v4.19.13 snapshot.
diff --git a/drivers/md/bcache/alloc.c b/drivers/md/bcache/alloc.c
new file mode 100644
index 0000000..7a28232
--- /dev/null
+++ b/drivers/md/bcache/alloc.c
@@ -0,0 +1,730 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Primary bucket allocation code
+ *
+ * Copyright 2012 Google, Inc.
+ *
+ * Allocation in bcache is done in terms of buckets:
+ *
+ * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
+ * btree pointers - they must match for the pointer to be considered valid.
+ *
+ * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
+ * bucket simply by incrementing its gen.
+ *
+ * The gens (along with the priorities; it's really the gens are important but
+ * the code is named as if it's the priorities) are written in an arbitrary list
+ * of buckets on disk, with a pointer to them in the journal header.
+ *
+ * When we invalidate a bucket, we have to write its new gen to disk and wait
+ * for that write to complete before we use it - otherwise after a crash we
+ * could have pointers that appeared to be good but pointed to data that had
+ * been overwritten.
+ *
+ * Since the gens and priorities are all stored contiguously on disk, we can
+ * batch this up: We fill up the free_inc list with freshly invalidated buckets,
+ * call prio_write(), and when prio_write() finishes we pull buckets off the
+ * free_inc list and optionally discard them.
+ *
+ * free_inc isn't the only freelist - if it was, we'd often to sleep while
+ * priorities and gens were being written before we could allocate. c->free is a
+ * smaller freelist, and buckets on that list are always ready to be used.
+ *
+ * If we've got discards enabled, that happens when a bucket moves from the
+ * free_inc list to the free list.
+ *
+ * There is another freelist, because sometimes we have buckets that we know
+ * have nothing pointing into them - these we can reuse without waiting for
+ * priorities to be rewritten. These come from freed btree nodes and buckets
+ * that garbage collection discovered no longer had valid keys pointing into
+ * them (because they were overwritten). That's the unused list - buckets on the
+ * unused list move to the free list, optionally being discarded in the process.
+ *
+ * It's also important to ensure that gens don't wrap around - with respect to
+ * either the oldest gen in the btree or the gen on disk. This is quite
+ * difficult to do in practice, but we explicitly guard against it anyways - if
+ * a bucket is in danger of wrapping around we simply skip invalidating it that
+ * time around, and we garbage collect or rewrite the priorities sooner than we
+ * would have otherwise.
+ *
+ * bch_bucket_alloc() allocates a single bucket from a specific cache.
+ *
+ * bch_bucket_alloc_set() allocates one or more buckets from different caches
+ * out of a cache set.
+ *
+ * free_some_buckets() drives all the processes described above. It's called
+ * from bch_bucket_alloc() and a few other places that need to make sure free
+ * buckets are ready.
+ *
+ * invalidate_buckets_(lru|fifo)() find buckets that are available to be
+ * invalidated, and then invalidate them and stick them on the free_inc list -
+ * in either lru or fifo order.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+
+#include <linux/blkdev.h>
+#include <linux/kthread.h>
+#include <linux/random.h>
+#include <trace/events/bcache.h>
+
+#define MAX_OPEN_BUCKETS 128
+
+/* Bucket heap / gen */
+
+uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
+{
+	uint8_t ret = ++b->gen;
+
+	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
+	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
+
+	return ret;
+}
+
+void bch_rescale_priorities(struct cache_set *c, int sectors)
+{
+	struct cache *ca;
+	struct bucket *b;
+	unsigned int next = c->nbuckets * c->sb.bucket_size / 1024;
+	unsigned int i;
+	int r;
+
+	atomic_sub(sectors, &c->rescale);
+
+	do {
+		r = atomic_read(&c->rescale);
+
+		if (r >= 0)
+			return;
+	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
+
+	mutex_lock(&c->bucket_lock);
+
+	c->min_prio = USHRT_MAX;
+
+	for_each_cache(ca, c, i)
+		for_each_bucket(b, ca)
+			if (b->prio &&
+			    b->prio != BTREE_PRIO &&
+			    !atomic_read(&b->pin)) {
+				b->prio--;
+				c->min_prio = min(c->min_prio, b->prio);
+			}
+
+	mutex_unlock(&c->bucket_lock);
+}
+
+/*
+ * Background allocation thread: scans for buckets to be invalidated,
+ * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
+ * then optionally issues discard commands to the newly free buckets, then puts
+ * them on the various freelists.
