v4.19.13 snapshot.
diff --git a/drivers/edac/sb_edac.c b/drivers/edac/sb_edac.c
new file mode 100644
index 0000000..72cea3c
--- /dev/null
+++ b/drivers/edac/sb_edac.c
@@ -0,0 +1,3463 @@
+/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
+ *
+ * This driver supports the memory controllers found on the Intel
+ * processor family Sandy Bridge.
+ *
+ * This file may be distributed under the terms of the
+ * GNU General Public License version 2 only.
+ *
+ * Copyright (c) 2011 by:
+ *	 Mauro Carvalho Chehab
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/edac.h>
+#include <linux/mmzone.h>
+#include <linux/smp.h>
+#include <linux/bitmap.h>
+#include <linux/math64.h>
+#include <linux/mod_devicetable.h>
+#include <asm/cpu_device_id.h>
+#include <asm/intel-family.h>
+#include <asm/processor.h>
+#include <asm/mce.h>
+
+#include "edac_module.h"
+
+/* Static vars */
+static LIST_HEAD(sbridge_edac_list);
+
+/*
+ * Alter this version for the module when modifications are made
+ */
+#define SBRIDGE_REVISION    " Ver: 1.1.2 "
+#define EDAC_MOD_STR	    "sb_edac"
+
+/*
+ * Debug macros
+ */
+#define sbridge_printk(level, fmt, arg...)			\
+	edac_printk(level, "sbridge", fmt, ##arg)
+
+#define sbridge_mc_printk(mci, level, fmt, arg...)		\
+	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
+
+/*
+ * Get a bit field at register value <v>, from bit <lo> to bit <hi>
+ */
+#define GET_BITFIELD(v, lo, hi)	\
+	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
+
+/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
+static const u32 sbridge_dram_rule[] = {
+	0x80, 0x88, 0x90, 0x98, 0xa0,
+	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
+};
+
+static const u32 ibridge_dram_rule[] = {
+	0x60, 0x68, 0x70, 0x78, 0x80,
+	0x88, 0x90, 0x98, 0xa0,	0xa8,
+	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
+	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
+};
+
+static const u32 knl_dram_rule[] = {
+	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
+	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
+	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
+	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
+	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
+};
+
+#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
+#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
+
+static char *show_dram_attr(u32 attr)
+{
+	switch (attr) {
+		case 0:
+			return "DRAM";
+		case 1:
+			return "MMCFG";
+		case 2:
+			return "NXM";
+		default:
+			return "unknown";
+	}
+}
+
+static const u32 sbridge_interleave_list[] = {
+	0x84, 0x8c, 0x94, 0x9c, 0xa4,
+	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
+};
+
+static const u32 ibridge_interleave_list[] = {
+	0x64, 0x6c, 0x74, 0x7c, 0x84,
+	0x8c, 0x94, 0x9c, 0xa4, 0xac,
+	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
+	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
+};
+
+static const u32 knl_interleave_list[] = {
+	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
+	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
+	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
+	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
+	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
+};
+#define MAX_INTERLEAVE							\
+	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
+	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
+		     ARRAY_SIZE(knl_interleave_list))))
+
+struct interleave_pkg {
+	unsigned char start;
+	unsigned char end;
+};
+
+static const struct interleave_pkg sbridge_interleave_pkg[] = {
+	{ 0, 2 },
+	{ 3, 5 },
+	{ 8, 10 },
+	{ 11, 13 },
+	{ 16, 18 },
+	{ 19, 21 },
+	{ 24, 26 },
+	{ 27, 29 },
+};
+
+static const struct interleave_pkg ibridge_interleave_pkg[] = {
+	{ 0, 3 },
+	{ 4, 7 },
+	{ 8, 11 },
+	{ 12, 15 },
+	{ 16, 19 },
+	{ 20, 23 },
+	{ 24, 27 },
+	{ 28, 31 },
+};
+
+static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
+			  int interleave)
+{
+	return GET_BITFIELD(reg, table[interleave].start,
+			    table[interleave].end);
+}
+
+/* Devices 12 Function 7 */
+
+#define TOLM		0x80
+#define TOHM		0x84
+#define HASWELL_TOLM	0xd0
+#define HASWELL_TOHM_0	0xd4
+#define HASWELL_TOHM_1	0xd8
+#define KNL_TOLM	0xd0
+#define KNL_TOHM_0	0xd4
+#define KNL_TOHM_1	0xd8
+
+#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
+#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
+
+/* Device 13 Function 6 */
+
+#define SAD_TARGET	0xf0
+
+#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
+
+#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
+
+#define SAD_CONTROL	0xf4
+
+/* Device 14 function 0 */
+
+static const u32 tad_dram_rule[] = {
+	0x40, 0x44, 0x48, 0x4c,
+	0x50, 0x54, 0x58, 0x5c,
+	0x60, 0x64, 0x68, 0x6c,
+};
+#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
+
+#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
+#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
+#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
+#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
+#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
+#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
+#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
+
+/* Device 15, function 0 */
+
+#define MCMTR			0x7c
+#define KNL_MCMTR		0x624
+
+#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
+#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
+#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
+
+/* Device 15, function 1 */
+
+#define RASENABLES		0xac
+#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
+
+/* Device 15, functions 2-5 */
+
+static const int mtr_regs[] = {
+	0x80, 0x84, 0x88,
+};
+
+static const int knl_mtr_reg = 0xb60;
+
+#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
+#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
+#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
+#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
+#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
+
+static const u32 tad_ch_nilv_offset[] = {
+	0x90, 0x94, 0x98, 0x9c,
+	0xa0, 0xa4, 0xa8, 0xac,
+	0xb0, 0xb4, 0xb8, 0xbc,
+};
+#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
+#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
+
+static const u32 rir_way_limit[] = {
+	0x108, 0x10c, 0x110, 0x114, 0x118,
+};
+#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
+
+#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
+#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
+
+#define MAX_RIR_WAY	8
+
+static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
+	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
+	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
+	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
