v4.19.13 snapshot.
diff --git a/drivers/firmware/efi/libstub/arm-stub.c b/drivers/firmware/efi/libstub/arm-stub.c
new file mode 100644
index 0000000..6920033
--- /dev/null
+++ b/drivers/firmware/efi/libstub/arm-stub.c
@@ -0,0 +1,374 @@
+/*
+ * EFI stub implementation that is shared by arm and arm64 architectures.
+ * This should be #included by the EFI stub implementation files.
+ *
+ * Copyright (C) 2013,2014 Linaro Limited
+ *     Roy Franz <roy.franz@linaro.org
+ * Copyright (C) 2013 Red Hat, Inc.
+ *     Mark Salter <msalter@redhat.com>
+ *
+ * This file is part of the Linux kernel, and is made available under the
+ * terms of the GNU General Public License version 2.
+ *
+ */
+
+#include <linux/efi.h>
+#include <linux/sort.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+/*
+ * This is the base address at which to start allocating virtual memory ranges
+ * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
+ * any allocation we choose, and eliminate the risk of a conflict after kexec.
+ * The value chosen is the largest non-zero power of 2 suitable for this purpose
+ * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
+ * be mapped efficiently.
+ * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
+ * map everything below 1 GB. (512 MB is a reasonable upper bound for the
+ * entire footprint of the UEFI runtime services memory regions)
+ */
+#define EFI_RT_VIRTUAL_BASE	SZ_512M
+#define EFI_RT_VIRTUAL_SIZE	SZ_512M
+
+#ifdef CONFIG_ARM64
+# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE_64
+#else
+# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
+#endif
+
+static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
+
+void efi_char16_printk(efi_system_table_t *sys_table_arg,
+			      efi_char16_t *str)
+{
+	struct efi_simple_text_output_protocol *out;
+
+	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
+	out->output_string(out, str);
+}
+
+static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
+{
+	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
+	efi_status_t status;
+	unsigned long size;
+	void **gop_handle = NULL;
+	struct screen_info *si = NULL;
+
+	size = 0;
+	status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
+				&gop_proto, NULL, &size, gop_handle);
+	if (status == EFI_BUFFER_TOO_SMALL) {
+		si = alloc_screen_info(sys_table_arg);
+		if (!si)
+			return NULL;
+		efi_setup_gop(sys_table_arg, si, &gop_proto, size);
+	}
+	return si;
+}
+
+/*
+ * This function handles the architcture specific differences between arm and
+ * arm64 regarding where the kernel image must be loaded and any memory that
+ * must be reserved. On failure it is required to free all
+ * all allocations it has made.
+ */
+efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
+				 unsigned long *image_addr,
+				 unsigned long *image_size,
+				 unsigned long *reserve_addr,
+				 unsigned long *reserve_size,
+				 unsigned long dram_base,
+				 efi_loaded_image_t *image);
+/*
+ * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
+ * that is described in the PE/COFF header.  Most of the code is the same
+ * for both archictectures, with the arch-specific code provided in the
+ * handle_kernel_image() function.
+ */
+unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
+			       unsigned long *image_addr)
+{
+	efi_loaded_image_t *image;
+	efi_status_t status;
+	unsigned long image_size = 0;
+	unsigned long dram_base;
+	/* addr/point and size pairs for memory management*/
+	unsigned long initrd_addr;
+	u64 initrd_size = 0;
+	unsigned long fdt_addr = 0;  /* Original DTB */
+	unsigned long fdt_size = 0;
+	char *cmdline_ptr = NULL;
+	int cmdline_size = 0;
+	unsigned long new_fdt_addr;
+	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
+	unsigned long reserve_addr = 0;
+	unsigned long reserve_size = 0;
+	enum efi_secureboot_mode secure_boot;
+	struct screen_info *si;
+
+	/* Check if we were booted by the EFI firmware */
+	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
+		goto fail;
+
+	status = check_platform_features(sys_table);
+	if (status != EFI_SUCCESS)
+		goto fail;
+
+	/*
+	 * Get a handle to the loaded image protocol.  This is used to get
+	 * information about the running image, such as size and the command
+	 * line.
