v4.19.13 snapshot.
diff --git a/drivers/media/dvb-frontends/mb86a20s.c b/drivers/media/dvb-frontends/mb86a20s.c
new file mode 100644
index 0000000..66fc77d
--- /dev/null
+++ b/drivers/media/dvb-frontends/mb86a20s.c
@@ -0,0 +1,2131 @@
+/*
+ *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
+ *
+ *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
+ *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
+ *
+ *   This program is free software; you can redistribute it and/or
+ *   modify it under the terms of the GNU General Public License as
+ *   published by the Free Software Foundation version 2.
+ *
+ *   This program is distributed in the hope that it will be useful,
+ *   but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *   General Public License for more details.
+ */
+
+#include <linux/kernel.h>
+#include <asm/div64.h>
+
+#include <media/dvb_frontend.h>
+#include "mb86a20s.h"
+
+#define NUM_LAYERS 3
+
+enum mb86a20s_bandwidth {
+	MB86A20S_13SEG = 0,
+	MB86A20S_13SEG_PARTIAL = 1,
+	MB86A20S_1SEG = 2,
+	MB86A20S_3SEG = 3,
+};
+
+static u8 mb86a20s_subchannel[] = {
+	0xb0, 0xc0, 0xd0, 0xe0,
+	0xf0, 0x00, 0x10, 0x20,
+};
+
+struct mb86a20s_state {
+	struct i2c_adapter *i2c;
+	const struct mb86a20s_config *config;
+	u32 last_frequency;
+
+	struct dvb_frontend frontend;
+
+	u32 if_freq;
+	enum mb86a20s_bandwidth bw;
+	bool inversion;
+	u32 subchannel;
+
+	u32 estimated_rate[NUM_LAYERS];
+	unsigned long get_strength_time;
+
+	bool need_init;
+};
+
+struct regdata {
+	u8 reg;
+	u8 data;
+};
+
+#define BER_SAMPLING_RATE	1	/* Seconds */
+
+/*
+ * Initialization sequence: Use whatevere default values that PV SBTVD
+ * does on its initialisation, obtained via USB snoop
+ */
+static struct regdata mb86a20s_init1[] = {
+	{ 0x70, 0x0f },
+	{ 0x70, 0xff },
+	{ 0x08, 0x01 },
+	{ 0x50, 0xd1 }, { 0x51, 0x20 },
+};
+
+static struct regdata mb86a20s_init2[] = {
+	{ 0x50, 0xd1 }, { 0x51, 0x22 },
+	{ 0x39, 0x01 },
+	{ 0x71, 0x00 },
+	{ 0x3b, 0x21 },
+	{ 0x3c, 0x3a },
+	{ 0x01, 0x0d },
+	{ 0x04, 0x08 }, { 0x05, 0x05 },
+	{ 0x04, 0x0e }, { 0x05, 0x00 },
+	{ 0x04, 0x0f }, { 0x05, 0x14 },
+	{ 0x04, 0x0b }, { 0x05, 0x8c },
+	{ 0x04, 0x00 }, { 0x05, 0x00 },
+	{ 0x04, 0x01 }, { 0x05, 0x07 },
+	{ 0x04, 0x02 }, { 0x05, 0x0f },
+	{ 0x04, 0x03 }, { 0x05, 0xa0 },
+	{ 0x04, 0x09 }, { 0x05, 0x00 },
+	{ 0x04, 0x0a }, { 0x05, 0xff },
+	{ 0x04, 0x27 }, { 0x05, 0x64 },
+	{ 0x04, 0x28 }, { 0x05, 0x00 },
+	{ 0x04, 0x1e }, { 0x05, 0xff },
+	{ 0x04, 0x29 }, { 0x05, 0x0a },
+	{ 0x04, 0x32 }, { 0x05, 0x0a },
+	{ 0x04, 0x14 }, { 0x05, 0x02 },
+	{ 0x04, 0x04 }, { 0x05, 0x00 },
+	{ 0x04, 0x05 }, { 0x05, 0x22 },
+	{ 0x04, 0x06 }, { 0x05, 0x0e },
+	{ 0x04, 0x07 }, { 0x05, 0xd8 },
+	{ 0x04, 0x12 }, { 0x05, 0x00 },
+	{ 0x04, 0x13 }, { 0x05, 0xff },
+
+	/*
+	 * On this demod, when the bit count reaches the count below,
+	 * it collects the bit error count. The bit counters are initialized
+	 * to 65535 here. This warrants that all of them will be quickly
+	 * calculated when device gets locked. As TMCC is parsed, the values
+	 * will be adjusted later in the driver's code.
+	 */
+	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
+	{ 0x50, 0xa7 }, { 0x51, 0x00 },
+	{ 0x50, 0xa8 }, { 0x51, 0xff },
+	{ 0x50, 0xa9 }, { 0x51, 0xff },
+	{ 0x50, 0xaa }, { 0x51, 0x00 },
+	{ 0x50, 0xab }, { 0x51, 0xff },
+	{ 0x50, 0xac }, { 0x51, 0xff },
+	{ 0x50, 0xad }, { 0x51, 0x00 },
+	{ 0x50, 0xae }, { 0x51, 0xff },
+	{ 0x50, 0xaf }, { 0x51, 0xff },
+
+	/*
+	 * On this demod, post BER counts blocks. When the count reaches the
+	 * value below, it collects the block error count. The block counters
+	 * are initialized to 127 here. This warrants that all of them will be
+	 * quickly calculated when device gets locked. As TMCC is parsed, the
+	 * values will be adjusted later in the driver's code.
+	 */
+	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
+	{ 0x50, 0xdc }, { 0x51, 0x00 },
+	{ 0x50, 0xdd }, { 0x51, 0x7f },
+	{ 0x50, 0xde }, { 0x51, 0x00 },
+	{ 0x50, 0xdf }, { 0x51, 0x7f },
+	{ 0x50, 0xe0 }, { 0x51, 0x00 },
+	{ 0x50, 0xe1 }, { 0x51, 0x7f },
+
+	/*
+	 * On this demod, when the block count reaches the count below,
+	 * it collects the block error count. The block counters are initialized
+	 * to 127 here. This warrants that all of them will be quickly
+	 * calculated when device gets locked. As TMCC is parsed, the values
+	 * will be adjusted later in the driver's code.
