     bus_ofs, tmp_buf);
+		if (ret)
+			return ret;
+
+		ofs += n;
+		buf += n;
+		(*retlen) += n;
+		len -= n;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	/* We are now aligned, write as much as possible */
+	while (len >= map_bankwidth(map)) {
+		map_word datum;
+
+		datum = map_word_load(map, buf);
+
+		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
+					     ofs, datum);
+		if (ret)
+			return ret;
+
+		ofs += map_bankwidth(map);
+		buf += map_bankwidth(map);
+		(*retlen) += map_bankwidth(map);
+		len -= map_bankwidth(map);
+
+		if (ofs >> cfi->chipshift) {
+			chipnum++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+
+			chipstart = cfi->chips[chipnum].start;
+		}
+	}
+
+	/* Write the trailing bytes if any */
+	if (len & (map_bankwidth(map) - 1)) {
+		map_word tmp_buf;
+
+		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
+		if (ret)
+			return ret;
+
+		tmp_buf = map_read(map, ofs + chipstart);
+
+		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
+
+		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
+					     ofs, tmp_buf);
+		if (ret)
+			return ret;
+
+		(*retlen) += len;
+	}
+
+	return 0;
+}
+
+
+/*
+ * Handle devices with one erase region, that only implement
+ * the chip erase command.
+ */
+static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long timeo = jiffies + HZ;
+	unsigned long int adr;
+	DECLARE_WAITQUEUE(wait, current);
+	int ret = 0;
+	int retry_cnt = 0;
+
+	adr = cfi->addr_unlock1;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, FL_WRITING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
+	       __func__, chip->start);
+
+	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+
+ retry:
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+
+	chip->state = FL_ERASING;
+	chip->erase_suspended = 0;
+	chip->in_progress_block_addr = adr;
+	chip->in_progress_block_mask = ~(map->size - 1);
+
+	INVALIDATE_CACHE_UDELAY(map, chip,
+				adr, map->size,
+				chip->erase_time*500);
+
+	timeo = jiffies + (HZ*20);
+
+	for (;;) {
+		if (chip->state != FL_ERASING) {
+			/* Someone's suspended the erase. Sleep */
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			mutex_lock(&chip->mutex);
+			continue;
+		}
+		if (chip->erase_suspended) {
+			/* This erase was suspended and resumed.
+			   Adjust the timeout */
+			timeo = jiffies + (HZ*20); /* FIXME */
+			chip->erase_suspended = 0;
+		}
+
+		if (chip_good(map, adr, map_word_ff(map)))
+			break;
+
+		if (time_after(jiffies, timeo)) {
+			printk(KERN_WARNING "MTD %s(): software timeout\n",
+			       __func__);
+			ret = -EIO;
+			break;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		UDELAY(map, chip, adr, 1000000/HZ);
+	}
+	/* Did we succeed? */
+	if (ret) {
+		/* reset on all failures. */
+		map_write(map, CMD(0xF0), chip->start);
+		/* FIXME - should have reset delay before continuing */
+
+		if (++retry_cnt <= MAX_RETRIES) {
+			ret = 0;
+			goto retry;
+		}
+	}
+
+	chip->state = FL_READY;
+	xip_enable(map, chip, adr);
+	DISABLE_VPP(map);
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+
+	return ret;
+}
+
+
+static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long timeo = jiffies + HZ;
+	DECLARE_WAITQUEUE(wait, current);
+	int ret = 0;
+	int retry_cnt = 0;
+
+	adr += chip->start;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, FL_ERASING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
+		 __func__, adr);
+
+	XIP_INVAL_CACHED_RANGE(map, adr, len);
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+
+ retry:
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
+	map_write(map, cfi->sector_erase_cmd, adr);
+
+	chip->state = FL_ERASING;
+	chip->erase_suspended = 0;
+	chip->in_progress_block_addr = adr;
+	chip->in_progress_block_mask = ~(len - 1);
+
+	INVALIDATE_CACHE_UDELAY(map, chip,
+				adr, len,
+				chip->erase_time*500);
+
+	timeo = jiffies + (HZ*20);
+
+	for (;;) {
+		if (chip->state != FL_ERASING) {
+			/* Someone's suspended the erase. Sleep */
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			mutex_lock(&chip->mutex);
+			continue;
+		}
+		if (chip->erase_suspended) {
+			/* This erase was suspended and resumed.
+			   Adjust the timeout */
+			timeo = jiffies + (HZ*20); /* FIXME */
+			chip->erase_suspended = 0;
+		}
+
+		if (chip_good(map, adr, map_word_ff(map)))
+			break;
+
+		if (time_after(jiffies, timeo)) {
+			printk(KERN_WARNING "MTD %s(): software timeout\n",
+			       __func__);
+			ret = -EIO;
+			break;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		UDELAY(map, chip, adr, 1000000/HZ);
+	}
+	/* Did we succeed? */
+	if (ret) {
+		/* reset on all failures. */
+		map_write(map, CMD(0xF0), chip->start);
+		/* FIXME - should have reset delay before continuing */
+
+		if (++retry_cnt <= MAX_RETRIES) {
+			ret = 0;
+			goto retry;
+		}
+	}
+
+	chip->state = FL_READY;
+	xip_enable(map, chip, adr);
+	DISABLE_VPP(map);
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+
+static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
+{
+	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
+				instr->len, NULL);
+}
+
+
+static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	if (instr->addr != 0)
+		return -EINVAL;
+
+	if (instr->len != mtd->size)
+		return -EINVAL;
+
+	return do_erase_chip(map, &cfi->chips[0]);
+}
+
+static int do_atmel_lock(struct map_info *map, struct flchip *chip,
+			 unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
+	if (ret)
+		goto out_unlock;
+	chip->state = FL_LOCKING;
+
+	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
+
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	map_write(map, CMD(0x40), chip->start + adr);
+
+	chip->state = FL_READY;
+	put_chip(map, chip, adr + chip->start);
+	ret = 0;
+
+out_unlock:
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
+			   unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret;
+
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
+	if (ret)
+		goto out_unlock;
+	chip->state = FL_UNLOCKING;
+
+	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
+
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	map_write(map, CMD(0x70), adr);
+
+	chip->state = FL_READY;
+	put_chip(map, chip, adr + chip->start);
+	ret = 0;
+
+out_unlock:
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
+}
+
+static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
+}
+
+/*
+ * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
+ */
+
+struct ppb_lock {
+	struct flchip *chip;
+	unsigned long adr;
+	int locked;
+};
+
+#define MAX_SECTORS			512
+
+#define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
+#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
+#define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
+
+static int __maybe_unused do_ppb_xxlock(struct map_info *map,
+					struct flchip *chip,
+					unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long timeo;
+	int ret;
+
+	adr += chip->start;
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, FL_LOCKING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
+
+	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+	/* PPB entry command */
+	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
+			 cfi->device_type, NULL);
+
+	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
+		chip->state = FL_LOCKING;
+		map_write(map, CMD(0xA0), adr);
+		map_write(map, CMD(0x00), adr);
+	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
+		/*
+		 * Unlocking of one specific sector is not supported, so we
+		 * have to unlock all sectors of this device instead
+		 */
+		chip->state = FL_UNLOCKING;
+		map_write(map, CMD(0x80), chip->start);
+		map_write(map, CMD(0x30), chip->start);
+	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
+		chip->state = FL_JEDEC_QUERY;
+		/* Return locked status: 0->locked, 1->unlocked */
+		ret = !cfi_read_query(map, adr);
+	} else
+		BUG();
+
+	/*
+	 * Wait for some time as unlocking of all sectors takes quite long
+	 */
+	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
+	for (;;) {
+		if (chip_ready(map, adr))
+			break;
+
+		if (time_after(jiffies, timeo)) {
+			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
+			ret = -EIO;
+			break;
+		}
+
+		UDELAY(map, chip, adr, 1);
+	}
+
+	/* Exit BC commands */
+	map_write(map, CMD(0x90), chip->start);
+	map_write(map, CMD(0x00), chip->start);
+
+	chip->state = FL_READY;
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+
+	return ret;
+}
+
+static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
+				       uint64_t len)
+{
+	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
+				DO_XXLOCK_ONEBLOCK_LOCK);
+}
+
+static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
+					 uint64_t len)
+{
+	struct mtd_erase_region_info *regions = mtd->eraseregions;
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct ppb_lock *sect;
+	unsigned long adr;
+	loff_t offset;
+	uint64_t length;
+	int chipnum;
+	int i;
+	int sectors;
+	int ret;
+
+	/*
+	 * PPB unlocking always unlocks all sectors of the flash chip.
+	 * We need to re-lock all previously locked sectors. So lets
+	 * first check the locking status of all sectors and save
+	 * it for future use.
+	 */
+	sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
+	if (!sect)
+		return -ENOMEM;
+
+	/*
+	 * This code to walk all sectors is a slightly modified version
+	 * of the cfi_varsize_frob() code.
+	 */
+	i = 0;
+	chipnum = 0;
+	adr = 0;
+	sectors = 0;
+	offset = 0;
+	length = mtd->size;
+
+	while (length) {
+		int size = regions[i].erasesize;
+
+		/*
+		 * Only test sectors that shall not be unlocked. The other
+		 * sectors shall be unlocked, so lets keep their locking
+		 * status at "unlocked" (locked=0) for the final re-locking.
+		 */
+		if ((offset < ofs) || (offset >= (ofs + len))) {
+			sect[sectors].chip = &cfi->chips[chipnum];
+			sect[sectors].adr = adr;
+			sect[sectors].locked = do_ppb_xxlock(
+				map, &cfi->chips[chipnum], adr, 0,
+				DO_XXLOCK_ONEBLOCK_GETLOCK);
+		}
+
+		adr += size;
+		offset += size;
+		length -= size;
+
+		if (offset == regions[i].offset + size * regions[i].numblocks)
+			i++;
+
+		if (adr >> cfi->chipshift) {
+			if (offset >= (ofs + len))
+				break;
+			adr = 0;
+			chipnum++;
+
+			if (chipnum >= cfi->numchips)
+				break;
+		}
+
+		sectors++;
+		if (sectors >= MAX_SECTORS) {
+			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
+			       MAX_SECTORS);
+			kfree(sect);
+			return -EINVAL;
+		}
+	}
+
+	/* Now unlock the whole chip */
+	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
+			       DO_XXLOCK_ONEBLOCK_UNLOCK);
+	if (ret) {
+		kfree(sect);
+		return ret;
+	}
+
+	/*
+	 * PPB unlocking always unlocks all sectors of the flash chip.
+	 * We need to re-lock all previously locked sectors.
+	 */
+	for (i = 0; i < sectors; i++) {
+		if (sect[i].locked)
+			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
+				      DO_XXLOCK_ONEBLOCK_LOCK);
+	}
+
+	kfree(sect);
+	return ret;
+}
+
+static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
+					    uint64_t len)
+{
+	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
+				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
+}
+
+static void cfi_amdstd_sync (struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+	DECLARE_WAITQUEUE(wait, current);
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+	retry:
+		mutex_lock(&chip->mutex);
+
+		switch(chip->state) {
+		case FL_READY:
+		case FL_STATUS:
+		case FL_CFI_QUERY:
+		case FL_JEDEC_QUERY:
+			chip->oldstate = chip->state;
+			chip->state = FL_SYNCING;
+			/* No need to wake_up() on this state change -
+			 * as the whole point is that nobody can do anything
+			 * with the chip now anyway.
+			 */
+		case FL_SYNCING:
+			mutex_unlock(&chip->mutex);
+			break;
+
+		default:
+			/* Not an idle state */
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+
+			mutex_unlock(&chip->mutex);
+
+			schedule();
+
+			remove_wait_queue(&chip->wq, &wait);
+
+			goto retry;
+		}
+	}
+
+	/* Unlock the chips again */
+
+	for (i--; i >=0; i--) {
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		if (chip->state == FL_SYNCING) {
+			chip->state = chip->oldstate;
+			wake_up(&chip->wq);
+		}
+		mutex_unlock(&chip->mutex);
+	}
+}
+
+
+static int cfi_amdstd_suspend(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		switch(chip->state) {
+		case FL_READY:
+		case FL_STATUS:
+		case FL_CFI_QUERY:
+		case FL_JEDEC_QUERY:
+			chip->oldstate = chip->state;
+			chip->state = FL_PM_SUSPENDED;
+			/* No need to wake_up() on this state change -
+			 * as the whole point is that nobody can do anything
+			 * with the chip now anyway.
+			 */
+		case FL_PM_SUSPENDED:
+			break;
+
+		default:
+			ret = -EAGAIN;
+			break;
+		}
+		mutex_unlock(&chip->mutex);
+	}
+
+	/* Unlock the chips again */
+
+	if (ret) {
+		for (i--; i >=0; i--) {
+			chip = &cfi->chips[i];
+
+			mutex_lock(&chip->mutex);
+
+			if (chip->state == FL_PM_SUSPENDED) {
+				chip->state = chip->oldstate;
+				wake_up(&chip->wq);
+			}
+			mutex_unlock(&chip->mutex);
+		}
+	}
+
+	return ret;
+}
+
+
+static void cfi_amdstd_resume(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+
+	for (i=0; i<cfi->numchips; i++) {
+
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		if (chip->state == FL_PM_SUSPENDED) {
+			chip->state = FL_READY;
+			map_write(map, CMD(0xF0), chip->start);
+			wake_up(&chip->wq);
+		}
+		else
+			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
+
+		mutex_unlock(&chip->mutex);
+	}
+}
+
+
+/*
+ * Ensure that the flash device is put back into read array mode before
+ * unloading the driver or rebooting.  On some systems, rebooting while
+ * the flash is in query/program/erase mode will prevent the CPU from
+ * fetching the bootloader code, requiring a hard reset or power cycle.
+ */
+static int cfi_amdstd_reset(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i, ret;
+	struct flchip *chip;
+
+	for (i = 0; i < cfi->numchips; i++) {
+
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
+		if (!ret) {
+			map_write(map, CMD(0xF0), chip->start);
+			chip->state = FL_SHUTDOWN;
+			put_chip(map, chip, chip->start);
+		}
+
+		mutex_unlock(&chip->mutex);
+	}
+
+	return 0;
+}
+
+
+static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
+			       void *v)
+{
+	struct mtd_info *mtd;
+
+	mtd = container_of(nb, struct mtd_info, reboot_notifier);
+	cfi_amdstd_reset(mtd);
+	return NOTIFY_DONE;
+}
+
+
+static void cfi_amdstd_destroy(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	cfi_amdstd_reset(mtd);
+	unregister_reboot_notifier(&mtd->reboot_notifier);
+	kfree(cfi->cmdset_priv);
+	kfree(cfi->cfiq);
+	kfree(cfi);
+	kfree(mtd->eraseregions);
+}
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
+MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
+MODULE_ALIAS("cfi_cmdset_0006");
+MODULE_ALIAS("cfi_cmdset_0701");
diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c
new file mode 100644
index 0000000..35aa72b
--- /dev/null
+++ b/drivers/mtd/chips/cfi_cmdset_0020.c
@@ -0,0 +1,1398 @@
+/*
+ * Common Flash Interface support:
+ *   ST Advanced Architecture Command Set (ID 0x0020)
+ *
+ * (C) 2000 Red Hat. GPL'd
+ *
+ * 10/10/2000	Nicolas Pitre <nico@fluxnic.net>
+ * 	- completely revamped method functions so they are aware and
+ * 	  independent of the flash geometry (buswidth, interleave, etc.)
+ * 	- scalability vs code size is completely set at compile-time
+ * 	  (see include/linux/mtd/cfi.h for selection)
+ *	- optimized write buffer method
+ * 06/21/2002	Joern Engel <joern@wh.fh-wedel.de> and others
+ *	- modified Intel Command Set 0x0001 to support ST Advanced Architecture
+ *	  (command set 0x0020)
+ *	- added a writev function
+ * 07/13/2005	Joern Engel <joern@wh.fh-wedel.de>
+ * 	- Plugged memory leak in cfi_staa_writev().