+ */
+
+static inline bool can_inc_bucket_gen(struct bucket *b)
+{
+	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
+}
+
+bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
+{
+	BUG_ON(!ca->set->gc_mark_valid);
+
+	return (!GC_MARK(b) ||
+		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
+		!atomic_read(&b->pin) &&
+		can_inc_bucket_gen(b);
+}
+
+void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
+{
+	lockdep_assert_held(&ca->set->bucket_lock);
+	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
+
+	if (GC_SECTORS_USED(b))
+		trace_bcache_invalidate(ca, b - ca->buckets);
+
+	bch_inc_gen(ca, b);
+	b->prio = INITIAL_PRIO;
+	atomic_inc(&b->pin);
+}
+
+static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
+{
+	__bch_invalidate_one_bucket(ca, b);
+
+	fifo_push(&ca->free_inc, b - ca->buckets);
+}
+
+/*
+ * Determines what order we're going to reuse buckets, smallest bucket_prio()
+ * first: we also take into account the number of sectors of live data in that
+ * bucket, and in order for that multiply to make sense we have to scale bucket
+ *
+ * Thus, we scale the bucket priorities so that the bucket with the smallest
+ * prio is worth 1/8th of what INITIAL_PRIO is worth.
+ */
+
+#define bucket_prio(b)							\
+({									\
+	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
+									\
+	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
+})
+
+#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
+#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
+
+static void invalidate_buckets_lru(struct cache *ca)
+{
+	struct bucket *b;
+	ssize_t i;
+
+	ca->heap.used = 0;
+
+	for_each_bucket(b, ca) {
+		if (!bch_can_invalidate_bucket(ca, b))
+			continue;
+
+		if (!heap_full(&ca->heap))
+			heap_add(&ca->heap, b, bucket_max_cmp);
+		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
+			ca->heap.data[0] = b;
+			heap_sift(&ca->heap, 0, bucket_max_cmp);
+		}
+	}
+
+	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
+		heap_sift(&ca->heap, i, bucket_min_cmp);
+
+	while (!fifo_full(&ca->free_inc)) {
+		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
+			/*
+			 * We don't want to be calling invalidate_buckets()
+			 * multiple times when it can't do anything
+			 */
+			ca->invalidate_needs_gc = 1;
+			wake_up_gc(ca->set);
+			return;
+		}
+
+		bch_invalidate_one_bucket(ca, b);
+	}
+}
+
+static void invalidate_buckets_fifo(struct cache *ca)
+{
+	struct bucket *b;
+	size_t checked = 0;
+
+	while (!fifo_full(&ca->free_inc)) {
+		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
+		    ca->fifo_last_bucket >= ca->sb.nbuckets)
+			ca->fifo_last_bucket = ca->sb.first_bucket;
+
+		b = ca->buckets + ca->fifo_last_bucket++;
+
+		if (bch_can_invalidate_bucket(ca, b))
+			bch_invalidate_one_bucket(ca, b);
+
+		if (++checked >= ca->sb.nbuckets) {
+			ca->invalidate_needs_gc = 1;
+			wake_up_gc(ca->set);
+			return;
+		}
+	}
+}
+
+static void invalidate_buckets_random(struct cache *ca)
+{
+	struct bucket *b;
+	size_t checked = 0;
+
+	while (!fifo_full(&ca->free_inc)) {
+		size_t n;
+
+		get_random_bytes(&n, sizeof(n));
+
+		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
+		n += ca->sb.first_bucket;
+
+		b = ca->buckets + n;
+
+		if (bch_can_invalidate_bucket(ca, b))
+			bch_invalidate_one_bucket(ca, b);
+
+		if (++checked >= ca->sb.nbuckets / 2) {
+			ca->invalidate_needs_gc = 1;
+			wake_up_gc(ca->set);
+			return;
+		}
+	}
+}
+
+static void invalidate_buckets(struct cache *ca)
+{
+	BUG_ON(ca->invalidate_needs_gc);
+
+	switch (CACHE_REPLACEMENT(&ca->sb)) {
+	case CACHE_REPLACEMENT_LRU:
+		invalidate_buckets_lru(ca);
+		break;
+	case CACHE_REPLACEMENT_FIFO:
+		invalidate_buckets_fifo(ca);
+		break;
+	case CACHE_REPLACEMENT_RANDOM:
+		invalidate_buckets_random(ca);
+		break;
+	}
+}
+
+#define allocator_wait(ca, cond)					\
+do {									\
+	while (1) {							\
+		set_current_state(TASK_INTERRUPTIBLE);			\
+		if (cond)						\
+			break;						\
+									\
+		mutex_unlock(&(ca)->set->bucket_lock);			\
+		if (kthread_should_stop() ||				\