+	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
+	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
+};
+
+#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
+	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
+
+#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
+	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
+
+/* Device 16, functions 2-7 */
+
+/*
+ * FIXME: Implement the error count reads directly
+ */
+
+static const u32 correrrcnt[] = {
+	0x104, 0x108, 0x10c, 0x110,
+};
+
+#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
+#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
+#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
+#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
+
+static const u32 correrrthrsld[] = {
+	0x11c, 0x120, 0x124, 0x128,
+};
+
+#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
+#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
+
+
+/* Device 17, function 0 */
+
+#define SB_RANK_CFG_A		0x0328
+
+#define IB_RANK_CFG_A		0x0320
+
+/*
+ * sbridge structs
+ */
+
+#define NUM_CHANNELS		6	/* Max channels per MC */
+#define MAX_DIMMS		3	/* Max DIMMS per channel */
+#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
+#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
+#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
+#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
+
+enum type {
+	SANDY_BRIDGE,
+	IVY_BRIDGE,
+	HASWELL,
+	BROADWELL,
+	KNIGHTS_LANDING,
+};
+
+enum domain {
+	IMC0 = 0,
+	IMC1,
+	SOCK,
+};
+
+enum mirroring_mode {
+	NON_MIRRORING,
+	ADDR_RANGE_MIRRORING,
+	FULL_MIRRORING,
+};
+
+struct sbridge_pvt;
+struct sbridge_info {
+	enum type	type;
+	u32		mcmtr;
+	u32		rankcfgr;
+	u64		(*get_tolm)(struct sbridge_pvt *pvt);
+	u64		(*get_tohm)(struct sbridge_pvt *pvt);
+	u64		(*rir_limit)(u32 reg);
+	u64		(*sad_limit)(u32 reg);
+	u32		(*interleave_mode)(u32 reg);
+	u32		(*dram_attr)(u32 reg);
+	const u32	*dram_rule;
+	const u32	*interleave_list;
+	const struct interleave_pkg *interleave_pkg;
+	u8		max_sad;
+	u8		(*get_node_id)(struct sbridge_pvt *pvt);
+	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
+	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
+	struct pci_dev	*pci_vtd;
+};
+
+struct sbridge_channel {
+	u32		ranks;
+	u32		dimms;
+};
+
+struct pci_id_descr {
+	int			dev_id;
+	int			optional;
+	enum domain		dom;
+};
+
+struct pci_id_table {
+	const struct pci_id_descr	*descr;
+	int				n_devs_per_imc;
+	int				n_devs_per_sock;
+	int				n_imcs_per_sock;
+	enum type			type;
+};
+
+struct sbridge_dev {
+	struct list_head	list;
+	int			seg;
+	u8			bus, mc;
+	u8			node_id, source_id;
+	struct pci_dev		**pdev;
+	enum domain		dom;
+	int			n_devs;
+	int			i_devs;
+	struct mem_ctl_info	*mci;
+};
+
+struct knl_pvt {
+	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
+	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
+	struct pci_dev          *pci_mc0;
+	struct pci_dev          *pci_mc1;
+	struct pci_dev          *pci_mc0_misc;
+	struct pci_dev          *pci_mc1_misc;
+	struct pci_dev          *pci_mc_info; /* tolm, tohm */
+};
+
+struct sbridge_pvt {
+	/* Devices per socket */
+	struct pci_dev		*pci_ddrio;
+	struct pci_dev		*pci_sad0, *pci_sad1;
+	struct pci_dev		*pci_br0, *pci_br1;
+	/* Devices per memory controller */
+	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
+	struct pci_dev		*pci_tad[NUM_CHANNELS];
+
+	struct sbridge_dev	*sbridge_dev;
+
+	struct sbridge_info	info;
+	struct sbridge_channel	channel[NUM_CHANNELS];
+
+	/* Memory type detection */
+	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
+	bool			is_chan_hash;
+	enum mirroring_mode	mirror_mode;
+
+	/* Memory description */
+	u64			tolm, tohm;
+	struct knl_pvt knl;
+};
+
+#define PCI_DESCR(device_id, opt, domain)	\
+	.dev_id = (device_id),		\
+	.optional = opt,	\
+	.dom = domain
+
+static const struct pci_id_descr pci_dev_descr_sbridge[] = {
+		/* Processor Home Agent */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
+
+		/* Memory controller */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
+
+		/* System Address Decoder */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
+
+		/* Broadcast Registers */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
+};
+
+#define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
+	.descr = A,			\
+	.n_devs_per_imc = N,	\
+	.n_devs_per_sock = ARRAY_SIZE(A),	\
+	.n_imcs_per_sock = M,	\
+	.type = T			\
+}
+
+static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
+	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
+	{0,}			/* 0 terminated list. */
+};
+
+/* This changes depending if 1HA or 2HA:
+ * 1HA:
+ *	0x0eb8 (17.0) is DDRIO0
+ * 2HA:
+ *	0x0ebc (17.4) is DDRIO0
+ */
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
+
+/* pci ids */
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
+
+static const struct pci_id_descr pci_dev_descr_ibridge[] = {
+		/* Processor Home Agent */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
+
+		/* Memory controller */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
+
+		/* Optional, mode 2HA */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
+
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
+
+		/* System Address Decoder */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
+
+		/* Broadcast Registers */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
+
+};
+
+static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
+	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
+	{0,}			/* 0 terminated list. */
+};
+
+/* Haswell support */
+/* EN processor:
+ *	- 1 IMC
+ *	- 3 DDR3 channels, 2 DPC per channel
+ * EP processor:
+ *	- 1 or 2 IMC
+ *	- 4 DDR4 channels, 3 DPC per channel
+ * EP 4S processor:
+ *	- 2 IMC
+ *	- 4 DDR4 channels, 3 DPC per channel
+ * EX processor:
+ *	- 2 IMC
+ *	- each IMC interfaces with a SMI 2 channel
+ *	- each SMI channel interfaces with a scalable memory buffer
+ *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
+ */
+#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
+#define HASWELL_HASYSDEFEATURE2 0x84
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
+static const struct pci_id_descr pci_dev_descr_haswell[] = {
+	/* first item must be the HA */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
+
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
+
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
+
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
+};
+
+static const struct pci_id_table pci_dev_descr_haswell_table[] = {
+	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
+	{0,}			/* 0 terminated list. */
+};
+
+/* Knight's Landing Support */
+/*
+ * KNL's memory channels are swizzled between memory controllers.
+ * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
+ */
+#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
+
+/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
+/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
+/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
+/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
+/* SAD target - 1-29-1 (1 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
+/* Caching / Home Agent */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
+/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
+
+/*
+ * KNL differs from SB, IB, and Haswell in that it has multiple
+ * instances of the same device with the same device ID, so we handle that
+ * by creating as many copies in the table as we expect to find.
+ * (Like device ID must be grouped together.)
+ */
+
+static const struct pci_id_descr pci_dev_descr_knl[] = {
+	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
+	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
+	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
+	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
+	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
+	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
+	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
+};
+
+static const struct pci_id_table pci_dev_descr_knl_table[] = {
+	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
+	{0,}
+};
+
+/*
+ * Broadwell support
+ *
+ * DE processor:
+ *	- 1 IMC
+ *	- 2 DDR3 channels, 2 DPC per channel
+ * EP processor:
+ *	- 1 or 2 IMC
+ *	- 4 DDR4 channels, 3 DPC per channel
+ * EP 4S processor:
+ *	- 2 IMC
+ *	- 4 DDR4 channels, 3 DPC per channel
+ * EX processor:
+ *	- 2 IMC
+ *	- each IMC interfaces with a SMI 2 channel
+ *	- each SMI channel interfaces with a scalable memory buffer
+ *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
+ */
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
+
+static const struct pci_id_descr pci_dev_descr_broadwell[] = {
+	/* first item must be the HA */
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
+
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
+
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
+
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
+	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
+};
+
+static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
+	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
+	{0,}			/* 0 terminated list. */
+};
+
+
+/****************************************************************************
+			Ancillary status routines
+ ****************************************************************************/
+
+static inline int numrank(enum type type, u32 mtr)
+{
+	int ranks = (1 << RANK_CNT_BITS(mtr));
+	int max = 4;
+
+	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
+		max = 8;
+
+	if (ranks > max) {
+		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
+			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
+		return -EINVAL;
+	}
+
+	return ranks;
+}
+
+static inline int numrow(u32 mtr)
+{
+	int rows = (RANK_WIDTH_BITS(mtr) + 12);
+
+	if (rows < 13 || rows > 18) {
+		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
+			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
+		return -EINVAL;
+	}
+
+	return 1 << rows;
+}
+
+static inline int numcol(u32 mtr)
+{
+	int cols = (COL_WIDTH_BITS(mtr) + 10);
+
+	if (cols > 12) {
+		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
+			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
+		return -EINVAL;
+	}
+
+	return 1 << cols;
+}
+
+static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
+					   int multi_bus,
+					   struct sbridge_dev *prev)
+{
+	struct sbridge_dev *sbridge_dev;
+
+	/*
+	 * If we have devices scattered across several busses that pertain
+	 * to the same memory controller, we'll lump them all together.