+	 */
+	status = sys_table->boottime->handle_protocol(handle,
+					&loaded_image_proto, (void *)&image);
+	if (status != EFI_SUCCESS) {
+		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
+		goto fail;
+	}
+
+	dram_base = get_dram_base(sys_table);
+	if (dram_base == EFI_ERROR) {
+		pr_efi_err(sys_table, "Failed to find DRAM base\n");
+		goto fail;
+	}
+
+	/*
+	 * Get the command line from EFI, using the LOADED_IMAGE
+	 * protocol. We are going to copy the command line into the
+	 * device tree, so this can be allocated anywhere.
+	 */
+	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
+	if (!cmdline_ptr) {
+		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
+		goto fail;
+	}
+
+	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
+	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
+	    cmdline_size == 0)
+		efi_parse_options(CONFIG_CMDLINE);
+
+	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
+		efi_parse_options(cmdline_ptr);
+
+	pr_efi(sys_table, "Booting Linux Kernel...\n");
+
+	si = setup_graphics(sys_table);
+
+	status = handle_kernel_image(sys_table, image_addr, &image_size,
+				     &reserve_addr,
+				     &reserve_size,
+				     dram_base, image);
+	if (status != EFI_SUCCESS) {
+		pr_efi_err(sys_table, "Failed to relocate kernel\n");
+		goto fail_free_cmdline;
+	}
+
+	/* Ask the firmware to clear memory on unclean shutdown */
+	efi_enable_reset_attack_mitigation(sys_table);
+
+	secure_boot = efi_get_secureboot(sys_table);
+
+	/*
+	 * Unauthenticated device tree data is a security hazard, so ignore
+	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
+	 * boot is enabled if we can't determine its state.
+	 */
+	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
+	     secure_boot != efi_secureboot_mode_disabled) {
+		if (strstr(cmdline_ptr, "dtb="))
+			pr_efi(sys_table, "Ignoring DTB from command line.\n");
+	} else {
+		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
+					      "dtb=",
+					      ~0UL, &fdt_addr, &fdt_size);
+
+		if (status != EFI_SUCCESS) {
+			pr_efi_err(sys_table, "Failed to load device tree!\n");
+			goto fail_free_image;
+		}
+	}
+
+	if (fdt_addr) {
+		pr_efi(sys_table, "Using DTB from command line\n");
+	} else {
+		/* Look for a device tree configuration table entry. */
+		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
+		if (fdt_addr)
+			pr_efi(sys_table, "Using DTB from configuration table\n");
+	}
+
+	if (!fdt_addr)
+		pr_efi(sys_table, "Generating empty DTB\n");
+
+	status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
+				      efi_get_max_initrd_addr(dram_base,
+							      *image_addr),
+				      (unsigned long *)&initrd_addr,
+				      (unsigned long *)&initrd_size);
+	if (status != EFI_SUCCESS)
+		pr_efi_err(sys_table, "Failed initrd from command line!\n");
+
+	efi_random_get_seed(sys_table);
+
+	/* hibernation expects the runtime regions to stay in the same place */
+	if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
+		/*
+		 * Randomize the base of the UEFI runtime services region.
+		 * Preserve the 2 MB alignment of the region by taking a
+		 * shift of 21 bit positions into account when scaling
+		 * the headroom value using a 32-bit random value.
+		 */
+		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
+					    EFI_RT_VIRTUAL_BASE -
+					    EFI_RT_VIRTUAL_SIZE;
+		u32 rnd;
+
+		status = efi_get_random_bytes(sys_table, sizeof(rnd),
+					      (u8 *)&rnd);
+		if (status == EFI_SUCCESS) {
+			virtmap_base = EFI_RT_VIRTUAL_BASE +
+				       (((headroom >> 21) * rnd) >> (32 - 21));
+		}
+	}
+
+	new_fdt_addr = fdt_addr;
+	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
+				&new_fdt_addr, efi_get_max_fdt_addr(dram_base),
+				initrd_addr, initrd_size, cmdline_ptr,
+				fdt_addr, fdt_size);
+
+	/*
+	 * If all went well, we need to return the FDT address to the
+	 * calling function so it can be passed to kernel as part of
+	 * the kernel boot protocol.