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/mtd.h>
+
+
+static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
+		unsigned long count, loff_t to, size_t *retlen);
+static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
+static void cfi_staa_sync (struct mtd_info *);
+static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_staa_suspend (struct mtd_info *);
+static void cfi_staa_resume (struct mtd_info *);
+
+static void cfi_staa_destroy(struct mtd_info *);
+
+struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
+
+static struct mtd_info *cfi_staa_setup (struct map_info *);
+
+static struct mtd_chip_driver cfi_staa_chipdrv = {
+	.probe		= NULL, /* Not usable directly */
+	.destroy	= cfi_staa_destroy,
+	.name		= "cfi_cmdset_0020",
+	.module		= THIS_MODULE
+};
+
+/* #define DEBUG_LOCK_BITS */
+//#define DEBUG_CFI_FEATURES
+
+#ifdef DEBUG_CFI_FEATURES
+static void cfi_tell_features(struct cfi_pri_intelext *extp)
+{
+        int i;
+        printk("  Feature/Command Support: %4.4X\n", extp->FeatureSupport);
+	printk("     - Chip Erase:         %s\n", extp->FeatureSupport&1?"supported":"unsupported");
+	printk("     - Suspend Erase:      %s\n", extp->FeatureSupport&2?"supported":"unsupported");
+	printk("     - Suspend Program:    %s\n", extp->FeatureSupport&4?"supported":"unsupported");
+	printk("     - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
+	printk("     - Queued Erase:       %s\n", extp->FeatureSupport&16?"supported":"unsupported");
+	printk("     - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
+	printk("     - Protection Bits:    %s\n", extp->FeatureSupport&64?"supported":"unsupported");
+	printk("     - Page-mode read:     %s\n", extp->FeatureSupport&128?"supported":"unsupported");
+	printk("     - Synchronous read:   %s\n", extp->FeatureSupport&256?"supported":"unsupported");
+	for (i=9; i<32; i++) {
+		if (extp->FeatureSupport & (1<<i))
+			printk("     - Unknown Bit %X:      supported\n", i);
+	}
+
+	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
+	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
+	for (i=1; i<8; i++) {
+		if (extp->SuspendCmdSupport & (1<<i))
+			printk("     - Unknown Bit %X:               supported\n", i);
+	}
+
+	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
+	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
+	printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
+	for (i=2; i<16; i++) {
+		if (extp->BlkStatusRegMask & (1<<i))
+			printk("     - Unknown Bit %X Active: yes\n",i);
+	}
+
+	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
+	       extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
+	if (extp->VppOptimal)
+		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
+		       extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
+}
+#endif
+
+/* This routine is made available to other mtd code via
+ * inter_module_register.  It must only be accessed through
+ * inter_module_get which will bump the use count of this module.  The
+ * addresses passed back in cfi are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+
+	if (cfi->cfi_mode) {
+		/*
+		 * It's a real CFI chip, not one for which the probe
+		 * routine faked a CFI structure. So we read the feature
+		 * table from it.
+		 */
+		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
+		struct cfi_pri_intelext *extp;
+
+		extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
+		if (!extp)
+			return NULL;
+
+		if (extp->MajorVersion != '1' ||
+		    (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
+			printk(KERN_ERR "  Unknown ST Microelectronics"
+			       " Extended Query version %c.%c.\n",
+			       extp->MajorVersion, extp->MinorVersion);
+			kfree(extp);
+			return NULL;
+		}
+
+		/* Do some byteswapping if necessary */
+		extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport);
+		extp->BlkStatusRegMask = cfi32_to_cpu(map,
+						extp->BlkStatusRegMask);
+
+#ifdef DEBUG_CFI_FEATURES
+		/* Tell the user about it in lots of lovely detail */
+		cfi_tell_features(extp);
+#endif
+
+		/* Install our own private info structure */
+		cfi->cmdset_priv = extp;
+	}
+
+	for (i=0; i< cfi->numchips; i++) {
+		cfi->chips[i].word_write_time = 128;
+		cfi->chips[i].buffer_write_time = 128;
+		cfi->chips[i].erase_time = 1024;
+		cfi->chips[i].ref_point_counter = 0;
+		init_waitqueue_head(&(cfi->chips[i].wq));
+	}
+
+	return cfi_staa_setup(map);
+}
+EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
+
+static struct mtd_info *cfi_staa_setup(struct map_info *map)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct mtd_info *mtd;
+	unsigned long offset = 0;
+	int i,j;
+	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
+
+	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
+	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
+
+	if (!mtd) {
+		kfree(cfi->cmdset_priv);
+		return NULL;
+	}
+
+	mtd->priv = map;
+	mtd->type = MTD_NORFLASH;
+	mtd->size = devsize * cfi->numchips;
+
+	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
+	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
+					  sizeof(struct mtd_erase_region_info),
+					  GFP_KERNEL);
+	if (!mtd->eraseregions) {
+		kfree(cfi->cmdset_priv);
+		kfree(mtd);
+		return NULL;
+	}
+
+	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
+		unsigned long ernum, ersize;
+		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
+		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
+
+		if (mtd->erasesize < ersize) {
+			mtd->erasesize = ersize;
+		}
+		for (j=0; j<cfi->numchips; j++) {
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
+		}
+		offset += (ersize * ernum);
+	}
+
+	if (offset != devsize) {
+		/* Argh */
+		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
+		kfree(mtd->eraseregions);
+		kfree(cfi->cmdset_priv);
+		kfree(mtd);
+		return NULL;
+	}
+
+	for (i=0; i<mtd->numeraseregions;i++){
+		printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
+		       i, (unsigned long long)mtd->eraseregions[i].offset,
+		       mtd->eraseregions[i].erasesize,
+		       mtd->eraseregions[i].numblocks);
+	}
+
+	/* Also select the correct geometry setup too */
+	mtd->_erase = cfi_staa_erase_varsize;
+	mtd->_read = cfi_staa_read;
+	mtd->_write = cfi_staa_write_buffers;
+	mtd->_writev = cfi_staa_writev;
+	mtd->_sync = cfi_staa_sync;
+	mtd->_lock = cfi_staa_lock;
+	mtd->_unlock = cfi_staa_unlock;
+	mtd->_suspend = cfi_staa_suspend;
+	mtd->_resume = cfi_staa_resume;
+	mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
+	mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
+	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+	map->fldrv = &cfi_staa_chipdrv;
+	__module_get(THIS_MODULE);
+	mtd->name = map->name;
+	return mtd;
+}
+
+
+static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
+{
+	map_word status, status_OK;
+	unsigned long timeo;
+	DECLARE_WAITQUEUE(wait, current);
+	int suspended = 0;
+	unsigned long cmd_addr;
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	adr += chip->start;
+
+	/* Ensure cmd read/writes are aligned. */
+	cmd_addr = adr & ~(map_bankwidth(map)-1);
+
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+	timeo = jiffies + HZ;
+ retry:
+	mutex_lock(&chip->mutex);
+
+	/* Check that the chip's ready to talk to us.
+	 * If it's in FL_ERASING state, suspend it and make it talk now.
+	 */
+	switch (chip->state) {
+	case FL_ERASING:
+		if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
+			goto sleep; /* We don't support erase suspend */
+
+		map_write (map, CMD(0xb0), cmd_addr);
+		/* If the flash has finished erasing, then 'erase suspend'
+		 * appears to make some (28F320) flash devices switch to
+		 * 'read' mode.  Make sure that we switch to 'read status'
+		 * mode so we get the right data. --rmk
+		 */
+		map_write(map, CMD(0x70), cmd_addr);
+		chip->oldstate = FL_ERASING;
+		chip->state = FL_ERASE_SUSPENDING;
+		//		printk("Erase suspending at 0x%lx\n", cmd_addr);
+		for (;;) {
+			status = map_read(map, cmd_addr);
+			if (map_word_andequal(map, status, status_OK, status_OK))
+				break;
+
+			if (time_after(jiffies, timeo)) {
+				/* Urgh */
+				map_write(map, CMD(0xd0), cmd_addr);
+				/* make sure we're in 'read status' mode */
+				map_write(map, CMD(0x70), cmd_addr);
+				chip->state = FL_ERASING;
+				wake_up(&chip->wq);
+				mutex_unlock(&chip->mutex);
+				printk(KERN_ERR "Chip not ready after erase "
+				       "suspended: status = 0x%lx\n", status.x[0]);
+				return -EIO;
+			}
+
+			mutex_unlock(&chip->mutex);
+			cfi_udelay(1);
+			mutex_lock(&chip->mutex);
+		}
+
+		suspended = 1;
+		map_write(map, CMD(0xff), cmd_addr);
+		chip->state = FL_READY;
+		break;
+
+#if 0
+	case FL_WRITING:
+		/* Not quite yet */
+#endif
+
+	case FL_READY:
+		break;
+
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+		map_write(map, CMD(0x70), cmd_addr);
+		chip->state = FL_STATUS;
+
+	case FL_STATUS:
+		status = map_read(map, cmd_addr);
+		if (map_word_andequal(map, status, status_OK, status_OK)) {
+			map_write(map, CMD(0xff), cmd_addr);
+			chip->state = FL_READY;
+			break;
+		}
+
+		/* Urgh. Chip not yet ready to talk to us. */
+		if (time_after(jiffies, timeo)) {
+			mutex_unlock(&chip->mutex);
+			printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		goto retry;
+
+	default:
+	sleep:
+		/* Stick ourselves on a wait queue to be woken when
+		   someone changes the status */
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		mutex_unlock(&chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		timeo = jiffies + HZ;
+		goto retry;
+	}
+
+	map_copy_from(map, buf, adr, len);
+
+	if (suspended) {
+		chip->state = chip->oldstate;
+		/* What if one interleaved chip has finished and the
+		   other hasn't? The old code would leave the finished
+		   one in READY mode. That's bad, and caused -EROFS
+		   errors to be returned from do_erase_oneblock because
+		   that's the only bit it checked for at the time.
+		   As the state machine appears to explicitly allow
+		   sending the 0x70 (Read Status) command to an erasing
+		   chip and expecting it to be ignored, that's what we
+		   do. */
+		map_write(map, CMD(0xd0), cmd_addr);
+		map_write(map, CMD(0x70), cmd_addr);
+	}
+
+	wake_up(&chip->wq);
+	mutex_unlock(&chip->mutex);
+	return 0;
+}
+
+static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum;
+	int ret = 0;
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum <<  cfi->chipshift);
+
+	while (len) {
+		unsigned long thislen;
+
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
+		if (ret)
+			break;
+
+		*retlen += thislen;
+		len -= thislen;
+		buf += thislen;
+
+		ofs = 0;
+		chipnum++;
+	}
+	return ret;
+}
+
+static int do_write_buffer(struct map_info *map, struct flchip *chip,
+				  unsigned long adr, const u_char *buf, int len)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long cmd_adr, timeo;
+	DECLARE_WAITQUEUE(wait, current);
+	int wbufsize, z;
+
+        /* M58LW064A requires bus alignment for buffer wriets -- saw */
+        if (adr & (map_bankwidth(map)-1))
+            return -EINVAL;
+
+        wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+        adr += chip->start;
+	cmd_adr = adr & ~(wbufsize-1);
+
+	/* Let's determine this according to the interleave only once */
+        status_OK = CMD(0x80);
+
+	timeo = jiffies + HZ;
+ retry:
+
+#ifdef DEBUG_CFI_FEATURES
+       printk("%s: chip->state[%d]\n", __func__, chip->state);
+#endif
+	mutex_lock(&chip->mutex);
+
+	/* Check that the chip's ready to talk to us.
+	 * Later, we can actually think about interrupting it
+	 * if it's in FL_ERASING state.
+	 * Not just yet, though.
+	 */
+	switch (chip->state) {
+	case FL_READY:
+		break;
+
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+		map_write(map, CMD(0x70), cmd_adr);
+                chip->state = FL_STATUS;
+#ifdef DEBUG_CFI_FEATURES
+	printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
+#endif
+
+	case FL_STATUS:
+		status = map_read(map, cmd_adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+		/* Urgh. Chip not yet ready to talk to us. */
+		if (time_after(jiffies, timeo)) {
+			mutex_unlock(&chip->mutex);
+                        printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
+                               status.x[0], map_read(map, cmd_adr).x[0]);
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		goto retry;
+
+	default:
+		/* Stick ourselves on a wait queue to be woken when
+		   someone changes the status */
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		mutex_unlock(&chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		timeo = jiffies + HZ;
+		goto retry;
+	}
+
+	ENABLE_VPP(map);
+	map_write(map, CMD(0xe8), cmd_adr);
+	chip->state = FL_WRITING_TO_BUFFER;
+
+	z = 0;
+	for (;;) {
+		status = map_read(map, cmd_adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		mutex_lock(&chip->mutex);
+
+		if (++z > 100) {
+			/* Argh. Not ready for write to buffer */
+			DISABLE_VPP(map);
+                        map_write(map, CMD(0x70), cmd_adr);
+			chip->state = FL_STATUS;
+			mutex_unlock(&chip->mutex);
+			printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
+			return -EIO;
+		}
+	}
+
+	/* Write length of data to come */
+	map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
+
+	/* Write data */
+	for (z = 0; z < len;
+	     z += map_bankwidth(map), buf += map_bankwidth(map)) {
+		map_word d;
+		d = map_word_load(map, buf);
+		map_write(map, d, adr+z);
+	}
+	/* GO GO GO */
+	map_write(map, CMD(0xd0), cmd_adr);
+	chip->state = FL_WRITING;
+
+	mutex_unlock(&chip->mutex);
+	cfi_udelay(chip->buffer_write_time);
+	mutex_lock(&chip->mutex);
+
+	timeo = jiffies + (HZ/2);
+	z = 0;
+	for (;;) {
+		if (chip->state != FL_WRITING) {
+			/* Someone's suspended the write. Sleep */
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			timeo = jiffies + (HZ / 2); /* FIXME */
+			mutex_lock(&chip->mutex);
+			continue;
+		}
+
+		status = map_read(map, cmd_adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+                        /* clear status */
+                        map_write(map, CMD(0x50), cmd_adr);
+                        /* put back into read status register mode */
+                        map_write(map, CMD(0x70), adr);
+			chip->state = FL_STATUS;
+			DISABLE_VPP(map);
+			mutex_unlock(&chip->mutex);
+			printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		z++;
+		mutex_lock(&chip->mutex);
+	}
+	if (!z) {
+		chip->buffer_write_time--;
+		if (!chip->buffer_write_time)
+			chip->buffer_write_time++;
+	}
+	if (z > 1)
+		chip->buffer_write_time++;
+
+	/* Done and happy. */
+	DISABLE_VPP(map);
+	chip->state = FL_STATUS;
+
+        /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
+        if (map_word_bitsset(map, status, CMD(0x3a))) {
+#ifdef DEBUG_CFI_FEATURES
+		printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
+#endif
+		/* clear status */
+		map_write(map, CMD(0x50), cmd_adr);
+		/* put back into read status register mode */
+		map_write(map, CMD(0x70), adr);
+		wake_up(&chip->wq);
+		mutex_unlock(&chip->mutex);
+		return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
+	}
+	wake_up(&chip->wq);
+	mutex_unlock(&chip->mutex);
+
+        return 0;
+}
+
+static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
+				       size_t len, size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+	int ret = 0;
+	int chipnum;
+	unsigned long ofs;
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to  - (chipnum << cfi->chipshift);
+
+#ifdef DEBUG_CFI_FEATURES
+	printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
+	printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
+	printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
+#endif
+
+        /* Write buffer is worth it only if more than one word to write... */
+        while (len > 0) {
+		/* We must not cross write block boundaries */
+		int size = wbufsize - (ofs & (wbufsize-1));
+
+                if (size > len)
+                    size = len;
+
+                ret = do_write_buffer(map, &cfi->chips[chipnum],
+				      ofs, buf, size);
+		if (ret)
+			return ret;
+
+		ofs += size;
+		buf += size;
+		(*retlen) += size;
+		len -= size;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Writev for ECC-Flashes is a little more complicated. We need to maintain
+ * a small buffer for this.
+ * XXX: If the buffer size is not a multiple of 2, this will break
+ */
+#define ECCBUF_SIZE (mtd->writesize)
+#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
+#define ECCBUF_MOD(x) ((x) &  (ECCBUF_SIZE - 1))
+static int
+cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
+		unsigned long count, loff_t to, size_t *retlen)
+{
+	unsigned long i;
+	size_t	 totlen = 0, thislen;
+	int	 ret = 0;
+	size_t	 buflen = 0;
+	char *buffer;
+
+	if (!ECCBUF_SIZE) {
+		/* We should fall back to a general writev implementation.
+		 * Until that is written, just break.