+	 */
+	if (multi_bus) {
+		return list_first_entry_or_null(&sbridge_edac_list,
+				struct sbridge_dev, list);
+	}
+
+	sbridge_dev = list_entry(prev ? prev->list.next
+				      : sbridge_edac_list.next, struct sbridge_dev, list);
+
+	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
+		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
+				(dom == SOCK || dom == sbridge_dev->dom))
+			return sbridge_dev;
+	}
+
+	return NULL;
+}
+
+static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
+					     const struct pci_id_table *table)
+{
+	struct sbridge_dev *sbridge_dev;
+
+	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
+	if (!sbridge_dev)
+		return NULL;
+
+	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
+				    sizeof(*sbridge_dev->pdev),
+				    GFP_KERNEL);
+	if (!sbridge_dev->pdev) {
+		kfree(sbridge_dev);
+		return NULL;
+	}
+
+	sbridge_dev->seg = seg;
+	sbridge_dev->bus = bus;
+	sbridge_dev->dom = dom;
+	sbridge_dev->n_devs = table->n_devs_per_imc;
+	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
+
+	return sbridge_dev;
+}
+
+static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
+{
+	list_del(&sbridge_dev->list);
+	kfree(sbridge_dev->pdev);
+	kfree(sbridge_dev);
+}
+
+static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	/* Address range is 32:28 */
+	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
+	return GET_TOLM(reg);
+}
+
+static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
+	return GET_TOHM(reg);
+}
+
+static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
+
+	return GET_TOLM(reg);
+}
+
+static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
+
+	return GET_TOHM(reg);
+}
+
+static u64 rir_limit(u32 reg)
+{
+	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
+}
+
+static u64 sad_limit(u32 reg)
+{
+	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
+}
+
+static u32 interleave_mode(u32 reg)
+{
+	return GET_BITFIELD(reg, 1, 1);
+}
+
+static u32 dram_attr(u32 reg)
+{
+	return GET_BITFIELD(reg, 2, 3);
+}
+
+static u64 knl_sad_limit(u32 reg)
+{
+	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
+}
+
+static u32 knl_interleave_mode(u32 reg)
+{
+	return GET_BITFIELD(reg, 1, 2);
+}
+
+static const char * const knl_intlv_mode[] = {
+	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
+};
+
+static const char *get_intlv_mode_str(u32 reg, enum type t)
+{
+	if (t == KNIGHTS_LANDING)
+		return knl_intlv_mode[knl_interleave_mode(reg)];
+	else
+		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
+}
+
+static u32 dram_attr_knl(u32 reg)
+{
+	return GET_BITFIELD(reg, 3, 4);
+}
+
+
+static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+	enum mem_type mtype;
+
+	if (pvt->pci_ddrio) {
+		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
+				      &reg);
+		if (GET_BITFIELD(reg, 11, 11))
+			/* FIXME: Can also be LRDIMM */
+			mtype = MEM_RDDR3;
+		else
+			mtype = MEM_DDR3;
+	} else
+		mtype = MEM_UNKNOWN;
+
+	return mtype;
+}
+
+static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+	bool registered = false;
+	enum mem_type mtype = MEM_UNKNOWN;
+
+	if (!pvt->pci_ddrio)
+		goto out;
+
+	pci_read_config_dword(pvt->pci_ddrio,
+			      HASWELL_DDRCRCLKCONTROLS, &reg);
+	/* Is_Rdimm */
+	if (GET_BITFIELD(reg, 16, 16))
+		registered = true;
+
+	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
+	if (GET_BITFIELD(reg, 14, 14)) {
+		if (registered)
+			mtype = MEM_RDDR4;
+		else
+			mtype = MEM_DDR4;
+	} else {
+		if (registered)
+			mtype = MEM_RDDR3;
+		else
+			mtype = MEM_DDR3;
+	}
+
+out:
+	return mtype;
+}
+
+static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
+{
+	/* for KNL value is fixed */
+	return DEV_X16;
+}
+
+static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
+{
+	/* there's no way to figure out */
+	return DEV_UNKNOWN;
+}
+
+static enum dev_type __ibridge_get_width(u32 mtr)
+{
+	enum dev_type type;
+
+	switch (mtr) {
+	case 3:
+		type = DEV_UNKNOWN;
+		break;
+	case 2:
+		type = DEV_X16;
+		break;
+	case 1:
+		type = DEV_X8;
+		break;
+	case 0:
+		type = DEV_X4;
+		break;
+	}
+
+	return type;
+}
+
+static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
+{
+	/*
+	 * ddr3_width on the documentation but also valid for DDR4 on
+	 * Haswell
+	 */
+	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
+}
+
+static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
+{
+	/* ddr3_width on the documentation but also valid for DDR4 */
+	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
+}
+
+static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
+{
+	/* DDR4 RDIMMS and LRDIMMS are supported */
+	return MEM_RDDR4;
+}
+
+static u8 get_node_id(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
+	return GET_BITFIELD(reg, 0, 2);
+}
+
+static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
+	return GET_BITFIELD(reg, 0, 3);
+}
+
+static u8 knl_get_node_id(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
+	return GET_BITFIELD(reg, 0, 2);
+}
+
+
+static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
+	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
+}
+
+static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
+{
+	u64 rc;
+	u32 reg;
+
+	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
+	rc = GET_BITFIELD(reg, 26, 31);
+	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
+	rc = ((reg << 6) | rc) << 26;
+
+	return rc | 0x1ffffff;
+}
+
+static u64 knl_get_tolm(struct sbridge_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
+	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
+}
+
+static u64 knl_get_tohm(struct sbridge_pvt *pvt)
+{
+	u64 rc;
+	u32 reg_lo, reg_hi;
+
+	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
+	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
+	rc = ((u64)reg_hi << 32) | reg_lo;
+	return rc | 0x3ffffff;
+}
+
+
+static u64 haswell_rir_limit(u32 reg)
+{
+	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
+}
+
+static inline u8 sad_pkg_socket(u8 pkg)
+{
+	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
+	return ((pkg >> 3) << 2) | (pkg & 0x3);
+}
+
+static inline u8 sad_pkg_ha(u8 pkg)
+{
+	return (pkg >> 2) & 0x1;
+}
+
+static int haswell_chan_hash(int idx, u64 addr)
+{
+	int i;
+
+	/*
+	 * XOR even bits from 12:26 to bit0 of idx,
+	 *     odd bits from 13:27 to bit1
+	 */
+	for (i = 12; i < 28; i += 2)
+		idx ^= (addr >> i) & 3;
+
+	return idx;
+}
+
+/* Low bits of TAD limit, and some metadata. */
+static const u32 knl_tad_dram_limit_lo[] = {
+	0x400, 0x500, 0x600, 0x700,
+	0x800, 0x900, 0xa00, 0xb00,
+};
+
+/* Low bits of TAD offset. */
+static const u32 knl_tad_dram_offset_lo[] = {
+	0x404, 0x504, 0x604, 0x704,
+	0x804, 0x904, 0xa04, 0xb04,
+};
+
+/* High 16 bits of TAD limit and offset. */
+static const u32 knl_tad_dram_hi[] = {
+	0x408, 0x508, 0x608, 0x708,
+	0x808, 0x908, 0xa08, 0xb08,
+};
+
+/* Number of ways a tad entry is interleaved. */
+static const u32 knl_tad_ways[] = {
+	8, 6, 4, 3, 2, 1,
+};
+
+/*
+ * Retrieve the n'th Target Address Decode table entry
+ * from the memory controller's TAD table.