+		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
+			set_current_state(TASK_RUNNING);		\
+			goto out;					\
+		}							\
+									\
+		schedule();						\
+		mutex_lock(&(ca)->set->bucket_lock);			\
+	}								\
+	__set_current_state(TASK_RUNNING);				\
+} while (0)
+
+static int bch_allocator_push(struct cache *ca, long bucket)
+{
+	unsigned int i;
+
+	/* Prios/gens are actually the most important reserve */
+	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
+		return true;
+
+	for (i = 0; i < RESERVE_NR; i++)
+		if (fifo_push(&ca->free[i], bucket))
+			return true;
+
+	return false;
+}
+
+static int bch_allocator_thread(void *arg)
+{
+	struct cache *ca = arg;
+
+	mutex_lock(&ca->set->bucket_lock);
+
+	while (1) {
+		/*
+		 * First, we pull buckets off of the unused and free_inc lists,
+		 * possibly issue discards to them, then we add the bucket to
+		 * the free list:
+		 */
+		while (!fifo_empty(&ca->free_inc)) {
+			long bucket;
+
+			fifo_pop(&ca->free_inc, bucket);
+
+			if (ca->discard) {
+				mutex_unlock(&ca->set->bucket_lock);
+				blkdev_issue_discard(ca->bdev,
+					bucket_to_sector(ca->set, bucket),
+					ca->sb.bucket_size, GFP_KERNEL, 0);
+				mutex_lock(&ca->set->bucket_lock);
+			}
+
+			allocator_wait(ca, bch_allocator_push(ca, bucket));
+			wake_up(&ca->set->btree_cache_wait);
+			wake_up(&ca->set->bucket_wait);
+		}
+
+		/*
+		 * We've run out of free buckets, we need to find some buckets
+		 * we can invalidate. First, invalidate them in memory and add
+		 * them to the free_inc list:
+		 */
+
+retry_invalidate:
+		allocator_wait(ca, ca->set->gc_mark_valid &&
+			       !ca->invalidate_needs_gc);
+		invalidate_buckets(ca);
+
+		/*
+		 * Now, we write their new gens to disk so we can start writing
+		 * new stuff to them:
+		 */
+		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
+		if (CACHE_SYNC(&ca->set->sb)) {
+			/*
+			 * This could deadlock if an allocation with a btree
+			 * node locked ever blocked - having the btree node
+			 * locked would block garbage collection, but here we're
+			 * waiting on garbage collection before we invalidate
+			 * and free anything.
+			 *
+			 * But this should be safe since the btree code always
+			 * uses btree_check_reserve() before allocating now, and
+			 * if it fails it blocks without btree nodes locked.
+			 */
+			if (!fifo_full(&ca->free_inc))
+				goto retry_invalidate;
+
+			bch_prio_write(ca);
+		}
+	}
+out:
+	wait_for_kthread_stop();
+	return 0;
+}
+
+/* Allocation */
+
+long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
+{
+	DEFINE_WAIT(w);
+	struct bucket *b;
+	long r;
+
+	/* fastpath */
+	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
+	    fifo_pop(&ca->free[reserve], r))
+		goto out;
+
+	if (!wait) {
+		trace_bcache_alloc_fail(ca, reserve);
+		return -1;
+	}
+
+	do {
+		prepare_to_wait(&ca->set->bucket_wait, &w,
+				TASK_UNINTERRUPTIBLE);
+
+		mutex_unlock(&ca->set->bucket_lock);
+		schedule();
+		mutex_lock(&ca->set->bucket_lock);
+	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
+		 !fifo_pop(&ca->free[reserve], r));
+
+	finish_wait(&ca->set->bucket_wait, &w);
+out:
+	if (ca->alloc_thread)
+		wake_up_process(ca->alloc_thread);
+
+	trace_bcache_alloc(ca, reserve);
+
+	if (expensive_debug_checks(ca->set)) {
+		size_t iter;
+		long i;
+		unsigned int j;
+
+		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
+			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
+
+		for (j = 0; j < RESERVE_NR; j++)
+			fifo_for_each(i, &ca->free[j], iter)
+				BUG_ON(i == r);
+		fifo_for_each(i, &ca->free_inc, iter)
+			BUG_ON(i == r);
+	}
+
+	b = ca->buckets + r;
+
+	BUG_ON(atomic_read(&b->pin) != 1);
+
+	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
+
+	if (reserve <= RESERVE_PRIO) {
+		SET_GC_MARK(b, GC_MARK_METADATA);
+		SET_GC_MOVE(b, 0);
+		b->prio = BTREE_PRIO;
+	} else {
+		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
+		SET_GC_MOVE(b, 0);
+		b->prio = INITIAL_PRIO;
+	}
+
+	if (ca->set->avail_nbuckets > 0) {