+		 */
+		return -EIO;
+	}
+	buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
+	if (!buffer)
+		return -ENOMEM;
+
+	for (i=0; i<count; i++) {
+		size_t elem_len = vecs[i].iov_len;
+		void *elem_base = vecs[i].iov_base;
+		if (!elem_len) /* FIXME: Might be unnecessary. Check that */
+			continue;
+		if (buflen) { /* cut off head */
+			if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
+				memcpy(buffer+buflen, elem_base, elem_len);
+				buflen += elem_len;
+				continue;
+			}
+			memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
+			ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen,
+					buffer);
+			totlen += thislen;
+			if (ret || thislen != ECCBUF_SIZE)
+				goto write_error;
+			elem_len -= thislen-buflen;
+			elem_base += thislen-buflen;
+			to += ECCBUF_SIZE;
+		}
+		if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
+			ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len),
+					&thislen, elem_base);
+			totlen += thislen;
+			if (ret || thislen != ECCBUF_DIV(elem_len))
+				goto write_error;
+			to += thislen;
+		}
+		buflen = ECCBUF_MOD(elem_len); /* cut off tail */
+		if (buflen) {
+			memset(buffer, 0xff, ECCBUF_SIZE);
+			memcpy(buffer, elem_base + thislen, buflen);
+		}
+	}
+	if (buflen) { /* flush last page, even if not full */
+		/* This is sometimes intended behaviour, really */
+		ret = mtd_write(mtd, to, buflen, &thislen, buffer);
+		totlen += thislen;
+		if (ret || thislen != ECCBUF_SIZE)
+			goto write_error;
+	}
+write_error:
+	if (retlen)
+		*retlen = totlen;
+	kfree(buffer);
+	return ret;
+}
+
+
+static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long timeo;
+	int retries = 3;
+	DECLARE_WAITQUEUE(wait, current);
+	int ret = 0;
+
+	adr += chip->start;
+
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+	timeo = jiffies + HZ;
+retry:
+	mutex_lock(&chip->mutex);
+
+	/* Check that the chip's ready to talk to us. */
+	switch (chip->state) {
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+	case FL_READY:
+		map_write(map, CMD(0x70), adr);
+		chip->state = FL_STATUS;
+
+	case FL_STATUS:
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* Urgh. Chip not yet ready to talk to us. */
+		if (time_after(jiffies, timeo)) {
+			mutex_unlock(&chip->mutex);
+			printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		goto retry;
+
+	default:
+		/* Stick ourselves on a wait queue to be woken when
+		   someone changes the status */
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		mutex_unlock(&chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		timeo = jiffies + HZ;
+		goto retry;
+	}
+
+	ENABLE_VPP(map);
+	/* Clear the status register first */
+	map_write(map, CMD(0x50), adr);
+
+	/* Now erase */
+	map_write(map, CMD(0x20), adr);
+	map_write(map, CMD(0xD0), adr);
+	chip->state = FL_ERASING;
+
+	mutex_unlock(&chip->mutex);
+	msleep(1000);
+	mutex_lock(&chip->mutex);
+
+	/* FIXME. Use a timer to check this, and return immediately. */
+	/* Once the state machine's known to be working I'll do that */
+
+	timeo = jiffies + (HZ*20);
+	for (;;) {
+		if (chip->state != FL_ERASING) {
+			/* Someone's suspended the erase. Sleep */
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			mutex_unlock(&chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			timeo = jiffies + (HZ*20); /* FIXME */
+			mutex_lock(&chip->mutex);
+			continue;
+		}
+
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+			map_write(map, CMD(0x70), adr);
+			chip->state = FL_STATUS;
+			printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+			DISABLE_VPP(map);
+			mutex_unlock(&chip->mutex);
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		mutex_lock(&chip->mutex);
+	}
+
+	DISABLE_VPP(map);
+	ret = 0;
+
+	/* We've broken this before. It doesn't hurt to be safe */
+	map_write(map, CMD(0x70), adr);
+	chip->state = FL_STATUS;
+	status = map_read(map, adr);
+
+	/* check for lock bit */
+	if (map_word_bitsset(map, status, CMD(0x3a))) {
+		unsigned char chipstatus = status.x[0];
+		if (!map_word_equal(map, status, CMD(chipstatus))) {
+			int i, w;
+			for (w=0; w<map_words(map); w++) {
+				for (i = 0; i<cfi_interleave(cfi); i++) {
+					chipstatus |= status.x[w] >> (cfi->device_type * 8);
+				}
+			}
+			printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
+			       status.x[0], chipstatus);
+		}
+		/* Reset the error bits */
+		map_write(map, CMD(0x50), adr);
+		map_write(map, CMD(0x70), adr);
+
+		if ((chipstatus & 0x30) == 0x30) {
+			printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
+			ret = -EIO;
+		} else if (chipstatus & 0x02) {
+			/* Protection bit set */
+			ret = -EROFS;
+		} else if (chipstatus & 0x8) {
+			/* Voltage */
+			printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
+			ret = -EIO;
+		} else if (chipstatus & 0x20) {
+			if (retries--) {
+				printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
+				timeo = jiffies + HZ;
+				chip->state = FL_STATUS;
+				mutex_unlock(&chip->mutex);
+				goto retry;
+			}
+			printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
+			ret = -EIO;
+		}
+	}
+
+	wake_up(&chip->wq);
+	mutex_unlock(&chip->mutex);
+	return ret;
+}
+
+static int cfi_staa_erase_varsize(struct mtd_info *mtd,
+				  struct erase_info *instr)
+{	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long adr, len;
+	int chipnum, ret = 0;
+	int i, first;
+	struct mtd_erase_region_info *regions = mtd->eraseregions;
+
+	/* Check that both start and end of the requested erase are
+	 * aligned with the erasesize at the appropriate addresses.
+	 */
+
+	i = 0;
+
+	/* Skip all erase regions which are ended before the start of
+	   the requested erase. Actually, to save on the calculations,
+	   we skip to the first erase region which starts after the
+	   start of the requested erase, and then go back one.
+	*/
+
+	while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
+	       i++;
+	i--;
+
+	/* OK, now i is pointing at the erase region in which this
+	   erase request starts. Check the start of the requested
+	   erase range is aligned with the erase size which is in
+	   effect here.
+	*/
+
+	if (instr->addr & (regions[i].erasesize-1))
+		return -EINVAL;
+
+	/* Remember the erase region we start on */
+	first = i;
+
+	/* Next, check that the end of the requested erase is aligned
+	 * with the erase region at that address.
+	 */
+
+	while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
+		i++;
+
+	/* As before, drop back one to point at the region in which
+	   the address actually falls
+	*/
+	i--;
+
+	if ((instr->addr + instr->len) & (regions[i].erasesize-1))
+		return -EINVAL;
+
+	chipnum = instr->addr >> cfi->chipshift;
+	adr = instr->addr - (chipnum << cfi->chipshift);
+	len = instr->len;
+
+	i=first;
+
+	while(len) {
+		ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
+
+		if (ret)
+			return ret;
+
+		adr += regions[i].erasesize;
+		len -= regions[i].erasesize;
+
+		if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
+			i++;
+
+		if (adr >> cfi->chipshift) {
+			adr = 0;
+			chipnum++;
+
+			if (chipnum >= cfi->numchips)
+				break;
+		}
+	}
+
+	return 0;
+}
+
+static void cfi_staa_sync (struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+	DECLARE_WAITQUEUE(wait, current);
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+	retry:
+		mutex_lock(&chip->mutex);
+
+		switch(chip->state) {
+		case FL_READY:
+		case FL_STATUS:
+		case FL_CFI_QUERY:
+		case FL_JEDEC_QUERY:
+			chip->oldstate = chip->state;
+			chip->state = FL_SYNCING;
+			/* No need to wake_up() on this state change -
+			 * as the whole point is that nobody can do anything
+			 * with the chip now anyway.
+			 */
+		case FL_SYNCING:
+			mutex_unlock(&chip->mutex);
+			break;
+
+		default:
+			/* Not an idle state */
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+
+			mutex_unlock(&chip->mutex);
+			schedule();
+		        remove_wait_queue(&chip->wq, &wait);
+
+			goto retry;
+		}
+	}
+
+	/* Unlock the chips again */
+
+	for (i--; i >=0; i--) {
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		if (chip->state == FL_SYNCING) {
+			chip->state = chip->oldstate;
+			wake_up(&chip->wq);
+		}
+		mutex_unlock(&chip->mutex);
+	}
+}
+
+static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long timeo = jiffies + HZ;
+	DECLARE_WAITQUEUE(wait, current);
+
+	adr += chip->start;
+
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+	timeo = jiffies + HZ;
+retry:
+	mutex_lock(&chip->mutex);
+
+	/* Check that the chip's ready to talk to us. */
+	switch (chip->state) {
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+	case FL_READY:
+		map_write(map, CMD(0x70), adr);
+		chip->state = FL_STATUS;
+
+	case FL_STATUS:
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* Urgh. Chip not yet ready to talk to us. */
+		if (time_after(jiffies, timeo)) {
+			mutex_unlock(&chip->mutex);
+			printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		goto retry;
+
+	default:
+		/* Stick ourselves on a wait queue to be woken when
+		   someone changes the status */
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		mutex_unlock(&chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		timeo = jiffies + HZ;
+		goto retry;
+	}
+
+	ENABLE_VPP(map);
+	map_write(map, CMD(0x60), adr);
+	map_write(map, CMD(0x01), adr);
+	chip->state = FL_LOCKING;
+
+	mutex_unlock(&chip->mutex);
+	msleep(1000);
+	mutex_lock(&chip->mutex);
+
+	/* FIXME. Use a timer to check this, and return immediately. */
+	/* Once the state machine's known to be working I'll do that */
+
+	timeo = jiffies + (HZ*2);
+	for (;;) {
+
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+			map_write(map, CMD(0x70), adr);
+			chip->state = FL_STATUS;
+			printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+			DISABLE_VPP(map);
+			mutex_unlock(&chip->mutex);
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		mutex_lock(&chip->mutex);
+	}
+
+	/* Done and happy. */
+	chip->state = FL_STATUS;
+	DISABLE_VPP(map);
+	wake_up(&chip->wq);
+	mutex_unlock(&chip->mutex);
+	return 0;
+}
+static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long adr;
+	int chipnum, ret = 0;
+#ifdef DEBUG_LOCK_BITS
+	int ofs_factor = cfi->interleave * cfi->device_type;
+#endif
+
+	if (ofs & (mtd->erasesize - 1))
+		return -EINVAL;
+
+	if (len & (mtd->erasesize -1))
+		return -EINVAL;
+
+	chipnum = ofs >> cfi->chipshift;
+	adr = ofs - (chipnum << cfi->chipshift);
+
+	while(len) {
+
+#ifdef DEBUG_LOCK_BITS
+		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+		printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+		ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
+
+#ifdef DEBUG_LOCK_BITS
+		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+		printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+		if (ret)
+			return ret;
+
+		adr += mtd->erasesize;
+		len -= mtd->erasesize;
+
+		if (adr >> cfi->chipshift) {
+			adr = 0;
+			chipnum++;
+
+			if (chipnum >= cfi->numchips)
+				break;
+		}
+	}
+	return 0;
+}
+static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long timeo = jiffies + HZ;
+	DECLARE_WAITQUEUE(wait, current);
+
+	adr += chip->start;
+
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+	timeo = jiffies + HZ;
+retry:
+	mutex_lock(&chip->mutex);
+
+	/* Check that the chip's ready to talk to us. */
+	switch (chip->state) {
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+	case FL_READY:
+		map_write(map, CMD(0x70), adr);
+		chip->state = FL_STATUS;
+
+	case FL_STATUS:
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* Urgh. Chip not yet ready to talk to us. */
+		if (time_after(jiffies, timeo)) {
+			mutex_unlock(&chip->mutex);
+			printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		goto retry;
+
+	default:
+		/* Stick ourselves on a wait queue to be woken when
+		   someone changes the status */
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		mutex_unlock(&chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		timeo = jiffies + HZ;
+		goto retry;
+	}
+
+	ENABLE_VPP(map);
+	map_write(map, CMD(0x60), adr);
+	map_write(map, CMD(0xD0), adr);
+	chip->state = FL_UNLOCKING;
+
+	mutex_unlock(&chip->mutex);
+	msleep(1000);
+	mutex_lock(&chip->mutex);
+
+	/* FIXME. Use a timer to check this, and return immediately. */
+	/* Once the state machine's known to be working I'll do that */
+
+	timeo = jiffies + (HZ*2);
+	for (;;) {
+
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+			map_write(map, CMD(0x70), adr);
+			chip->state = FL_STATUS;
+			printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+			DISABLE_VPP(map);
+			mutex_unlock(&chip->mutex);
+			return -EIO;
+		}
+
+		/* Latency issues. Drop the unlock, wait a while and retry */
+		mutex_unlock(&chip->mutex);
+		cfi_udelay(1);
+		mutex_lock(&chip->mutex);
+	}
+
+	/* Done and happy. */
+	chip->state = FL_STATUS;
+	DISABLE_VPP(map);
+	wake_up(&chip->wq);
+	mutex_unlock(&chip->mutex);
+	return 0;
+}
+static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long adr;
+	int chipnum, ret = 0;
+#ifdef DEBUG_LOCK_BITS
+	int ofs_factor = cfi->interleave * cfi->device_type;
+#endif
+
+	chipnum = ofs >> cfi->chipshift;
+	adr = ofs - (chipnum << cfi->chipshift);
+
+#ifdef DEBUG_LOCK_BITS
+	{
+		unsigned long temp_adr = adr;
+		unsigned long temp_len = len;
+
+		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+                while (temp_len) {
+			printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
+			temp_adr += mtd->erasesize;
+			temp_len -= mtd->erasesize;
+		}
+		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+	}
+#endif
+
+	ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
+
+#ifdef DEBUG_LOCK_BITS
+	cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+	printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+	cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+	return ret;
+}
+
+static int cfi_staa_suspend(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		switch(chip->state) {
+		case FL_READY:
+		case FL_STATUS:
+		case FL_CFI_QUERY:
+		case FL_JEDEC_QUERY:
+			chip->oldstate = chip->state;
+			chip->state = FL_PM_SUSPENDED;
+			/* No need to wake_up() on this state change -
+			 * as the whole point is that nobody can do anything
+			 * with the chip now anyway.
+			 */
+		case FL_PM_SUSPENDED:
+			break;
+
+		default:
+			ret = -EAGAIN;
+			break;
+		}
+		mutex_unlock(&chip->mutex);
+	}
+
+	/* Unlock the chips again */
+
+	if (ret) {
+		for (i--; i >=0; i--) {
+			chip = &cfi->chips[i];
+
+			mutex_lock(&chip->mutex);
+
+			if (chip->state == FL_PM_SUSPENDED) {
+				/* No need to force it into a known state here,
+				   because we're returning failure, and it didn't
+				   get power cycled */
+				chip->state = chip->oldstate;
+				wake_up(&chip->wq);
+			}
+			mutex_unlock(&chip->mutex);
+		}
+	}
+
+	return ret;
+}
+
+static void cfi_staa_resume(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+
+	for (i=0; i<cfi->numchips; i++) {
+
+		chip = &cfi->chips[i];
+
+		mutex_lock(&chip->mutex);
+
+		/* Go to known state. Chip may have been power cycled */
+		if (chip->state == FL_PM_SUSPENDED) {
+			map_write(map, CMD(0xFF), 0);
+			chip->state = FL_READY;
+			wake_up(&chip->wq);
+		}
+
+		mutex_unlock(&chip->mutex);
+	}
+}
+
+static void cfi_staa_destroy(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	kfree(cfi->cmdset_priv);
+	kfree(cfi);
+}
+
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c
new file mode 100644
index 0000000..cf42695
--- /dev/null
+++ b/drivers/mtd/chips/cfi_probe.c
@@ -0,0 +1,462 @@
+/*
+   Common Flash Interface probe code.
+   (C) 2000 Red Hat. GPL'd.
+*/
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+
+#include <linux/mtd/xip.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/gen_probe.h>
+
+//#define DEBUG_CFI
+
+#ifdef DEBUG_CFI
+static void print_cfi_ident(struct cfi_ident *);
+#endif
+
+static int cfi_probe_chip(struct map_info *map, __u32 base,
+			  unsigned long *chip_map, struct cfi_private *cfi);
+static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi);
+
+struct mtd_info *cfi_probe(struct map_info *map);
+
+#ifdef CONFIG_MTD_XIP
+
+/* only needed for short periods, so this is rather simple */
+#define xip_disable()	local_irq_disable()
+
+#define xip_allowed(base, map) \
+do { \
+	(void) map_read(map, base); \
+	xip_iprefetch(); \
+	local_irq_enable(); \
+} while (0)
+
+#define xip_enable(base, map, cfi) \
+do { \
+	cfi_qry_mode_off(base, map, cfi);		\
+	xip_allowed(base, map); \
+} while (0)
+
+#define xip_disable_qry(base, map, cfi) \
+do { \
+	xip_disable(); \
+	cfi_qry_mode_on(base, map, cfi); \
+} while (0)
+
+#else
+
+#define xip_disable()			do { } while (0)
+#define xip_allowed(base, map)		do { } while (0)
+#define xip_enable(base, map, cfi)	do { } while (0)
+#define xip_disable_qry(base, map, cfi) do { } while (0)
+
+#endif
+
+/*
+ * This fixup occurs immediately after reading the CFI structure and can affect
+ * the number of chips detected, unlike cfi_fixup, which occurs after an
+ * mtd_info structure has been created for the chip.
+ */
+struct cfi_early_fixup {
+	uint16_t mfr;
+	uint16_t id;
+	void (*fixup)(struct cfi_private *cfi);
+};
+
+static void cfi_early_fixup(struct cfi_private *cfi,
+			    const struct cfi_early_fixup *fixups)
+{
+	const struct cfi_early_fixup *f;
+
+	for (f = fixups; f->fixup; f++) {
+		if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) &&
+		    ((f->id == CFI_ID_ANY) || (f->id == cfi->id))) {
+			f->fixup(cfi);
+		}
+	}
+}
+
+/* check for QRY.
+   in: interleave,type,mode
+   ret: table index, <0 for error
+ */
+
+static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
+				   unsigned long *chip_map, struct cfi_private *cfi)
+{
+	int i;
+
+	if ((base + 0) >= map->size) {
+		printk(KERN_NOTICE
+			"Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n",
+			(unsigned long)base, map->size -1);
+		return 0;
+	}
+	if ((base + 0xff) >= map->size) {
+		printk(KERN_NOTICE
+			"Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n",
+			(unsigned long)base + 0x55, map->size -1);
+		return 0;
+	}
+
+	xip_disable();
+	if (!cfi_qry_mode_on(base, map, cfi)) {
+		xip_enable(base, map, cfi);
+		return 0;
+	}
+
+	if (!cfi->numchips) {
+		/* This is the first time we're called. Set up the CFI
+		   stuff accordingly and return */
+		return cfi_chip_setup(map, cfi);
+	}
+
+	/* Check each previous chip to see if it's an alias */
+ 	for (i=0; i < (base >> cfi->chipshift); i++) {
+ 		unsigned long start;
+ 		if(!test_bit(i, chip_map)) {
+			/* Skip location; no valid chip at this address */
+ 			continue;
+ 		}
+ 		start = i << cfi->chipshift;
+		/* This chip should be in read mode if it's one
+		   we've already touched. */
+		if (cfi_qry_present(map, start, cfi)) {
+			/* Eep. This chip also had the QRY marker.