+ *
+ * @pvt:	driver private data
+ * @entry:	which entry you want to retrieve
+ * @mc:		which memory controller (0 or 1)
+ * @offset:	output tad range offset
+ * @limit:	output address of first byte above tad range
+ * @ways:	output number of interleave ways
+ *
+ * The offset value has curious semantics.  It's a sort of running total
+ * of the sizes of all the memory regions that aren't mapped in this
+ * tad table.
+ */
+static int knl_get_tad(const struct sbridge_pvt *pvt,
+		const int entry,
+		const int mc,
+		u64 *offset,
+		u64 *limit,
+		int *ways)
+{
+	u32 reg_limit_lo, reg_offset_lo, reg_hi;
+	struct pci_dev *pci_mc;
+	int way_id;
+
+	switch (mc) {
+	case 0:
+		pci_mc = pvt->knl.pci_mc0;
+		break;
+	case 1:
+		pci_mc = pvt->knl.pci_mc1;
+		break;
+	default:
+		WARN_ON(1);
+		return -EINVAL;
+	}
+
+	pci_read_config_dword(pci_mc,
+			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
+	pci_read_config_dword(pci_mc,
+			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
+	pci_read_config_dword(pci_mc,
+			knl_tad_dram_hi[entry], &reg_hi);
+
+	/* Is this TAD entry enabled? */
+	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
+		return -ENODEV;
+
+	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
+
+	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
+		*ways = knl_tad_ways[way_id];
+	} else {
+		*ways = 0;
+		sbridge_printk(KERN_ERR,
+				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
+				way_id);
+		return -ENODEV;
+	}
+
+	/*
+	 * The least significant 6 bits of base and limit are truncated.
+	 * For limit, we fill the missing bits with 1s.
+	 */
+	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
+				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
+	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
+				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
+
+	return 0;
+}
+
+/* Determine which memory controller is responsible for a given channel. */
+static int knl_channel_mc(int channel)
+{
+	WARN_ON(channel < 0 || channel >= 6);
+
+	return channel < 3 ? 1 : 0;
+}
+
+/*
+ * Get the Nth entry from EDC_ROUTE_TABLE register.
+ * (This is the per-tile mapping of logical interleave targets to
+ *  physical EDC modules.)
+ *
+ * entry 0: 0:2
+ *       1: 3:5
+ *       2: 6:8
+ *       3: 9:11
+ *       4: 12:14
+ *       5: 15:17
+ *       6: 18:20
+ *       7: 21:23
+ * reserved: 24:31
+ */
+static u32 knl_get_edc_route(int entry, u32 reg)
+{
+	WARN_ON(entry >= KNL_MAX_EDCS);
+	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
+}
+
+/*
+ * Get the Nth entry from MC_ROUTE_TABLE register.
+ * (This is the per-tile mapping of logical interleave targets to
+ *  physical DRAM channels modules.)
+ *
+ * entry 0: mc 0:2   channel 18:19
+ *       1: mc 3:5   channel 20:21
+ *       2: mc 6:8   channel 22:23
+ *       3: mc 9:11  channel 24:25
+ *       4: mc 12:14 channel 26:27
+ *       5: mc 15:17 channel 28:29
+ * reserved: 30:31
+ *
+ * Though we have 3 bits to identify the MC, we should only see
+ * the values 0 or 1.
+ */
+
+static u32 knl_get_mc_route(int entry, u32 reg)
+{
+	int mc, chan;
+
+	WARN_ON(entry >= KNL_MAX_CHANNELS);
+
+	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
+	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
+
+	return knl_channel_remap(mc, chan);
+}
+
+/*
+ * Render the EDC_ROUTE register in human-readable form.
+ * Output string s should be at least KNL_MAX_EDCS*2 bytes.
+ */
+static void knl_show_edc_route(u32 reg, char *s)
+{
+	int i;
+
+	for (i = 0; i < KNL_MAX_EDCS; i++) {
+		s[i*2] = knl_get_edc_route(i, reg) + '0';
+		s[i*2+1] = '-';
+	}
+
+	s[KNL_MAX_EDCS*2 - 1] = '\0';
+}
+
+/*
+ * Render the MC_ROUTE register in human-readable form.
+ * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
+ */
+static void knl_show_mc_route(u32 reg, char *s)
+{
+	int i;
+
+	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
+		s[i*2] = knl_get_mc_route(i, reg) + '0';
+		s[i*2+1] = '-';
+	}
+
+	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
+}
+
+#define KNL_EDC_ROUTE 0xb8
+#define KNL_MC_ROUTE 0xb4
+
+/* Is this dram rule backed by regular DRAM in flat mode? */
+#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
+
+/* Is this dram rule cached? */
+#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
+
+/* Is this rule backed by edc ? */
+#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
+
+/* Is this rule backed by DRAM, cacheable in EDRAM? */
+#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
+
+/* Is this rule mod3? */
+#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
+
+/*
+ * Figure out how big our RAM modules are.
+ *
+ * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
+ * have to figure this out from the SAD rules, interleave lists, route tables,
+ * and TAD rules.
+ *
+ * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
+ * inspect the TAD rules to figure out how large the SAD regions really are.
+ *
+ * When we know the real size of a SAD region and how many ways it's
+ * interleaved, we know the individual contribution of each channel to
+ * TAD is size/ways.
+ *
+ * Finally, we have to check whether each channel participates in each SAD
+ * region.
+ *
+ * Fortunately, KNL only supports one DIMM per channel, so once we know how
+ * much memory the channel uses, we know the DIMM is at least that large.
+ * (The BIOS might possibly choose not to map all available memory, in which
+ * case we will underreport the size of the DIMM.)
+ *
+ * In theory, we could try to determine the EDC sizes as well, but that would
+ * only work in flat mode, not in cache mode.
+ *
+ * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
+ *            elements)
+ */
+static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
+{
+	u64 sad_base, sad_size, sad_limit = 0;
+	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
+	int sad_rule = 0;
+	int tad_rule = 0;
+	int intrlv_ways, tad_ways;
+	u32 first_pkg, pkg;
+	int i;
+	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
+	u32 dram_rule, interleave_reg;
+	u32 mc_route_reg[KNL_MAX_CHAS];
+	u32 edc_route_reg[KNL_MAX_CHAS];
+	int edram_only;
+	char edc_route_string[KNL_MAX_EDCS*2];
+	char mc_route_string[KNL_MAX_CHANNELS*2];
+	int cur_reg_start;
+	int mc;
+	int channel;
+	int participants[KNL_MAX_CHANNELS];
+
+	for (i = 0; i < KNL_MAX_CHANNELS; i++)
+		mc_sizes[i] = 0;
+
+	/* Read the EDC route table in each CHA. */
+	cur_reg_start = 0;
+	for (i = 0; i < KNL_MAX_CHAS; i++) {
+		pci_read_config_dword(pvt->knl.pci_cha[i],
+				KNL_EDC_ROUTE, &edc_route_reg[i]);
+
+		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
+			knl_show_edc_route(edc_route_reg[i-1],
+					edc_route_string);
+			if (cur_reg_start == i-1)
+				edac_dbg(0, "edc route table for CHA %d: %s\n",
+					cur_reg_start, edc_route_string);
+			else
+				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
+					cur_reg_start, i-1, edc_route_string);
+			cur_reg_start = i;
+		}
+	}
+	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
+	if (cur_reg_start == i-1)
+		edac_dbg(0, "edc route table for CHA %d: %s\n",
+			cur_reg_start, edc_route_string);
+	else
+		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
+			cur_reg_start, i-1, edc_route_string);
+
+	/* Read the MC route table in each CHA. */
+	cur_reg_start = 0;
+	for (i = 0; i < KNL_MAX_CHAS; i++) {
+		pci_read_config_dword(pvt->knl.pci_cha[i],
+			KNL_MC_ROUTE, &mc_route_reg[i]);
+
+		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
+			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
+			if (cur_reg_start == i-1)
+				edac_dbg(0, "mc route table for CHA %d: %s\n",
+					cur_reg_start, mc_route_string);
+			else
+				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
+					cur_reg_start, i-1, mc_route_string);
+			cur_reg_start = i;
+		}
+	}
+	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
+	if (cur_reg_start == i-1)
+		edac_dbg(0, "mc route table for CHA %d: %s\n",
+			cur_reg_start, mc_route_string);
+	else
+		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
+			cur_reg_start, i-1, mc_route_string);
+
+	/* Process DRAM rules */
+	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
+		/* previous limit becomes the new base */
+		sad_base = sad_limit;
+
+		pci_read_config_dword(pvt->pci_sad0,
+			pvt->info.dram_rule[sad_rule], &dram_rule);
+
+		if (!DRAM_RULE_ENABLE(dram_rule))
+			break;
+
+		edram_only = KNL_EDRAM_ONLY(dram_rule);
+
+		sad_limit = pvt->info.sad_limit(dram_rule)+1;
+		sad_size = sad_limit - sad_base;
+
+		pci_read_config_dword(pvt->pci_sad0,
+			pvt->info.interleave_list[sad_rule], &interleave_reg);
+
+		/*
+		 * Find out how many ways this dram rule is interleaved.
+		 * We stop when we see the first channel again.
+		 */
+		first_pkg = sad_pkg(pvt->info.interleave_pkg,
+						interleave_reg, 0);
+		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
+			pkg = sad_pkg(pvt->info.interleave_pkg,
+						interleave_reg, intrlv_ways);
+
+			if ((pkg & 0x8) == 0) {
+				/*
+				 * 0 bit means memory is non-local,
+				 * which KNL doesn't support
+				 */
+				edac_dbg(0, "Unexpected interleave target %d\n",
+					pkg);
+				return -1;
+			}
+
+			if (pkg == first_pkg)
+				break;
+		}
+		if (KNL_MOD3(dram_rule))
+			intrlv_ways *= 3;
+
+		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
+			sad_rule,
+			sad_base,
+			sad_limit,
+			intrlv_ways,
+			edram_only ? ", EDRAM" : "");
+
+		/*
+		 * Find out how big the SAD region really is by iterating
+		 * over TAD tables (SAD regions may contain holes).