+	 */
+	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
+	{ 0x50, 0xb2 }, { 0x51, 0x00 },
+	{ 0x50, 0xb3 }, { 0x51, 0x7f },
+	{ 0x50, 0xb4 }, { 0x51, 0x00 },
+	{ 0x50, 0xb5 }, { 0x51, 0x7f },
+	{ 0x50, 0xb6 }, { 0x51, 0x00 },
+	{ 0x50, 0xb7 }, { 0x51, 0x7f },
+
+	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
+	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
+	{ 0x45, 0x04 },				/* CN symbol 4 */
+	{ 0x48, 0x04 },				/* CN manual mode */
+	{ 0x50, 0xd5 }, { 0x51, 0x01 },
+	{ 0x50, 0xd6 }, { 0x51, 0x1f },
+	{ 0x50, 0xd2 }, { 0x51, 0x03 },
+	{ 0x50, 0xd7 }, { 0x51, 0x3f },
+	{ 0x1c, 0x01 },
+	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
+	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
+	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
+	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
+	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
+	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
+	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
+	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
+	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
+	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
+	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
+	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
+	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
+	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
+	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
+	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
+	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
+	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
+	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
+	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
+	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
+	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
+	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
+	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
+	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
+	{ 0x50, 0x1e }, { 0x51, 0x5d },
+	{ 0x50, 0x22 }, { 0x51, 0x00 },
+	{ 0x50, 0x23 }, { 0x51, 0xc8 },
+	{ 0x50, 0x24 }, { 0x51, 0x00 },
+	{ 0x50, 0x25 }, { 0x51, 0xf0 },
+	{ 0x50, 0x26 }, { 0x51, 0x00 },
+	{ 0x50, 0x27 }, { 0x51, 0xc3 },
+	{ 0x50, 0x39 }, { 0x51, 0x02 },
+	{ 0x50, 0xd5 }, { 0x51, 0x01 },
+	{ 0xd0, 0x00 },
+};
+
+static struct regdata mb86a20s_reset_reception[] = {
+	{ 0x70, 0xf0 },
+	{ 0x70, 0xff },
+	{ 0x08, 0x01 },
+	{ 0x08, 0x00 },
+};
+
+static struct regdata mb86a20s_per_ber_reset[] = {
+	{ 0x53, 0x00 },	/* pre BER Counter reset */
+	{ 0x53, 0x07 },
+
+	{ 0x5f, 0x00 },	/* post BER Counter reset */
+	{ 0x5f, 0x07 },
+
+	{ 0x50, 0xb1 },	/* PER Counter reset */
+	{ 0x51, 0x07 },
+	{ 0x51, 0x00 },
+};
+
+/*
+ * I2C read/write functions and macros
+ */
+
+static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
+			     u8 i2c_addr, u8 reg, u8 data)
+{
+	u8 buf[] = { reg, data };
+	struct i2c_msg msg = {
+		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
+	};
+	int rc;
+
+	rc = i2c_transfer(state->i2c, &msg, 1);
+	if (rc != 1) {
+		dev_err(&state->i2c->dev,
+			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
+			__func__, rc, reg, data);
+		return rc;
+	}
+
+	return 0;
+}
+
+static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
+				     u8 i2c_addr, struct regdata *rd, int size)
+{
+	int i, rc;
+
+	for (i = 0; i < size; i++) {
+		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
+					   rd[i].data);
+		if (rc < 0)
+			return rc;
+	}
+	return 0;
+}
+
+static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
+				u8 i2c_addr, u8 reg)
+{
+	u8 val;
+	int rc;
+	struct i2c_msg msg[] = {
+		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
+		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
+	};
+
+	rc = i2c_transfer(state->i2c, msg, 2);
+
+	if (rc != 2) {
+		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
+			__func__, reg, rc);
+		return (rc < 0) ? rc : -EIO;
+	}
+
+	return val;
+}
+
+#define mb86a20s_readreg(state, reg) \
+	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
+#define mb86a20s_writereg(state, reg, val) \
+	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
+#define mb86a20s_writeregdata(state, regdata) \
+	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
+	regdata, ARRAY_SIZE(regdata))
+
+/*
+ * Ancillary internal routines (likely compiled inlined)
+ *
+ * The functions below assume that gateway lock has already obtained
+ */
+
+static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	int val;
+
+	*status = 0;
+
+	val = mb86a20s_readreg(state, 0x0a);
+	if (val < 0)
+		return val;
+
+	val &= 0xf;
+	if (val >= 2)
+		*status |= FE_HAS_SIGNAL;
+
+	if (val >= 4)
+		*status |= FE_HAS_CARRIER;
+
+	if (val >= 5)
+		*status |= FE_HAS_VITERBI;
+
+	if (val >= 7)
+		*status |= FE_HAS_SYNC;
+
+	/*
+	 * Actually, on state S8, it starts receiving TS, but the TS
+	 * output is only on normal state after the transition to S9.
+	 */
+	if (val >= 9)
+		*status |= FE_HAS_LOCK;
+
+	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
+		 __func__, *status, val);
+
+	return val;
+}
+
+static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	int rc;
+	unsigned rf_max, rf_min, rf;
+
+	if (state->get_strength_time &&
+	   (!time_after(jiffies, state->get_strength_time)))
+		return c->strength.stat[0].uvalue;
+
+	/* Reset its value if an error happen */
+	c->strength.stat[0].uvalue = 0;
+
+	/* Does a binary search to get RF strength */
+	rf_max = 0xfff;
+	rf_min = 0;
+	do {
+		rf = (rf_max + rf_min) / 2;
+		rc = mb86a20s_writereg(state, 0x04, 0x1f);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x04, 0x20);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x05, rf);
+		if (rc < 0)
+			return rc;
+
+		rc = mb86a20s_readreg(state, 0x02);
+		if (rc < 0)
+			return rc;
+		if (rc & 0x08)
+			rf_min = (rf_max + rf_min) / 2;
+		else
+			rf_max = (rf_max + rf_min) / 2;
+		if (rf_max - rf_min < 4) {
+			rf = (rf_max + rf_min) / 2;
+
+			/* Rescale it from 2^12 (4096) to 2^16 */
+			rf = rf << (16 - 12);
+			if (rf)
+				rf |= (1 << 12) - 1;
+
+			dev_dbg(&state->i2c->dev,
+				"%s: signal strength = %d (%d < RF=%d < %d)\n",
+				__func__, rf, rf_min, rf >> 4, rf_max);
+			c->strength.stat[0].uvalue = rf;
+			state->get_strength_time = jiffies +
+						   msecs_to_jiffies(1000);
+			return 0;
+		}
+	} while (1);
+}
+
+static int mb86a20s_get_modulation(struct mb86a20s_state *state,
+				   unsigned layer)
+{
+	int rc;
+	static unsigned char reg[] = {
+		[0] = 0x86,	/* Layer A */
+		[1] = 0x8a,	/* Layer B */
+		[2] = 0x8e,	/* Layer C */
+	};
+
+	if (layer >= ARRAY_SIZE(reg))
+		return -EINVAL;
+	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x6e);
+	if (rc < 0)