+			 * Is it an alias for the new one? */
+			cfi_qry_mode_off(start, map, cfi);
+
+			/* If the QRY marker goes away, it's an alias */
+			if (!cfi_qry_present(map, start, cfi)) {
+				xip_allowed(base, map);
+				printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
+				       map->name, base, start);
+				return 0;
+			}
+			/* Yes, it's actually got QRY for data. Most
+			 * unfortunate. Stick the new chip in read mode
+			 * too and if it's the same, assume it's an alias. */
+			/* FIXME: Use other modes to do a proper check */
+			cfi_qry_mode_off(base, map, cfi);
+
+			if (cfi_qry_present(map, base, cfi)) {
+				xip_allowed(base, map);
+				printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
+				       map->name, base, start);
+				return 0;
+			}
+		}
+	}
+
+	/* OK, if we got to here, then none of the previous chips appear to
+	   be aliases for the current one. */
+	set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */
+	cfi->numchips++;
+
+	/* Put it back into Read Mode */
+	cfi_qry_mode_off(base, map, cfi);
+	xip_allowed(base, map);
+
+	printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
+	       map->name, cfi->interleave, cfi->device_type*8, base,
+	       map->bankwidth*8);
+
+	return 1;
+}
+
+static void fixup_s70gl02gs_chips(struct cfi_private *cfi)
+{
+	/*
+	 * S70GL02GS flash reports a single 256 MiB chip, but is really made up
+	 * of two 128 MiB chips with 1024 sectors each.
+	 */
+	cfi->cfiq->DevSize = 27;
+	cfi->cfiq->EraseRegionInfo[0] = 0x20003ff;
+	pr_warn("Bad S70GL02GS CFI data; adjust to detect 2 chips\n");
+}
+
+static const struct cfi_early_fixup cfi_early_fixup_table[] = {
+	{ CFI_MFR_AMD, 0x4801, fixup_s70gl02gs_chips },
+	{ },
+};
+
+static int __xipram cfi_chip_setup(struct map_info *map,
+				   struct cfi_private *cfi)
+{
+	int ofs_factor = cfi->interleave*cfi->device_type;
+	__u32 base = 0;
+	int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor);
+	int i;
+	int addr_unlock1 = 0x555, addr_unlock2 = 0x2AA;
+
+	xip_enable(base, map, cfi);
+#ifdef DEBUG_CFI
+	printk("Number of erase regions: %d\n", num_erase_regions);
+#endif
+	if (!num_erase_regions)
+		return 0;
+
+	cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL);
+	if (!cfi->cfiq)
+		return 0;
+
+	memset(cfi->cfiq,0,sizeof(struct cfi_ident));
+
+	cfi->cfi_mode = CFI_MODE_CFI;
+
+	cfi->sector_erase_cmd = CMD(0x30);
+
+	/* Read the CFI info structure */
+	xip_disable_qry(base, map, cfi);
+	for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++)
+		((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor);
+
+	/* Do any necessary byteswapping */
+	cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID);
+
+	cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR);
+	cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID);
+	cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR);
+	cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc);
+	cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize);
+
+#ifdef DEBUG_CFI
+	/* Dump the information therein */
+	print_cfi_ident(cfi->cfiq);
+#endif
+
+	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
+		cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]);
+
+#ifdef DEBUG_CFI
+		printk("  Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n",
+		       i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff,
+		       (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1);
+#endif
+	}
+
+	if (cfi->cfiq->P_ID == P_ID_SST_OLD) {
+		addr_unlock1 = 0x5555;
+		addr_unlock2 = 0x2AAA;
+	}
+
+	/*
+	 * Note we put the device back into Read Mode BEFORE going into Auto
+	 * Select Mode, as some devices support nesting of modes, others
+	 * don't. This way should always work.
+	 * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and
+	 * so should be treated as nops or illegal (and so put the device
+	 * back into Read Mode, which is a nop in this case).
+	 */
+	cfi_send_gen_cmd(0xf0,     0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xaa, addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, addr_unlock2, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x90, addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+	cfi->mfr = cfi_read_query16(map, base);
+	cfi->id = cfi_read_query16(map, base + ofs_factor);
+
+	/* Get AMD/Spansion extended JEDEC ID */
+	if (cfi->mfr == CFI_MFR_AMD && (cfi->id & 0xff) == 0x7e)
+		cfi->id = cfi_read_query(map, base + 0xe * ofs_factor) << 8 |
+			  cfi_read_query(map, base + 0xf * ofs_factor);
+
+	/* Put it back into Read Mode */
+	cfi_qry_mode_off(base, map, cfi);
+	xip_allowed(base, map);
+
+	cfi_early_fixup(cfi, cfi_early_fixup_table);
+
+	printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank. Manufacturer ID %#08x Chip ID %#08x\n",
+	       map->name, cfi->interleave, cfi->device_type*8, base,
+	       map->bankwidth*8, cfi->mfr, cfi->id);
+
+	return 1;
+}
+
+#ifdef DEBUG_CFI
+static char *vendorname(__u16 vendor)
+{
+	switch (vendor) {
+	case P_ID_NONE:
+		return "None";
+
+	case P_ID_INTEL_EXT:
+		return "Intel/Sharp Extended";
+
+	case P_ID_AMD_STD:
+		return "AMD/Fujitsu Standard";
+
+	case P_ID_INTEL_STD:
+		return "Intel/Sharp Standard";
+
+	case P_ID_AMD_EXT:
+		return "AMD/Fujitsu Extended";
+
+	case P_ID_WINBOND:
+		return "Winbond Standard";
+
+	case P_ID_ST_ADV:
+		return "ST Advanced";
+
+	case P_ID_MITSUBISHI_STD:
+		return "Mitsubishi Standard";
+
+	case P_ID_MITSUBISHI_EXT:
+		return "Mitsubishi Extended";
+
+	case P_ID_SST_PAGE:
+		return "SST Page Write";
+
+	case P_ID_SST_OLD:
+		return "SST 39VF160x/39VF320x";
+
+	case P_ID_INTEL_PERFORMANCE:
+		return "Intel Performance Code";
+
+	case P_ID_INTEL_DATA:
+		return "Intel Data";
+
+	case P_ID_RESERVED:
+		return "Not Allowed / Reserved for Future Use";
+
+	default:
+		return "Unknown";
+	}
+}
+
+
+static void print_cfi_ident(struct cfi_ident *cfip)
+{
+#if 0
+	if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') {
+		printk("Invalid CFI ident structure.\n");
+		return;
+	}
+#endif
+	printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID));
+	if (cfip->P_ADR)
+		printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR);
+	else
+		printk("No Primary Algorithm Table\n");
+
+	printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID));
+	if (cfip->A_ADR)
+		printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR);
+	else
+		printk("No Alternate Algorithm Table\n");
+
+
+	printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf);
+	printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf);
+	if (cfip->VppMin) {
+		printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf);
+		printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf);
+	}
+	else
+		printk("No Vpp line\n");
+
+	printk("Typical byte/word write timeout: %d µs\n", 1<<cfip->WordWriteTimeoutTyp);
+	printk("Maximum byte/word write timeout: %d µs\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp));
+
+	if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) {
+		printk("Typical full buffer write timeout: %d µs\n", 1<<cfip->BufWriteTimeoutTyp);
+		printk("Maximum full buffer write timeout: %d µs\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp));
+	}
+	else
+		printk("Full buffer write not supported\n");
+
+	printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp);
+	printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp));
+	if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) {
+		printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp);
+		printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp));
+	}
+	else
+		printk("Chip erase not supported\n");
+
+	printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20));
+	printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc);
+	switch(cfip->InterfaceDesc) {
+	case CFI_INTERFACE_X8_ASYNC:
+		printk("  - x8-only asynchronous interface\n");
+		break;
+
+	case CFI_INTERFACE_X16_ASYNC:
+		printk("  - x16-only asynchronous interface\n");
+		break;
+
+	case CFI_INTERFACE_X8_BY_X16_ASYNC:
+		printk("  - supports x8 and x16 via BYTE# with asynchronous interface\n");
+		break;
+
+	case CFI_INTERFACE_X32_ASYNC:
+		printk("  - x32-only asynchronous interface\n");
+		break;
+
+	case CFI_INTERFACE_X16_BY_X32_ASYNC:
+		printk("  - supports x16 and x32 via Word# with asynchronous interface\n");
+		break;
+
+	case CFI_INTERFACE_NOT_ALLOWED:
+		printk("  - Not Allowed / Reserved\n");
+		break;
+
+	default:
+		printk("  - Unknown\n");
+		break;
+	}
+
+	printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize);
+	printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions);
+
+}
+#endif /* DEBUG_CFI */
+
+static struct chip_probe cfi_chip_probe = {
+	.name		= "CFI",
+	.probe_chip	= cfi_probe_chip
+};
+
+struct mtd_info *cfi_probe(struct map_info *map)
+{
+	/*
+	 * Just use the generic probe stuff to call our CFI-specific
+	 * chip_probe routine in all the possible permutations, etc.
+	 */
+	return mtd_do_chip_probe(map, &cfi_chip_probe);
+}
+
+static struct mtd_chip_driver cfi_chipdrv = {
+	.probe		= cfi_probe,
+	.name		= "cfi_probe",
+	.module		= THIS_MODULE
+};
+
+static int __init cfi_probe_init(void)
+{
+	register_mtd_chip_driver(&cfi_chipdrv);
+	return 0;
+}
+
+static void __exit cfi_probe_exit(void)
+{
+	unregister_mtd_chip_driver(&cfi_chipdrv);
+}
+
+module_init(cfi_probe_init);
+module_exit(cfi_probe_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
+MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips");
diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c
new file mode 100644
index 0000000..6f16552
--- /dev/null
+++ b/drivers/mtd/chips/cfi_util.c
@@ -0,0 +1,439 @@
+/*
+ * Common Flash Interface support:
+ *   Generic utility functions not dependent on command set
+ *
+ * Copyright (C) 2002 Red Hat
+ * Copyright (C) 2003 STMicroelectronics Limited
+ *
+ * This code is covered by the GPL.
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/xip.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/cfi.h>
+
+void cfi_udelay(int us)
+{
+	if (us >= 1000) {
+		msleep((us+999)/1000);
+	} else {
+		udelay(us);
+		cond_resched();
+	}
+}
+EXPORT_SYMBOL(cfi_udelay);
+
+/*
+ * Returns the command address according to the given geometry.
+ */
+uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
+				struct map_info *map, struct cfi_private *cfi)
+{
+	unsigned bankwidth = map_bankwidth(map);
+	unsigned interleave = cfi_interleave(cfi);
+	unsigned type = cfi->device_type;
+	uint32_t addr;
+
+	addr = (cmd_ofs * type) * interleave;
+
+	/* Modify the unlock address if we are in compatibility mode.
+	 * For 16bit devices on 8 bit busses
+	 * and 32bit devices on 16 bit busses
+	 * set the low bit of the alternating bit sequence of the address.
+	 */
+	if (((type * interleave) > bankwidth) && ((cmd_ofs & 0xff) == 0xaa))
+		addr |= (type >> 1)*interleave;
+
+	return  addr;
+}
+EXPORT_SYMBOL(cfi_build_cmd_addr);
+
+/*
+ * Transforms the CFI command for the given geometry (bus width & interleave).
+ * It looks too long to be inline, but in the common case it should almost all
+ * get optimised away.
+ */
+map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
+{
+	map_word val = { {0} };
+	int wordwidth, words_per_bus, chip_mode, chips_per_word;
+	unsigned long onecmd;
+	int i;
+
+	/* We do it this way to give the compiler a fighting chance
+	   of optimising away all the crap for 'bankwidth' larger than
+	   an unsigned long, in the common case where that support is
+	   disabled */
+	if (map_bankwidth_is_large(map)) {
+		wordwidth = sizeof(unsigned long);
+		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
+	} else {
+		wordwidth = map_bankwidth(map);
+		words_per_bus = 1;
+	}
+
+	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
+	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
+
+	/* First, determine what the bit-pattern should be for a single
+	   device, according to chip mode and endianness... */
+	switch (chip_mode) {
+	default: BUG();
+	case 1:
+		onecmd = cmd;
+		break;
+	case 2:
+		onecmd = cpu_to_cfi16(map, cmd);
+		break;
+	case 4:
+		onecmd = cpu_to_cfi32(map, cmd);
+		break;
+	}
+
+	/* Now replicate it across the size of an unsigned long, or
+	   just to the bus width as appropriate */
+	switch (chips_per_word) {
+	default: BUG();
+#if BITS_PER_LONG >= 64
+	case 8:
+		onecmd |= (onecmd << (chip_mode * 32));
+#endif
+	case 4:
+		onecmd |= (onecmd << (chip_mode * 16));
+	case 2:
+		onecmd |= (onecmd << (chip_mode * 8));
+	case 1:
+		;
+	}
+
+	/* And finally, for the multi-word case, replicate it
+	   in all words in the structure */
+	for (i=0; i < words_per_bus; i++) {
+		val.x[i] = onecmd;
+	}
+
+	return val;
+}
+EXPORT_SYMBOL(cfi_build_cmd);
+
+unsigned long cfi_merge_status(map_word val, struct map_info *map,
+					   struct cfi_private *cfi)
+{
+	int wordwidth, words_per_bus, chip_mode, chips_per_word;
+	unsigned long onestat, res = 0;
+	int i;
+
+	/* We do it this way to give the compiler a fighting chance
+	   of optimising away all the crap for 'bankwidth' larger than
+	   an unsigned long, in the common case where that support is
+	   disabled */
+	if (map_bankwidth_is_large(map)) {
+		wordwidth = sizeof(unsigned long);
+		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
+	} else {
+		wordwidth = map_bankwidth(map);
+		words_per_bus = 1;
+	}
+
+	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
+	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
+
+	onestat = val.x[0];
+	/* Or all status words together */
+	for (i=1; i < words_per_bus; i++) {
+		onestat |= val.x[i];
+	}
+
+	res = onestat;
+	switch(chips_per_word) {
+	default: BUG();
+#if BITS_PER_LONG >= 64
+	case 8:
+		res |= (onestat >> (chip_mode * 32));
+#endif
+	case 4:
+		res |= (onestat >> (chip_mode * 16));
+	case 2:
+		res |= (onestat >> (chip_mode * 8));
+	case 1:
+		;
+	}
+
+	/* Last, determine what the bit-pattern should be for a single
+	   device, according to chip mode and endianness... */
+	switch (chip_mode) {
+	case 1:
+		break;
+	case 2:
+		res = cfi16_to_cpu(map, res);
+		break;
+	case 4:
+		res = cfi32_to_cpu(map, res);
+		break;
+	default: BUG();
+	}
+	return res;
+}
+EXPORT_SYMBOL(cfi_merge_status);
+
+/*
+ * Sends a CFI command to a bank of flash for the given geometry.
+ *
+ * Returns the offset in flash where the command was written.
+ * If prev_val is non-null, it will be set to the value at the command address,
+ * before the command was written.
+ */
+uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
+				struct map_info *map, struct cfi_private *cfi,
+				int type, map_word *prev_val)
+{
+	map_word val;
+	uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
+	val = cfi_build_cmd(cmd, map, cfi);
+
+	if (prev_val)
+		*prev_val = map_read(map, addr);
+
+	map_write(map, val, addr);
+
+	return addr - base;
+}
+EXPORT_SYMBOL(cfi_send_gen_cmd);
+
+int __xipram cfi_qry_present(struct map_info *map, __u32 base,
+			     struct cfi_private *cfi)
+{
+	int osf = cfi->interleave * cfi->device_type;	/* scale factor */
+	map_word val[3];
+	map_word qry[3];
+
+	qry[0] = cfi_build_cmd('Q', map, cfi);
+	qry[1] = cfi_build_cmd('R', map, cfi);
+	qry[2] = cfi_build_cmd('Y', map, cfi);
+
+	val[0] = map_read(map, base + osf*0x10);
+	val[1] = map_read(map, base + osf*0x11);
+	val[2] = map_read(map, base + osf*0x12);
+
+	if (!map_word_equal(map, qry[0], val[0]))
+		return 0;
+
+	if (!map_word_equal(map, qry[1], val[1]))
+		return 0;
+
+	if (!map_word_equal(map, qry[2], val[2]))
+		return 0;
+
+	return 1; 	/* "QRY" found */
+}
+EXPORT_SYMBOL_GPL(cfi_qry_present);
+
+int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
+			     struct cfi_private *cfi)
+{
+	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
+	if (cfi_qry_present(map, base, cfi))
+		return 1;
+	/* QRY not found probably we deal with some odd CFI chips */
+	/* Some revisions of some old Intel chips? */
+	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
+	if (cfi_qry_present(map, base, cfi))
+		return 1;
+	/* ST M29DW chips */
+	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
+	if (cfi_qry_present(map, base, cfi))
+		return 1;
+	/* some old SST chips, e.g. 39VF160x/39VF320x */
+	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xAA, 0x5555, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, 0x2AAA, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x98, 0x5555, base, map, cfi, cfi->device_type, NULL);
+	if (cfi_qry_present(map, base, cfi))
+		return 1;
+	/* SST 39VF640xB */
+	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xAA, 0x555, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x55, 0x2AA, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
+	if (cfi_qry_present(map, base, cfi))
+		return 1;
+	/* QRY not found */
+	return 0;
+}
+EXPORT_SYMBOL_GPL(cfi_qry_mode_on);
+
+void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
+			       struct cfi_private *cfi)
+{
+	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
+	/* M29W128G flashes require an additional reset command
+	   when exit qry mode */
+	if ((cfi->mfr == CFI_MFR_ST) && (cfi->id == 0x227E || cfi->id == 0x7E))
+		cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+}
+EXPORT_SYMBOL_GPL(cfi_qry_mode_off);
+
+struct cfi_extquery *
+__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	__u32 base = 0; // cfi->chips[0].start;
+	int ofs_factor = cfi->interleave * cfi->device_type;
+	int i;
+	struct cfi_extquery *extp = NULL;
+
+	if (!adr)
+		goto out;
+
+	printk(KERN_INFO "%s Extended Query Table at 0x%4.4X\n", name, adr);
+
+	extp = kmalloc(size, GFP_KERNEL);
+	if (!extp)
+		goto out;
+
+#ifdef CONFIG_MTD_XIP
+	local_irq_disable();
+#endif
+
+	/* Switch it into Query Mode */
+	cfi_qry_mode_on(base, map, cfi);
+	/* Read in the Extended Query Table */
+	for (i=0; i<size; i++) {
+		((unsigned char *)extp)[i] =
+			cfi_read_query(map, base+((adr+i)*ofs_factor));
+	}
+
+	/* Make sure it returns to read mode */
+	cfi_qry_mode_off(base, map, cfi);
+
+#ifdef CONFIG_MTD_XIP
+	(void) map_read(map, base);
+	xip_iprefetch();
+	local_irq_enable();
+#endif
+
+ out:	return extp;
+}
+
+EXPORT_SYMBOL(cfi_read_pri);
+
+void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_fixup *f;
+
+	for (f=fixups; f->fixup; f++) {
+		if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) &&
+		    ((f->id  == CFI_ID_ANY)  || (f->id  == cfi->id))) {
+			f->fixup(mtd);
+		}
+	}
+}
+
+EXPORT_SYMBOL(cfi_fixup);
+
+int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
+				     loff_t ofs, size_t len, void *thunk)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long adr;
+	int chipnum, ret = 0;
+	int i, first;
+	struct mtd_erase_region_info *regions = mtd->eraseregions;
+
+	/* Check that both start and end of the requested erase are
+	 * aligned with the erasesize at the appropriate addresses.