+		 * Each memory controller might have a different TAD table, so
+		 * we have to look at both.
+		 *
+		 * Livespace is the memory that's mapped in this TAD table,
+		 * deadspace is the holes (this could be the MMIO hole, or it
+		 * could be memory that's mapped by the other TAD table but
+		 * not this one).
+		 */
+		for (mc = 0; mc < 2; mc++) {
+			sad_actual_size[mc] = 0;
+			tad_livespace = 0;
+			for (tad_rule = 0;
+					tad_rule < ARRAY_SIZE(
+						knl_tad_dram_limit_lo);
+					tad_rule++) {
+				if (knl_get_tad(pvt,
+						tad_rule,
+						mc,
+						&tad_deadspace,
+						&tad_limit,
+						&tad_ways))
+					break;
+
+				tad_size = (tad_limit+1) -
+					(tad_livespace + tad_deadspace);
+				tad_livespace += tad_size;
+				tad_base = (tad_limit+1) - tad_size;
+
+				if (tad_base < sad_base) {
+					if (tad_limit > sad_base)
+						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
+				} else if (tad_base < sad_limit) {
+					if (tad_limit+1 > sad_limit) {
+						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
+					} else {
+						/* TAD region is completely inside SAD region */
+						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
+							tad_rule, tad_base,
+							tad_limit, tad_size,
+							mc);
+						sad_actual_size[mc] += tad_size;
+					}
+				}
+				tad_base = tad_limit+1;
+			}
+		}
+
+		for (mc = 0; mc < 2; mc++) {
+			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
+				mc, sad_actual_size[mc], sad_actual_size[mc]);
+		}
+
+		/* Ignore EDRAM rule */
+		if (edram_only)
+			continue;
+
+		/* Figure out which channels participate in interleave. */
+		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
+			participants[channel] = 0;
+
+		/* For each channel, does at least one CHA have
+		 * this channel mapped to the given target?
+		 */
+		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
+			int target;
+			int cha;
+
+			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
+				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
+					if (knl_get_mc_route(target,
+						mc_route_reg[cha]) == channel
+						&& !participants[channel]) {
+						participants[channel] = 1;
+						break;
+					}
+				}
+			}
+		}
+
+		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
+			mc = knl_channel_mc(channel);
+			if (participants[channel]) {
+				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
+					channel,
+					sad_actual_size[mc]/intrlv_ways,
+					sad_rule);
+				mc_sizes[channel] +=
+					sad_actual_size[mc]/intrlv_ways;
+			}
+		}
+	}
+
+	return 0;
+}
+
+static void get_source_id(struct mem_ctl_info *mci)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	u32 reg;
+
+	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
+	    pvt->info.type == KNIGHTS_LANDING)
+		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
+	else
+		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
+
+	if (pvt->info.type == KNIGHTS_LANDING)
+		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
+	else
+		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
+}
+
+static int __populate_dimms(struct mem_ctl_info *mci,
+			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
+			    enum edac_type mode)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
+							 : NUM_CHANNELS;
+	unsigned int i, j, banks, ranks, rows, cols, npages;
+	struct dimm_info *dimm;
+	enum mem_type mtype;
+	u64 size;
+
+	mtype = pvt->info.get_memory_type(pvt);
+	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
+		edac_dbg(0, "Memory is registered\n");
+	else if (mtype == MEM_UNKNOWN)
+		edac_dbg(0, "Cannot determine memory type\n");
+	else
+		edac_dbg(0, "Memory is unregistered\n");
+
+	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
+		banks = 16;
+	else
+		banks = 8;
+
+	for (i = 0; i < channels; i++) {
+		u32 mtr;
+
+		int max_dimms_per_channel;
+
+		if (pvt->info.type == KNIGHTS_LANDING) {
+			max_dimms_per_channel = 1;
+			if (!pvt->knl.pci_channel[i])
+				continue;
+		} else {
+			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
+			if (!pvt->pci_tad[i])
+				continue;
+		}
+
+		for (j = 0; j < max_dimms_per_channel; j++) {
+			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
+			if (pvt->info.type == KNIGHTS_LANDING) {
+				pci_read_config_dword(pvt->knl.pci_channel[i],
+					knl_mtr_reg, &mtr);
+			} else {
+				pci_read_config_dword(pvt->pci_tad[i],
+					mtr_regs[j], &mtr);
+			}
+			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
+			if (IS_DIMM_PRESENT(mtr)) {
+				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
+					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
+						       pvt->sbridge_dev->source_id,
+						       pvt->sbridge_dev->dom, i);
+					return -ENODEV;
+				}
+				pvt->channel[i].dimms++;
+
+				ranks = numrank(pvt->info.type, mtr);
+
+				if (pvt->info.type == KNIGHTS_LANDING) {
+					/* For DDR4, this is fixed. */
+					cols = 1 << 10;
+					rows = knl_mc_sizes[i] /
+						((u64) cols * ranks * banks * 8);
+				} else {
+					rows = numrow(mtr);
+					cols = numcol(mtr);
+				}
+
+				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
+				npages = MiB_TO_PAGES(size);
+
+				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
+					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