+		return rc;
+	switch ((rc >> 4) & 0x07) {
+	case 0:
+		return DQPSK;
+	case 1:
+		return QPSK;
+	case 2:
+		return QAM_16;
+	case 3:
+		return QAM_64;
+	default:
+		return QAM_AUTO;
+	}
+}
+
+static int mb86a20s_get_fec(struct mb86a20s_state *state,
+			    unsigned layer)
+{
+	int rc;
+
+	static unsigned char reg[] = {
+		[0] = 0x87,	/* Layer A */
+		[1] = 0x8b,	/* Layer B */
+		[2] = 0x8f,	/* Layer C */
+	};
+
+	if (layer >= ARRAY_SIZE(reg))
+		return -EINVAL;
+	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x6e);
+	if (rc < 0)
+		return rc;
+	switch ((rc >> 4) & 0x07) {
+	case 0:
+		return FEC_1_2;
+	case 1:
+		return FEC_2_3;
+	case 2:
+		return FEC_3_4;
+	case 3:
+		return FEC_5_6;
+	case 4:
+		return FEC_7_8;
+	default:
+		return FEC_AUTO;
+	}
+}
+
+static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
+				     unsigned layer)
+{
+	int rc;
+	int interleaving[] = {
+		0, 1, 2, 4, 8
+	};
+
+	static unsigned char reg[] = {
+		[0] = 0x88,	/* Layer A */
+		[1] = 0x8c,	/* Layer B */
+		[2] = 0x90,	/* Layer C */
+	};
+
+	if (layer >= ARRAY_SIZE(reg))
+		return -EINVAL;
+	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x6e);
+	if (rc < 0)
+		return rc;
+
+	return interleaving[(rc >> 4) & 0x07];
+}
+
+static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
+				      unsigned layer)
+{
+	int rc, count;
+	static unsigned char reg[] = {
+		[0] = 0x89,	/* Layer A */
+		[1] = 0x8d,	/* Layer B */
+		[2] = 0x91,	/* Layer C */
+	};
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (layer >= ARRAY_SIZE(reg))
+		return -EINVAL;
+
+	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x6e);
+	if (rc < 0)
+		return rc;
+	count = (rc >> 4) & 0x0f;
+
+	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
+
+	return count;
+}
+
+static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	/* Fixed parameters */
+	c->delivery_system = SYS_ISDBT;
+	c->bandwidth_hz = 6000000;
+
+	/* Initialize values that will be later autodetected */
+	c->isdbt_layer_enabled = 0;
+	c->transmission_mode = TRANSMISSION_MODE_AUTO;
+	c->guard_interval = GUARD_INTERVAL_AUTO;
+	c->isdbt_sb_mode = 0;
+	c->isdbt_sb_segment_count = 0;
+}
+
+/*
+ * Estimates the bit rate using the per-segment bit rate given by
+ * ABNT/NBR 15601 spec (table 4).
+ */
+static u32 isdbt_rate[3][5][4] = {
+	{	/* DQPSK/QPSK */
+		{  280850,  312060,  330420,  340430 },	/* 1/2 */
+		{  374470,  416080,  440560,  453910 },	/* 2/3 */
+		{  421280,  468090,  495630,  510650 },	/* 3/4 */
+		{  468090,  520100,  550700,  567390 },	/* 5/6 */
+		{  491500,  546110,  578230,  595760 },	/* 7/8 */
+	}, {	/* QAM16 */
+		{  561710,  624130,  660840,  680870 },	/* 1/2 */
+		{  748950,  832170,  881120,  907820 },	/* 2/3 */
+		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
+		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
+		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
+	}, {	/* QAM64 */
+		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
+		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
+		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
+		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
+		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
+	}
+};
+
+static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
+				   u32 modulation, u32 forward_error_correction,
+				   u32 guard_interval,
+				   u32 segment)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	u32 rate;
+	int mod, fec, guard;
+
+	/*
+	 * If modulation/fec/guard is not detected, the default is
+	 * to consider the lowest bit rate, to avoid taking too long time
+	 * to get BER.
+	 */
+	switch (modulation) {
+	case DQPSK:
+	case QPSK:
+	default:
+		mod = 0;
+		break;
+	case QAM_16:
+		mod = 1;
+		break;
+	case QAM_64:
+		mod = 2;
+		break;
+	}
+
+	switch (forward_error_correction) {
+	default:
+	case FEC_1_2:
+	case FEC_AUTO:
+		fec = 0;
+		break;
+	case FEC_2_3:
+		fec = 1;
+		break;
+	case FEC_3_4:
+		fec = 2;
+		break;
+	case FEC_5_6:
+		fec = 3;
+		break;
+	case FEC_7_8:
+		fec = 4;
+		break;
+	}
+
+	switch (guard_interval) {
+	default:
+	case GUARD_INTERVAL_1_4:
+		guard = 0;
+		break;
+	case GUARD_INTERVAL_1_8:
+		guard = 1;
+		break;
+	case GUARD_INTERVAL_1_16:
+		guard = 2;
+		break;
+	case GUARD_INTERVAL_1_32:
+		guard = 3;
+		break;
+	}
+
+	/* Samples BER at BER_SAMPLING_RATE seconds */
+	rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
+
+	/* Avoids sampling too quickly or to overflow the register */
+	if (rate < 256)
+		rate = 256;
+	else if (rate > (1 << 24) - 1)
+		rate = (1 << 24) - 1;
+
+	dev_dbg(&state->i2c->dev,
+		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
+		__func__, 'A' + layer,
+		segment * isdbt_rate[mod][fec][guard]/1000,
+		rate, rate);
+
+	state->estimated_rate[layer] = rate;
+}
+
+static int mb86a20s_get_frontend(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	int layer, rc;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	/* Reset frontend cache to default values */
+	mb86a20s_reset_frontend_cache(fe);
+
+	/* Check for partial reception */
+	rc = mb86a20s_writereg(state, 0x6d, 0x85);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x6e);
+	if (rc < 0)
+		return rc;
+	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
+
+	/* Get per-layer data */
+
+	for (layer = 0; layer < NUM_LAYERS; layer++) {
+		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
+			__func__, 'A' + layer);
+
+		rc = mb86a20s_get_segment_count(state, layer);
+		if (rc < 0)
+			goto noperlayer_error;
+		if (rc >= 0 && rc < 14) {
+			c->layer[layer].segment_count = rc;
+		} else {
+			c->layer[layer].segment_count = 0;
+			state->estimated_rate[layer] = 0;
+			continue;
+		}
+		c->isdbt_layer_enabled |= 1 << layer;
+		rc = mb86a20s_get_modulation(state, layer);
+		if (rc < 0)
+			goto noperlayer_error;
+		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
+			__func__, rc);
+		c->layer[layer].modulation = rc;
+		rc = mb86a20s_get_fec(state, layer);
+		if (rc < 0)
+			goto noperlayer_error;
+		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
+			__func__, rc);
+		c->layer[layer].fec = rc;
+		rc = mb86a20s_get_interleaving(state, layer);
+		if (rc < 0)
+			goto noperlayer_error;
+		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
+			__func__, rc);
+		c->layer[layer].interleaving = rc;
+		mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
+				       c->layer[layer].fec,
+				       c->guard_interval,
+				       c->layer[layer].segment_count);
+	}
+
+	rc = mb86a20s_writereg(state, 0x6d, 0x84);
+	if (rc < 0)
+		return rc;
+	if ((rc & 0x60) == 0x20) {
+		c->isdbt_sb_mode = 1;
+		/* At least, one segment should exist */
+		if (!c->isdbt_sb_segment_count)
+			c->isdbt_sb_segment_count = 1;
+	}
+