+	 */
+
+	i = 0;
+
+	/* Skip all erase regions which are ended before the start of
+	   the requested erase. Actually, to save on the calculations,
+	   we skip to the first erase region which starts after the
+	   start of the requested erase, and then go back one.
+	*/
+
+	while (i < mtd->numeraseregions && ofs >= regions[i].offset)
+	       i++;
+	i--;
+
+	/* OK, now i is pointing at the erase region in which this
+	   erase request starts. Check the start of the requested
+	   erase range is aligned with the erase size which is in
+	   effect here.
+	*/
+
+	if (ofs & (regions[i].erasesize-1))
+		return -EINVAL;
+
+	/* Remember the erase region we start on */
+	first = i;
+
+	/* Next, check that the end of the requested erase is aligned
+	 * with the erase region at that address.
+	 */
+
+	while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset)
+		i++;
+
+	/* As before, drop back one to point at the region in which
+	   the address actually falls
+	*/
+	i--;
+
+	if ((ofs + len) & (regions[i].erasesize-1))
+		return -EINVAL;
+
+	chipnum = ofs >> cfi->chipshift;
+	adr = ofs - (chipnum << cfi->chipshift);
+
+	i=first;
+
+	while(len) {
+		int size = regions[i].erasesize;
+
+		ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk);
+
+		if (ret)
+			return ret;
+
+		adr += size;
+		ofs += size;
+		len -= size;
+
+		if (ofs == regions[i].offset + size * regions[i].numblocks)
+			i++;
+
+		if (adr >> cfi->chipshift) {
+			adr = 0;
+			chipnum++;
+
+			if (chipnum >= cfi->numchips)
+				break;
+		}
+	}
+
+	return 0;
+}
+
+EXPORT_SYMBOL(cfi_varsize_frob);
+
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/chips/chipreg.c b/drivers/mtd/chips/chipreg.c
new file mode 100644
index 0000000..0bbc61b
--- /dev/null
+++ b/drivers/mtd/chips/chipreg.c
@@ -0,0 +1,104 @@
+/*
+ * Registration for chip drivers
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/kmod.h>
+#include <linux/spinlock.h>
+#include <linux/slab.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/mtd.h>
+
+static DEFINE_SPINLOCK(chip_drvs_lock);
+static LIST_HEAD(chip_drvs_list);
+
+void register_mtd_chip_driver(struct mtd_chip_driver *drv)
+{
+	spin_lock(&chip_drvs_lock);
+	list_add(&drv->list, &chip_drvs_list);
+	spin_unlock(&chip_drvs_lock);
+}
+
+void unregister_mtd_chip_driver(struct mtd_chip_driver *drv)
+{
+	spin_lock(&chip_drvs_lock);
+	list_del(&drv->list);
+	spin_unlock(&chip_drvs_lock);
+}
+
+static struct mtd_chip_driver *get_mtd_chip_driver (const char *name)
+{
+	struct list_head *pos;
+	struct mtd_chip_driver *ret = NULL, *this;
+
+	spin_lock(&chip_drvs_lock);
+
+	list_for_each(pos, &chip_drvs_list) {
+		this = list_entry(pos, typeof(*this), list);
+
+		if (!strcmp(this->name, name)) {
+			ret = this;
+			break;
+		}
+	}
+	if (ret && !try_module_get(ret->module))
+		ret = NULL;
+
+	spin_unlock(&chip_drvs_lock);
+
+	return ret;
+}
+
+	/* Hide all the horrid details, like some silly person taking
+	   get_module_symbol() away from us, from the caller. */
+
+struct mtd_info *do_map_probe(const char *name, struct map_info *map)
+{
+	struct mtd_chip_driver *drv;
+	struct mtd_info *ret;
+
+	drv = get_mtd_chip_driver(name);
+
+	if (!drv && !request_module("%s", name))
+		drv = get_mtd_chip_driver(name);
+
+	if (!drv)
+		return NULL;
+
+	ret = drv->probe(map);
+
+	/* We decrease the use count here. It may have been a
+	   probe-only module, which is no longer required from this
+	   point, having given us a handle on (and increased the use
+	   count of) the actual driver code.
+	*/
+	module_put(drv->module);
+
+	return ret;
+}
+/*
+ * Destroy an MTD device which was created for a map device.
+ * Make sure the MTD device is already unregistered before calling this
+ */
+void map_destroy(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+
+	if (map->fldrv->destroy)
+		map->fldrv->destroy(mtd);
+
+	module_put(map->fldrv->module);
+
+	kfree(mtd);
+}
+
+EXPORT_SYMBOL(register_mtd_chip_driver);
+EXPORT_SYMBOL(unregister_mtd_chip_driver);
+EXPORT_SYMBOL(do_map_probe);
+EXPORT_SYMBOL(map_destroy);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("Core routines for registering and invoking MTD chip drivers");
diff --git a/drivers/mtd/chips/fwh_lock.h b/drivers/mtd/chips/fwh_lock.h
new file mode 100644
index 0000000..53e6b2d
--- /dev/null
+++ b/drivers/mtd/chips/fwh_lock.h
@@ -0,0 +1,108 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef FWH_LOCK_H
+#define FWH_LOCK_H
+
+
+enum fwh_lock_state {
+        FWH_UNLOCKED   = 0,
+	FWH_DENY_WRITE = 1,
+	FWH_IMMUTABLE  = 2,
+	FWH_DENY_READ  = 4,
+};
+
+struct fwh_xxlock_thunk {
+	enum fwh_lock_state val;
+	flstate_t state;
+};
+
+
+#define FWH_XXLOCK_ONEBLOCK_LOCK   ((struct fwh_xxlock_thunk){ FWH_DENY_WRITE, FL_LOCKING})
+#define FWH_XXLOCK_ONEBLOCK_UNLOCK ((struct fwh_xxlock_thunk){ FWH_UNLOCKED,   FL_UNLOCKING})
+
+/*
+ * This locking/unlock is specific to firmware hub parts.  Only one
+ * is known that supports the Intel command set.    Firmware
+ * hub parts cannot be interleaved as they are on the LPC bus
+ * so this code has not been tested with interleaved chips,
+ * and will likely fail in that context.
+ */
+static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip,
+	unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct fwh_xxlock_thunk *xxlt = (struct fwh_xxlock_thunk *)thunk;
+	int ret;
+
+	/* Refuse the operation if the we cannot look behind the chip */
+	if (chip->start < 0x400000) {
+		pr_debug( "MTD %s(): chip->start: %lx wanted >= 0x400000\n",
+			__func__, chip->start );
+		return -EIO;
+	}
+	/*
+	 * lock block registers:
+	 * - on 64k boundariesand
+	 * - bit 1 set high
+	 * - block lock registers are 4MiB lower - overflow subtract (danger)
+	 *
+	 * The address manipulation is first done on the logical address
+	 * which is 0 at the start of the chip, and then the offset of
+	 * the individual chip is addted to it.  Any other order a weird
+	 * map offset could cause problems.
+	 */
+	adr = (adr & ~0xffffUL) | 0x2;
+	adr += chip->start - 0x400000;
+
+	/*
+	 * This is easy because these are writes to registers and not writes
+	 * to flash memory - that means that we don't have to check status
+	 * and timeout.
+	 */
+	mutex_lock(&chip->mutex);
+	ret = get_chip(map, chip, adr, FL_LOCKING);
+	if (ret) {
+		mutex_unlock(&chip->mutex);
+		return ret;
+	}
+
+	chip->oldstate = chip->state;
+	chip->state = xxlt->state;
+	map_write(map, CMD(xxlt->val), adr);
+
+	/* Done and happy. */
+	chip->state = chip->oldstate;
+	put_chip(map, chip, adr);
+	mutex_unlock(&chip->mutex);
+	return 0;
+}
+
+
+static int fwh_lock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+	ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
+		(void *)&FWH_XXLOCK_ONEBLOCK_LOCK);
+
+	return ret;
+}
+
+
+static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+	ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
+		(void *)&FWH_XXLOCK_ONEBLOCK_UNLOCK);
+
+	return ret;
+}
+
+static void fixup_use_fwh_lock(struct mtd_info *mtd)
+{
+	printk(KERN_NOTICE "using fwh lock/unlock method\n");
+	/* Setup for the chips with the fwh lock method */
+	mtd->_lock   = fwh_lock_varsize;
+	mtd->_unlock = fwh_unlock_varsize;
+}
+#endif /* FWH_LOCK_H */
diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c
new file mode 100644
index 0000000..837b04a
--- /dev/null
+++ b/drivers/mtd/chips/gen_probe.c
@@ -0,0 +1,267 @@
+/*
+ * Routines common to all CFI-type probes.
+ * (C) 2001-2003 Red Hat, Inc.
+ * GPL'd
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/gen_probe.h>
+
+static struct mtd_info *check_cmd_set(struct map_info *, int);
+static struct cfi_private *genprobe_ident_chips(struct map_info *map,
+						struct chip_probe *cp);
+static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp,
+			     struct cfi_private *cfi);
+
+struct mtd_info *mtd_do_chip_probe(struct map_info *map, struct chip_probe *cp)
+{
+	struct mtd_info *mtd = NULL;
+	struct cfi_private *cfi;
+
+	/* First probe the map to see if we have CFI stuff there. */
+	cfi = genprobe_ident_chips(map, cp);
+
+	if (!cfi)
+		return NULL;
+
+	map->fldrv_priv = cfi;
+	/* OK we liked it. Now find a driver for the command set it talks */
+
+	mtd = check_cmd_set(map, 1); /* First the primary cmdset */
+	if (!mtd)
+		mtd = check_cmd_set(map, 0); /* Then the secondary */
+
+	if (mtd) {
+		if (mtd->size > map->size) {
+			printk(KERN_WARNING "Reducing visibility of %ldKiB chip to %ldKiB\n",
+			       (unsigned long)mtd->size >> 10,
+			       (unsigned long)map->size >> 10);
+			mtd->size = map->size;
+		}
+		return mtd;
+	}
+
+	printk(KERN_WARNING"gen_probe: No supported Vendor Command Set found\n");
+
+	kfree(cfi->cfiq);
+	kfree(cfi);
+	map->fldrv_priv = NULL;
+	return NULL;
+}
+EXPORT_SYMBOL(mtd_do_chip_probe);
+
+
+static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chip_probe *cp)
+{
+	struct cfi_private cfi;
+	struct cfi_private *retcfi;
+	unsigned long *chip_map;
+	int i, j, mapsize;
+	int max_chips;
+
+	memset(&cfi, 0, sizeof(cfi));
+
+	/* Call the probetype-specific code with all permutations of
+	   interleave and device type, etc. */
+	if (!genprobe_new_chip(map, cp, &cfi)) {
+		/* The probe didn't like it */
+		pr_debug("%s: Found no %s device at location zero\n",
+			 cp->name, map->name);
+		return NULL;
+	}
+
+#if 0 /* Let the CFI probe routine do this sanity check. The Intel and AMD
+	 probe routines won't ever return a broken CFI structure anyway,
+	 because they make them up themselves.
+      */
+	if (cfi.cfiq->NumEraseRegions == 0) {
+		printk(KERN_WARNING "Number of erase regions is zero\n");
+		kfree(cfi.cfiq);
+		return NULL;
+	}
+#endif
+	cfi.chipshift = cfi.cfiq->DevSize;
+
+	if (cfi_interleave_is_1(&cfi)) {
+		;
+	} else if (cfi_interleave_is_2(&cfi)) {
+		cfi.chipshift++;
+	} else if (cfi_interleave_is_4((&cfi))) {
+		cfi.chipshift += 2;
+	} else if (cfi_interleave_is_8(&cfi)) {
+		cfi.chipshift += 3;
+	} else {
+		BUG();
+	}
+
+	cfi.numchips = 1;
+
+	/*
+	 * Allocate memory for bitmap of valid chips.
+	 * Align bitmap storage size to full byte.
+	 */
+	max_chips = map->size >> cfi.chipshift;
+	if (!max_chips) {
+		printk(KERN_WARNING "NOR chip too large to fit in mapping. Attempting to cope...\n");
+		max_chips = 1;
+	}
+
+	mapsize = sizeof(long) * DIV_ROUND_UP(max_chips, BITS_PER_LONG);
+	chip_map = kzalloc(mapsize, GFP_KERNEL);
+	if (!chip_map) {
+		kfree(cfi.cfiq);
+		return NULL;
+	}
+
+	set_bit(0, chip_map); /* Mark first chip valid */
+
+	/*
+	 * Now probe for other chips, checking sensibly for aliases while
+	 * we're at it. The new_chip probe above should have let the first
+	 * chip in read mode.
+	 */
+
+	for (i = 1; i < max_chips; i++) {
+		cp->probe_chip(map, i << cfi.chipshift, chip_map, &cfi);
+	}
+
+	/*
+	 * Now allocate the space for the structures we need to return to
+	 * our caller, and copy the appropriate data into them.
+	 */
+
+	retcfi = kmalloc(sizeof(struct cfi_private) + cfi.numchips * sizeof(struct flchip), GFP_KERNEL);
+
+	if (!retcfi) {
+		kfree(cfi.cfiq);
+		kfree(chip_map);
+		return NULL;
+	}
+
+	memcpy(retcfi, &cfi, sizeof(cfi));
+	memset(&retcfi->chips[0], 0, sizeof(struct flchip) * cfi.numchips);
+
+	for (i = 0, j = 0; (j < cfi.numchips) && (i < max_chips); i++) {
+		if(test_bit(i, chip_map)) {
+			struct flchip *pchip = &retcfi->chips[j++];
+
+			pchip->start = (i << cfi.chipshift);
+			pchip->state = FL_READY;
+			init_waitqueue_head(&pchip->wq);
+			mutex_init(&pchip->mutex);
+		}
+	}
+
+	kfree(chip_map);
+	return retcfi;
+}
+
+
+static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp,
+			     struct cfi_private *cfi)
+{
+	int min_chips = (map_bankwidth(map)/4?:1); /* At most 4-bytes wide. */
+	int max_chips = map_bankwidth(map); /* And minimum 1 */
+	int nr_chips, type;
+
+	for (nr_chips = max_chips; nr_chips >= min_chips; nr_chips >>= 1) {
+
+		if (!cfi_interleave_supported(nr_chips))
+		    continue;
+
+		cfi->interleave = nr_chips;
+
+		/* Minimum device size. Don't look for one 8-bit device
+		   in a 16-bit bus, etc. */
+		type = map_bankwidth(map) / nr_chips;
+
+		for (; type <= CFI_DEVICETYPE_X32; type<<=1) {
+			cfi->device_type = type;
+
+			if (cp->probe_chip(map, 0, NULL, cfi))
+				return 1;
+		}
+	}
+	return 0;
+}
+
+typedef struct mtd_info *cfi_cmdset_fn_t(struct map_info *, int);
+
+extern cfi_cmdset_fn_t cfi_cmdset_0001;
+extern cfi_cmdset_fn_t cfi_cmdset_0002;
+extern cfi_cmdset_fn_t cfi_cmdset_0020;
+
+static inline struct mtd_info *cfi_cmdset_unknown(struct map_info *map,
+						  int primary)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	__u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID;
+#ifdef CONFIG_MODULES
+	cfi_cmdset_fn_t *probe_function;
+	char *probename;
+
+	probename = kasprintf(GFP_KERNEL, "cfi_cmdset_%4.4X", type);
+	if (!probename)
+		return NULL;
+
+	probe_function = __symbol_get(probename);
+	if (!probe_function) {
+		request_module("cfi_cmdset_%4.4X", type);
+		probe_function = __symbol_get(probename);
+	}
+	kfree(probename);
+
+	if (probe_function) {
+		struct mtd_info *mtd;
+
+		mtd = (*probe_function)(map, primary);
+		/* If it was happy, it'll have increased its own use count */
+		symbol_put_addr(probe_function);
+		return mtd;
+	}
+#endif
+	printk(KERN_NOTICE "Support for command set %04X not present\n", type);
+
+	return NULL;
+}
+
+static struct mtd_info *check_cmd_set(struct map_info *map, int primary)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	__u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID;
+
+	if (type == P_ID_NONE || type == P_ID_RESERVED)
+		return NULL;
+
+	switch(type){
+		/* We need these for the !CONFIG_MODULES case,
+		   because symbol_get() doesn't work there */
+#ifdef CONFIG_MTD_CFI_INTELEXT
+	case P_ID_INTEL_EXT:
+	case P_ID_INTEL_STD:
+	case P_ID_INTEL_PERFORMANCE:
+		return cfi_cmdset_0001(map, primary);
+#endif
+#ifdef CONFIG_MTD_CFI_AMDSTD
+	case P_ID_AMD_STD:
+	case P_ID_SST_OLD:
+	case P_ID_WINBOND:
+		return cfi_cmdset_0002(map, primary);
+#endif
+#ifdef CONFIG_MTD_CFI_STAA
+        case P_ID_ST_ADV:
+		return cfi_cmdset_0020(map, primary);
+#endif
+	default:
+		return cfi_cmdset_unknown(map, primary);
+	}
+}
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("Helper routines for flash chip probe code");
diff --git a/drivers/mtd/chips/jedec_probe.c b/drivers/mtd/chips/jedec_probe.c
new file mode 100644
index 0000000..6f7e7e1
--- /dev/null
+++ b/drivers/mtd/chips/jedec_probe.c
@@ -0,0 +1,2315 @@
+/*
+   Common Flash Interface probe code.
