v4.19.13 snapshot.
diff --git a/drivers/md/raid5-cache.c b/drivers/md/raid5-cache.c
new file mode 100644
index 0000000..e6e925a
--- /dev/null
+++ b/drivers/md/raid5-cache.c
@@ -0,0 +1,3185 @@
+/*
+ * Copyright (C) 2015 Shaohua Li <shli@fb.com>
+ * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/wait.h>
+#include <linux/blkdev.h>
+#include <linux/slab.h>
+#include <linux/raid/md_p.h>
+#include <linux/crc32c.h>
+#include <linux/random.h>
+#include <linux/kthread.h>
+#include <linux/types.h>
+#include "md.h"
+#include "raid5.h"
+#include "md-bitmap.h"
+#include "raid5-log.h"
+
+/*
+ * metadata/data stored in disk with 4k size unit (a block) regardless
+ * underneath hardware sector size. only works with PAGE_SIZE == 4096
+ */
+#define BLOCK_SECTORS (8)
+#define BLOCK_SECTOR_SHIFT (3)
+
+/*
+ * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
+ *
+ * In write through mode, the reclaim runs every log->max_free_space.
+ * This can prevent the recovery scans for too long
+ */
+#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
+#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
+
+/* wake up reclaim thread periodically */
+#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
+/* start flush with these full stripes */
+#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
+/* reclaim stripes in groups */
+#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
+
+/*
+ * We only need 2 bios per I/O unit to make progress, but ensure we
+ * have a few more available to not get too tight.
+ */
+#define R5L_POOL_SIZE	4
+
+static char *r5c_journal_mode_str[] = {"write-through",
+				       "write-back"};
+/*
+ * raid5 cache state machine
+ *
+ * With the RAID cache, each stripe works in two phases:
+ *	- caching phase
+ *	- writing-out phase
+ *
+ * These two phases are controlled by bit STRIPE_R5C_CACHING:
+ *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
+ *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
+ *
+ * When there is no journal, or the journal is in write-through mode,
+ * the stripe is always in writing-out phase.
+ *
+ * For write-back journal, the stripe is sent to caching phase on write
+ * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
+ * the write-out phase by clearing STRIPE_R5C_CACHING.
+ *
+ * Stripes in caching phase do not write the raid disks. Instead, all
+ * writes are committed from the log device. Therefore, a stripe in
+ * caching phase handles writes as:
+ *	- write to log device
+ *	- return IO
+ *
+ * Stripes in writing-out phase handle writes as:
+ *	- calculate parity
+ *	- write pending data and parity to journal
+ *	- write data and parity to raid disks
+ *	- return IO for pending writes
+ */
+
+struct r5l_log {
+	struct md_rdev *rdev;
+
+	u32 uuid_checksum;
+
+	sector_t device_size;		/* log device size, round to
+					 * BLOCK_SECTORS */
+	sector_t max_free_space;	/* reclaim run if free space is at
+					 * this size */
+
+	sector_t last_checkpoint;	/* log tail. where recovery scan
+					 * starts from */
+	u64 last_cp_seq;		/* log tail sequence */
+
+	sector_t log_start;		/* log head. where new data appends */
+	u64 seq;			/* log head sequence */
+
+	sector_t next_checkpoint;
+
+	struct mutex io_mutex;
+	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
+
+	spinlock_t io_list_lock;
+	struct list_head running_ios;	/* io_units which are still running,
+					 * and have not yet been completely
+					 * written to the log */
+	struct list_head io_end_ios;	/* io_units which have been completely
+					 * written to the log but not yet written
+					 * to the RAID */
+	struct list_head flushing_ios;	/* io_units which are waiting for log
+					 * cache flush */
+	struct list_head finished_ios;	/* io_units which settle down in log disk */
+	struct bio flush_bio;
+
+	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
+
+	struct kmem_cache *io_kc;
+	mempool_t io_pool;
+	struct bio_set bs;
+	mempool_t meta_pool;
+
+	struct md_thread *reclaim_thread;
+	unsigned long reclaim_target;	/* number of space that need to be
+					 * reclaimed.  if it's 0, reclaim spaces
+					 * used by io_units which are in
+					 * IO_UNIT_STRIPE_END state (eg, reclaim
+					 * dones't wait for specific io_unit
+					 * switching to IO_UNIT_STRIPE_END
+					 * state) */
+	wait_queue_head_t iounit_wait;
+
+	struct list_head no_space_stripes; /* pending stripes, log has no space */
+	spinlock_t no_space_stripes_lock;
+
+	bool need_cache_flush;
+
+	/* for r5c_cache */
+	enum r5c_journal_mode r5c_journal_mode;
+
+	/* all stripes in r5cache, in the order of seq at sh->log_start */
+	struct list_head stripe_in_journal_list;
+
+	spinlock_t stripe_in_journal_lock;
+	atomic_t stripe_in_journal_count;
+
+	/* to submit async io_units, to fulfill ordering of flush */
+	struct work_struct deferred_io_work;
+	/* to disable write back during in degraded mode */
+	struct work_struct disable_writeback_work;
+
+	/* to for chunk_aligned_read in writeback mode, details below */
+	spinlock_t tree_lock;
+	struct radix_tree_root big_stripe_tree;
+};
+
+/*
+ * Enable chunk_aligned_read() with write back cache.
+ *
+ * Each chunk may contain more than one stripe (for example, a 256kB
+ * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
+ * chunk_aligned_read, these stripes are grouped into one "big_stripe".
+ * For each big_stripe, we count how many stripes of this big_stripe
+ * are in the write back cache. These data are tracked in a radix tree
+ * (big_stripe_tree). We use radix_tree item pointer as the counter.
+ * r5c_tree_index() is used to calculate keys for the radix tree.
+ *
+ * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
+ * big_stripe of each chunk in the tree. If this big_stripe is in the
+ * tree, chunk_aligned_read() aborts. This look up is protected by
+ * rcu_read_lock().
+ *
+ * It is necessary to remember whether a stripe is counted in
+ * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
+ * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
+ * two flags are set, the stripe is counted in big_stripe_tree. This
+ * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
+ * r5c_try_caching_write(); and moving clear_bit of
+ * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
+ * r5c_finish_stripe_write_out().
+ */
+
+/*
+ * radix tree requests lowest 2 bits of data pointer to be 2b'00.
+ * So it is necessary to left shift the counter by 2 bits before using it
+ * as data pointer of the tree.
+ */
+#define R5C_RADIX_COUNT_SHIFT 2
+
+/*
+ * calculate key for big_stripe_tree
+ *
+ * sect: align_bi->bi_iter.bi_sector or sh->sector
+ */
+static inline sector_t r5c_tree_index(struct r5conf *conf,
+				      sector_t sect)
+{
+	sector_t offset;
+
+	offset = sector_div(sect, conf->chunk_sectors);
+	return sect;
+}
+
+/*
+ * an IO range starts from a meta data block and end at the next meta data
+ * block. The io unit's the meta data block tracks data/parity followed it. io
+ * unit is written to log disk with normal write, as we always flush log disk
+ * first and then start move data to raid disks, there is no requirement to
+ * write io unit with FLUSH/FUA
+ */
+struct r5l_io_unit {
+	struct r5l_log *log;
+
+	struct page *meta_page;	/* store meta block */
+	int meta_offset;	/* current offset in meta_page */
+
+	struct bio *current_bio;/* current_bio accepting new data */
+
+	atomic_t pending_stripe;/* how many stripes not flushed to raid */
+	u64 seq;		/* seq number of the metablock */
+	sector_t log_start;	/* where the io_unit starts */
+	sector_t log_end;	/* where the io_unit ends */
+	struct list_head log_sibling; /* log->running_ios */
+	struct list_head stripe_list; /* stripes added to the io_unit */
+
+	int state;
+	bool need_split_bio;
+	struct bio *split_bio;
+
+	unsigned int has_flush:1;		/* include flush request */
+	unsigned int has_fua:1;			/* include fua request */
+	unsigned int has_null_flush:1;		/* include null flush request */
+	unsigned int has_flush_payload:1;	/* include flush payload  */
+	/*
+	 * io isn't sent yet, flush/fua request can only be submitted till it's
+	 * the first IO in running_ios list
+	 */
+	unsigned int io_deferred:1;
+
+	struct bio_list flush_barriers;   /* size == 0 flush bios */
+};
+
+/* r5l_io_unit state */
+enum r5l_io_unit_state {
+	IO_UNIT_RUNNING = 0,	/* accepting new IO */
+	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
+				 * don't accepting new bio */
+	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
+	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
+};
+
+bool r5c_is_writeback(struct r5l_log *log)
+{
+	return (log != NULL &&
+		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
+}
+
+static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
+{
+	start += inc;
+	if (start >= log->device_size)
+		start = start - log->device_size;
+	return start;
+}
+
+static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
+				  sector_t end)
+{
+	if (end >= start)
+		return end - start;
+	else
+		return end + log->device_size - start;
+}
+
+static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
+{
+	sector_t used_size;
+
+	used_size = r5l_ring_distance(log, log->last_checkpoint,
+					log->log_start);
+
+	return log->device_size > used_size + size;
+}
+
+static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
+				    enum r5l_io_unit_state state)
+{
+	if (WARN_ON(io->state >= state))
+		return;
+	io->state = state;
+}
+
+static void
+r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
+{
+	struct bio *wbi, *wbi2;
+
+	wbi = dev->written;
+	dev->written = NULL;
+	while (wbi && wbi->bi_iter.bi_sector <
+	       dev->sector + STRIPE_SECTORS) {
+		wbi2 = r5_next_bio(wbi, dev->sector);
+		md_write_end(conf->mddev);
+		bio_endio(wbi);
+		wbi = wbi2;
+	}
+}
+
+void r5c_handle_cached_data_endio(struct r5conf *conf,
+				  struct stripe_head *sh, int disks)
+{
+	int i;
+
+	for (i = sh->disks; i--; ) {
+		if (sh->dev[i].written) {
+			set_bit(R5_UPTODATE, &sh->dev[i].flags);
+			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
+			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
+					   STRIPE_SECTORS,
+					   !test_bit(STRIPE_DEGRADED, &sh->state),
+					   0);
+		}
+	}
+}
+
+void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
+
+/* Check whether we should flush some stripes to free up stripe cache */
+void r5c_check_stripe_cache_usage(struct r5conf *conf)
+{
+	int total_cached;
+
+	if (!r5c_is_writeback(conf->log))
+		return;
+
+	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
+		atomic_read(&conf->r5c_cached_full_stripes);
+
+	/*
+	 * The following condition is true for either of the following:
+	 *   - stripe cache pressure high:
+	 *          total_cached > 3/4 min_nr_stripes ||
+	 *          empty_inactive_list_nr > 0
+	 *   - stripe cache pressure moderate:
+	 *          total_cached > 1/2 min_nr_stripes
+	 */
+	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
+	    atomic_read(&conf->empty_inactive_list_nr) > 0)
+		r5l_wake_reclaim(conf->log, 0);
+}
+
+/*
+ * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
+ * stripes in the cache
+ */
+void r5c_check_cached_full_stripe(struct r5conf *conf)
+{
+	if (!r5c_is_writeback(conf->log))
+		return;
+
+	/*
+	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
+	 * or a full stripe (chunk size / 4k stripes).
+	 */
+	if (atomic_read(&conf->r5c_cached_full_stripes) >=
+	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
+		conf->chunk_sectors >> STRIPE_SHIFT))
+		r5l_wake_reclaim(conf->log, 0);
+}
+
+/*
+ * Total log space (in sectors) needed to flush all data in cache
+ *
+ * To avoid deadlock due to log space, it is necessary to reserve log
+ * space to flush critical stripes (stripes that occupying log space near
+ * last_checkpoint). This function helps check how much log space is
+ * required to flush all cached stripes.