+	/* Get transmission mode and guard interval */
+	rc = mb86a20s_readreg(state, 0x07);
+	if (rc < 0)
+		return rc;
+	c->transmission_mode = TRANSMISSION_MODE_AUTO;
+	if ((rc & 0x60) == 0x20) {
+		/* Only modes 2 and 3 are supported */
+		switch ((rc >> 2) & 0x03) {
+		case 1:
+			c->transmission_mode = TRANSMISSION_MODE_4K;
+			break;
+		case 2:
+			c->transmission_mode = TRANSMISSION_MODE_8K;
+			break;
+		}
+	}
+	c->guard_interval = GUARD_INTERVAL_AUTO;
+	if (!(rc & 0x10)) {
+		/* Guard interval 1/32 is not supported */
+		switch (rc & 0x3) {
+		case 0:
+			c->guard_interval = GUARD_INTERVAL_1_4;
+			break;
+		case 1:
+			c->guard_interval = GUARD_INTERVAL_1_8;
+			break;
+		case 2:
+			c->guard_interval = GUARD_INTERVAL_1_16;
+			break;
+		}
+	}
+	return 0;
+
+noperlayer_error:
+
+	/* per-layer info is incomplete; discard all per-layer */
+	c->isdbt_layer_enabled = 0;
+
+	return rc;
+}
+
+static int mb86a20s_reset_counters(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	int rc, val;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	/* Reset the counters, if the channel changed */
+	if (state->last_frequency != c->frequency) {
+		memset(&c->cnr, 0, sizeof(c->cnr));
+		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
+		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
+		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
+		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
+		memset(&c->block_error, 0, sizeof(c->block_error));
+		memset(&c->block_count, 0, sizeof(c->block_count));
+
+		state->last_frequency = c->frequency;
+	}
+
+	/* Clear status for most stats */
+
+	/* BER/PER counter reset */
+	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
+	if (rc < 0)
+		goto err;
+
+	/* CNR counter reset */
+	rc = mb86a20s_readreg(state, 0x45);
+	if (rc < 0)
+		goto err;
+	val = rc;
+	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
+	if (rc < 0)
+		goto err;
+
+	/* MER counter reset */
+	rc = mb86a20s_writereg(state, 0x50, 0x50);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		goto err;
+	val = rc;
+	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
+	if (rc < 0)
+		goto err;
+
+	goto ok;
+err:
+	dev_err(&state->i2c->dev,
+		"%s: Can't reset FE statistics (error %d).\n",
+		__func__, rc);
+ok:
+	return rc;
+}
+
+static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
+				unsigned layer,
+				u32 *error, u32 *count)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	int rc, val;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (layer >= NUM_LAYERS)
+		return -EINVAL;
+
+	/* Check if the BER measures are already available */
+	rc = mb86a20s_readreg(state, 0x54);
+	if (rc < 0)
+		return rc;
+
+	/* Check if data is available for that layer */
+	if (!(rc & (1 << layer))) {
+		dev_dbg(&state->i2c->dev,
+			"%s: preBER for layer %c is not available yet.\n",
+			__func__, 'A' + layer);
+		return -EBUSY;
+	}
+
+	/* Read Bit Error Count */
+	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
+	if (rc < 0)
+		return rc;
+	*error = rc << 16;
+	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
+	if (rc < 0)
+		return rc;
+	*error |= rc << 8;
+	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
+	if (rc < 0)
+		return rc;
+	*error |= rc;
+
+	dev_dbg(&state->i2c->dev,
+		"%s: bit error before Viterbi for layer %c: %d.\n",
+		__func__, 'A' + layer, *error);
+
+	/* Read Bit Count */
+	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	*count = rc << 16;
+	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	*count |= rc << 8;
+	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	*count |= rc;
+
+	dev_dbg(&state->i2c->dev,
+		"%s: bit count before Viterbi for layer %c: %d.\n",
+		__func__, 'A' + layer, *count);
+
+
+	/*
+	 * As we get TMCC data from the frontend, we can better estimate the
+	 * BER bit counters, in order to do the BER measure during a longer
+	 * time. Use those data, if available, to update the bit count
+	 * measure.
+	 */
+
+	if (state->estimated_rate[layer]
+	    && state->estimated_rate[layer] != *count) {
+		dev_dbg(&state->i2c->dev,
+			"%s: updating layer %c preBER counter to %d.\n",
+			__func__, 'A' + layer, state->estimated_rate[layer]);
+
+		/* Turn off BER before Viterbi */
+		rc = mb86a20s_writereg(state, 0x52, 0x00);
+
+		/* Update counter for this layer */
+		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51,
+				       state->estimated_rate[layer] >> 16);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51,
+				       state->estimated_rate[layer] >> 8);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51,
+				       state->estimated_rate[layer]);
+		if (rc < 0)
+			return rc;
+
+		/* Turn on BER before Viterbi */
+		rc = mb86a20s_writereg(state, 0x52, 0x01);
+
+		/* Reset all preBER counters */
+		rc = mb86a20s_writereg(state, 0x53, 0x00);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x53, 0x07);
+	} else {
+		/* Reset counter to collect new data */
+		rc = mb86a20s_readreg(state, 0x53);
+		if (rc < 0)
+			return rc;
+		val = rc;
+		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
+	}
+
+	return rc;
+}
+
+static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
+				 unsigned layer,
+				  u32 *error, u32 *count)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	u32 counter, collect_rate;
+	int rc, val;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (layer >= NUM_LAYERS)
+		return -EINVAL;
+
+	/* Check if the BER measures are already available */
+	rc = mb86a20s_readreg(state, 0x60);
+	if (rc < 0)
+		return rc;
+
+	/* Check if data is available for that layer */
+	if (!(rc & (1 << layer))) {
+		dev_dbg(&state->i2c->dev,
+			"%s: post BER for layer %c is not available yet.\n",
+			__func__, 'A' + layer);
+		return -EBUSY;
+	}
+
+	/* Read Bit Error Count */
+	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
+	if (rc < 0)
+		return rc;
+	*error = rc << 16;
+	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
+	if (rc < 0)
+		return rc;
+	*error |= rc << 8;
+	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
+	if (rc < 0)
+		return rc;
+	*error |= rc;
+
+	dev_dbg(&state->i2c->dev,
+		"%s: post bit error for layer %c: %d.\n",
+		__func__, 'A' + layer, *error);
+
+	/* Read Bit Count */
+	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	counter = rc << 8;
+	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	counter |= rc;
+	*count = counter * 204 * 8;
+
+	dev_dbg(&state->i2c->dev,
+		"%s: post bit count for layer %c: %d.\n",
+		__func__, 'A' + layer, *count);
+
+	/*
+	 * As we get TMCC data from the frontend, we can better estimate the
+	 * BER bit counters, in order to do the BER measure during a longer
+	 * time. Use those data, if available, to update the bit count
+	 * measure.