+   (C) 2000 Red Hat. GPL'd.
+   See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5)
+   for the standard this probe goes back to.
+
+   Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
+*/
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/gen_probe.h>
+
+/* AMD */
+#define AM29DL800BB	0x22CB
+#define AM29DL800BT	0x224A
+
+#define AM29F800BB	0x2258
+#define AM29F800BT	0x22D6
+#define AM29LV400BB	0x22BA
+#define AM29LV400BT	0x22B9
+#define AM29LV800BB	0x225B
+#define AM29LV800BT	0x22DA
+#define AM29LV160DT	0x22C4
+#define AM29LV160DB	0x2249
+#define AM29F017D	0x003D
+#define AM29F016D	0x00AD
+#define AM29F080	0x00D5
+#define AM29F040	0x00A4
+#define AM29LV040B	0x004F
+#define AM29F032B	0x0041
+#define AM29F002T	0x00B0
+#define AM29SL800DB	0x226B
+#define AM29SL800DT	0x22EA
+
+/* Atmel */
+#define AT49BV512	0x0003
+#define AT29LV512	0x003d
+#define AT49BV16X	0x00C0
+#define AT49BV16XT	0x00C2
+#define AT49BV32X	0x00C8
+#define AT49BV32XT	0x00C9
+
+/* Eon */
+#define EN29LV400AT	0x22B9
+#define EN29LV400AB	0x22BA
+#define EN29SL800BB	0x226B
+#define EN29SL800BT	0x22EA
+
+/* Fujitsu */
+#define MBM29F040C	0x00A4
+#define MBM29F800BA	0x2258
+#define MBM29LV650UE	0x22D7
+#define MBM29LV320TE	0x22F6
+#define MBM29LV320BE	0x22F9
+#define MBM29LV160TE	0x22C4
+#define MBM29LV160BE	0x2249
+#define MBM29LV800BA	0x225B
+#define MBM29LV800TA	0x22DA
+#define MBM29LV400TC	0x22B9
+#define MBM29LV400BC	0x22BA
+
+/* Hyundai */
+#define HY29F002T	0x00B0
+
+/* Intel */
+#define I28F004B3T	0x00d4
+#define I28F004B3B	0x00d5
+#define I28F400B3T	0x8894
+#define I28F400B3B	0x8895
+#define I28F008S5	0x00a6
+#define I28F016S5	0x00a0
+#define I28F008SA	0x00a2
+#define I28F008B3T	0x00d2
+#define I28F008B3B	0x00d3
+#define I28F800B3T	0x8892
+#define I28F800B3B	0x8893
+#define I28F016S3	0x00aa
+#define I28F016B3T	0x00d0
+#define I28F016B3B	0x00d1
+#define I28F160B3T	0x8890
+#define I28F160B3B	0x8891
+#define I28F320B3T	0x8896
+#define I28F320B3B	0x8897
+#define I28F640B3T	0x8898
+#define I28F640B3B	0x8899
+#define I28F640C3B	0x88CD
+#define I28F160F3T	0x88F3
+#define I28F160F3B	0x88F4
+#define I28F160C3T	0x88C2
+#define I28F160C3B	0x88C3
+#define I82802AB	0x00ad
+#define I82802AC	0x00ac
+
+/* Macronix */
+#define MX29LV040C	0x004F
+#define MX29LV160T	0x22C4
+#define MX29LV160B	0x2249
+#define MX29F040	0x00A4
+#define MX29F016	0x00AD
+#define MX29F002T	0x00B0
+#define MX29F004T	0x0045
+#define MX29F004B	0x0046
+
+/* NEC */
+#define UPD29F064115	0x221C
+
+/* PMC */
+#define PM49FL002	0x006D
+#define PM49FL004	0x006E
+#define PM49FL008	0x006A
+
+/* Sharp */
+#define LH28F640BF	0x00B0
+
+/* ST - www.st.com */
+#define M29F800AB	0x0058
+#define M29W800DT	0x22D7
+#define M29W800DB	0x225B
+#define M29W400DT	0x00EE
+#define M29W400DB	0x00EF
+#define M29W160DT	0x22C4
+#define M29W160DB	0x2249
+#define M29W040B	0x00E3
+#define M50FW040	0x002C
+#define M50FW080	0x002D
+#define M50FW016	0x002E
+#define M50LPW080       0x002F
+#define M50FLW080A	0x0080
+#define M50FLW080B	0x0081
+#define PSD4256G6V	0x00e9
+
+/* SST */
+#define SST29EE020	0x0010
+#define SST29LE020	0x0012
+#define SST29EE512	0x005d
+#define SST29LE512	0x003d
+#define SST39LF800	0x2781
+#define SST39LF160	0x2782
+#define SST39VF1601	0x234b
+#define SST39VF3201	0x235b
+#define SST39WF1601	0x274b
+#define SST39WF1602	0x274a
+#define SST39LF512	0x00D4
+#define SST39LF010	0x00D5
+#define SST39LF020	0x00D6
+#define SST39LF040	0x00D7
+#define SST39SF010A	0x00B5
+#define SST39SF020A	0x00B6
+#define SST39SF040	0x00B7
+#define SST49LF004B	0x0060
+#define SST49LF040B	0x0050
+#define SST49LF008A	0x005a
+#define SST49LF030A	0x001C
+#define SST49LF040A	0x0051
+#define SST49LF080A	0x005B
+#define SST36VF3203	0x7354
+
+/* Toshiba */
+#define TC58FVT160	0x00C2
+#define TC58FVB160	0x0043
+#define TC58FVT321	0x009A
+#define TC58FVB321	0x009C
+#define TC58FVT641	0x0093
+#define TC58FVB641	0x0095
+
+/* Winbond */
+#define W49V002A	0x00b0
+
+
+/*
+ * Unlock address sets for AMD command sets.
+ * Intel command sets use the MTD_UADDR_UNNECESSARY.
+ * Each identifier, except MTD_UADDR_UNNECESSARY, and
+ * MTD_UADDR_NO_SUPPORT must be defined below in unlock_addrs[].
+ * MTD_UADDR_NOT_SUPPORTED must be 0 so that structure
+ * initialization need not require initializing all of the
+ * unlock addresses for all bit widths.
+ */
+enum uaddr {
+	MTD_UADDR_NOT_SUPPORTED = 0,	/* data width not supported */
+	MTD_UADDR_0x0555_0x02AA,
+	MTD_UADDR_0x0555_0x0AAA,
+	MTD_UADDR_0x5555_0x2AAA,
+	MTD_UADDR_0x0AAA_0x0554,
+	MTD_UADDR_0x0AAA_0x0555,
+	MTD_UADDR_0xAAAA_0x5555,
+	MTD_UADDR_DONT_CARE,		/* Requires an arbitrary address */
+	MTD_UADDR_UNNECESSARY,		/* Does not require any address */
+};
+
+
+struct unlock_addr {
+	uint32_t addr1;
+	uint32_t addr2;
+};
+
+
+/*
+ * I don't like the fact that the first entry in unlock_addrs[]
+ * exists, but is for MTD_UADDR_NOT_SUPPORTED - and, therefore,
+ * should not be used.  The  problem is that structures with
+ * initializers have extra fields initialized to 0.  It is _very_
+ * desirable to have the unlock address entries for unsupported
+ * data widths automatically initialized - that means that
+ * MTD_UADDR_NOT_SUPPORTED must be 0 and the first entry here
+ * must go unused.
+ */
+static const struct unlock_addr  unlock_addrs[] = {
+	[MTD_UADDR_NOT_SUPPORTED] = {
+		.addr1 = 0xffff,
+		.addr2 = 0xffff
+	},
+
+	[MTD_UADDR_0x0555_0x02AA] = {
+		.addr1 = 0x0555,
+		.addr2 = 0x02aa
+	},
+
+	[MTD_UADDR_0x0555_0x0AAA] = {
+		.addr1 = 0x0555,
+		.addr2 = 0x0aaa
+	},
+
+	[MTD_UADDR_0x5555_0x2AAA] = {
+		.addr1 = 0x5555,
+		.addr2 = 0x2aaa
+	},
+
+	[MTD_UADDR_0x0AAA_0x0554] = {
+		.addr1 = 0x0AAA,
+		.addr2 = 0x0554
+	},
+
+	[MTD_UADDR_0x0AAA_0x0555] = {
+		.addr1 = 0x0AAA,
+		.addr2 = 0x0555
+	},
+
+	[MTD_UADDR_0xAAAA_0x5555] = {
+		.addr1 = 0xaaaa,
+		.addr2 = 0x5555
+	},
+
+	[MTD_UADDR_DONT_CARE] = {
+		.addr1 = 0x0000,      /* Doesn't matter which address */
+		.addr2 = 0x0000       /* is used - must be last entry */
+	},
+
+	[MTD_UADDR_UNNECESSARY] = {
+		.addr1 = 0x0000,
+		.addr2 = 0x0000
+	}
+};
+
+struct amd_flash_info {
+	const char *name;
+	const uint16_t mfr_id;
+	const uint16_t dev_id;
+	const uint8_t dev_size;
+	const uint8_t nr_regions;
+	const uint16_t cmd_set;
+	const uint32_t regions[6];
+	const uint8_t devtypes;		/* Bitmask for x8, x16 etc. */
+	const uint8_t uaddr;		/* unlock addrs for 8, 16, 32, 64 */
+};
+
+#define ERASEINFO(size,blocks) (size<<8)|(blocks-1)
+
+#define SIZE_64KiB  16
+#define SIZE_128KiB 17
+#define SIZE_256KiB 18
+#define SIZE_512KiB 19
+#define SIZE_1MiB   20
+#define SIZE_2MiB   21
+#define SIZE_4MiB   22
+#define SIZE_8MiB   23
+
+
+/*
+ * Please keep this list ordered by manufacturer!
+ * Fortunately, the list isn't searched often and so a
+ * slow, linear search isn't so bad.
+ */
+static const struct amd_flash_info jedec_table[] = {
+	{
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F032B,
+		.name		= "AMD AM29F032B",
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,64)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29LV160DT,
+		.name		= "AMD AM29LV160DT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,31),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29LV160DB,
+		.name		= "AMD AM29LV160DB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,31)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29LV400BB,
+		.name		= "AMD AM29LV400BB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,7)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29LV400BT,
+		.name		= "AMD AM29LV400BT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,7),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29LV800BB,
+		.name		= "AMD AM29LV800BB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15),
+		}
+	}, {
+/* add DL */
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29DL800BB,
+		.name		= "AMD AM29DL800BB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 6,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,4),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x10000,14)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29DL800BT,
+		.name		= "AMD AM29DL800BT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 6,
+		.regions	= {
+			ERASEINFO(0x10000,14),
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,4),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F800BB,
+		.name		= "AMD AM29F800BB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29LV800BT,
+		.name		= "AMD AM29LV800BT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,15),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F800BT,
+		.name		= "AMD AM29F800BT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,15),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F017D,
+		.name		= "AMD AM29F017D",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_DONT_CARE,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F016D,
+		.name		= "AMD AM29F016D",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F080,
+		.name		= "AMD AM29F080",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F040,
+		.name		= "AMD AM29F040",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29LV040B,
+		.name		= "AMD AM29LV040B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29F002T,
+		.name		= "AMD AM29F002T",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,3),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29SL800DT,
+		.name		= "AMD AM29SL800DT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,15),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_AMD,
+		.dev_id		= AM29SL800DB,
+		.name		= "AMD AM29SL800DB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ATMEL,
+		.dev_id		= AT49BV512,
+		.name		= "Atmel AT49BV512",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_64KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ATMEL,
+		.dev_id		= AT29LV512,
+		.name		= "Atmel AT29LV512",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_64KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x80,256),
+			ERASEINFO(0x80,256)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ATMEL,
+		.dev_id		= AT49BV16X,
+		.name		= "Atmel AT49BV16X",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x0AAA,	/* ???? */
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000,8),
+			ERASEINFO(0x10000,31)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ATMEL,
+		.dev_id		= AT49BV16XT,
+		.name		= "Atmel AT49BV16XT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x0AAA,	/* ???? */
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000,31),
+			ERASEINFO(0x02000,8)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ATMEL,
+		.dev_id		= AT49BV32X,
+		.name		= "Atmel AT49BV32X",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x0AAA,	/* ???? */
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000,8),
+			ERASEINFO(0x10000,63)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ATMEL,
+		.dev_id		= AT49BV32XT,
+		.name		= "Atmel AT49BV32XT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x0AAA,	/* ???? */
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000,63),
+			ERASEINFO(0x02000,8)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_EON,
+		.dev_id		= EN29LV400AT,
+		.name		= "Eon EN29LV400AT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,7),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_EON,
+		.dev_id		= EN29LV400AB,
+		.name		= "Eon EN29LV400AB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,7),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_EON,
+		.dev_id		= EN29SL800BT,
+		.name		= "Eon EN29SL800BT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,15),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_EON,
+		.dev_id		= EN29SL800BB,
+		.name		= "Eon EN29SL800BB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29F040C,
+		.name		= "Fujitsu MBM29F040C",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29F800BA,
+		.name		= "Fujitsu MBM29F800BA",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV650UE,
+		.name		= "Fujitsu MBM29LV650UE",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_DONT_CARE,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,128)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV320TE,
+		.name		= "Fujitsu MBM29LV320TE",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000,63),
+			ERASEINFO(0x02000,8)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV320BE,
+		.name		= "Fujitsu MBM29LV320BE",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000,8),
+			ERASEINFO(0x10000,63)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV160TE,
+		.name		= "Fujitsu MBM29LV160TE",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,31),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV160BE,
+		.name		= "Fujitsu MBM29LV160BE",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,31)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV800BA,
+		.name		= "Fujitsu MBM29LV800BA",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV800TA,
+		.name		= "Fujitsu MBM29LV800TA",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,15),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV400BC,
+		.name		= "Fujitsu MBM29LV400BC",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,7)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_FUJITSU,
+		.dev_id		= MBM29LV400TC,
+		.name		= "Fujitsu MBM29LV400TC",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,7),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_HYUNDAI,
+		.dev_id		= HY29F002T,
+		.name		= "Hyundai HY29F002T",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,3),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F004B3B,
+		.name		= "Intel 28F004B3B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 7),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F004B3T,
+		.name		= "Intel 28F004B3T",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 7),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F400B3B,
+		.name		= "Intel 28F400B3B",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 7),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F400B3T,
+		.name		= "Intel 28F400B3T",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 7),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F008B3B,
+		.name		= "Intel 28F008B3B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 15),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F008B3T,
+		.name		= "Intel 28F008B3T",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 15),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F008S5,
+		.name		= "Intel 28F008S5",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F016S5,
+		.name		= "Intel 28F016S5",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F008SA,
+		.name		= "Intel 28F008SA",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000, 16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F800B3B,
+		.name		= "Intel 28F800B3B",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 15),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F800B3T,
+		.name		= "Intel 28F800B3T",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 15),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F016B3B,
+		.name		= "Intel 28F016B3B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 31),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F016S3,
+		.name		= "Intel I28F016S3",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000, 32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F016B3T,
+		.name		= "Intel 28F016B3T",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 31),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F160B3B,
+		.name		= "Intel 28F160B3B",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 31),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F160B3T,
+		.name		= "Intel 28F160B3T",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 31),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F320B3B,
+		.name		= "Intel 28F320B3B",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 63),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F320B3T,
+		.name		= "Intel 28F320B3T",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 63),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F640B3B,
+		.name		= "Intel 28F640B3B",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 127),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F640B3T,
+		.name		= "Intel 28F640B3T",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 127),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I28F640C3B,
+		.name		= "Intel 28F640C3B",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_INTEL_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000, 8),
+			ERASEINFO(0x10000, 127),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I82802AB,
+		.name		= "Intel 82802AB",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_INTEL,
+		.dev_id		= I82802AC,
+		.name		= "Intel 82802AC",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29LV040C,
+		.name		= "Macronix MX29LV040C",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29LV160T,
+		.name		= "MXIC MX29LV160T",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,31),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_NEC,
+		.dev_id		= UPD29F064115,
+		.name		= "NEC uPD29F064115",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_0xAAAA_0x5555,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 3,
+		.regions	= {
+			ERASEINFO(0x2000,8),
+			ERASEINFO(0x10000,126),
+			ERASEINFO(0x2000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29LV160B,
+		.name		= "MXIC MX29LV160B",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,31)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29F040,