+ *
+ * To reduce log space requirements, two mechanisms are used to give cache
+ * flush higher priorities:
+ *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
+ *       stripes ALREADY in journal can be flushed w/o pending writes;
+ *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
+ *       can be delayed (r5l_add_no_space_stripe).
+ *
+ * In cache flush, the stripe goes through 1 and then 2. For a stripe that
+ * already passed 1, flushing it requires at most (conf->max_degraded + 1)
+ * pages of journal space. For stripes that has not passed 1, flushing it
+ * requires (conf->raid_disks + 1) pages of journal space. There are at
+ * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
+ * required to flush all cached stripes (in pages) is:
+ *
+ *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
+ *     (group_cnt + 1) * (raid_disks + 1)
+ * or
+ *     (stripe_in_journal_count) * (max_degraded + 1) +
+ *     (group_cnt + 1) * (raid_disks - max_degraded)
+ */
+static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
+{
+	struct r5l_log *log = conf->log;
+
+	if (!r5c_is_writeback(log))
+		return 0;
+
+	return BLOCK_SECTORS *
+		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
+		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
+}
+
+/*
+ * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
+ *
+ * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
+ * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
+ * device is less than 2x of reclaim_required_space.
+ */
+static inline void r5c_update_log_state(struct r5l_log *log)
+{
+	struct r5conf *conf = log->rdev->mddev->private;
+	sector_t free_space;
+	sector_t reclaim_space;
+	bool wake_reclaim = false;
+
+	if (!r5c_is_writeback(log))
+		return;
+
+	free_space = r5l_ring_distance(log, log->log_start,
+				       log->last_checkpoint);
+	reclaim_space = r5c_log_required_to_flush_cache(conf);
+	if (free_space < 2 * reclaim_space)
+		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
+	else {
+		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
+			wake_reclaim = true;
+		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
+	}
+	if (free_space < 3 * reclaim_space)
+		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
+	else
+		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
+
+	if (wake_reclaim)
+		r5l_wake_reclaim(log, 0);
+}
+
+/*
+ * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
+ * This function should only be called in write-back mode.
+ */
+void r5c_make_stripe_write_out(struct stripe_head *sh)
+{
+	struct r5conf *conf = sh->raid_conf;
+	struct r5l_log *log = conf->log;
+
+	BUG_ON(!r5c_is_writeback(log));
+
+	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+	clear_bit(STRIPE_R5C_CACHING, &sh->state);
+
+	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+		atomic_inc(&conf->preread_active_stripes);
+}
+
+static void r5c_handle_data_cached(struct stripe_head *sh)
+{
+	int i;
+
+	for (i = sh->disks; i--; )
+		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
+			set_bit(R5_InJournal, &sh->dev[i].flags);
+			clear_bit(R5_LOCKED, &sh->dev[i].flags);
+		}
+	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
+}
+
+/*
+ * this journal write must contain full parity,
+ * it may also contain some data pages
+ */
+static void r5c_handle_parity_cached(struct stripe_head *sh)
+{
+	int i;
+
+	for (i = sh->disks; i--; )
+		if (test_bit(R5_InJournal, &sh->dev[i].flags))
+			set_bit(R5_Wantwrite, &sh->dev[i].flags);
+}
+
+/*
+ * Setting proper flags after writing (or flushing) data and/or parity to the
+ * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
+ */
+static void r5c_finish_cache_stripe(struct stripe_head *sh)
+{
+	struct r5l_log *log = sh->raid_conf->log;
+
+	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
+		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+		/*
+		 * Set R5_InJournal for parity dev[pd_idx]. This means
+		 * all data AND parity in the journal. For RAID 6, it is
+		 * NOT necessary to set the flag for dev[qd_idx], as the
+		 * two parities are written out together.
+		 */
+		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
+	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
+		r5c_handle_data_cached(sh);
+	} else {
+		r5c_handle_parity_cached(sh);
+		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
+	}
+}
+
+static void r5l_io_run_stripes(struct r5l_io_unit *io)
+{
+	struct stripe_head *sh, *next;
+
+	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
+		list_del_init(&sh->log_list);
+
+		r5c_finish_cache_stripe(sh);
+
+		set_bit(STRIPE_HANDLE, &sh->state);
+		raid5_release_stripe(sh);
+	}
+}
+
+static void r5l_log_run_stripes(struct r5l_log *log)
+{
+	struct r5l_io_unit *io, *next;
+
+	lockdep_assert_held(&log->io_list_lock);
+
+	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
+		/* don't change list order */
+		if (io->state < IO_UNIT_IO_END)
+			break;
+
+		list_move_tail(&io->log_sibling, &log->finished_ios);
+		r5l_io_run_stripes(io);
+	}
+}
+
+static void r5l_move_to_end_ios(struct r5l_log *log)
+{
+	struct r5l_io_unit *io, *next;
+
+	lockdep_assert_held(&log->io_list_lock);
+
+	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
+		/* don't change list order */
+		if (io->state < IO_UNIT_IO_END)
+			break;
+		list_move_tail(&io->log_sibling, &log->io_end_ios);
+	}
+}
+
+static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
+static void r5l_log_endio(struct bio *bio)
+{
+	struct r5l_io_unit *io = bio->bi_private;
+	struct r5l_io_unit *io_deferred;
+	struct r5l_log *log = io->log;
+	unsigned long flags;
+	bool has_null_flush;
+	bool has_flush_payload;
+
+	if (bio->bi_status)
+		md_error(log->rdev->mddev, log->rdev);
+
+	bio_put(bio);
+	mempool_free(io->meta_page, &log->meta_pool);
+
+	spin_lock_irqsave(&log->io_list_lock, flags);
+	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
+
+	/*
+	 * if the io doesn't not have null_flush or flush payload,
+	 * it is not safe to access it after releasing io_list_lock.
+	 * Therefore, it is necessary to check the condition with
+	 * the lock held.
+	 */
+	has_null_flush = io->has_null_flush;
+	has_flush_payload = io->has_flush_payload;
+
+	if (log->need_cache_flush && !list_empty(&io->stripe_list))
+		r5l_move_to_end_ios(log);
+	else
+		r5l_log_run_stripes(log);
+	if (!list_empty(&log->running_ios)) {
+		/*
+		 * FLUSH/FUA io_unit is deferred because of ordering, now we
+		 * can dispatch it
+		 */
+		io_deferred = list_first_entry(&log->running_ios,
+					       struct r5l_io_unit, log_sibling);
+		if (io_deferred->io_deferred)
+			schedule_work(&log->deferred_io_work);
+	}
+
+	spin_unlock_irqrestore(&log->io_list_lock, flags);
+
+	if (log->need_cache_flush)
+		md_wakeup_thread(log->rdev->mddev->thread);
+
+	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
+	if (has_null_flush) {
+		struct bio *bi;
+
+		WARN_ON(bio_list_empty(&io->flush_barriers));
+		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
+			bio_endio(bi);
+			if (atomic_dec_and_test(&io->pending_stripe)) {
+				__r5l_stripe_write_finished(io);
+				return;
+			}
+		}
+	}
+	/* decrease pending_stripe for flush payload */
+	if (has_flush_payload)
+		if (atomic_dec_and_test(&io->pending_stripe))
+			__r5l_stripe_write_finished(io);
+}
+
+static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&log->io_list_lock, flags);
+	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
+	spin_unlock_irqrestore(&log->io_list_lock, flags);
+
+	/*
+	 * In case of journal device failures, submit_bio will get error
+	 * and calls endio, then active stripes will continue write
+	 * process. Therefore, it is not necessary to check Faulty bit
+	 * of journal device here.
+	 *
+	 * We can't check split_bio after current_bio is submitted. If
+	 * io->split_bio is null, after current_bio is submitted, current_bio
+	 * might already be completed and the io_unit is freed. We submit
+	 * split_bio first to avoid the issue.
+	 */
+	if (io->split_bio) {
+		if (io->has_flush)
+			io->split_bio->bi_opf |= REQ_PREFLUSH;
+		if (io->has_fua)
+			io->split_bio->bi_opf |= REQ_FUA;
+		submit_bio(io->split_bio);
+	}
+
+	if (io->has_flush)
+		io->current_bio->bi_opf |= REQ_PREFLUSH;
+	if (io->has_fua)
+		io->current_bio->bi_opf |= REQ_FUA;
+	submit_bio(io->current_bio);
+}
+
+/* deferred io_unit will be dispatched here */
+static void r5l_submit_io_async(struct work_struct *work)
+{
+	struct r5l_log *log = container_of(work, struct r5l_log,
+					   deferred_io_work);
+	struct r5l_io_unit *io = NULL;
+	unsigned long flags;
+
+	spin_lock_irqsave(&log->io_list_lock, flags);
+	if (!list_empty(&log->running_ios)) {
+		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
+				      log_sibling);
+		if (!io->io_deferred)
+			io = NULL;
+		else
+			io->io_deferred = 0;
+	}
+	spin_unlock_irqrestore(&log->io_list_lock, flags);
+	if (io)
+		r5l_do_submit_io(log, io);
+}
+
+static void r5c_disable_writeback_async(struct work_struct *work)
+{
+	struct r5l_log *log = container_of(work, struct r5l_log,
+					   disable_writeback_work);
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5conf *conf = mddev->private;
+	int locked = 0;
+
+	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+		return;
+	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
+		mdname(mddev));
+
+	/* wait superblock change before suspend */
+	wait_event(mddev->sb_wait,
+		   conf->log == NULL ||
+		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
+		    (locked = mddev_trylock(mddev))));
+	if (locked) {
+		mddev_suspend(mddev);
+		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
+		mddev_resume(mddev);
+		mddev_unlock(mddev);
+	}
+}
+
+static void r5l_submit_current_io(struct r5l_log *log)
+{
+	struct r5l_io_unit *io = log->current_io;
+	struct r5l_meta_block *block;
+	unsigned long flags;
+	u32 crc;
+	bool do_submit = true;
+
+	if (!io)
+		return;
+
+	block = page_address(io->meta_page);
+	block->meta_size = cpu_to_le32(io->meta_offset);
+	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
+	block->checksum = cpu_to_le32(crc);
+
+	log->current_io = NULL;
+	spin_lock_irqsave(&log->io_list_lock, flags);
+	if (io->has_flush || io->has_fua) {
+		if (io != list_first_entry(&log->running_ios,
+					   struct r5l_io_unit, log_sibling)) {
+			io->io_deferred = 1;
+			do_submit = false;
+		}
+	}
+	spin_unlock_irqrestore(&log->io_list_lock, flags);
+	if (do_submit)
+		r5l_do_submit_io(log, io);
+}
+
+static struct bio *r5l_bio_alloc(struct r5l_log *log)
+{
+	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs);
+
+	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+	bio_set_dev(bio, log->rdev->bdev);
+	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
+
+	return bio;
+}
+
+static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
+{
+	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
+
+	r5c_update_log_state(log);
+	/*
+	 * If we filled up the log device start from the beginning again,
+	 * which will require a new bio.
+	 *
+	 * Note: for this to work properly the log size needs to me a multiple
+	 * of BLOCK_SECTORS.