+	 */
+
+	if (!state->estimated_rate[layer])
+		goto reset_measurement;
+
+	collect_rate = state->estimated_rate[layer] / 204 / 8;
+	if (collect_rate < 32)
+		collect_rate = 32;
+	if (collect_rate > 65535)
+		collect_rate = 65535;
+	if (collect_rate != counter) {
+		dev_dbg(&state->i2c->dev,
+			"%s: updating postBER counter on layer %c to %d.\n",
+			__func__, 'A' + layer, collect_rate);
+
+		/* Turn off BER after Viterbi */
+		rc = mb86a20s_writereg(state, 0x5e, 0x00);
+
+		/* Update counter for this layer */
+		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
+		if (rc < 0)
+			return rc;
+
+		/* Turn on BER after Viterbi */
+		rc = mb86a20s_writereg(state, 0x5e, 0x07);
+
+		/* Reset all preBER counters */
+		rc = mb86a20s_writereg(state, 0x5f, 0x00);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x5f, 0x07);
+
+		return rc;
+	}
+
+reset_measurement:
+	/* Reset counter to collect new data */
+	rc = mb86a20s_readreg(state, 0x5f);
+	if (rc < 0)
+		return rc;
+	val = rc;
+	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
+
+	return rc;
+}
+
+static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
+			    unsigned layer,
+			    u32 *error, u32 *count)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	int rc, val;
+	u32 collect_rate;
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (layer >= NUM_LAYERS)
+		return -EINVAL;
+
+	/* Check if the PER measures are already available */
+	rc = mb86a20s_writereg(state, 0x50, 0xb8);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+
+	/* Check if data is available for that layer */
+
+	if (!(rc & (1 << layer))) {
+		dev_dbg(&state->i2c->dev,
+			"%s: block counts for layer %c aren't available yet.\n",
+			__func__, 'A' + layer);
+		return -EBUSY;
+	}
+
+	/* Read Packet error Count */
+	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	*error = rc << 8;
+	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	*error |= rc;
+	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
+		__func__, 'A' + layer, *error);
+
+	/* Read Bit Count */
+	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	*count = rc << 8;
+	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	*count |= rc;
+
+	dev_dbg(&state->i2c->dev,
+		"%s: block count for layer %c: %d.\n",
+		__func__, 'A' + layer, *count);
+
+	/*
+	 * As we get TMCC data from the frontend, we can better estimate the
+	 * BER bit counters, in order to do the BER measure during a longer
+	 * time. Use those data, if available, to update the bit count
+	 * measure.
+	 */
+
+	if (!state->estimated_rate[layer])
+		goto reset_measurement;
+
+	collect_rate = state->estimated_rate[layer] / 204 / 8;
+	if (collect_rate < 32)
+		collect_rate = 32;
+	if (collect_rate > 65535)
+		collect_rate = 65535;
+
+	if (collect_rate != *count) {
+		dev_dbg(&state->i2c->dev,
+			"%s: updating PER counter on layer %c to %d.\n",
+			__func__, 'A' + layer, collect_rate);
+
+		/* Stop PER measurement */
+		rc = mb86a20s_writereg(state, 0x50, 0xb0);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, 0x00);
+		if (rc < 0)
+			return rc;
+
+		/* Update this layer's counter */
+		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
+		if (rc < 0)
+			return rc;
+
+		/* start PER measurement */
+		rc = mb86a20s_writereg(state, 0x50, 0xb0);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, 0x07);
+		if (rc < 0)
+			return rc;
+
+		/* Reset all counters to collect new data */
+		rc = mb86a20s_writereg(state, 0x50, 0xb1);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, 0x07);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_writereg(state, 0x51, 0x00);
+
+		return rc;
+	}
+
+reset_measurement:
+	/* Reset counter to collect new data */
+	rc = mb86a20s_writereg(state, 0x50, 0xb1);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	val = rc;
+	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
+
+	return rc;
+}
+
+struct linear_segments {
+	unsigned x, y;
+};
+
+/*
+ * All tables below return a dB/1000 measurement
+ */
+
+static const struct linear_segments cnr_to_db_table[] = {
+	{ 19648,     0},
+	{ 18187,  1000},
+	{ 16534,  2000},
+	{ 14823,  3000},
+	{ 13161,  4000},
+	{ 11622,  5000},
+	{ 10279,  6000},
+	{  9089,  7000},
+	{  8042,  8000},
+	{  7137,  9000},
+	{  6342, 10000},
+	{  5641, 11000},
+	{  5030, 12000},
+	{  4474, 13000},
+	{  3988, 14000},
+	{  3556, 15000},
+	{  3180, 16000},
+	{  2841, 17000},
+	{  2541, 18000},
+	{  2276, 19000},
+	{  2038, 20000},
+	{  1800, 21000},
+	{  1625, 22000},
+	{  1462, 23000},
+	{  1324, 24000},
+	{  1175, 25000},
+	{  1063, 26000},
+	{   980, 27000},
+	{   907, 28000},
+	{   840, 29000},
+	{   788, 30000},
+};
+
+static const struct linear_segments cnr_64qam_table[] = {
+	{ 3922688,     0},
+	{ 3920384,  1000},
+	{ 3902720,  2000},
+	{ 3894784,  3000},
+	{ 3882496,  4000},
+	{ 3872768,  5000},
+	{ 3858944,  6000},
+	{ 3851520,  7000},
+	{ 3838976,  8000},
+	{ 3829248,  9000},
+	{ 3818240, 10000},
+	{ 3806976, 11000},
+	{ 3791872, 12000},
+	{ 3767040, 13000},
+	{ 3720960, 14000},
+	{ 3637504, 15000},
+	{ 3498496, 16000},
+	{ 3296000, 17000},
+	{ 3031040, 18000},
+	{ 2715392, 19000},
+	{ 2362624, 20000},
+	{ 1963264, 21000},
+	{ 1649664, 22000},
+	{ 1366784, 23000},
+	{ 1120768, 24000},
+	{  890880, 25000},
+	{  723456, 26000},
+	{  612096, 27000},
+	{  518912, 28000},
+	{  448256, 29000},
+	{  388864, 30000},
+};
+
+static const struct linear_segments cnr_16qam_table[] = {
+	{ 5314816,     0},
+	{ 5219072,  1000},
+	{ 5118720,  2000},
+	{ 4998912,  3000},
+	{ 4875520,  4000},
+	{ 4736000,  5000},
+	{ 4604160,  6000},
+	{ 4458752,  7000},
+	{ 4300288,  8000},
+	{ 4092928,  9000},
+	{ 3836160, 10000},
+	{ 3521024, 11000},
+	{ 3155968, 12000},
+	{ 2756864, 13000},
+	{ 2347008, 14000},
+	{ 1955072, 15000},
+	{ 1593600, 16000},
+	{ 1297920, 17000},
+	{ 1043968, 18000},
+	{  839680, 19000},
+	{  672256, 20000},
+	{  523008, 21000},
+	{  424704, 22000},
+	{  345088, 23000},
+	{  280064, 24000},
+	{  221440, 25000},
+	{  179712, 26000},
+	{  151040, 27000},
+	{  128512, 28000},
+	{  110080, 29000},
+	{   95744, 30000},
+};
+
+static const struct linear_segments cnr_qpsk_table[] = {
+	{ 2834176,     0},
+	{ 2683648,  1000},
+	{ 2536960,  2000},
+	{ 2391808,  3000},
+	{ 2133248,  4000},
+	{ 1906176,  5000},
+	{ 1666560,  6000},
+	{ 1422080,  7000},
+	{ 1189632,  8000},
+	{  976384,  9000},
+	{  790272, 10000},
+	{  633344, 11000},
+	{  505600, 12000},
+	{  402944, 13000},
+	{  320768, 14000},
+	{  255488, 15000},
+	{  204032, 16000},
+	{  163072, 17000},
+	{  130304, 18000},
+	{  105216, 19000},
+	{   83456, 20000},
+	{   65024, 21000},
+	{   52480, 22000},
+	{   42752, 23000},
+	{   34560, 24000},
+	{   27136, 25000},
+	{   22016, 26000},
+	{   18432, 27000},
+	{   15616, 28000},
+	{   13312, 29000},
+	{   11520, 30000},
+};
+