+		.name		= "Macronix MX29F040",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29F016,
+		.name		= "Macronix MX29F016",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29F004T,
+		.name		= "Macronix MX29F004T",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,7),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29F004B,
+		.name		= "Macronix MX29F004B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,7),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_MACRONIX,
+		.dev_id		= MX29F002T,
+		.name		= "Macronix MX29F002T",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,3),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_PMC,
+		.dev_id		= PM49FL002,
+		.name		= "PMC Pm49FL002",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO( 0x01000, 64 )
+		}
+	}, {
+		.mfr_id		= CFI_MFR_PMC,
+		.dev_id		= PM49FL004,
+		.name		= "PMC Pm49FL004",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO( 0x01000, 128 )
+		}
+	}, {
+		.mfr_id		= CFI_MFR_PMC,
+		.dev_id		= PM49FL008,
+		.name		= "PMC Pm49FL008",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO( 0x01000, 256 )
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SHARP,
+		.dev_id		= LH28F640BF,
+		.name		= "LH28F640BF",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000, 127),
+			ERASEINFO(0x02000, 8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39LF512,
+		.name		= "SST 39LF512",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_64KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39LF010,
+		.name		= "SST 39LF010",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_128KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST29EE020,
+		.name		= "SST 29EE020",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_SST_PAGE,
+		.nr_regions	= 1,
+		.regions = {ERASEINFO(0x01000,64),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST29LE020,
+		.name		= "SST 29LE020",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_SST_PAGE,
+		.nr_regions	= 1,
+		.regions = {ERASEINFO(0x01000,64),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39LF020,
+		.name		= "SST 39LF020",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,64),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39LF040,
+		.name		= "SST 39LF040",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,128),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39SF010A,
+		.name		= "SST 39SF010A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_128KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39SF020A,
+		.name		= "SST 39SF020A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,64),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39SF040,
+		.name		= "SST 39SF040",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,128),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST49LF040B,
+		.name		= "SST 49LF040B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,128),
+		}
+	}, {
+
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST49LF004B,
+		.name		= "SST 49LF004B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,128),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST49LF008A,
+		.name		= "SST 49LF008A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,256),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST49LF030A,
+		.name		= "SST 49LF030A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,96),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST49LF040A,
+		.name		= "SST 49LF040A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,128),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST49LF080A,
+		.name		= "SST 49LF080A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x01000,256),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,     /* should be CFI */
+		.dev_id		= SST39LF160,
+		.name		= "SST 39LF160",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_0xAAAA_0x5555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x1000,256),
+			ERASEINFO(0x1000,256)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,     /* should be CFI */
+		.dev_id		= SST39VF1601,
+		.name		= "SST 39VF1601",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_0xAAAA_0x5555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x1000,256),
+			ERASEINFO(0x1000,256)
+		}
+	}, {
+		/* CFI is broken: reports AMD_STD, but needs custom uaddr */
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39WF1601,
+		.name		= "SST 39WF1601",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_0xAAAA_0x5555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x1000,256),
+			ERASEINFO(0x1000,256)
+		}
+	}, {
+		/* CFI is broken: reports AMD_STD, but needs custom uaddr */
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST39WF1602,
+		.name		= "SST 39WF1602",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_0xAAAA_0x5555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x1000,256),
+			ERASEINFO(0x1000,256)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,     /* should be CFI */
+		.dev_id		= SST39VF3201,
+		.name		= "SST 39VF3201",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_0xAAAA_0x5555,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x1000,256),
+			ERASEINFO(0x1000,256),
+			ERASEINFO(0x1000,256),
+			ERASEINFO(0x1000,256)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_SST,
+		.dev_id		= SST36VF3203,
+		.name		= "SST 36VF3203",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,64),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M29F800AB,
+		.name		= "ST M29F800AB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,	/* FIXME - CFI device? */
+		.dev_id		= M29W800DT,
+		.name		= "ST M29W800DT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,15),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,	/* FIXME - CFI device? */
+		.dev_id		= M29W800DB,
+		.name		= "ST M29W800DB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,15)
+		}
+	},  {
+		.mfr_id         = CFI_MFR_ST,
+		.dev_id         = M29W400DT,
+		.name           = "ST M29W400DT",
+		.devtypes       = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr          = MTD_UADDR_0x0AAA_0x0555,
+		.dev_size       = SIZE_512KiB,
+		.cmd_set        = P_ID_AMD_STD,
+		.nr_regions     = 4,
+		.regions        = {
+			ERASEINFO(0x04000,7),
+			ERASEINFO(0x02000,1),
+			ERASEINFO(0x08000,2),
+			ERASEINFO(0x10000,1)
+		}
+	}, {
+		.mfr_id         = CFI_MFR_ST,
+		.dev_id         = M29W400DB,
+		.name           = "ST M29W400DB",
+		.devtypes       = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr          = MTD_UADDR_0x0AAA_0x0555,
+		.dev_size       = SIZE_512KiB,
+		.cmd_set        = P_ID_AMD_STD,
+		.nr_regions     = 4,
+		.regions        = {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,7)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,	/* FIXME - CFI device? */
+		.dev_id		= M29W160DT,
+		.name		= "ST M29W160DT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,	/* ???? */
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,31),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,	/* FIXME - CFI device? */
+		.dev_id		= M29W160DB,
+		.name		= "ST M29W160DB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,	/* ???? */
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,31)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M29W040B,
+		.name		= "ST M29W040B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0555_0x02AA,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M50FW040,
+		.name		= "ST M50FW040",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,8),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M50FW080,
+		.name		= "ST M50FW080",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M50FW016,
+		.name		= "ST M50FW016",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,32),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M50LPW080,
+		.name		= "ST M50LPW080",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,16),
+		},
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M50FLW080A,
+		.name		= "ST M50FLW080A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x1000,16),
+			ERASEINFO(0x10000,13),
+			ERASEINFO(0x1000,16),
+			ERASEINFO(0x1000,16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_ST,
+		.dev_id		= M50FLW080B,
+		.name		= "ST M50FLW080B",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_UNNECESSARY,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_INTEL_EXT,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x1000,16),
+			ERASEINFO(0x1000,16),
+			ERASEINFO(0x10000,13),
+			ERASEINFO(0x1000,16),
+		}
+	}, {
+		.mfr_id		= 0xff00 | CFI_MFR_ST,
+		.dev_id		= 0xff00 | PSD4256G6V,
+		.name		= "ST PSD4256G6V",
+		.devtypes	= CFI_DEVICETYPE_X16,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0554,
+		.dev_size	= SIZE_1MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 1,
+		.regions	= {
+			ERASEINFO(0x10000,16),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_TOSHIBA,
+		.dev_id		= TC58FVT160,
+		.name		= "Toshiba TC58FVT160",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,31),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_TOSHIBA,
+		.dev_id		= TC58FVB160,
+		.name		= "Toshiba TC58FVB160",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_2MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,31)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_TOSHIBA,
+		.dev_id		= TC58FVB321,
+		.name		= "Toshiba TC58FVB321",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000,8),
+			ERASEINFO(0x10000,63)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_TOSHIBA,
+		.dev_id		= TC58FVT321,
+		.name		= "Toshiba TC58FVT321",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_4MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000,63),
+			ERASEINFO(0x02000,8)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_TOSHIBA,
+		.dev_id		= TC58FVB641,
+		.name		= "Toshiba TC58FVB641",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x02000,8),
+			ERASEINFO(0x10000,127)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_TOSHIBA,
+		.dev_id		= TC58FVT641,
+		.name		= "Toshiba TC58FVT641",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_8MiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 2,
+		.regions	= {
+			ERASEINFO(0x10000,127),
+			ERASEINFO(0x02000,8)
+		}
+	}, {
+		.mfr_id		= CFI_MFR_WINBOND,
+		.dev_id		= W49V002A,
+		.name		= "Winbond W49V002A",
+		.devtypes	= CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x5555_0x2AAA,
+		.dev_size	= SIZE_256KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000, 3),
+			ERASEINFO(0x08000, 1),
+			ERASEINFO(0x02000, 2),
+			ERASEINFO(0x04000, 1),
+		}
+	}
+};
+
+static inline u32 jedec_read_mfr(struct map_info *map, uint32_t base,
+	struct cfi_private *cfi)
+{
+	map_word result;
+	unsigned long mask;
+	int bank = 0;
+
+	/* According to JEDEC "Standard Manufacturer's Identification Code"
+	 * (http://www.jedec.org/download/search/jep106W.pdf)
+	 * several first banks can contain 0x7f instead of actual ID
+	 */
+	do {
+		uint32_t ofs = cfi_build_cmd_addr(0 + (bank << 8), map, cfi);
+		mask = (1 << (cfi->device_type * 8)) - 1;
+		if (ofs >= map->size)
+			return 0;
+		result = map_read(map, base + ofs);
+		bank++;
+	} while ((result.x[0] & mask) == CFI_MFR_CONTINUATION);
+
+	return result.x[0] & mask;
+}
+
+static inline u32 jedec_read_id(struct map_info *map, uint32_t base,
+	struct cfi_private *cfi)
+{
+	map_word result;
+	unsigned long mask;
+	u32 ofs = cfi_build_cmd_addr(1, map, cfi);
+	mask = (1 << (cfi->device_type * 8)) -1;
+	result = map_read(map, base + ofs);
+	return result.x[0] & mask;
+}
+
+static void jedec_reset(u32 base, struct map_info *map, struct cfi_private *cfi)
+{
+	/* Reset */
+
+	/* after checking the datasheets for SST, MACRONIX and ATMEL
+	 * (oh and incidentaly the jedec spec - 3.5.3.3) the reset
+	 * sequence is *supposed* to be 0xaa at 0x5555, 0x55 at
+	 * 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips
+	 * as they will ignore the writes and don't care what address
+	 * the F0 is written to */
+	if (cfi->addr_unlock1) {
+		pr_debug( "reset unlock called %x %x \n",
+		       cfi->addr_unlock1,cfi->addr_unlock2);
+		cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+		cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
+	}
+
+	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+	/* Some misdesigned Intel chips do not respond for 0xF0 for a reset,
+	 * so ensure we're in read mode.  Send both the Intel and the AMD command
+	 * for this.  Intel uses 0xff for this, AMD uses 0xff for NOP, so
+	 * this should be safe.
+	 */
+	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
+	/* FIXME - should have reset delay before continuing */
+}
+
+
+static int cfi_jedec_setup(struct map_info *map, struct cfi_private *cfi, int index)
+{
+	int i,num_erase_regions;
+	uint8_t uaddr;
+
+	if (!(jedec_table[index].devtypes & cfi->device_type)) {
+		pr_debug("Rejecting potential %s with incompatible %d-bit device type\n",
+		      jedec_table[index].name, 4 * (1<<cfi->device_type));
+		return 0;
+	}
+
+	printk(KERN_INFO "Found: %s\n",jedec_table[index].name);
+
+	num_erase_regions = jedec_table[index].nr_regions;
+
+	cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL);
+	if (!cfi->cfiq) {
+		//xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name);
+		return 0;
+	}
+
+	memset(cfi->cfiq, 0, sizeof(struct cfi_ident));
+
+	cfi->cfiq->P_ID = jedec_table[index].cmd_set;
+	cfi->cfiq->NumEraseRegions = jedec_table[index].nr_regions;
+	cfi->cfiq->DevSize = jedec_table[index].dev_size;
+	cfi->cfi_mode = CFI_MODE_JEDEC;
+	cfi->sector_erase_cmd = CMD(0x30);
+
+	for (i=0; i<num_erase_regions; i++){
+		cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i];
+	}
+	cfi->cmdset_priv = NULL;
+
+	/* This may be redundant for some cases, but it doesn't hurt */
+	cfi->mfr = jedec_table[index].mfr_id;
+	cfi->id = jedec_table[index].dev_id;
+
+	uaddr = jedec_table[index].uaddr;
+
+	/* The table has unlock addresses in _bytes_, and we try not to let
+	   our brains explode when we see the datasheets talking about address
+	   lines numbered from A-1 to A18. The CFI table has unlock addresses
+	   in device-words according to the mode the device is connected in */
+	cfi->addr_unlock1 = unlock_addrs[uaddr].addr1 / cfi->device_type;
+	cfi->addr_unlock2 = unlock_addrs[uaddr].addr2 / cfi->device_type;
+
+	return 1;	/* ok */
+}
+
+
+/*
+ * There is a BIG problem properly ID'ing the JEDEC device and guaranteeing
+ * the mapped address, unlock addresses, and proper chip ID.  This function
+ * attempts to minimize errors.  It is doubtfull that this probe will ever
+ * be perfect - consequently there should be some module parameters that
+ * could be manually specified to force the chip info.
+ */
+static inline int jedec_match( uint32_t base,
+			       struct map_info *map,
+			       struct cfi_private *cfi,
+			       const struct amd_flash_info *finfo )
+{
+	int rc = 0;           /* failure until all tests pass */
+	u32 mfr, id;
+	uint8_t uaddr;
+
+	/*
+	 * The IDs must match.  For X16 and X32 devices operating in
+	 * a lower width ( X8 or X16 ), the device ID's are usually just
+	 * the lower byte(s) of the larger device ID for wider mode.  If
+	 * a part is found that doesn't fit this assumption (device id for
+	 * smaller width mode is completely unrealated to full-width mode)
+	 * then the jedec_table[] will have to be augmented with the IDs
+	 * for different widths.
+	 */
+	switch (cfi->device_type) {
+	case CFI_DEVICETYPE_X8:
+		mfr = (uint8_t)finfo->mfr_id;
+		id = (uint8_t)finfo->dev_id;
+
+		/* bjd: it seems that if we do this, we can end up
+		 * detecting 16bit flashes as an 8bit device, even though
+		 * there aren't.
+		 */
+		if (finfo->dev_id > 0xff) {
+			pr_debug("%s(): ID is not 8bit\n",
+			       __func__);
+			goto match_done;
+		}
+		break;
+	case CFI_DEVICETYPE_X16:
+		mfr = (uint16_t)finfo->mfr_id;
+		id = (uint16_t)finfo->dev_id;
+		break;
+	case CFI_DEVICETYPE_X32:
+		mfr = (uint16_t)finfo->mfr_id;
+		id = (uint32_t)finfo->dev_id;
+		break;
+	default:
+		printk(KERN_WARNING
+		       "MTD %s(): Unsupported device type %d\n",
+		       __func__, cfi->device_type);
+		goto match_done;
+	}
+	if ( cfi->mfr != mfr || cfi->id != id ) {
+		goto match_done;
+	}
+
+	/* the part size must fit in the memory window */
+	pr_debug("MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n",
+	       __func__, base, 1 << finfo->dev_size, base + (1 << finfo->dev_size) );
+	if ( base + cfi_interleave(cfi) * ( 1 << finfo->dev_size ) > map->size ) {
+		pr_debug("MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n",
+		       __func__, finfo->mfr_id, finfo->dev_id,
+		       1 << finfo->dev_size );
+		goto match_done;
+	}
+
+	if (! (finfo->devtypes & cfi->device_type))
+		goto match_done;
+
+	uaddr = finfo->uaddr;
+
+	pr_debug("MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n",
+	       __func__, cfi->addr_unlock1, cfi->addr_unlock2 );
+	if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr
+	     && ( unlock_addrs[uaddr].addr1 / cfi->device_type != cfi->addr_unlock1 ||
+		  unlock_addrs[uaddr].addr2 / cfi->device_type != cfi->addr_unlock2 ) ) {
+		pr_debug("MTD %s(): 0x%.4x 0x%.4x did not match\n",
+			__func__,
+			unlock_addrs[uaddr].addr1,
+			unlock_addrs[uaddr].addr2);
+		goto match_done;
+	}
+
+	/*
+	 * Make sure the ID's disappear when the device is taken out of
+	 * ID mode.  The only time this should fail when it should succeed
+	 * is when the ID's are written as data to the same
+	 * addresses.  For this rare and unfortunate case the chip
+	 * cannot be probed correctly.
+	 * FIXME - write a driver that takes all of the chip info as
+	 * module parameters, doesn't probe but forces a load.