+	 */
+	if (log->log_start == 0)
+		io->need_split_bio = true;
+
+	io->log_end = log->log_start;
+}
+
+static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
+{
+	struct r5l_io_unit *io;
+	struct r5l_meta_block *block;
+
+	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
+	if (!io)
+		return NULL;
+	memset(io, 0, sizeof(*io));
+
+	io->log = log;
+	INIT_LIST_HEAD(&io->log_sibling);
+	INIT_LIST_HEAD(&io->stripe_list);
+	bio_list_init(&io->flush_barriers);
+	io->state = IO_UNIT_RUNNING;
+
+	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
+	block = page_address(io->meta_page);
+	clear_page(block);
+	block->magic = cpu_to_le32(R5LOG_MAGIC);
+	block->version = R5LOG_VERSION;
+	block->seq = cpu_to_le64(log->seq);
+	block->position = cpu_to_le64(log->log_start);
+
+	io->log_start = log->log_start;
+	io->meta_offset = sizeof(struct r5l_meta_block);
+	io->seq = log->seq++;
+
+	io->current_bio = r5l_bio_alloc(log);
+	io->current_bio->bi_end_io = r5l_log_endio;
+	io->current_bio->bi_private = io;
+	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
+
+	r5_reserve_log_entry(log, io);
+
+	spin_lock_irq(&log->io_list_lock);
+	list_add_tail(&io->log_sibling, &log->running_ios);
+	spin_unlock_irq(&log->io_list_lock);
+
+	return io;
+}
+
+static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
+{
+	if (log->current_io &&
+	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
+		r5l_submit_current_io(log);
+
+	if (!log->current_io) {
+		log->current_io = r5l_new_meta(log);
+		if (!log->current_io)
+			return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
+				    sector_t location,
+				    u32 checksum1, u32 checksum2,
+				    bool checksum2_valid)
+{
+	struct r5l_io_unit *io = log->current_io;
+	struct r5l_payload_data_parity *payload;
+
+	payload = page_address(io->meta_page) + io->meta_offset;
+	payload->header.type = cpu_to_le16(type);
+	payload->header.flags = cpu_to_le16(0);
+	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
+				    (PAGE_SHIFT - 9));
+	payload->location = cpu_to_le64(location);
+	payload->checksum[0] = cpu_to_le32(checksum1);
+	if (checksum2_valid)
+		payload->checksum[1] = cpu_to_le32(checksum2);
+
+	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
+		sizeof(__le32) * (1 + !!checksum2_valid);
+}
+
+static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
+{
+	struct r5l_io_unit *io = log->current_io;
+
+	if (io->need_split_bio) {
+		BUG_ON(io->split_bio);
+		io->split_bio = io->current_bio;
+		io->current_bio = r5l_bio_alloc(log);
+		bio_chain(io->current_bio, io->split_bio);
+		io->need_split_bio = false;
+	}
+
+	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
+		BUG();
+
+	r5_reserve_log_entry(log, io);
+}
+
+static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
+{
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5conf *conf = mddev->private;
+	struct r5l_io_unit *io;
+	struct r5l_payload_flush *payload;
+	int meta_size;
+
+	/*
+	 * payload_flush requires extra writes to the journal.
+	 * To avoid handling the extra IO in quiesce, just skip
+	 * flush_payload
+	 */
+	if (conf->quiesce)
+		return;
+
+	mutex_lock(&log->io_mutex);
+	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
+
+	if (r5l_get_meta(log, meta_size)) {
+		mutex_unlock(&log->io_mutex);
+		return;
+	}
+
+	/* current implementation is one stripe per flush payload */
+	io = log->current_io;
+	payload = page_address(io->meta_page) + io->meta_offset;
+	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
+	payload->header.flags = cpu_to_le16(0);
+	payload->size = cpu_to_le32(sizeof(__le64));
+	payload->flush_stripes[0] = cpu_to_le64(sect);
+	io->meta_offset += meta_size;
+	/* multiple flush payloads count as one pending_stripe */
+	if (!io->has_flush_payload) {
+		io->has_flush_payload = 1;
+		atomic_inc(&io->pending_stripe);
+	}
+	mutex_unlock(&log->io_mutex);
+}
+
+static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
+			   int data_pages, int parity_pages)
+{
+	int i;
+	int meta_size;
+	int ret;
+	struct r5l_io_unit *io;
+
+	meta_size =
+		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
+		 * data_pages) +
+		sizeof(struct r5l_payload_data_parity) +
+		sizeof(__le32) * parity_pages;
+
+	ret = r5l_get_meta(log, meta_size);
+	if (ret)
+		return ret;
+
+	io = log->current_io;
+
+	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
+		io->has_flush = 1;
+
+	for (i = 0; i < sh->disks; i++) {
+		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
+		    test_bit(R5_InJournal, &sh->dev[i].flags))
+			continue;
+		if (i == sh->pd_idx || i == sh->qd_idx)
+			continue;
+		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
+		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
+			io->has_fua = 1;
+			/*
+			 * we need to flush journal to make sure recovery can
+			 * reach the data with fua flag
+			 */
+			io->has_flush = 1;
+		}
+		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
+					raid5_compute_blocknr(sh, i, 0),
+					sh->dev[i].log_checksum, 0, false);
+		r5l_append_payload_page(log, sh->dev[i].page);
+	}
+
+	if (parity_pages == 2) {
+		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
+					sh->sector, sh->dev[sh->pd_idx].log_checksum,
+					sh->dev[sh->qd_idx].log_checksum, true);
+		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
+		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
+	} else if (parity_pages == 1) {
+		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
+					sh->sector, sh->dev[sh->pd_idx].log_checksum,
+					0, false);
+		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
+	} else  /* Just writing data, not parity, in caching phase */
+		BUG_ON(parity_pages != 0);
+
+	list_add_tail(&sh->log_list, &io->stripe_list);
+	atomic_inc(&io->pending_stripe);
+	sh->log_io = io;
+
+	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+		return 0;
+
+	if (sh->log_start == MaxSector) {
+		BUG_ON(!list_empty(&sh->r5c));
+		sh->log_start = io->log_start;
+		spin_lock_irq(&log->stripe_in_journal_lock);
+		list_add_tail(&sh->r5c,
+			      &log->stripe_in_journal_list);
+		spin_unlock_irq(&log->stripe_in_journal_lock);
+		atomic_inc(&log->stripe_in_journal_count);
+	}
+	return 0;
+}
+
+/* add stripe to no_space_stripes, and then wake up reclaim */
+static inline void r5l_add_no_space_stripe(struct r5l_log *log,
+					   struct stripe_head *sh)
+{
+	spin_lock(&log->no_space_stripes_lock);
+	list_add_tail(&sh->log_list, &log->no_space_stripes);
+	spin_unlock(&log->no_space_stripes_lock);
+}
+
+/*
+ * running in raid5d, where reclaim could wait for raid5d too (when it flushes
+ * data from log to raid disks), so we shouldn't wait for reclaim here
+ */
+int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int write_disks = 0;
+	int data_pages, parity_pages;
+	int reserve;
+	int i;
+	int ret = 0;
+	bool wake_reclaim = false;
+
+	if (!log)
+		return -EAGAIN;
+	/* Don't support stripe batch */
+	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
+	    test_bit(STRIPE_SYNCING, &sh->state)) {
+		/* the stripe is written to log, we start writing it to raid */
+		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
+		return -EAGAIN;
+	}
+
+	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+
+	for (i = 0; i < sh->disks; i++) {
+		void *addr;
+
+		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
+		    test_bit(R5_InJournal, &sh->dev[i].flags))
+			continue;
+
+		write_disks++;
+		/* checksum is already calculated in last run */
+		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
+			continue;
+		addr = kmap_atomic(sh->dev[i].page);
+		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
+						    addr, PAGE_SIZE);
+		kunmap_atomic(addr);
+	}
+	parity_pages = 1 + !!(sh->qd_idx >= 0);
+	data_pages = write_disks - parity_pages;
+
+	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
+	/*
+	 * The stripe must enter state machine again to finish the write, so
+	 * don't delay.
+	 */
+	clear_bit(STRIPE_DELAYED, &sh->state);
+	atomic_inc(&sh->count);
+
+	mutex_lock(&log->io_mutex);
+	/* meta + data */
+	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
+
+	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
+		if (!r5l_has_free_space(log, reserve)) {
+			r5l_add_no_space_stripe(log, sh);
+			wake_reclaim = true;
+		} else {
+			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
+			if (ret) {
+				spin_lock_irq(&log->io_list_lock);
+				list_add_tail(&sh->log_list,
+					      &log->no_mem_stripes);
+				spin_unlock_irq(&log->io_list_lock);
+			}
+		}
+	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
+		/*
+		 * log space critical, do not process stripes that are
+		 * not in cache yet (sh->log_start == MaxSector).