+	 */
+	if (status == EFI_SUCCESS)
+		return new_fdt_addr;
+
+	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
+
+	efi_free(sys_table, initrd_size, initrd_addr);
+	efi_free(sys_table, fdt_size, fdt_addr);
+
+fail_free_image:
+	efi_free(sys_table, image_size, *image_addr);
+	efi_free(sys_table, reserve_size, reserve_addr);
+fail_free_cmdline:
+	free_screen_info(sys_table, si);
+	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
+fail:
+	return EFI_ERROR;
+}
+
+static int cmp_mem_desc(const void *l, const void *r)
+{
+	const efi_memory_desc_t *left = l, *right = r;
+
+	return (left->phys_addr > right->phys_addr) ? 1 : -1;
+}
+
+/*
+ * Returns whether region @left ends exactly where region @right starts,
+ * or false if either argument is NULL.
+ */
+static bool regions_are_adjacent(efi_memory_desc_t *left,
+				 efi_memory_desc_t *right)
+{
+	u64 left_end;
+
+	if (left == NULL || right == NULL)
+		return false;
+
+	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
+
+	return left_end == right->phys_addr;
+}
+
+/*
+ * Returns whether region @left and region @right have compatible memory type
+ * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
+ */
+static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
+						      efi_memory_desc_t *right)
+{
+	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
+					 EFI_MEMORY_WC | EFI_MEMORY_UC |
+					 EFI_MEMORY_RUNTIME;
+
+	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
+}
+
+/*
+ * efi_get_virtmap() - create a virtual mapping for the EFI memory map
+ *
+ * This function populates the virt_addr fields of all memory region descriptors
+ * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
+ * are also copied to @runtime_map, and their total count is returned in @count.
+ */
+void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
+		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
+		     int *count)
+{
+	u64 efi_virt_base = virtmap_base;
+	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
+	int l;
+
+	/*
+	 * To work around potential issues with the Properties Table feature
+	 * introduced in UEFI 2.5, which may split PE/COFF executable images
+	 * in memory into several RuntimeServicesCode and RuntimeServicesData
+	 * regions, we need to preserve the relative offsets between adjacent
+	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
+	 * The easiest way to find adjacent regions is to sort the memory map
+	 * before traversing it.
+	 */
+	if (IS_ENABLED(CONFIG_ARM64))
+		sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
+		     NULL);
+
+	for (l = 0; l < map_size; l += desc_size, prev = in) {
+		u64 paddr, size;
+
+		in = (void *)memory_map + l;
+		if (!(in->attribute & EFI_MEMORY_RUNTIME))
+			continue;
+
+		paddr = in->phys_addr;
+		size = in->num_pages * EFI_PAGE_SIZE;
+
+		/*
+		 * Make the mapping compatible with 64k pages: this allows
+		 * a 4k page size kernel to kexec a 64k page size kernel and
+		 * vice versa.
+		 */
+		if ((IS_ENABLED(CONFIG_ARM64) &&
+		     !regions_are_adjacent(prev, in)) ||
+		    !regions_have_compatible_memory_type_attrs(prev, in)) {
+
+			paddr = round_down(in->phys_addr, SZ_64K);
+			size += in->phys_addr - paddr;
+
+			/*
+			 * Avoid wasting memory on PTEs by choosing a virtual
+			 * base that is compatible with section mappings if this
+			 * region has the appropriate size and physical
+			 * alignment. (Sections are 2 MB on 4k granule kernels)
+			 */
+			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
+				efi_virt_base = round_up(efi_virt_base, SZ_2M);
+			else
+				efi_virt_base = round_up(efi_virt_base, SZ_64K);
+		}
+
+		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
+		efi_virt_base += size;
+
+		memcpy(out, in, desc_size);
+		out = (void *)out + desc_size;
+		++*count;
+	}
+}