+static u32 interpolate_value(u32 value, const struct linear_segments *segments,
+			     unsigned len)
+{
+	u64 tmp64;
+	u32 dx, dy;
+	int i, ret;
+
+	if (value >= segments[0].x)
+		return segments[0].y;
+	if (value < segments[len-1].x)
+		return segments[len-1].y;
+
+	for (i = 1; i < len - 1; i++) {
+		/* If value is identical, no need to interpolate */
+		if (value == segments[i].x)
+			return segments[i].y;
+		if (value > segments[i].x)
+			break;
+	}
+
+	/* Linear interpolation between the two (x,y) points */
+	dy = segments[i].y - segments[i - 1].y;
+	dx = segments[i - 1].x - segments[i].x;
+	tmp64 = value - segments[i].x;
+	tmp64 *= dy;
+	do_div(tmp64, dx);
+	ret = segments[i].y - tmp64;
+
+	return ret;
+}
+
+static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	u32 cnr_linear, cnr;
+	int rc, val;
+
+	/* Check if CNR is available */
+	rc = mb86a20s_readreg(state, 0x45);
+	if (rc < 0)
+		return rc;
+
+	if (!(rc & 0x40)) {
+		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
+			 __func__);
+		return -EBUSY;
+	}
+	val = rc;
+
+	rc = mb86a20s_readreg(state, 0x46);
+	if (rc < 0)
+		return rc;
+	cnr_linear = rc << 8;
+
+	rc = mb86a20s_readreg(state, 0x46);
+	if (rc < 0)
+		return rc;
+	cnr_linear |= rc;
+
+	cnr = interpolate_value(cnr_linear,
+				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
+
+	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
+	c->cnr.stat[0].svalue = cnr;
+
+	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
+		__func__, cnr / 1000, cnr % 1000, cnr_linear);
+
+	/* CNR counter reset */
+	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
+
+	return rc;
+}
+
+static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	u32 mer, cnr;
+	int rc, val, layer;
+	const struct linear_segments *segs;
+	unsigned segs_len;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	/* Check if the measures are already available */
+	rc = mb86a20s_writereg(state, 0x50, 0x5b);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+
+	/* Check if data is available */
+	if (!(rc & 0x01)) {
+		dev_dbg(&state->i2c->dev,
+			"%s: MER measures aren't available yet.\n", __func__);
+		return -EBUSY;
+	}
+
+	/* Read all layers */
+	for (layer = 0; layer < NUM_LAYERS; layer++) {
+		if (!(c->isdbt_layer_enabled & (1 << layer))) {
+			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+			continue;
+		}
+
+		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_readreg(state, 0x51);
+		if (rc < 0)
+			return rc;
+		mer = rc << 16;
+		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_readreg(state, 0x51);
+		if (rc < 0)
+			return rc;
+		mer |= rc << 8;
+		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
+		if (rc < 0)
+			return rc;
+		rc = mb86a20s_readreg(state, 0x51);
+		if (rc < 0)
+			return rc;
+		mer |= rc;
+
+		switch (c->layer[layer].modulation) {
+		case DQPSK:
+		case QPSK:
+			segs = cnr_qpsk_table;
+			segs_len = ARRAY_SIZE(cnr_qpsk_table);
+			break;
+		case QAM_16:
+			segs = cnr_16qam_table;
+			segs_len = ARRAY_SIZE(cnr_16qam_table);
+			break;
+		default:
+		case QAM_64:
+			segs = cnr_64qam_table;
+			segs_len = ARRAY_SIZE(cnr_64qam_table);
+			break;
+		}
+		cnr = interpolate_value(mer, segs, segs_len);
+
+		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
+		c->cnr.stat[1 + layer].svalue = cnr;
+
+		dev_dbg(&state->i2c->dev,
+			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
+			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
+
+	}
+
+	/* Start a new MER measurement */
+	/* MER counter reset */
+	rc = mb86a20s_writereg(state, 0x50, 0x50);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_readreg(state, 0x51);
+	if (rc < 0)
+		return rc;
+	val = rc;
+
+	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
+	if (rc < 0)
+		return rc;
+	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
+	if (rc < 0)
+		return rc;
+
+	return 0;
+}
+
+static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	int layer;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	/* Fill the length of each status counter */
+
+	/* Only global stats */
+	c->strength.len = 1;
+
+	/* Per-layer stats - 3 layers + global */
+	c->cnr.len = NUM_LAYERS + 1;
+	c->pre_bit_error.len = NUM_LAYERS + 1;
+	c->pre_bit_count.len = NUM_LAYERS + 1;
+	c->post_bit_error.len = NUM_LAYERS + 1;
+	c->post_bit_count.len = NUM_LAYERS + 1;
+	c->block_error.len = NUM_LAYERS + 1;
+	c->block_count.len = NUM_LAYERS + 1;
+
+	/* Signal is always available */
+	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
+	c->strength.stat[0].uvalue = 0;
+
+	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
+	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
+		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+	}
+}
+
+static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	int rc = 0, layer;
+	u32 bit_error = 0, bit_count = 0;
+	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
+	u32 t_post_bit_error = 0, t_post_bit_count = 0;
+	u32 block_error = 0, block_count = 0;
+	u32 t_block_error = 0, t_block_count = 0;
+	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
+	int per_layers = 0;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	mb86a20s_get_main_CNR(fe);
+
+	/* Get per-layer stats */
+	mb86a20s_get_blk_error_layer_CNR(fe);
+
+	/*
+	 * At state 7, only CNR is available
+	 * For BER measures, state=9 is required
+	 * FIXME: we may get MER measures with state=8
+	 */
+	if (status_nr < 9)
+		return 0;
+
+	for (layer = 0; layer < NUM_LAYERS; layer++) {
+		if (c->isdbt_layer_enabled & (1 << layer)) {
+			/* Layer is active and has rc segments */
+			active_layers++;
+
+			/* Handle BER before vterbi */
+			rc = mb86a20s_get_pre_ber(fe, layer,
+						  &bit_error, &bit_count);
+			if (rc >= 0) {
+				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
+				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
+				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
+				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
+			} else if (rc != -EBUSY) {
+				/*
+					* If an I/O error happened,
+					* measures are now unavailable
+					*/
+				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+				dev_err(&state->i2c->dev,
+					"%s: Can't get BER for layer %c (error %d).\n",
+					__func__, 'A' + layer, rc);
+			}
+			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
+				pre_ber_layers++;
+
+			/* Handle BER post vterbi */
+			rc = mb86a20s_get_post_ber(fe, layer,
+						   &bit_error, &bit_count);
+			if (rc >= 0) {
+				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
+				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
+				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
+				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
+			} else if (rc != -EBUSY) {
+				/*
+					* If an I/O error happened,