+		 */
+		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
+		    sh->log_start == MaxSector) {
+			r5l_add_no_space_stripe(log, sh);
+			wake_reclaim = true;
+			reserve = 0;
+		} else if (!r5l_has_free_space(log, reserve)) {
+			if (sh->log_start == log->last_checkpoint)
+				BUG();
+			else
+				r5l_add_no_space_stripe(log, sh);
+		} else {
+			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
+			if (ret) {
+				spin_lock_irq(&log->io_list_lock);
+				list_add_tail(&sh->log_list,
+					      &log->no_mem_stripes);
+				spin_unlock_irq(&log->io_list_lock);
+			}
+		}
+	}
+
+	mutex_unlock(&log->io_mutex);
+	if (wake_reclaim)
+		r5l_wake_reclaim(log, reserve);
+	return 0;
+}
+
+void r5l_write_stripe_run(struct r5l_log *log)
+{
+	if (!log)
+		return;
+	mutex_lock(&log->io_mutex);
+	r5l_submit_current_io(log);
+	mutex_unlock(&log->io_mutex);
+}
+
+int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
+{
+	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
+		/*
+		 * in write through (journal only)
+		 * we flush log disk cache first, then write stripe data to
+		 * raid disks. So if bio is finished, the log disk cache is
+		 * flushed already. The recovery guarantees we can recovery
+		 * the bio from log disk, so we don't need to flush again
+		 */
+		if (bio->bi_iter.bi_size == 0) {
+			bio_endio(bio);
+			return 0;
+		}
+		bio->bi_opf &= ~REQ_PREFLUSH;
+	} else {
+		/* write back (with cache) */
+		if (bio->bi_iter.bi_size == 0) {
+			mutex_lock(&log->io_mutex);
+			r5l_get_meta(log, 0);
+			bio_list_add(&log->current_io->flush_barriers, bio);
+			log->current_io->has_flush = 1;
+			log->current_io->has_null_flush = 1;
+			atomic_inc(&log->current_io->pending_stripe);
+			r5l_submit_current_io(log);
+			mutex_unlock(&log->io_mutex);
+			return 0;
+		}
+	}
+	return -EAGAIN;
+}
+
+/* This will run after log space is reclaimed */
+static void r5l_run_no_space_stripes(struct r5l_log *log)
+{
+	struct stripe_head *sh;
+
+	spin_lock(&log->no_space_stripes_lock);
+	while (!list_empty(&log->no_space_stripes)) {
+		sh = list_first_entry(&log->no_space_stripes,
+				      struct stripe_head, log_list);
+		list_del_init(&sh->log_list);
+		set_bit(STRIPE_HANDLE, &sh->state);
+		raid5_release_stripe(sh);
+	}
+	spin_unlock(&log->no_space_stripes_lock);
+}
+
+/*
+ * calculate new last_checkpoint
+ * for write through mode, returns log->next_checkpoint
+ * for write back, returns log_start of first sh in stripe_in_journal_list
+ */
+static sector_t r5c_calculate_new_cp(struct r5conf *conf)
+{
+	struct stripe_head *sh;
+	struct r5l_log *log = conf->log;
+	sector_t new_cp;
+	unsigned long flags;
+
+	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+		return log->next_checkpoint;
+
+	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
+	if (list_empty(&conf->log->stripe_in_journal_list)) {
+		/* all stripes flushed */
+		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
+		return log->next_checkpoint;
+	}
+	sh = list_first_entry(&conf->log->stripe_in_journal_list,
+			      struct stripe_head, r5c);
+	new_cp = sh->log_start;
+	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
+	return new_cp;
+}
+
+static sector_t r5l_reclaimable_space(struct r5l_log *log)
+{
+	struct r5conf *conf = log->rdev->mddev->private;
+
+	return r5l_ring_distance(log, log->last_checkpoint,
+				 r5c_calculate_new_cp(conf));
+}
+
+static void r5l_run_no_mem_stripe(struct r5l_log *log)
+{
+	struct stripe_head *sh;
+
+	lockdep_assert_held(&log->io_list_lock);
+
+	if (!list_empty(&log->no_mem_stripes)) {
+		sh = list_first_entry(&log->no_mem_stripes,
+				      struct stripe_head, log_list);
+		list_del_init(&sh->log_list);
+		set_bit(STRIPE_HANDLE, &sh->state);
+		raid5_release_stripe(sh);
+	}
+}
+
+static bool r5l_complete_finished_ios(struct r5l_log *log)
+{
+	struct r5l_io_unit *io, *next;
+	bool found = false;
+
+	lockdep_assert_held(&log->io_list_lock);
+
+	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
+		/* don't change list order */
+		if (io->state < IO_UNIT_STRIPE_END)
+			break;
+
+		log->next_checkpoint = io->log_start;
+
+		list_del(&io->log_sibling);
+		mempool_free(io, &log->io_pool);
+		r5l_run_no_mem_stripe(log);
+
+		found = true;
+	}
+
+	return found;
+}
+
+static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
+{
+	struct r5l_log *log = io->log;
+	struct r5conf *conf = log->rdev->mddev->private;
+	unsigned long flags;
+
+	spin_lock_irqsave(&log->io_list_lock, flags);
+	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
+
+	if (!r5l_complete_finished_ios(log)) {
+		spin_unlock_irqrestore(&log->io_list_lock, flags);
+		return;
+	}
+
+	if (r5l_reclaimable_space(log) > log->max_free_space ||
+	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
+		r5l_wake_reclaim(log, 0);
+
+	spin_unlock_irqrestore(&log->io_list_lock, flags);
+	wake_up(&log->iounit_wait);
+}
+
+void r5l_stripe_write_finished(struct stripe_head *sh)
+{
+	struct r5l_io_unit *io;
+
+	io = sh->log_io;
+	sh->log_io = NULL;
+
+	if (io && atomic_dec_and_test(&io->pending_stripe))
+		__r5l_stripe_write_finished(io);
+}
+
+static void r5l_log_flush_endio(struct bio *bio)
+{
+	struct r5l_log *log = container_of(bio, struct r5l_log,
+		flush_bio);
+	unsigned long flags;
+	struct r5l_io_unit *io;
+
+	if (bio->bi_status)
+		md_error(log->rdev->mddev, log->rdev);
+
+	spin_lock_irqsave(&log->io_list_lock, flags);
+	list_for_each_entry(io, &log->flushing_ios, log_sibling)
+		r5l_io_run_stripes(io);
+	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
+	spin_unlock_irqrestore(&log->io_list_lock, flags);
+}
+
+/*
+ * Starting dispatch IO to raid.
+ * io_unit(meta) consists of a log. There is one situation we want to avoid. A
+ * broken meta in the middle of a log causes recovery can't find meta at the
+ * head of log. If operations require meta at the head persistent in log, we
+ * must make sure meta before it persistent in log too. A case is:
+ *
+ * stripe data/parity is in log, we start write stripe to raid disks. stripe
+ * data/parity must be persistent in log before we do the write to raid disks.
+ *
+ * The solution is we restrictly maintain io_unit list order. In this case, we
+ * only write stripes of an io_unit to raid disks till the io_unit is the first
+ * one whose data/parity is in log.
+ */
+void r5l_flush_stripe_to_raid(struct r5l_log *log)
+{
+	bool do_flush;
+
+	if (!log || !log->need_cache_flush)
+		return;
+
+	spin_lock_irq(&log->io_list_lock);
+	/* flush bio is running */
+	if (!list_empty(&log->flushing_ios)) {
+		spin_unlock_irq(&log->io_list_lock);
+		return;
+	}
+	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
+	do_flush = !list_empty(&log->flushing_ios);
+	spin_unlock_irq(&log->io_list_lock);
+
+	if (!do_flush)
+		return;
+	bio_reset(&log->flush_bio);
+	bio_set_dev(&log->flush_bio, log->rdev->bdev);
+	log->flush_bio.bi_end_io = r5l_log_flush_endio;
+	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
+	submit_bio(&log->flush_bio);
+}
+
+static void r5l_write_super(struct r5l_log *log, sector_t cp);
+static void r5l_write_super_and_discard_space(struct r5l_log *log,
+	sector_t end)
+{
+	struct block_device *bdev = log->rdev->bdev;
+	struct mddev *mddev;
+
+	r5l_write_super(log, end);
+
+	if (!blk_queue_discard(bdev_get_queue(bdev)))
+		return;
+
+	mddev = log->rdev->mddev;
+	/*
+	 * Discard could zero data, so before discard we must make sure
+	 * superblock is updated to new log tail. Updating superblock (either
+	 * directly call md_update_sb() or depend on md thread) must hold
+	 * reconfig mutex. On the other hand, raid5_quiesce is called with
+	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
+	 * for all IO finish, hence waitting for reclaim thread, while reclaim
+	 * thread is calling this function and waitting for reconfig mutex. So
+	 * there is a deadlock. We workaround this issue with a trylock.
+	 * FIXME: we could miss discard if we can't take reconfig mutex
+	 */
+	set_mask_bits(&mddev->sb_flags, 0,
+		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+	if (!mddev_trylock(mddev))
+		return;
+	md_update_sb(mddev, 1);
+	mddev_unlock(mddev);
+
+	/* discard IO error really doesn't matter, ignore it */
+	if (log->last_checkpoint < end) {
+		blkdev_issue_discard(bdev,
+				log->last_checkpoint + log->rdev->data_offset,
+				end - log->last_checkpoint, GFP_NOIO, 0);
+	} else {
+		blkdev_issue_discard(bdev,
+				log->last_checkpoint + log->rdev->data_offset,
+				log->device_size - log->last_checkpoint,
+				GFP_NOIO, 0);
+		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
+				GFP_NOIO, 0);
+	}
+}
+
+/*
+ * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
+ * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
+ *
+ * must hold conf->device_lock
+ */
+static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
+{
+	BUG_ON(list_empty(&sh->lru));
+	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
+
+	/*
+	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
+	 * raid5_release_stripe() while holding conf->device_lock
+	 */
+	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
+	lockdep_assert_held(&conf->device_lock);
+
+	list_del_init(&sh->lru);
+	atomic_inc(&sh->count);
+
+	set_bit(STRIPE_HANDLE, &sh->state);
+	atomic_inc(&conf->active_stripes);
+	r5c_make_stripe_write_out(sh);
+
+	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
+		atomic_inc(&conf->r5c_flushing_partial_stripes);
+	else
+		atomic_inc(&conf->r5c_flushing_full_stripes);
+	raid5_release_stripe(sh);
+}
+
+/*
+ * if num == 0, flush all full stripes
+ * if num > 0, flush all full stripes. If less than num full stripes are
+ *             flushed, flush some partial stripes until totally num stripes are
+ *             flushed or there is no more cached stripes.
+ */
+void r5c_flush_cache(struct r5conf *conf, int num)
+{
+	int count;
+	struct stripe_head *sh, *next;
+
+	lockdep_assert_held(&conf->device_lock);
+	if (!conf->log)
+		return;
+
+	count = 0;
+	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
+		r5c_flush_stripe(conf, sh);
+		count++;
+	}
+
+	if (count >= num)
+		return;
+	list_for_each_entry_safe(sh, next,
+				 &conf->r5c_partial_stripe_list, lru) {
+		r5c_flush_stripe(conf, sh);
+		if (++count >= num)
+			break;
+	}
+}
+
+static void r5c_do_reclaim(struct r5conf *conf)
+{
+	struct r5l_log *log = conf->log;
+	struct stripe_head *sh;
+	int count = 0;
+	unsigned long flags;
+	int total_cached;
+	int stripes_to_flush;
+	int flushing_partial, flushing_full;
+
+	if (!r5c_is_writeback(log))
+		return;
+
+	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
+	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
+	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
+		atomic_read(&conf->r5c_cached_full_stripes) -
+		flushing_full - flushing_partial;
+
+	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
+	    atomic_read(&conf->empty_inactive_list_nr) > 0)
+		/*
+		 * if stripe cache pressure high, flush all full stripes and
+		 * some partial stripes
+		 */
+		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
+	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
+		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
+		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
+		/*
+		 * if stripe cache pressure moderate, or if there is many full
+		 * stripes,flush all full stripes
+		 */
+		stripes_to_flush = 0;
+	else
+		/* no need to flush */
+		stripes_to_flush = -1;
+
+	if (stripes_to_flush >= 0) {
+		spin_lock_irqsave(&conf->device_lock, flags);
+		r5c_flush_cache(conf, stripes_to_flush);
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	}
+
+	/* if log space is tight, flush stripes on stripe_in_journal_list */
+	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
+		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
+		spin_lock(&conf->device_lock);
+		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
+			/*
+			 * stripes on stripe_in_journal_list could be in any
+			 * state of the stripe_cache state machine. In this
+			 * case, we only want to flush stripe on
+			 * r5c_cached_full/partial_stripes. The following
+			 * condition makes sure the stripe is on one of the
+			 * two lists.
+			 */
+			if (!list_empty(&sh->lru) &&
+			    !test_bit(STRIPE_HANDLE, &sh->state) &&
+			    atomic_read(&sh->count) == 0) {
+				r5c_flush_stripe(conf, sh);
+				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
+					break;
+			}
+		}
+		spin_unlock(&conf->device_lock);
+		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
+	}
+
+	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
+		r5l_run_no_space_stripes(log);
+
+	md_wakeup_thread(conf->mddev->thread);
+}
+
+static void r5l_do_reclaim(struct r5l_log *log)
+{
+	struct r5conf *conf = log->rdev->mddev->private;
+	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
+	sector_t reclaimable;
+	sector_t next_checkpoint;
+	bool write_super;
+
+	spin_lock_irq(&log->io_list_lock);
+	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
+		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
+	/*
+	 * move proper io_unit to reclaim list. We should not change the order.
