v4.19.13 snapshot.
diff --git a/drivers/md/bcache/journal.h b/drivers/md/bcache/journal.h
new file mode 100644
index 0000000..66f0fac
--- /dev/null
+++ b/drivers/md/bcache/journal.h
@@ -0,0 +1,182 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_JOURNAL_H
+#define _BCACHE_JOURNAL_H
+
+/*
+ * THE JOURNAL:
+ *
+ * The journal is treated as a circular buffer of buckets - a journal entry
+ * never spans two buckets. This means (not implemented yet) we can resize the
+ * journal at runtime, and will be needed for bcache on raw flash support.
+ *
+ * Journal entries contain a list of keys, ordered by the time they were
+ * inserted; thus journal replay just has to reinsert the keys.
+ *
+ * We also keep some things in the journal header that are logically part of the
+ * superblock - all the things that are frequently updated. This is for future
+ * bcache on raw flash support; the superblock (which will become another
+ * journal) can't be moved or wear leveled, so it contains just enough
+ * information to find the main journal, and the superblock only has to be
+ * rewritten when we want to move/wear level the main journal.
+ *
+ * Currently, we don't journal BTREE_REPLACE operations - this will hopefully be
+ * fixed eventually. This isn't a bug - BTREE_REPLACE is used for insertions
+ * from cache misses, which don't have to be journaled, and for writeback and
+ * moving gc we work around it by flushing the btree to disk before updating the
+ * gc information. But it is a potential issue with incremental garbage
+ * collection, and it's fragile.
+ *
+ * OPEN JOURNAL ENTRIES:
+ *
+ * Each journal entry contains, in the header, the sequence number of the last
+ * journal entry still open - i.e. that has keys that haven't been flushed to
+ * disk in the btree.
+ *
+ * We track this by maintaining a refcount for every open journal entry, in a
+ * fifo; each entry in the fifo corresponds to a particular journal
+ * entry/sequence number. When the refcount at the tail of the fifo goes to
+ * zero, we pop it off - thus, the size of the fifo tells us the number of open
+ * journal entries
+ *
+ * We take a refcount on a journal entry when we add some keys to a journal
+ * entry that we're going to insert (held by struct btree_op), and then when we
+ * insert those keys into the btree the btree write we're setting up takes a
+ * copy of that refcount (held by struct btree_write). That refcount is dropped
+ * when the btree write completes.
+ *
+ * A struct btree_write can only hold a refcount on a single journal entry, but
+ * might contain keys for many journal entries - we handle this by making sure
+ * it always has a refcount on the _oldest_ journal entry of all the journal
+ * entries it has keys for.
+ *
+ * JOURNAL RECLAIM:
+ *
+ * As mentioned previously, our fifo of refcounts tells us the number of open
+ * journal entries; from that and the current journal sequence number we compute
+ * last_seq - the oldest journal entry we still need. We write last_seq in each
+ * journal entry, and we also have to keep track of where it exists on disk so
+ * we don't overwrite it when we loop around the journal.
+ *
+ * To do that we track, for each journal bucket, the sequence number of the
+ * newest journal entry it contains - if we don't need that journal entry we
+ * don't need anything in that bucket anymore. From that we track the last
+ * journal bucket we still need; all this is tracked in struct journal_device
+ * and updated by journal_reclaim().
+ *
+ * JOURNAL FILLING UP:
+ *
+ * There are two ways the journal could fill up; either we could run out of
+ * space to write to, or we could have too many open journal entries and run out
+ * of room in the fifo of refcounts. Since those refcounts are decremented
+ * without any locking we can't safely resize that fifo, so we handle it the
+ * same way.
+ *
+ * If the journal fills up, we start flushing dirty btree nodes until we can
+ * allocate space for a journal write again - preferentially flushing btree
+ * nodes that are pinning the oldest journal entries first.
+ */
+
+/*
+ * Only used for holding the journal entries we read in btree_journal_read()
+ * during cache_registration
+ */
+struct journal_replay {
+	struct list_head	list;
+	atomic_t		*pin;
+	struct jset		j;
+};
+
+/*
+ * We put two of these in struct journal; we used them for writes to the
+ * journal that are being staged or in flight.
+ */
+struct journal_write {
+	struct jset		*data;
+#define JSET_BITS		3
+
+	struct cache_set	*c;
+	struct closure_waitlist	wait;
+	bool			dirty;
+	bool			need_write;
+};
+
+/* Embedded in struct cache_set */
+struct journal {
+	spinlock_t		lock;
+	/* used when waiting because the journal was full */
+	struct closure_waitlist	wait;
+	struct closure		io;
+	int			io_in_flight;
+	struct delayed_work	work;
+
+	/* Number of blocks free in the bucket(s) we're currently writing to */
+	unsigned int		blocks_free;
+	uint64_t		seq;
+	DECLARE_FIFO(atomic_t, pin);
+
+	BKEY_PADDED(key);
+
+	struct journal_write	w[2], *cur;
+};
+
+/*
+ * Embedded in struct cache. First three fields refer to the array of journal
+ * buckets, in cache_sb.
+ */
+struct journal_device {
+	/*
+	 * For each journal bucket, contains the max sequence number of the
+	 * journal writes it contains - so we know when a bucket can be reused.
+	 */
+	uint64_t		seq[SB_JOURNAL_BUCKETS];
+
+	/* Journal bucket we're currently writing to */
+	unsigned int		cur_idx;
+
+	/* Last journal bucket that still contains an open journal entry */
+	unsigned int		last_idx;
+
+	/* Next journal bucket to be discarded */
+	unsigned int		discard_idx;
+
+#define DISCARD_READY		0
+#define DISCARD_IN_FLIGHT	1
+#define DISCARD_DONE		2
+	/* 1 - discard in flight, -1 - discard completed */
+	atomic_t		discard_in_flight;
+
+	struct work_struct	discard_work;
+	struct bio		discard_bio;
+	struct bio_vec		discard_bv;
+
+	/* Bio for journal reads/writes to this device */
+	struct bio		bio;
+	struct bio_vec		bv[8];
+};
+
+#define journal_pin_cmp(c, l, r)				\
+	(fifo_idx(&(c)->journal.pin, (l)) > fifo_idx(&(c)->journal.pin, (r)))
+
+#define JOURNAL_PIN	20000
+
+#define journal_full(j)						\
+	(!(j)->blocks_free || fifo_free(&(j)->pin) <= 1)
+
+struct closure;
+struct cache_set;
+struct btree_op;
+struct keylist;
+
+atomic_t *bch_journal(struct cache_set *c,
+		      struct keylist *keys,
+		      struct closure *parent);
+void bch_journal_next(struct journal *j);
+void bch_journal_mark(struct cache_set *c, struct list_head *list);
+void bch_journal_meta(struct cache_set *c, struct closure *cl);
+int bch_journal_read(struct cache_set *c, struct list_head *list);
+int bch_journal_replay(struct cache_set *c, struct list_head *list);
+
+void bch_journal_free(struct cache_set *c);
+int bch_journal_alloc(struct cache_set *c);
+
+#endif /* _BCACHE_JOURNAL_H */