+					* measures are now unavailable
+					*/
+				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+				dev_err(&state->i2c->dev,
+					"%s: Can't get BER for layer %c (error %d).\n",
+					__func__, 'A' + layer, rc);
+			}
+			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
+				post_ber_layers++;
+
+			/* Handle Block errors for PER/UCB reports */
+			rc = mb86a20s_get_blk_error(fe, layer,
+						&block_error,
+						&block_count);
+			if (rc >= 0) {
+				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
+				c->block_error.stat[1 + layer].uvalue += block_error;
+				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
+				c->block_count.stat[1 + layer].uvalue += block_count;
+			} else if (rc != -EBUSY) {
+				/*
+					* If an I/O error happened,
+					* measures are now unavailable
+					*/
+				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+				dev_err(&state->i2c->dev,
+					"%s: Can't get PER for layer %c (error %d).\n",
+					__func__, 'A' + layer, rc);
+
+			}
+			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
+				per_layers++;
+
+			/* Update total preBER */
+			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
+			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
+
+			/* Update total postBER */
+			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
+			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
+
+			/* Update total PER */
+			t_block_error += c->block_error.stat[1 + layer].uvalue;
+			t_block_count += c->block_count.stat[1 + layer].uvalue;
+		}
+	}
+
+	/*
+	 * Start showing global count if at least one error count is
+	 * available.
+	 */
+	if (pre_ber_layers) {
+		/*
+		 * At least one per-layer BER measure was read. We can now
+		 * calculate the total BER
+		 *
+		 * Total Bit Error/Count is calculated as the sum of the
+		 * bit errors on all active layers.
+		 */
+		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
+		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
+		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
+	} else {
+		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+	}
+
+	/*
+	 * Start showing global count if at least one error count is
+	 * available.
+	 */
+	if (post_ber_layers) {
+		/*
+		 * At least one per-layer BER measure was read. We can now
+		 * calculate the total BER
+		 *
+		 * Total Bit Error/Count is calculated as the sum of the
+		 * bit errors on all active layers.
+		 */
+		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
+		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
+		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
+	} else {
+		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+	}
+
+	if (per_layers) {
+		/*
+		 * At least one per-layer UCB measure was read. We can now
+		 * calculate the total UCB
+		 *
+		 * Total block Error/Count is calculated as the sum of the
+		 * block errors on all active layers.
+		 */
+		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
+		c->block_error.stat[0].uvalue = t_block_error;
+		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
+		c->block_count.stat[0].uvalue = t_block_count;
+	} else {
+		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
+	}
+
+	return rc;
+}
+
+/*
+ * The functions below are called via DVB callbacks, so they need to
+ * properly use the I2C gate control
+ */
+
+static int mb86a20s_initfe(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	u64 pll;
+	u32 fclk;
+	int rc;
+	u8  regD5 = 1, reg71, reg09 = 0x3a;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0);
+
+	/* Initialize the frontend */
+	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
+	if (rc < 0)
+		goto err;
+
+	if (!state->inversion)
+		reg09 |= 0x04;
+	rc = mb86a20s_writereg(state, 0x09, reg09);
+	if (rc < 0)
+		goto err;
+	if (!state->bw)
+		reg71 = 1;
+	else
+		reg71 = 0;
+	rc = mb86a20s_writereg(state, 0x39, reg71);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x71, state->bw);
+	if (rc < 0)
+		goto err;
+	if (state->subchannel) {
+		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
+		if (rc < 0)
+			goto err;
+	}
+
+	fclk = state->config->fclk;
+	if (!fclk)
+		fclk = 32571428;
+
+	/* Adjust IF frequency to match tuner */
+	if (fe->ops.tuner_ops.get_if_frequency)
+		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
+
+	if (!state->if_freq)
+		state->if_freq = 3300000;
+
+	pll = (((u64)1) << 34) * state->if_freq;
+	do_div(pll, 63 * fclk);
+	pll = (1 << 25) - pll;
+	rc = mb86a20s_writereg(state, 0x28, 0x2a);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
+	if (rc < 0)
+		goto err;
+	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
+		__func__, fclk, state->if_freq, (long long)pll);
+
+	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
+	pll = state->if_freq * 1677721600L;
+	do_div(pll, 1628571429L);
+	rc = mb86a20s_writereg(state, 0x28, 0x20);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
+	if (rc < 0)
+		goto err;
+	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
+		__func__, state->if_freq, (long long)pll);
+
+	if (!state->config->is_serial)
+		regD5 &= ~1;
+
+	rc = mb86a20s_writereg(state, 0x50, 0xd5);
+	if (rc < 0)
+		goto err;
+	rc = mb86a20s_writereg(state, 0x51, regD5);
+	if (rc < 0)
+		goto err;
+
+	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
+	if (rc < 0)
+		goto err;
+
+
+err:
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1);
+
+	if (rc < 0) {
+		state->need_init = true;
+		dev_info(&state->i2c->dev,
+			 "mb86a20s: Init failed. Will try again later\n");
+	} else {
+		state->need_init = false;
+		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
+	}
+	return rc;
+}
+
+static int mb86a20s_set_frontend(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	int rc, if_freq;
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (!c->isdbt_layer_enabled)
+		c->isdbt_layer_enabled = 7;
+
+	if (c->isdbt_layer_enabled == 1)
+		state->bw = MB86A20S_1SEG;
+	else if (c->isdbt_partial_reception)
+		state->bw = MB86A20S_13SEG_PARTIAL;
+	else
+		state->bw = MB86A20S_13SEG;
+
+	if (c->inversion == INVERSION_ON)
+		state->inversion = true;
+	else
+		state->inversion = false;
+
+	if (!c->isdbt_sb_mode) {
+		state->subchannel = 0;
+	} else {
+		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
+			c->isdbt_sb_subchannel = 0;
+
+		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
+	}
+
+	/*
+	 * Gate should already be opened, but it doesn't hurt to
+	 * double-check
+	 */
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1);
+	fe->ops.tuner_ops.set_params(fe);
+
+	if (fe->ops.tuner_ops.get_if_frequency)
+		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
+
+	/*
+	 * Make it more reliable: if, for some reason, the initial
+	 * device initialization doesn't happen, initialize it when
+	 * a SBTVD parameters are adjusted.