+	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
+	 * shouldn't reuse space of an unreclaimable io_unit
+	 */
+	while (1) {
+		reclaimable = r5l_reclaimable_space(log);
+		if (reclaimable >= reclaim_target ||
+		    (list_empty(&log->running_ios) &&
+		     list_empty(&log->io_end_ios) &&
+		     list_empty(&log->flushing_ios) &&
+		     list_empty(&log->finished_ios)))
+			break;
+
+		md_wakeup_thread(log->rdev->mddev->thread);
+		wait_event_lock_irq(log->iounit_wait,
+				    r5l_reclaimable_space(log) > reclaimable,
+				    log->io_list_lock);
+	}
+
+	next_checkpoint = r5c_calculate_new_cp(conf);
+	spin_unlock_irq(&log->io_list_lock);
+
+	if (reclaimable == 0 || !write_super)
+		return;
+
+	/*
+	 * write_super will flush cache of each raid disk. We must write super
+	 * here, because the log area might be reused soon and we don't want to
+	 * confuse recovery
+	 */
+	r5l_write_super_and_discard_space(log, next_checkpoint);
+
+	mutex_lock(&log->io_mutex);
+	log->last_checkpoint = next_checkpoint;
+	r5c_update_log_state(log);
+	mutex_unlock(&log->io_mutex);
+
+	r5l_run_no_space_stripes(log);
+}
+
+static void r5l_reclaim_thread(struct md_thread *thread)
+{
+	struct mddev *mddev = thread->mddev;
+	struct r5conf *conf = mddev->private;
+	struct r5l_log *log = conf->log;
+
+	if (!log)
+		return;
+	r5c_do_reclaim(conf);
+	r5l_do_reclaim(log);
+}
+
+void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
+{
+	unsigned long target;
+	unsigned long new = (unsigned long)space; /* overflow in theory */
+
+	if (!log)
+		return;
+	do {
+		target = log->reclaim_target;
+		if (new < target)
+			return;
+	} while (cmpxchg(&log->reclaim_target, target, new) != target);
+	md_wakeup_thread(log->reclaim_thread);
+}
+
+void r5l_quiesce(struct r5l_log *log, int quiesce)
+{
+	struct mddev *mddev;
+
+	if (quiesce) {
+		/* make sure r5l_write_super_and_discard_space exits */
+		mddev = log->rdev->mddev;
+		wake_up(&mddev->sb_wait);
+		kthread_park(log->reclaim_thread->tsk);
+		r5l_wake_reclaim(log, MaxSector);
+		r5l_do_reclaim(log);
+	} else
+		kthread_unpark(log->reclaim_thread->tsk);
+}
+
+bool r5l_log_disk_error(struct r5conf *conf)
+{
+	struct r5l_log *log;
+	bool ret;
+	/* don't allow write if journal disk is missing */
+	rcu_read_lock();
+	log = rcu_dereference(conf->log);
+
+	if (!log)
+		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
+	else
+		ret = test_bit(Faulty, &log->rdev->flags);
+	rcu_read_unlock();
+	return ret;
+}
+
+#define R5L_RECOVERY_PAGE_POOL_SIZE 256
+
+struct r5l_recovery_ctx {
+	struct page *meta_page;		/* current meta */
+	sector_t meta_total_blocks;	/* total size of current meta and data */
+	sector_t pos;			/* recovery position */
+	u64 seq;			/* recovery position seq */
+	int data_parity_stripes;	/* number of data_parity stripes */
+	int data_only_stripes;		/* number of data_only stripes */
+	struct list_head cached_list;
+
+	/*
+	 * read ahead page pool (ra_pool)
+	 * in recovery, log is read sequentially. It is not efficient to
+	 * read every page with sync_page_io(). The read ahead page pool
+	 * reads multiple pages with one IO, so further log read can
+	 * just copy data from the pool.
+	 */
+	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
+	sector_t pool_offset;	/* offset of first page in the pool */
+	int total_pages;	/* total allocated pages */
+	int valid_pages;	/* pages with valid data */
+	struct bio *ra_bio;	/* bio to do the read ahead */
+};
+
+static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
+					    struct r5l_recovery_ctx *ctx)
+{
+	struct page *page;
+
+	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs);
+	if (!ctx->ra_bio)
+		return -ENOMEM;
+
+	ctx->valid_pages = 0;
+	ctx->total_pages = 0;
+	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
+		page = alloc_page(GFP_KERNEL);
+
+		if (!page)
+			break;
+		ctx->ra_pool[ctx->total_pages] = page;
+		ctx->total_pages += 1;
+	}
+
+	if (ctx->total_pages == 0) {
+		bio_put(ctx->ra_bio);
+		return -ENOMEM;
+	}
+
+	ctx->pool_offset = 0;
+	return 0;
+}
+
+static void r5l_recovery_free_ra_pool(struct r5l_log *log,
+					struct r5l_recovery_ctx *ctx)
+{
+	int i;
+
+	for (i = 0; i < ctx->total_pages; ++i)
+		put_page(ctx->ra_pool[i]);
+	bio_put(ctx->ra_bio);
+}
+
+/*
+ * fetch ctx->valid_pages pages from offset
+ * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
+ * However, if the offset is close to the end of the journal device,
+ * ctx->valid_pages could be smaller than ctx->total_pages
+ */
+static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
+				      struct r5l_recovery_ctx *ctx,
+				      sector_t offset)
+{
+	bio_reset(ctx->ra_bio);
+	bio_set_dev(ctx->ra_bio, log->rdev->bdev);
+	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
+	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
+
+	ctx->valid_pages = 0;
+	ctx->pool_offset = offset;
+
+	while (ctx->valid_pages < ctx->total_pages) {
+		bio_add_page(ctx->ra_bio,
+			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
+		ctx->valid_pages += 1;
+
+		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
+
+		if (offset == 0)  /* reached end of the device */
+			break;
+	}
+
+	return submit_bio_wait(ctx->ra_bio);
+}
+
+/*
+ * try read a page from the read ahead page pool, if the page is not in the
+ * pool, call r5l_recovery_fetch_ra_pool
+ */
+static int r5l_recovery_read_page(struct r5l_log *log,
+				  struct r5l_recovery_ctx *ctx,
+				  struct page *page,
+				  sector_t offset)
+{
+	int ret;
+
+	if (offset < ctx->pool_offset ||
+	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
+		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
+		if (ret)
+			return ret;
+	}
+
+	BUG_ON(offset < ctx->pool_offset ||
+	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
+
+	memcpy(page_address(page),
+	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
+					 BLOCK_SECTOR_SHIFT]),
+	       PAGE_SIZE);
+	return 0;
+}
+
+static int r5l_recovery_read_meta_block(struct r5l_log *log,
+					struct r5l_recovery_ctx *ctx)
+{
+	struct page *page = ctx->meta_page;
+	struct r5l_meta_block *mb;
+	u32 crc, stored_crc;
+	int ret;
+
+	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
+	if (ret != 0)
+		return ret;
+
+	mb = page_address(page);
+	stored_crc = le32_to_cpu(mb->checksum);
+	mb->checksum = 0;
+
+	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
+	    le64_to_cpu(mb->seq) != ctx->seq ||
+	    mb->version != R5LOG_VERSION ||
+	    le64_to_cpu(mb->position) != ctx->pos)
+		return -EINVAL;
+
+	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
+	if (stored_crc != crc)
+		return -EINVAL;
+
+	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
+		return -EINVAL;
+
+	ctx->meta_total_blocks = BLOCK_SECTORS;
+
+	return 0;
+}
+
+static void
+r5l_recovery_create_empty_meta_block(struct r5l_log *log,
+				     struct page *page,
+				     sector_t pos, u64 seq)
+{
+	struct r5l_meta_block *mb;
+
+	mb = page_address(page);
+	clear_page(mb);
+	mb->magic = cpu_to_le32(R5LOG_MAGIC);
+	mb->version = R5LOG_VERSION;
+	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
+	mb->seq = cpu_to_le64(seq);
+	mb->position = cpu_to_le64(pos);
+}
+
+static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
+					  u64 seq)
+{
+	struct page *page;
+	struct r5l_meta_block *mb;
+
+	page = alloc_page(GFP_KERNEL);
+	if (!page)
+		return -ENOMEM;
+	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
+	mb = page_address(page);
+	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
+					     mb, PAGE_SIZE));
+	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
+			  REQ_SYNC | REQ_FUA, false)) {
+		__free_page(page);
+		return -EIO;
+	}
+	__free_page(page);
+	return 0;
+}
+
+/*
+ * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
+ * to mark valid (potentially not flushed) data in the journal.
+ *
+ * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
+ * so there should not be any mismatch here.
+ */
+static void r5l_recovery_load_data(struct r5l_log *log,
+				   struct stripe_head *sh,
+				   struct r5l_recovery_ctx *ctx,
+				   struct r5l_payload_data_parity *payload,
+				   sector_t log_offset)
+{
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5conf *conf = mddev->private;
+	int dd_idx;
+
+	raid5_compute_sector(conf,
+			     le64_to_cpu(payload->location), 0,
+			     &dd_idx, sh);
+	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
+	sh->dev[dd_idx].log_checksum =
+		le32_to_cpu(payload->checksum[0]);
+	ctx->meta_total_blocks += BLOCK_SECTORS;
+
+	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
+	set_bit(STRIPE_R5C_CACHING, &sh->state);
+}
+
+static void r5l_recovery_load_parity(struct r5l_log *log,
+				     struct stripe_head *sh,
+				     struct r5l_recovery_ctx *ctx,
+				     struct r5l_payload_data_parity *payload,
+				     sector_t log_offset)
+{
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5conf *conf = mddev->private;
+
+	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
+	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
+	sh->dev[sh->pd_idx].log_checksum =
+		le32_to_cpu(payload->checksum[0]);
+	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
+
+	if (sh->qd_idx >= 0) {
+		r5l_recovery_read_page(
+			log, ctx, sh->dev[sh->qd_idx].page,
+			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
+		sh->dev[sh->qd_idx].log_checksum =
+			le32_to_cpu(payload->checksum[1]);
+		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
+	}
+	clear_bit(STRIPE_R5C_CACHING, &sh->state);
+}
+
+static void r5l_recovery_reset_stripe(struct stripe_head *sh)
+{
+	int i;
+
+	sh->state = 0;
+	sh->log_start = MaxSector;
+	for (i = sh->disks; i--; )
+		sh->dev[i].flags = 0;
+}
+
+static void
+r5l_recovery_replay_one_stripe(struct r5conf *conf,
+			       struct stripe_head *sh,
+			       struct r5l_recovery_ctx *ctx)
+{
+	struct md_rdev *rdev, *rrdev;
+	int disk_index;
+	int data_count = 0;
+
+	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
+		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
+			continue;
+		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
+			continue;
+		data_count++;
+	}
+
+	/*
+	 * stripes that only have parity must have been flushed
+	 * before the crash that we are now recovering from, so
+	 * there is nothing more to recovery.