+		ca->set->avail_nbuckets--;
+		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
+	}
+
+	return r;
+}
+
+void __bch_bucket_free(struct cache *ca, struct bucket *b)
+{
+	SET_GC_MARK(b, 0);
+	SET_GC_SECTORS_USED(b, 0);
+
+	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
+		ca->set->avail_nbuckets++;
+		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
+	}
+}
+
+void bch_bucket_free(struct cache_set *c, struct bkey *k)
+{
+	unsigned int i;
+
+	for (i = 0; i < KEY_PTRS(k); i++)
+		__bch_bucket_free(PTR_CACHE(c, k, i),
+				  PTR_BUCKET(c, k, i));
+}
+
+int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
+			   struct bkey *k, int n, bool wait)
+{
+	int i;
+
+	lockdep_assert_held(&c->bucket_lock);
+	BUG_ON(!n || n > c->caches_loaded || n > 8);
+
+	bkey_init(k);
+
+	/* sort by free space/prio of oldest data in caches */
+
+	for (i = 0; i < n; i++) {
+		struct cache *ca = c->cache_by_alloc[i];
+		long b = bch_bucket_alloc(ca, reserve, wait);
+
+		if (b == -1)
+			goto err;
+
+		k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
+				bucket_to_sector(c, b),
+				ca->sb.nr_this_dev);
+
+		SET_KEY_PTRS(k, i + 1);
+	}
+
+	return 0;
+err:
+	bch_bucket_free(c, k);
+	bkey_put(c, k);
+	return -1;
+}
+
+int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
+			 struct bkey *k, int n, bool wait)
+{
+	int ret;
+
+	mutex_lock(&c->bucket_lock);
+	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
+	mutex_unlock(&c->bucket_lock);
+	return ret;
+}
+
+/* Sector allocator */
+
+struct open_bucket {
+	struct list_head	list;
+	unsigned int		last_write_point;
+	unsigned int		sectors_free;
+	BKEY_PADDED(key);
+};
+
+/*
+ * We keep multiple buckets open for writes, and try to segregate different
+ * write streams for better cache utilization: first we try to segregate flash
+ * only volume write streams from cached devices, secondly we look for a bucket
+ * where the last write to it was sequential with the current write, and
+ * failing that we look for a bucket that was last used by the same task.
+ *
+ * The ideas is if you've got multiple tasks pulling data into the cache at the
+ * same time, you'll get better cache utilization if you try to segregate their
+ * data and preserve locality.
+ *
+ * For example, dirty sectors of flash only volume is not reclaimable, if their
+ * dirty sectors mixed with dirty sectors of cached device, such buckets will
+ * be marked as dirty and won't be reclaimed, though the dirty data of cached
+ * device have been written back to backend device.
+ *
+ * And say you've starting Firefox at the same time you're copying a
+ * bunch of files. Firefox will likely end up being fairly hot and stay in the
+ * cache awhile, but the data you copied might not be; if you wrote all that
+ * data to the same buckets it'd get invalidated at the same time.
+ *
+ * Both of those tasks will be doing fairly random IO so we can't rely on
+ * detecting sequential IO to segregate their data, but going off of the task
+ * should be a sane heuristic.
+ */
+static struct open_bucket *pick_data_bucket(struct cache_set *c,
+					    const struct bkey *search,
+					    unsigned int write_point,
+					    struct bkey *alloc)
+{
+	struct open_bucket *ret, *ret_task = NULL;
+
+	list_for_each_entry_reverse(ret, &c->data_buckets, list)
+		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
+		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
+			continue;
+		else if (!bkey_cmp(&ret->key, search))
+			goto found;
+		else if (ret->last_write_point == write_point)
+			ret_task = ret;
+
+	ret = ret_task ?: list_first_entry(&c->data_buckets,
+					   struct open_bucket, list);
+found:
+	if (!ret->sectors_free && KEY_PTRS(alloc)) {
+		ret->sectors_free = c->sb.bucket_size;
+		bkey_copy(&ret->key, alloc);
+		bkey_init(alloc);
+	}
+
+	if (!ret->sectors_free)
+		ret = NULL;
+
+	return ret;
+}
+
+/*
+ * Allocates some space in the cache to write to, and k to point to the newly
+ * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
+ * end of the newly allocated space).