+	 *
+	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
+	 * the agc callback logic is not called during DVB attach time,
+	 * causing mb86a20s to not be initialized with Kworld SBTVD.
+	 * So, this hack is needed, in order to make Kworld SBTVD to work.
+	 *
+	 * It is also needed to change the IF after the initial init.
+	 *
+	 * HACK: Always init the frontend when set_frontend is called:
+	 * it was noticed that, on some devices, it fails to lock on a
+	 * different channel. So, it is better to reset everything, even
+	 * wasting some time, than to loose channel lock.
+	 */
+	mb86a20s_initfe(fe);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0);
+
+	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
+	mb86a20s_reset_counters(fe);
+	mb86a20s_stats_not_ready(fe);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1);
+
+	return rc;
+}
+
+static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
+					  enum fe_status *status)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	int rc, status_nr;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0);
+
+	/* Get lock */
+	status_nr = mb86a20s_read_status(fe, status);
+	if (status_nr < 7) {
+		mb86a20s_stats_not_ready(fe);
+		mb86a20s_reset_frontend_cache(fe);
+	}
+	if (status_nr < 0) {
+		dev_err(&state->i2c->dev,
+			"%s: Can't read frontend lock status\n", __func__);
+		rc = status_nr;
+		goto error;
+	}
+
+	/* Get signal strength */
+	rc = mb86a20s_read_signal_strength(fe);
+	if (rc < 0) {
+		dev_err(&state->i2c->dev,
+			"%s: Can't reset VBER registers.\n", __func__);
+		mb86a20s_stats_not_ready(fe);
+		mb86a20s_reset_frontend_cache(fe);
+
+		rc = 0;		/* Status is OK */
+		goto error;
+	}
+
+	if (status_nr >= 7) {
+		/* Get TMCC info*/
+		rc = mb86a20s_get_frontend(fe);
+		if (rc < 0) {
+			dev_err(&state->i2c->dev,
+				"%s: Can't get FE TMCC data.\n", __func__);
+			rc = 0;		/* Status is OK */
+			goto error;
+		}
+
+		/* Get statistics */
+		rc = mb86a20s_get_stats(fe, status_nr);
+		if (rc < 0 && rc != -EBUSY) {
+			dev_err(&state->i2c->dev,
+				"%s: Can't get FE statistics.\n", __func__);
+			rc = 0;
+			goto error;
+		}
+		rc = 0;	/* Don't return EBUSY to userspace */
+	}
+	goto ok;
+
+error:
+	mb86a20s_stats_not_ready(fe);
+
+ok:
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1);
+
+	return rc;
+}
+
+static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
+						    u16 *strength)
+{
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+
+
+	*strength = c->strength.stat[0].uvalue;
+
+	return 0;
+}
+
+static int mb86a20s_tune(struct dvb_frontend *fe,
+			bool re_tune,
+			unsigned int mode_flags,
+			unsigned int *delay,
+			enum fe_status *status)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+	int rc = 0;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	if (re_tune)
+		rc = mb86a20s_set_frontend(fe);
+
+	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
+		mb86a20s_read_status_and_stats(fe, status);
+
+	return rc;
+}
+
+static void mb86a20s_release(struct dvb_frontend *fe)
+{
+	struct mb86a20s_state *state = fe->demodulator_priv;
+
+	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+	kfree(state);
+}
+
+static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
+{
+	return DVBFE_ALGO_HW;
+}
+
+static const struct dvb_frontend_ops mb86a20s_ops;
+
+struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
+				    struct i2c_adapter *i2c)
+{
+	struct mb86a20s_state *state;
+	u8	rev;
+
+	dev_dbg(&i2c->dev, "%s called.\n", __func__);
+
+	/* allocate memory for the internal state */
+	state = kzalloc(sizeof(*state), GFP_KERNEL);
+	if (!state)
+		return NULL;
+
+	/* setup the state */
+	state->config = config;
+	state->i2c = i2c;
+
+	/* create dvb_frontend */
+	memcpy(&state->frontend.ops, &mb86a20s_ops,
+		sizeof(struct dvb_frontend_ops));
+	state->frontend.demodulator_priv = state;
+
+	/* Check if it is a mb86a20s frontend */
+	rev = mb86a20s_readreg(state, 0);
+	if (rev != 0x13) {
+		kfree(state);
+		dev_dbg(&i2c->dev,
+			"Frontend revision %d is unknown - aborting.\n",
+		       rev);
+		return NULL;
+	}
+
+	dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
+	return &state->frontend;
+}
+EXPORT_SYMBOL(mb86a20s_attach);
+
+static const struct dvb_frontend_ops mb86a20s_ops = {
+	.delsys = { SYS_ISDBT },
+	/* Use dib8000 values per default */
+	.info = {
+		.name = "Fujitsu mb86A20s",
+		.caps = FE_CAN_RECOVER  |
+			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
+			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
+			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
+			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
+			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
+		/* Actually, those values depend on the used tuner */
+		.frequency_min_hz =  45 * MHz,
+		.frequency_max_hz = 864 * MHz,
+		.frequency_stepsize_hz = 62500,
+	},
+
+	.release = mb86a20s_release,
+
+	.init = mb86a20s_initfe,
+	.set_frontend = mb86a20s_set_frontend,
+	.read_status = mb86a20s_read_status_and_stats,
+	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
+	.tune = mb86a20s_tune,
+	.get_frontend_algo = mb86a20s_get_frontend_algo,
+};
+
+MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
+MODULE_AUTHOR("Mauro Carvalho Chehab");
+MODULE_LICENSE("GPL");