+	 */
+	if (data_count == 0)
+		goto out;
+
+	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
+		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
+			continue;
+
+		/* in case device is broken */
+		rcu_read_lock();
+		rdev = rcu_dereference(conf->disks[disk_index].rdev);
+		if (rdev) {
+			atomic_inc(&rdev->nr_pending);
+			rcu_read_unlock();
+			sync_page_io(rdev, sh->sector, PAGE_SIZE,
+				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
+				     false);
+			rdev_dec_pending(rdev, rdev->mddev);
+			rcu_read_lock();
+		}
+		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
+		if (rrdev) {
+			atomic_inc(&rrdev->nr_pending);
+			rcu_read_unlock();
+			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
+				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
+				     false);
+			rdev_dec_pending(rrdev, rrdev->mddev);
+			rcu_read_lock();
+		}
+		rcu_read_unlock();
+	}
+	ctx->data_parity_stripes++;
+out:
+	r5l_recovery_reset_stripe(sh);
+}
+
+static struct stripe_head *
+r5c_recovery_alloc_stripe(struct r5conf *conf,
+			  sector_t stripe_sect)
+{
+	struct stripe_head *sh;
+
+	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
+	if (!sh)
+		return NULL;  /* no more stripe available */
+
+	r5l_recovery_reset_stripe(sh);
+
+	return sh;
+}
+
+static struct stripe_head *
+r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
+{
+	struct stripe_head *sh;
+
+	list_for_each_entry(sh, list, lru)
+		if (sh->sector == sect)
+			return sh;
+	return NULL;
+}
+
+static void
+r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
+			  struct r5l_recovery_ctx *ctx)
+{
+	struct stripe_head *sh, *next;
+
+	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
+		r5l_recovery_reset_stripe(sh);
+		list_del_init(&sh->lru);
+		raid5_release_stripe(sh);
+	}
+}
+
+static void
+r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
+			    struct r5l_recovery_ctx *ctx)
+{
+	struct stripe_head *sh, *next;
+
+	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
+		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
+			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
+			list_del_init(&sh->lru);
+			raid5_release_stripe(sh);
+		}
+}
+
+/* if matches return 0; otherwise return -EINVAL */
+static int
+r5l_recovery_verify_data_checksum(struct r5l_log *log,
+				  struct r5l_recovery_ctx *ctx,
+				  struct page *page,
+				  sector_t log_offset, __le32 log_checksum)
+{
+	void *addr;
+	u32 checksum;
+
+	r5l_recovery_read_page(log, ctx, page, log_offset);
+	addr = kmap_atomic(page);
+	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
+	kunmap_atomic(addr);
+	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
+}
+
+/*
+ * before loading data to stripe cache, we need verify checksum for all data,
+ * if there is mismatch for any data page, we drop all data in the mata block
+ */
+static int
+r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
+					 struct r5l_recovery_ctx *ctx)
+{
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5conf *conf = mddev->private;
+	struct r5l_meta_block *mb = page_address(ctx->meta_page);
+	sector_t mb_offset = sizeof(struct r5l_meta_block);
+	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+	struct page *page;
+	struct r5l_payload_data_parity *payload;
+	struct r5l_payload_flush *payload_flush;
+
+	page = alloc_page(GFP_KERNEL);
+	if (!page)
+		return -ENOMEM;
+
+	while (mb_offset < le32_to_cpu(mb->meta_size)) {
+		payload = (void *)mb + mb_offset;
+		payload_flush = (void *)mb + mb_offset;
+
+		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
+			if (r5l_recovery_verify_data_checksum(
+				    log, ctx, page, log_offset,
+				    payload->checksum[0]) < 0)
+				goto mismatch;
+		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
+			if (r5l_recovery_verify_data_checksum(
+				    log, ctx, page, log_offset,
+				    payload->checksum[0]) < 0)
+				goto mismatch;
+			if (conf->max_degraded == 2 && /* q for RAID 6 */
+			    r5l_recovery_verify_data_checksum(
+				    log, ctx, page,
+				    r5l_ring_add(log, log_offset,
+						 BLOCK_SECTORS),
+				    payload->checksum[1]) < 0)
+				goto mismatch;
+		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
+			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
+		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
+			goto mismatch;
+
+		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
+			mb_offset += sizeof(struct r5l_payload_flush) +
+				le32_to_cpu(payload_flush->size);
+		} else {
+			/* DATA or PARITY payload */
+			log_offset = r5l_ring_add(log, log_offset,
+						  le32_to_cpu(payload->size));
+			mb_offset += sizeof(struct r5l_payload_data_parity) +
+				sizeof(__le32) *
+				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
+		}
+
+	}
+
+	put_page(page);
+	return 0;
+
+mismatch:
+	put_page(page);
+	return -EINVAL;
+}
+
+/*
+ * Analyze all data/parity pages in one meta block
+ * Returns:
+ * 0 for success
+ * -EINVAL for unknown playload type
+ * -EAGAIN for checksum mismatch of data page
+ * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
+ */
+static int
+r5c_recovery_analyze_meta_block(struct r5l_log *log,
+				struct r5l_recovery_ctx *ctx,
+				struct list_head *cached_stripe_list)
+{
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5conf *conf = mddev->private;
+	struct r5l_meta_block *mb;
+	struct r5l_payload_data_parity *payload;
+	struct r5l_payload_flush *payload_flush;
+	int mb_offset;
+	sector_t log_offset;
+	sector_t stripe_sect;
+	struct stripe_head *sh;
+	int ret;
+
+	/*
+	 * for mismatch in data blocks, we will drop all data in this mb, but
+	 * we will still read next mb for other data with FLUSH flag, as
+	 * io_unit could finish out of order.
+	 */
+	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
+	if (ret == -EINVAL)
+		return -EAGAIN;
+	else if (ret)
+		return ret;   /* -ENOMEM duo to alloc_page() failed */
+
+	mb = page_address(ctx->meta_page);
+	mb_offset = sizeof(struct r5l_meta_block);
+	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+
+	while (mb_offset < le32_to_cpu(mb->meta_size)) {
+		int dd;
+
+		payload = (void *)mb + mb_offset;
+		payload_flush = (void *)mb + mb_offset;
+
+		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
+			int i, count;
+
+			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
+			for (i = 0; i < count; ++i) {
+				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
+				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
+								stripe_sect);
+				if (sh) {
+					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+					r5l_recovery_reset_stripe(sh);
+					list_del_init(&sh->lru);
+					raid5_release_stripe(sh);
+				}
+			}
+
+			mb_offset += sizeof(struct r5l_payload_flush) +
+				le32_to_cpu(payload_flush->size);
+			continue;
+		}
+
+		/* DATA or PARITY payload */
+		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
+			raid5_compute_sector(
+				conf, le64_to_cpu(payload->location), 0, &dd,
+				NULL)
+			: le64_to_cpu(payload->location);
+
+		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
+						stripe_sect);
+
+		if (!sh) {
+			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
+			/*
+			 * cannot get stripe from raid5_get_active_stripe
+			 * try replay some stripes
+			 */
+			if (!sh) {
+				r5c_recovery_replay_stripes(
+					cached_stripe_list, ctx);
+				sh = r5c_recovery_alloc_stripe(
+					conf, stripe_sect);
+			}
+			if (!sh) {
+				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
+					mdname(mddev),
+					conf->min_nr_stripes * 2);
+				raid5_set_cache_size(mddev,
+						     conf->min_nr_stripes * 2);
+				sh = r5c_recovery_alloc_stripe(conf,
+							       stripe_sect);
+			}
+			if (!sh) {
+				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
+				       mdname(mddev));
+				return -ENOMEM;
+			}
+			list_add_tail(&sh->lru, cached_stripe_list);
+		}
+
+		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
+			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
+			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
+				r5l_recovery_replay_one_stripe(conf, sh, ctx);
+				list_move_tail(&sh->lru, cached_stripe_list);
+			}
+			r5l_recovery_load_data(log, sh, ctx, payload,
+					       log_offset);
+		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
+			r5l_recovery_load_parity(log, sh, ctx, payload,
+						 log_offset);
+		else
+			return -EINVAL;
+
+		log_offset = r5l_ring_add(log, log_offset,
+					  le32_to_cpu(payload->size));
+
+		mb_offset += sizeof(struct r5l_payload_data_parity) +
+			sizeof(__le32) *
+			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
+	}
+
+	return 0;
+}
+
+/*
+ * Load the stripe into cache. The stripe will be written out later by
+ * the stripe cache state machine.
+ */
+static void r5c_recovery_load_one_stripe(struct r5l_log *log,
+					 struct stripe_head *sh)
+{
+	struct r5dev *dev;
+	int i;
+
+	for (i = sh->disks; i--; ) {
+		dev = sh->dev + i;
+		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
+			set_bit(R5_InJournal, &dev->flags);
+			set_bit(R5_UPTODATE, &dev->flags);
+		}
+	}
+}
+
+/*
+ * Scan through the log for all to-be-flushed data
+ *
+ * For stripes with data and parity, namely Data-Parity stripe
+ * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
+ *
+ * For stripes with only data, namely Data-Only stripe
+ * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
+ *
+ * For a stripe, if we see data after parity, we should discard all previous
+ * data and parity for this stripe, as these data are already flushed to
+ * the array.
+ *
+ * At the end of the scan, we return the new journal_tail, which points to
+ * first data-only stripe on the journal device, or next invalid meta block.
+ */
+static int r5c_recovery_flush_log(struct r5l_log *log,
+				  struct r5l_recovery_ctx *ctx)
+{
+	struct stripe_head *sh;
+	int ret = 0;
+
+	/* scan through the log */
+	while (1) {
+		if (r5l_recovery_read_meta_block(log, ctx))
+			break;
+
+		ret = r5c_recovery_analyze_meta_block(log, ctx,
+						      &ctx->cached_list);
+		/*
+		 * -EAGAIN means mismatch in data block, in this case, we still
+		 * try scan the next metablock
+		 */
+		if (ret && ret != -EAGAIN)
+			break;   /* ret == -EINVAL or -ENOMEM */
+		ctx->seq++;
+		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
+	}
+
+	if (ret == -ENOMEM) {
+		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
+		return ret;
+	}
+
+	/* replay data-parity stripes */
+	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
+
+	/* load data-only stripes to stripe cache */
+	list_for_each_entry(sh, &ctx->cached_list, lru) {
+		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+		r5c_recovery_load_one_stripe(log, sh);
+		ctx->data_only_stripes++;
+	}
+
+	return 0;
+}
+
+/*
+ * we did a recovery. Now ctx.pos points to an invalid meta block. New
+ * log will start here. but we can't let superblock point to last valid
+ * meta block. The log might looks like:
+ * | meta 1| meta 2| meta 3|
+ * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
+ * superblock points to meta 1, we write a new valid meta 2n.  if crash
+ * happens again, new recovery will start from meta 1. Since meta 2n is
+ * valid now, recovery will think meta 3 is valid, which is wrong.
+ * The solution is we create a new meta in meta2 with its seq == meta
+ * 1's seq + 10000 and let superblock points to meta2. The same recovery
+ * will not think meta 3 is a valid meta, because its seq doesn't match
+ */
+
+/*
+ * Before recovery, the log looks like the following
+ *
+ *   ---------------------------------------------
+ *   |           valid log        | invalid log  |
+ *   ---------------------------------------------
+ *   ^
+ *   |- log->last_checkpoint
+ *   |- log->last_cp_seq
+ *
+ * Now we scan through the log until we see invalid entry
+ *
+ *   ---------------------------------------------
+ *   |           valid log        | invalid log  |
+ *   ---------------------------------------------
+ *   ^                            ^
+ *   |- log->last_checkpoint      |- ctx->pos
+ *   |- log->last_cp_seq          |- ctx->seq
+ *
+ * From this point, we need to increase seq number by 10 to avoid
+ * confusing next recovery.
+ *
+ *   ---------------------------------------------
+ *   |           valid log        | invalid log  |
+ *   ---------------------------------------------
+ *   ^                              ^
+ *   |- log->last_checkpoint        |- ctx->pos+1
+ *   |- log->last_cp_seq            |- ctx->seq+10001
+ *
+ * However, it is not safe to start the state machine yet, because data only
+ * parities are not yet secured in RAID. To save these data only parities, we
+ * rewrite them from seq+11.
+ *
+ *   -----------------------------------------------------------------
+ *   |           valid log        | data only stripes | invalid log  |
+ *   -----------------------------------------------------------------
+ *   ^                                                ^
+ *   |- log->last_checkpoint                          |- ctx->pos+n
+ *   |- log->last_cp_seq                              |- ctx->seq+10000+n
+ *
+ * If failure happens again during this process, the recovery can safe start
+ * again from log->last_checkpoint.
+ *
+ * Once data only stripes are rewritten to journal, we move log_tail
+ *
+ *   -----------------------------------------------------------------
+ *   |     old log        |    data only stripes    | invalid log  |
+ *   -----------------------------------------------------------------
+ *                        ^                         ^
+ *                        |- log->last_checkpoint   |- ctx->pos+n
+ *                        |- log->last_cp_seq       |- ctx->seq+10000+n
+ *
+ * Then we can safely start the state machine. If failure happens from this
+ * point on, the recovery will start from new log->last_checkpoint.