+	 */
+	pr_debug("MTD %s(): check ID's disappear when not in ID mode\n",
+	       __func__ );
+	jedec_reset( base, map, cfi );
+	mfr = jedec_read_mfr( map, base, cfi );
+	id = jedec_read_id( map, base, cfi );
+	if ( mfr == cfi->mfr && id == cfi->id ) {
+		pr_debug("MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n"
+		       "You might need to manually specify JEDEC parameters.\n",
+			__func__, cfi->mfr, cfi->id );
+		goto match_done;
+	}
+
+	/* all tests passed - mark  as success */
+	rc = 1;
+
+	/*
+	 * Put the device back in ID mode - only need to do this if we
+	 * were truly frobbing a real device.
+	 */
+	pr_debug("MTD %s(): return to ID mode\n", __func__ );
+	if (cfi->addr_unlock1) {
+		cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+		cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
+	}
+	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+	/* FIXME - should have a delay before continuing */
+
+ match_done:
+	return rc;
+}
+
+
+static int jedec_probe_chip(struct map_info *map, __u32 base,
+			    unsigned long *chip_map, struct cfi_private *cfi)
+{
+	int i;
+	enum uaddr uaddr_idx = MTD_UADDR_NOT_SUPPORTED;
+	u32 probe_offset1, probe_offset2;
+
+ retry:
+	if (!cfi->numchips) {
+		uaddr_idx++;
+
+		if (MTD_UADDR_UNNECESSARY == uaddr_idx)
+			return 0;
+
+		cfi->addr_unlock1 = unlock_addrs[uaddr_idx].addr1 / cfi->device_type;
+		cfi->addr_unlock2 = unlock_addrs[uaddr_idx].addr2 / cfi->device_type;
+	}
+
+	/* Make certain we aren't probing past the end of map */
+	if (base >= map->size) {
+		printk(KERN_NOTICE
+			"Probe at base(0x%08x) past the end of the map(0x%08lx)\n",
+			base, map->size -1);
+		return 0;
+
+	}
+	/* Ensure the unlock addresses we try stay inside the map */
+	probe_offset1 = cfi_build_cmd_addr(cfi->addr_unlock1, map, cfi);
+	probe_offset2 = cfi_build_cmd_addr(cfi->addr_unlock2, map, cfi);
+	if (	((base + probe_offset1 + map_bankwidth(map)) >= map->size) ||
+		((base + probe_offset2 + map_bankwidth(map)) >= map->size))
+		goto retry;
+
+	/* Reset */
+	jedec_reset(base, map, cfi);
+
+	/* Autoselect Mode */
+	if(cfi->addr_unlock1) {
+		cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+		cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
+	}
+	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
+	/* FIXME - should have a delay before continuing */
+
+	if (!cfi->numchips) {
+		/* This is the first time we're called. Set up the CFI
+		   stuff accordingly and return */
+
+		cfi->mfr = jedec_read_mfr(map, base, cfi);
+		cfi->id = jedec_read_id(map, base, cfi);
+		pr_debug("Search for id:(%02x %02x) interleave(%d) type(%d)\n",
+			cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type);
+		for (i = 0; i < ARRAY_SIZE(jedec_table); i++) {
+			if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) {
+				pr_debug("MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n",
+				       __func__, cfi->mfr, cfi->id,
+				       cfi->addr_unlock1, cfi->addr_unlock2 );
+				if (!cfi_jedec_setup(map, cfi, i))
+					return 0;
+				goto ok_out;
+			}
+		}
+		goto retry;
+	} else {
+		uint16_t mfr;
+		uint16_t id;
+
+		/* Make sure it is a chip of the same manufacturer and id */
+		mfr = jedec_read_mfr(map, base, cfi);
+		id = jedec_read_id(map, base, cfi);
+
+		if ((mfr != cfi->mfr) || (id != cfi->id)) {
+			printk(KERN_DEBUG "%s: Found different chip or no chip at all (mfr 0x%x, id 0x%x) at 0x%x\n",
+			       map->name, mfr, id, base);
+			jedec_reset(base, map, cfi);
+			return 0;
+		}
+	}
+
+	/* Check each previous chip locations to see if it's an alias */
+	for (i=0; i < (base >> cfi->chipshift); i++) {
+		unsigned long start;
+		if(!test_bit(i, chip_map)) {
+			continue; /* Skip location; no valid chip at this address */
+		}
+		start = i << cfi->chipshift;
+		if (jedec_read_mfr(map, start, cfi) == cfi->mfr &&
+		    jedec_read_id(map, start, cfi) == cfi->id) {
+			/* Eep. This chip also looks like it's in autoselect mode.
+			   Is it an alias for the new one? */
+			jedec_reset(start, map, cfi);
+
+			/* If the device IDs go away, it's an alias */
+			if (jedec_read_mfr(map, base, cfi) != cfi->mfr ||
+			    jedec_read_id(map, base, cfi) != cfi->id) {
+				printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
+				       map->name, base, start);
+				return 0;
+			}
+
+			/* Yes, it's actually got the device IDs as data. Most
+			 * unfortunate. Stick the new chip in read mode
+			 * too and if it's the same, assume it's an alias. */
+			/* FIXME: Use other modes to do a proper check */
+			jedec_reset(base, map, cfi);
+			if (jedec_read_mfr(map, base, cfi) == cfi->mfr &&
+			    jedec_read_id(map, base, cfi) == cfi->id) {
+				printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
+				       map->name, base, start);
+				return 0;
+			}
+		}
+	}
+
+	/* OK, if we got to here, then none of the previous chips appear to
+	   be aliases for the current one. */
+	set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */
+	cfi->numchips++;
+
+ok_out:
+	/* Put it back into Read Mode */
+	jedec_reset(base, map, cfi);
+
+	printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
+	       map->name, cfi_interleave(cfi), cfi->device_type*8, base,
+	       map->bankwidth*8);
+
+	return 1;
+}
+
+static struct chip_probe jedec_chip_probe = {
+	.name = "JEDEC",
+	.probe_chip = jedec_probe_chip
+};
+
+static struct mtd_info *jedec_probe(struct map_info *map)
+{
+	/*
+	 * Just use the generic probe stuff to call our CFI-specific
+	 * chip_probe routine in all the possible permutations, etc.
+	 */
+	return mtd_do_chip_probe(map, &jedec_chip_probe);
+}
+
+static struct mtd_chip_driver jedec_chipdrv = {
+	.probe	= jedec_probe,
+	.name	= "jedec_probe",
+	.module	= THIS_MODULE
+};
+
+static int __init jedec_probe_init(void)
+{
+	register_mtd_chip_driver(&jedec_chipdrv);
+	return 0;
+}
+
+static void __exit jedec_probe_exit(void)
+{
+	unregister_mtd_chip_driver(&jedec_chipdrv);
+}
+
+module_init(jedec_probe_init);
+module_exit(jedec_probe_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Erwin Authried <eauth@softsys.co.at> et al.");
+MODULE_DESCRIPTION("Probe code for JEDEC-compliant flash chips");
diff --git a/drivers/mtd/chips/map_absent.c b/drivers/mtd/chips/map_absent.c
new file mode 100644
index 0000000..f7a5bca
--- /dev/null
+++ b/drivers/mtd/chips/map_absent.c
@@ -0,0 +1,112 @@
+/*
+ * Common code to handle absent "placeholder" devices
+ * Copyright 2001 Resilience Corporation <ebrower@resilience.com>
+ *
+ * This map driver is used to allocate "placeholder" MTD
+ * devices on systems that have socketed/removable media.
+ * Use of this driver as a fallback preserves the expected
+ * registration of MTD device nodes regardless of probe outcome.
+ * A usage example is as follows:
+ *
+ *		my_dev[i] = do_map_probe("cfi", &my_map[i]);
+ *		if(NULL == my_dev[i]) {
+ *			my_dev[i] = do_map_probe("map_absent", &my_map[i]);
+ *		}
+ *
+ * Any device 'probed' with this driver will return -ENODEV
+ * upon open.
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+
+static int map_absent_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int map_absent_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int map_absent_erase (struct mtd_info *, struct erase_info *);
+static void map_absent_sync (struct mtd_info *);
+static struct mtd_info *map_absent_probe(struct map_info *map);
+static void map_absent_destroy (struct mtd_info *);
+
+
+static struct mtd_chip_driver map_absent_chipdrv = {
+	.probe		= map_absent_probe,
+	.destroy	= map_absent_destroy,
+	.name		= "map_absent",
+	.module		= THIS_MODULE
+};
+
+static struct mtd_info *map_absent_probe(struct map_info *map)
+{
+	struct mtd_info *mtd;
+
+	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
+	if (!mtd) {
+		return NULL;
+	}
+
+	map->fldrv 	= &map_absent_chipdrv;
+	mtd->priv 	= map;
+	mtd->name 	= map->name;
+	mtd->type 	= MTD_ABSENT;
+	mtd->size 	= map->size;
+	mtd->_erase 	= map_absent_erase;
+	mtd->_read 	= map_absent_read;
+	mtd->_write 	= map_absent_write;
+	mtd->_sync 	= map_absent_sync;
+	mtd->flags 	= 0;
+	mtd->erasesize  = PAGE_SIZE;
+	mtd->writesize  = 1;
+
+	__module_get(THIS_MODULE);
+	return mtd;
+}
+
+
+static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	return -ENODEV;
+}
+
+static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
+{
+	return -ENODEV;
+}
+
+static int map_absent_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+	return -ENODEV;
+}
+
+static void map_absent_sync(struct mtd_info *mtd)
+{
+	/* nop */
+}
+
+static void map_absent_destroy(struct mtd_info *mtd)
+{
+	/* nop */
+}
+
+static int __init map_absent_init(void)
+{
+	register_mtd_chip_driver(&map_absent_chipdrv);
+	return 0;
+}
+
+static void __exit map_absent_exit(void)
+{
+	unregister_mtd_chip_driver(&map_absent_chipdrv);
+}
+
+module_init(map_absent_init);
+module_exit(map_absent_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Resilience Corporation - Eric Brower <ebrower@resilience.com>");
+MODULE_DESCRIPTION("Placeholder MTD chip driver for 'absent' chips");
diff --git a/drivers/mtd/chips/map_ram.c b/drivers/mtd/chips/map_ram.c
new file mode 100644
index 0000000..c37fce9
--- /dev/null
+++ b/drivers/mtd/chips/map_ram.c
@@ -0,0 +1,158 @@
+/*
+ * Common code to handle map devices which are simple RAM
+ * (C) 2000 Red Hat. GPL'd.
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+
+
+static int mapram_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int mapram_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int mapram_erase (struct mtd_info *, struct erase_info *);
+static void mapram_nop (struct mtd_info *);
+static struct mtd_info *map_ram_probe(struct map_info *map);
+static int mapram_point (struct mtd_info *mtd, loff_t from, size_t len,
+			 size_t *retlen, void **virt, resource_size_t *phys);
+static int mapram_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
+
+
+static struct mtd_chip_driver mapram_chipdrv = {
+	.probe	= map_ram_probe,
+	.name	= "map_ram",
+	.module	= THIS_MODULE
+};
+
+static struct mtd_info *map_ram_probe(struct map_info *map)
+{
+	struct mtd_info *mtd;
+
+	/* Check the first byte is RAM */
+#if 0
+	map_write8(map, 0x55, 0);
+	if (map_read8(map, 0) != 0x55)
+		return NULL;
+
+	map_write8(map, 0xAA, 0);
+	if (map_read8(map, 0) != 0xAA)
+		return NULL;
+
+	/* Check the last byte is RAM */
+	map_write8(map, 0x55, map->size-1);
+	if (map_read8(map, map->size-1) != 0x55)
+		return NULL;
+
+	map_write8(map, 0xAA, map->size-1);
+	if (map_read8(map, map->size-1) != 0xAA)
+		return NULL;
+#endif
+	/* OK. It seems to be RAM. */
+
+	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
+	if (!mtd)
+		return NULL;
+
+	map->fldrv = &mapram_chipdrv;
+	mtd->priv = map;
+	mtd->name = map->name;
+	mtd->type = MTD_RAM;
+	mtd->size = map->size;
+	mtd->_erase = mapram_erase;
+	mtd->_read = mapram_read;
+	mtd->_write = mapram_write;
+	mtd->_panic_write = mapram_write;
+	mtd->_point = mapram_point;
+	mtd->_sync = mapram_nop;
+	mtd->_unpoint = mapram_unpoint;
+	mtd->flags = MTD_CAP_RAM;
+	mtd->writesize = 1;
+
+	mtd->erasesize = PAGE_SIZE;
+ 	while(mtd->size & (mtd->erasesize - 1))
+		mtd->erasesize >>= 1;
+
+	__module_get(THIS_MODULE);
+	return mtd;
+}
+
+static int mapram_point(struct mtd_info *mtd, loff_t from, size_t len,
+			size_t *retlen, void **virt, resource_size_t *phys)
+{
+	struct map_info *map = mtd->priv;
+
+	if (!map->virt)
+		return -EINVAL;
+	*virt = map->virt + from;
+	if (phys)
+		*phys = map->phys + from;
+	*retlen = len;
+	return 0;
+}
+
+static int mapram_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
+{
+	return 0;
+}
+
+static int mapram_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+
+	map_copy_from(map, buf, from, len);
+	*retlen = len;
+	return 0;
+}
+
+static int mapram_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+
+	map_copy_to(map, to, buf, len);
+	*retlen = len;
+	return 0;
+}
+
+static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+	/* Yeah, it's inefficient. Who cares? It's faster than a _real_
+	   flash erase. */
+	struct map_info *map = mtd->priv;
+	map_word allff;
+	unsigned long i;
+
+	allff = map_word_ff(map);
+	for (i=0; i<instr->len; i += map_bankwidth(map))
+		map_write(map, allff, instr->addr + i);
+	return 0;
+}
+
+static void mapram_nop(struct mtd_info *mtd)
+{
+	/* Nothing to see here */
+}
+
+static int __init map_ram_init(void)
+{
+	register_mtd_chip_driver(&mapram_chipdrv);
+	return 0;
+}
+
+static void __exit map_ram_exit(void)
+{
+	unregister_mtd_chip_driver(&mapram_chipdrv);
+}
+
+module_init(map_ram_init);
+module_exit(map_ram_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("MTD chip driver for RAM chips");
diff --git a/drivers/mtd/chips/map_rom.c b/drivers/mtd/chips/map_rom.c
new file mode 100644
index 0000000..20e3604
--- /dev/null
+++ b/drivers/mtd/chips/map_rom.c
@@ -0,0 +1,132 @@
+/*
+ * Common code to handle map devices which are simple ROM
+ * (C) 2000 Red Hat. GPL'd.
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/of.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+
+static int maprom_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int maprom_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static void maprom_nop (struct mtd_info *);
+static struct mtd_info *map_rom_probe(struct map_info *map);
+static int maprom_erase (struct mtd_info *mtd, struct erase_info *info);
+static int maprom_point (struct mtd_info *mtd, loff_t from, size_t len,
+			 size_t *retlen, void **virt, resource_size_t *phys);
+static int maprom_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
+
+
+static struct mtd_chip_driver maprom_chipdrv = {
+	.probe	= map_rom_probe,
+	.name	= "map_rom",
+	.module	= THIS_MODULE
+};
+
+static unsigned int default_erasesize(struct map_info *map)
+{
+	const __be32 *erase_size = NULL;
+
+	erase_size = of_get_property(map->device_node, "erase-size", NULL);
+
+	return !erase_size ? map->size : be32_to_cpu(*erase_size);
+}
+
+static struct mtd_info *map_rom_probe(struct map_info *map)
+{
+	struct mtd_info *mtd;
+
+	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
+	if (!mtd)
+		return NULL;
+
+	map->fldrv = &maprom_chipdrv;
+	mtd->priv = map;
+	mtd->name = map->name;
+	mtd->type = MTD_ROM;
+	mtd->size = map->size;
+	mtd->_point = maprom_point;
+	mtd->_unpoint = maprom_unpoint;
+	mtd->_read = maprom_read;
+	mtd->_write = maprom_write;
+	mtd->_sync = maprom_nop;
+	mtd->_erase = maprom_erase;
+	mtd->flags = MTD_CAP_ROM;
+	mtd->erasesize = default_erasesize(map);
+	mtd->writesize = 1;
+	mtd->writebufsize = 1;
+
+	__module_get(THIS_MODULE);
+	return mtd;
+}
+
+
+static int maprom_point(struct mtd_info *mtd, loff_t from, size_t len,
+			size_t *retlen, void **virt, resource_size_t *phys)
+{
+	struct map_info *map = mtd->priv;
+
+	if (!map->virt)
+		return -EINVAL;
+	*virt = map->virt + from;
+	if (phys)
+		*phys = map->phys + from;
+	*retlen = len;
+	return 0;
+}
+
+static int maprom_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
+{
+	return 0;
+}
+
+static int maprom_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+
+	map_copy_from(map, buf, from, len);
+	*retlen = len;
+	return 0;
+}
+
+static void maprom_nop(struct mtd_info *mtd)
+{
+	/* Nothing to see here */
+}
+
+static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
+{
+	return -EROFS;
+}
+
+static int maprom_erase (struct mtd_info *mtd, struct erase_info *info)
+{
+	/* We do our best 8) */
+	return -EROFS;
+}
+
+static int __init map_rom_init(void)
+{
+	register_mtd_chip_driver(&maprom_chipdrv);
+	return 0;
+}
+
+static void __exit map_rom_exit(void)
+{
+	unregister_mtd_chip_driver(&maprom_chipdrv);
+}
+
+module_init(map_rom_init);
+module_exit(map_rom_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("MTD chip driver for ROM chips");