+ *
+ * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
+ * sectors were actually allocated.
+ *
+ * If s->writeback is true, will not fail.
+ */
+bool bch_alloc_sectors(struct cache_set *c,
+		       struct bkey *k,
+		       unsigned int sectors,
+		       unsigned int write_point,
+		       unsigned int write_prio,
+		       bool wait)
+{
+	struct open_bucket *b;
+	BKEY_PADDED(key) alloc;
+	unsigned int i;
+
+	/*
+	 * We might have to allocate a new bucket, which we can't do with a
+	 * spinlock held. So if we have to allocate, we drop the lock, allocate
+	 * and then retry. KEY_PTRS() indicates whether alloc points to
+	 * allocated bucket(s).
+	 */
+
+	bkey_init(&alloc.key);
+	spin_lock(&c->data_bucket_lock);
+
+	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
+		unsigned int watermark = write_prio
+			? RESERVE_MOVINGGC
+			: RESERVE_NONE;
+
+		spin_unlock(&c->data_bucket_lock);
+
+		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
+			return false;
+
+		spin_lock(&c->data_bucket_lock);
+	}
+
+	/*
+	 * If we had to allocate, we might race and not need to allocate the
+	 * second time we call pick_data_bucket(). If we allocated a bucket but
+	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
+	 */
+	if (KEY_PTRS(&alloc.key))
+		bkey_put(c, &alloc.key);
+
+	for (i = 0; i < KEY_PTRS(&b->key); i++)
+		EBUG_ON(ptr_stale(c, &b->key, i));
+
+	/* Set up the pointer to the space we're allocating: */
+
+	for (i = 0; i < KEY_PTRS(&b->key); i++)
+		k->ptr[i] = b->key.ptr[i];
+
+	sectors = min(sectors, b->sectors_free);
+
+	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
+	SET_KEY_SIZE(k, sectors);
+	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
+
+	/*
+	 * Move b to the end of the lru, and keep track of what this bucket was
+	 * last used for:
+	 */
+	list_move_tail(&b->list, &c->data_buckets);
+	bkey_copy_key(&b->key, k);
+	b->last_write_point = write_point;
+
+	b->sectors_free	-= sectors;
+
+	for (i = 0; i < KEY_PTRS(&b->key); i++) {
+		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
+
+		atomic_long_add(sectors,
+				&PTR_CACHE(c, &b->key, i)->sectors_written);
+	}
+
+	if (b->sectors_free < c->sb.block_size)
+		b->sectors_free = 0;
+
+	/*
+	 * k takes refcounts on the buckets it points to until it's inserted
+	 * into the btree, but if we're done with this bucket we just transfer
+	 * get_data_bucket()'s refcount.
+	 */
+	if (b->sectors_free)
+		for (i = 0; i < KEY_PTRS(&b->key); i++)
+			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
+
+	spin_unlock(&c->data_bucket_lock);
+	return true;
+}
+
+/* Init */
+
+void bch_open_buckets_free(struct cache_set *c)
+{
+	struct open_bucket *b;
+
+	while (!list_empty(&c->data_buckets)) {
+		b = list_first_entry(&c->data_buckets,
+				     struct open_bucket, list);
+		list_del(&b->list);
+		kfree(b);
+	}
+}
+
+int bch_open_buckets_alloc(struct cache_set *c)
+{
+	int i;
+
+	spin_lock_init(&c->data_bucket_lock);
+
+	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
+		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
+
+		if (!b)
+			return -ENOMEM;
+
+		list_add(&b->list, &c->data_buckets);
+	}
+
+	return 0;
+}
+
+int bch_cache_allocator_start(struct cache *ca)
+{
+	struct task_struct *k = kthread_run(bch_allocator_thread,
+					    ca, "bcache_allocator");
+	if (IS_ERR(k))
+		return PTR_ERR(k);
+
+	ca->alloc_thread = k;
+	return 0;
+}