+ */
+static int
+r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
+				       struct r5l_recovery_ctx *ctx)
+{
+	struct stripe_head *sh;
+	struct mddev *mddev = log->rdev->mddev;
+	struct page *page;
+	sector_t next_checkpoint = MaxSector;
+
+	page = alloc_page(GFP_KERNEL);
+	if (!page) {
+		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
+		       mdname(mddev));
+		return -ENOMEM;
+	}
+
+	WARN_ON(list_empty(&ctx->cached_list));
+
+	list_for_each_entry(sh, &ctx->cached_list, lru) {
+		struct r5l_meta_block *mb;
+		int i;
+		int offset;
+		sector_t write_pos;
+
+		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+		r5l_recovery_create_empty_meta_block(log, page,
+						     ctx->pos, ctx->seq);
+		mb = page_address(page);
+		offset = le32_to_cpu(mb->meta_size);
+		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+
+		for (i = sh->disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			struct r5l_payload_data_parity *payload;
+			void *addr;
+
+			if (test_bit(R5_InJournal, &dev->flags)) {
+				payload = (void *)mb + offset;
+				payload->header.type = cpu_to_le16(
+					R5LOG_PAYLOAD_DATA);
+				payload->size = cpu_to_le32(BLOCK_SECTORS);
+				payload->location = cpu_to_le64(
+					raid5_compute_blocknr(sh, i, 0));
+				addr = kmap_atomic(dev->page);
+				payload->checksum[0] = cpu_to_le32(
+					crc32c_le(log->uuid_checksum, addr,
+						  PAGE_SIZE));
+				kunmap_atomic(addr);
+				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
+					     dev->page, REQ_OP_WRITE, 0, false);
+				write_pos = r5l_ring_add(log, write_pos,
+							 BLOCK_SECTORS);
+				offset += sizeof(__le32) +
+					sizeof(struct r5l_payload_data_parity);
+
+			}
+		}
+		mb->meta_size = cpu_to_le32(offset);
+		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
+						     mb, PAGE_SIZE));
+		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
+			     REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
+		sh->log_start = ctx->pos;
+		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
+		atomic_inc(&log->stripe_in_journal_count);
+		ctx->pos = write_pos;
+		ctx->seq += 1;
+		next_checkpoint = sh->log_start;
+	}
+	log->next_checkpoint = next_checkpoint;
+	__free_page(page);
+	return 0;
+}
+
+static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
+						 struct r5l_recovery_ctx *ctx)
+{
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5conf *conf = mddev->private;
+	struct stripe_head *sh, *next;
+
+	if (ctx->data_only_stripes == 0)
+		return;
+
+	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
+
+	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
+		r5c_make_stripe_write_out(sh);
+		set_bit(STRIPE_HANDLE, &sh->state);
+		list_del_init(&sh->lru);
+		raid5_release_stripe(sh);
+	}
+
+	/* reuse conf->wait_for_quiescent in recovery */
+	wait_event(conf->wait_for_quiescent,
+		   atomic_read(&conf->active_stripes) == 0);
+
+	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
+}
+
+static int r5l_recovery_log(struct r5l_log *log)
+{
+	struct mddev *mddev = log->rdev->mddev;
+	struct r5l_recovery_ctx *ctx;
+	int ret;
+	sector_t pos;
+
+	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+	if (!ctx)
+		return -ENOMEM;
+
+	ctx->pos = log->last_checkpoint;
+	ctx->seq = log->last_cp_seq;
+	INIT_LIST_HEAD(&ctx->cached_list);
+	ctx->meta_page = alloc_page(GFP_KERNEL);
+
+	if (!ctx->meta_page) {
+		ret =  -ENOMEM;
+		goto meta_page;
+	}
+
+	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
+		ret = -ENOMEM;
+		goto ra_pool;
+	}
+
+	ret = r5c_recovery_flush_log(log, ctx);
+
+	if (ret)
+		goto error;
+
+	pos = ctx->pos;
+	ctx->seq += 10000;
+
+	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
+		pr_info("md/raid:%s: starting from clean shutdown\n",
+			 mdname(mddev));
+	else
+		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
+			 mdname(mddev), ctx->data_only_stripes,
+			 ctx->data_parity_stripes);
+
+	if (ctx->data_only_stripes == 0) {
+		log->next_checkpoint = ctx->pos;
+		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
+		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
+		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
+		       mdname(mddev));
+		ret =  -EIO;
+		goto error;
+	}
+
+	log->log_start = ctx->pos;
+	log->seq = ctx->seq;
+	log->last_checkpoint = pos;
+	r5l_write_super(log, pos);
+
+	r5c_recovery_flush_data_only_stripes(log, ctx);
+	ret = 0;
+error:
+	r5l_recovery_free_ra_pool(log, ctx);
+ra_pool:
+	__free_page(ctx->meta_page);
+meta_page:
+	kfree(ctx);
+	return ret;
+}
+
+static void r5l_write_super(struct r5l_log *log, sector_t cp)
+{
+	struct mddev *mddev = log->rdev->mddev;
+
+	log->rdev->journal_tail = cp;
+	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+}
+
+static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
+{
+	struct r5conf *conf;
+	int ret;
+
+	ret = mddev_lock(mddev);
+	if (ret)
+		return ret;
+
+	conf = mddev->private;
+	if (!conf || !conf->log) {
+		mddev_unlock(mddev);
+		return 0;
+	}
+
+	switch (conf->log->r5c_journal_mode) {
+	case R5C_JOURNAL_MODE_WRITE_THROUGH:
+		ret = snprintf(
+			page, PAGE_SIZE, "[%s] %s\n",
+			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
+			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
+		break;
+	case R5C_JOURNAL_MODE_WRITE_BACK:
+		ret = snprintf(
+			page, PAGE_SIZE, "%s [%s]\n",
+			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
+			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
+		break;
+	default:
+		ret = 0;
+	}
+	mddev_unlock(mddev);
+	return ret;
+}
+
+/*
+ * Set journal cache mode on @mddev (external API initially needed by dm-raid).
+ *
+ * @mode as defined in 'enum r5c_journal_mode'.
+ *
+ */
+int r5c_journal_mode_set(struct mddev *mddev, int mode)
+{
+	struct r5conf *conf;
+
+	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
+	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
+		return -EINVAL;
+
+	conf = mddev->private;
+	if (!conf || !conf->log)
+		return -ENODEV;
+
+	if (raid5_calc_degraded(conf) > 0 &&
+	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
+		return -EINVAL;
+
+	mddev_suspend(mddev);
+	conf->log->r5c_journal_mode = mode;
+	mddev_resume(mddev);
+
+	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
+		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
+	return 0;
+}
+EXPORT_SYMBOL(r5c_journal_mode_set);
+
+static ssize_t r5c_journal_mode_store(struct mddev *mddev,
+				      const char *page, size_t length)
+{
+	int mode = ARRAY_SIZE(r5c_journal_mode_str);
+	size_t len = length;
+	int ret;
+
+	if (len < 2)
+		return -EINVAL;
+
+	if (page[len - 1] == '\n')
+		len--;
+
+	while (mode--)
+		if (strlen(r5c_journal_mode_str[mode]) == len &&
+		    !strncmp(page, r5c_journal_mode_str[mode], len))
+			break;
+	ret = mddev_lock(mddev);
+	if (ret)
+		return ret;
+	ret = r5c_journal_mode_set(mddev, mode);
+	mddev_unlock(mddev);
+	return ret ?: length;
+}
+
+struct md_sysfs_entry
+r5c_journal_mode = __ATTR(journal_mode, 0644,
+			  r5c_journal_mode_show, r5c_journal_mode_store);
+
+/*
+ * Try handle write operation in caching phase. This function should only
+ * be called in write-back mode.
+ *
+ * If all outstanding writes can be handled in caching phase, returns 0
+ * If writes requires write-out phase, call r5c_make_stripe_write_out()
+ * and returns -EAGAIN
+ */
+int r5c_try_caching_write(struct r5conf *conf,
+			  struct stripe_head *sh,
+			  struct stripe_head_state *s,
+			  int disks)
+{
+	struct r5l_log *log = conf->log;
+	int i;
+	struct r5dev *dev;
+	int to_cache = 0;
+	void **pslot;
+	sector_t tree_index;
+	int ret;
+	uintptr_t refcount;
+
+	BUG_ON(!r5c_is_writeback(log));
+
+	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
+		/*
+		 * There are two different scenarios here:
+		 *  1. The stripe has some data cached, and it is sent to
+		 *     write-out phase for reclaim
+		 *  2. The stripe is clean, and this is the first write
+		 *
+		 * For 1, return -EAGAIN, so we continue with
+		 * handle_stripe_dirtying().
+		 *
+		 * For 2, set STRIPE_R5C_CACHING and continue with caching
+		 * write.
+		 */
+
+		/* case 1: anything injournal or anything in written */
+		if (s->injournal > 0 || s->written > 0)
+			return -EAGAIN;
+		/* case 2 */
+		set_bit(STRIPE_R5C_CACHING, &sh->state);
+	}
+
+	/*
+	 * When run in degraded mode, array is set to write-through mode.
+	 * This check helps drain pending write safely in the transition to
+	 * write-through mode.
+	 *
+	 * When a stripe is syncing, the write is also handled in write
+	 * through mode.
+	 */
+	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
+		r5c_make_stripe_write_out(sh);
+		return -EAGAIN;
+	}
+
+	for (i = disks; i--; ) {
+		dev = &sh->dev[i];
+		/* if non-overwrite, use writing-out phase */
+		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
+		    !test_bit(R5_InJournal, &dev->flags)) {
+			r5c_make_stripe_write_out(sh);
+			return -EAGAIN;
+		}
+	}
+
+	/* if the stripe is not counted in big_stripe_tree, add it now */
+	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
+	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
+		tree_index = r5c_tree_index(conf, sh->sector);
+		spin_lock(&log->tree_lock);
+		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
+					       tree_index);
+		if (pslot) {
+			refcount = (uintptr_t)radix_tree_deref_slot_protected(
+				pslot, &log->tree_lock) >>
+				R5C_RADIX_COUNT_SHIFT;
+			radix_tree_replace_slot(
+				&log->big_stripe_tree, pslot,
+				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
+		} else {
+			/*
+			 * this radix_tree_insert can fail safely, so no
+			 * need to call radix_tree_preload()
+			 */
+			ret = radix_tree_insert(
+				&log->big_stripe_tree, tree_index,
+				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
+			if (ret) {
+				spin_unlock(&log->tree_lock);
+				r5c_make_stripe_write_out(sh);
+				return -EAGAIN;
+			}
+		}
+		spin_unlock(&log->tree_lock);
+
+		/*
+		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
+		 * counted in the radix tree
+		 */
+		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
+		atomic_inc(&conf->r5c_cached_partial_stripes);
+	}
+
+	for (i = disks; i--; ) {
+		dev = &sh->dev[i];
+		if (dev->towrite) {
+			set_bit(R5_Wantwrite, &dev->flags);
+			set_bit(R5_Wantdrain, &dev->flags);
+			set_bit(R5_LOCKED, &dev->flags);
+			to_cache++;
+		}
+	}
+
+	if (to_cache) {
+		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
+		/*
+		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
+		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
+		 * r5c_handle_data_cached()
+		 */
+		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
+	}
+
+	return 0;
+}
+
+/*
+ * free extra pages (orig_page) we allocated for prexor
+ */
+void r5c_release_extra_page(struct stripe_head *sh)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int i;
+	bool using_disk_info_extra_page;
+
+	using_disk_info_extra_page =
+		sh->dev[0].orig_page == conf->disks[0].extra_page;
+
+	for (i = sh->disks; i--; )
+		if (sh->dev[i].page != sh->dev[i].orig_page) {
+			struct page *p = sh->dev[i].orig_page;
+
+			sh->dev[i].orig_page = sh->dev[i].page;
+			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
+
+			if (!using_disk_info_extra_page)
+				put_page(p);
+		}
+
+	if (using_disk_info_extra_page) {
+		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
+		md_wakeup_thread(conf->mddev->thread);
+	}
+}
+
+void r5c_use_extra_page(struct stripe_head *sh)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int i;
+	struct r5dev *dev;
+
+	for (i = sh->disks; i--; ) {
+		dev = &sh->dev[i];
+		if (dev->orig_page != dev->page)
+			put_page(dev->orig_page);
+		dev->orig_page = conf->disks[i].extra_page;
+	}
+}
+
+/*
+ * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
+ * stripe is committed to RAID disks.
+ */
+void r5c_finish_stripe_write_out(struct r5conf *conf,
+				 struct stripe_head *sh,
+				 struct stripe_head_state *s)
+{
+	struct r5l_log *log = conf->log;
+	int i;
+	int do_wakeup = 0;
+	sector_t tree_index;
+	void **pslot;
+	uintptr_t refcount;
+
+	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
+		return;
+
+	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
+
+	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+		return;
+
+	for (i = sh->disks; i--; ) {
+		clear_bit(R5_InJournal, &sh->dev[i].flags);
+		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+			do_wakeup = 1;
+	}
+
+	/*
+	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
+	 * We updated R5_InJournal, so we also update s->injournal.
+	 */
+	s->injournal = 0;
+
+	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
+		if (atomic_dec_and_test(&conf->pending_full_writes))
+			md_wakeup_thread(conf->mddev->thread);
+
+	if (do_wakeup)
+		wake_up(&conf->wait_for_overlap);
+
+	spin_lock_irq(&log->stripe_in_journal_lock);
+	list_del_init(&sh->r5c);
+	spin_unlock_irq(&log->stripe_in_journal_lock);
+	sh->log_start = MaxSector;
+
+	atomic_dec(&log->stripe_in_journal_count);
+	r5c_update_log_state(log);
+
+	/* stop counting this stripe in big_stripe_tree */
+	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
+	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
+		tree_index = r5c_tree_index(conf, sh->sector);
+		spin_lock(&log->tree_lock);
+		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
+					       tree_index);
+		BUG_ON(pslot == NULL);
+		refcount = (uintptr_t)radix_tree_deref_slot_protected(
+			pslot, &log->tree_lock) >>
+			R5C_RADIX_COUNT_SHIFT;
+		if (refcount == 1)
+			radix_tree_delete(&log->big_stripe_tree, tree_index);
+		else
+			radix_tree_replace_slot(
+				&log->big_stripe_tree, pslot,
+				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
+		spin_unlock(&log->tree_lock);
+	}
+
+	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
+		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
+		atomic_dec(&conf->r5c_flushing_partial_stripes);
+		atomic_dec(&conf->r5c_cached_partial_stripes);
+	}
+
+	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
+		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
+		atomic_dec(&conf->r5c_flushing_full_stripes);
+		atomic_dec(&conf->r5c_cached_full_stripes);
+	}
+
+	r5l_append_flush_payload(log, sh->sector);
+	/* stripe is flused to raid disks, we can do resync now */
+	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
+		set_bit(STRIPE_HANDLE, &sh->state);
+}
+
+int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int pages = 0;
+	int reserve;
+	int i;
+	int ret = 0;
+
+	BUG_ON(!log);
+
+	for (i = 0; i < sh->disks; i++) {
+		void *addr;
+
+		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
+			continue;
+		addr = kmap_atomic(sh->dev[i].page);
+		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
+						    addr, PAGE_SIZE);
+		kunmap_atomic(addr);
+		pages++;
+	}
+	WARN_ON(pages == 0);
+
+	/*
+	 * The stripe must enter state machine again to call endio, so
+	 * don't delay.
+	 */
+	clear_bit(STRIPE_DELAYED, &sh->state);
+	atomic_inc(&sh->count);
+
+	mutex_lock(&log->io_mutex);
+	/* meta + data */
+	reserve = (1 + pages) << (PAGE_SHIFT - 9);
+
+	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
+	    sh->log_start == MaxSector)
+		r5l_add_no_space_stripe(log, sh);
+	else if (!r5l_has_free_space(log, reserve)) {
+		if (sh->log_start == log->last_checkpoint)
+			BUG();
+		else
+			r5l_add_no_space_stripe(log, sh);
+	} else {
+		ret = r5l_log_stripe(log, sh, pages, 0);
+		if (ret) {
+			spin_lock_irq(&log->io_list_lock);
+			list_add_tail(&sh->log_list, &log->no_mem_stripes);
+			spin_unlock_irq(&log->io_list_lock);
+		}
+	}
+
+	mutex_unlock(&log->io_mutex);
+	return 0;
+}
+
+/* check whether this big stripe is in write back cache. */
+bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
+{
+	struct r5l_log *log = conf->log;
+	sector_t tree_index;
+	void *slot;
+
+	if (!log)
+		return false;
+
+	WARN_ON_ONCE(!rcu_read_lock_held());
+	tree_index = r5c_tree_index(conf, sect);
+	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
+	return slot != NULL;
+}
+
+static int r5l_load_log(struct r5l_log *log)
+{
+	struct md_rdev *rdev = log->rdev;
+	struct page *page;
+	struct r5l_meta_block *mb;
+	sector_t cp = log->rdev->journal_tail;
+	u32 stored_crc, expected_crc;
+	bool create_super = false;
+	int ret = 0;
+
+	/* Make sure it's valid */
+	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
+		cp = 0;
+	page = alloc_page(GFP_KERNEL);
+	if (!page)
+		return -ENOMEM;
+
+	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
+		ret = -EIO;
+		goto ioerr;
+	}
+	mb = page_address(page);
+
+	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
+	    mb->version != R5LOG_VERSION) {
+		create_super = true;
+		goto create;
+	}
+	stored_crc = le32_to_cpu(mb->checksum);
+	mb->checksum = 0;
+	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
+	if (stored_crc != expected_crc) {
+		create_super = true;
+		goto create;
+	}
+	if (le64_to_cpu(mb->position) != cp) {
+		create_super = true;
+		goto create;
+	}
+create:
+	if (create_super) {
+		log->last_cp_seq = prandom_u32();
+		cp = 0;
+		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
+		/*
+		 * Make sure super points to correct address. Log might have
+		 * data very soon. If super hasn't correct log tail address,
+		 * recovery can't find the log
+		 */
+		r5l_write_super(log, cp);
+	} else
+		log->last_cp_seq = le64_to_cpu(mb->seq);
+
+	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
+	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
+	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
+		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
+	log->last_checkpoint = cp;
+
+	__free_page(page);
+
+	if (create_super) {
+		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
+		log->seq = log->last_cp_seq + 1;
+		log->next_checkpoint = cp;
+	} else
+		ret = r5l_recovery_log(log);
+
+	r5c_update_log_state(log);
+	return ret;
+ioerr:
+	__free_page(page);
+	return ret;
+}
+
+int r5l_start(struct r5l_log *log)
+{
+	int ret;
+
+	if (!log)
+		return 0;
+
+	ret = r5l_load_log(log);
+	if (ret) {
+		struct mddev *mddev = log->rdev->mddev;
+		struct r5conf *conf = mddev->private;
+
+		r5l_exit_log(conf);
+	}
+	return ret;
+}
+
+void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct r5conf *conf = mddev->private;
+	struct r5l_log *log = conf->log;
+
+	if (!log)
+		return;
+
+	if ((raid5_calc_degraded(conf) > 0 ||
+	     test_bit(Journal, &rdev->flags)) &&
+	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
+		schedule_work(&log->disable_writeback_work);
+}
+
+int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
+{
+	struct request_queue *q = bdev_get_queue(rdev->bdev);
+	struct r5l_log *log;
+	char b[BDEVNAME_SIZE];
+	int ret;
+
+	pr_debug("md/raid:%s: using device %s as journal\n",
+		 mdname(conf->mddev), bdevname(rdev->bdev, b));
+
+	if (PAGE_SIZE != 4096)
+		return -EINVAL;
+
+	/*
+	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
+	 * raid_disks r5l_payload_data_parity.
+	 *
+	 * Write journal and cache does not work for very big array
+	 * (raid_disks > 203)
+	 */
+	if (sizeof(struct r5l_meta_block) +
+	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
+	     conf->raid_disks) > PAGE_SIZE) {
+		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
+		       mdname(conf->mddev), conf->raid_disks);
+		return -EINVAL;
+	}
+
+	log = kzalloc(sizeof(*log), GFP_KERNEL);
+	if (!log)
+		return -ENOMEM;
+	log->rdev = rdev;
+
+	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
+
+	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
+				       sizeof(rdev->mddev->uuid));
+
+	mutex_init(&log->io_mutex);
+
+	spin_lock_init(&log->io_list_lock);
+	INIT_LIST_HEAD(&log->running_ios);
+	INIT_LIST_HEAD(&log->io_end_ios);
+	INIT_LIST_HEAD(&log->flushing_ios);
+	INIT_LIST_HEAD(&log->finished_ios);
+	bio_init(&log->flush_bio, NULL, 0);
+
+	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
+	if (!log->io_kc)
+		goto io_kc;
+
+	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
+	if (ret)
+		goto io_pool;
+
+	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
+	if (ret)
+		goto io_bs;
+
+	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
+	if (ret)
+		goto out_mempool;
+
+	spin_lock_init(&log->tree_lock);
+	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
+
+	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
+						 log->rdev->mddev, "reclaim");
+	if (!log->reclaim_thread)
+		goto reclaim_thread;
+	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
+
+	init_waitqueue_head(&log->iounit_wait);
+
+	INIT_LIST_HEAD(&log->no_mem_stripes);
+
+	INIT_LIST_HEAD(&log->no_space_stripes);
+	spin_lock_init(&log->no_space_stripes_lock);
+
+	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
+	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
+
+	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
+	INIT_LIST_HEAD(&log->stripe_in_journal_list);
+	spin_lock_init(&log->stripe_in_journal_lock);
+	atomic_set(&log->stripe_in_journal_count, 0);
+
+	rcu_assign_pointer(conf->log, log);
+
+	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
+	return 0;
+
+	rcu_assign_pointer(conf->log, NULL);
+	md_unregister_thread(&log->reclaim_thread);
+reclaim_thread:
+	mempool_exit(&log->meta_pool);
+out_mempool:
+	bioset_exit(&log->bs);
+io_bs:
+	mempool_exit(&log->io_pool);
+io_pool:
+	kmem_cache_destroy(log->io_kc);
+io_kc:
+	kfree(log);
+	return -EINVAL;
+}
+
+void r5l_exit_log(struct r5conf *conf)
+{
+	struct r5l_log *log = conf->log;
+
+	conf->log = NULL;
+	synchronize_rcu();
+
+	/* Ensure disable_writeback_work wakes up and exits */
+	wake_up(&conf->mddev->sb_wait);
+	flush_work(&log->disable_writeback_work);
+	md_unregister_thread(&log->reclaim_thread);
+	mempool_exit(&log->meta_pool);
+	bioset_exit(&log->bs);
+	mempool_exit(&log->io_pool);
+	kmem_cache_destroy(log->io_kc);
+	kfree(log);
+}