+					 size, npages,
+					 banks, ranks, rows, cols);
+
+				dimm->nr_pages = npages;
+				dimm->grain = 32;
+				dimm->dtype = pvt->info.get_width(pvt, mtr);
+				dimm->mtype = mtype;
+				dimm->edac_mode = mode;
+				snprintf(dimm->label, sizeof(dimm->label),
+						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
+						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
+			}
+		}
+	}
+
+	return 0;
+}
+
+static int get_dimm_config(struct mem_ctl_info *mci)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
+	enum edac_type mode;
+	u32 reg;
+
+	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
+	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
+		 pvt->sbridge_dev->mc,
+		 pvt->sbridge_dev->node_id,
+		 pvt->sbridge_dev->source_id);
+
+	/* KNL doesn't support mirroring or lockstep,
+	 * and is always closed page
+	 */
+	if (pvt->info.type == KNIGHTS_LANDING) {
+		mode = EDAC_S4ECD4ED;
+		pvt->mirror_mode = NON_MIRRORING;
+		pvt->is_cur_addr_mirrored = false;
+
+		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
+			return -1;
+		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
+			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
+			return -ENODEV;
+		}
+	} else {
+		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
+			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
+				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
+				return -ENODEV;
+			}
+			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
+			if (GET_BITFIELD(reg, 28, 28)) {
+				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
+				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
+				goto next;
+			}
+		}
+		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
+			edac_dbg(0, "Failed to read RASENABLES register\n");
+			return -ENODEV;
+		}
+		if (IS_MIRROR_ENABLED(reg)) {
+			pvt->mirror_mode = FULL_MIRRORING;
+			edac_dbg(0, "Full memory mirroring is enabled\n");
+		} else {
+			pvt->mirror_mode = NON_MIRRORING;
+			edac_dbg(0, "Memory mirroring is disabled\n");
+		}
+
+next:
+		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
+			edac_dbg(0, "Failed to read MCMTR register\n");
+			return -ENODEV;
+		}
+		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
+			edac_dbg(0, "Lockstep is enabled\n");
+			mode = EDAC_S8ECD8ED;
+			pvt->is_lockstep = true;
+		} else {
+			edac_dbg(0, "Lockstep is disabled\n");
+			mode = EDAC_S4ECD4ED;
+			pvt->is_lockstep = false;
+		}
+		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
+			edac_dbg(0, "address map is on closed page mode\n");
+			pvt->is_close_pg = true;
+		} else {
+			edac_dbg(0, "address map is on open page mode\n");
+			pvt->is_close_pg = false;
+		}
+	}
+
+	return __populate_dimms(mci, knl_mc_sizes, mode);
+}
+
+static void get_memory_layout(const struct mem_ctl_info *mci)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	int i, j, k, n_sads, n_tads, sad_interl;
+	u32 reg;
+	u64 limit, prv = 0;
+	u64 tmp_mb;
+	u32 gb, mb;
+	u32 rir_way;
+
+	/*
+	 * Step 1) Get TOLM/TOHM ranges
+	 */
+
+	pvt->tolm = pvt->info.get_tolm(pvt);
+	tmp_mb = (1 + pvt->tolm) >> 20;
+
+	gb = div_u64_rem(tmp_mb, 1024, &mb);
+	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
+		gb, (mb*1000)/1024, (u64)pvt->tolm);
+
+	/* Address range is already 45:25 */
+	pvt->tohm = pvt->info.get_tohm(pvt);
+	tmp_mb = (1 + pvt->tohm) >> 20;
+
+	gb = div_u64_rem(tmp_mb, 1024, &mb);
+	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
+		gb, (mb*1000)/1024, (u64)pvt->tohm);
+
+	/*
+	 * Step 2) Get SAD range and SAD Interleave list
+	 * TAD registers contain the interleave wayness. However, it
+	 * seems simpler to just discover it indirectly, with the
+	 * algorithm bellow.
+	 */
+	prv = 0;
+	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
+		/* SAD_LIMIT Address range is 45:26 */
+		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
+				      &reg);
+		limit = pvt->info.sad_limit(reg);
+
+		if (!DRAM_RULE_ENABLE(reg))
+			continue;
+
+		if (limit <= prv)
+			break;
+
+		tmp_mb = (limit + 1) >> 20;
+		gb = div_u64_rem(tmp_mb, 1024, &mb);
+		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
+			 n_sads,
+			 show_dram_attr(pvt->info.dram_attr(reg)),
+			 gb, (mb*1000)/1024,
+			 ((u64)tmp_mb) << 20L,
+			 get_intlv_mode_str(reg, pvt->info.type),
+			 reg);
+		prv = limit;
+
+		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
+				      &reg);
+		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
+		for (j = 0; j < 8; j++) {
+			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
+			if (j > 0 && sad_interl == pkg)
+				break;
+
+			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
+				 n_sads, j, pkg);
+		}
+	}
+
+	if (pvt->info.type == KNIGHTS_LANDING)
+		return;
+
+	/*
+	 * Step 3) Get TAD range
+	 */
+	prv = 0;
+	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
+		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
+		limit = TAD_LIMIT(reg);
+		if (limit <= prv)
+			break;
+		tmp_mb = (limit + 1) >> 20;
+
+		gb = div_u64_rem(tmp_mb, 1024, &mb);
+		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
+			 n_tads, gb, (mb*1000)/1024,
+			 ((u64)tmp_mb) << 20L,
+			 (u32)(1 << TAD_SOCK(reg)),
+			 (u32)TAD_CH(reg) + 1,
+			 (u32)TAD_TGT0(reg),
+			 (u32)TAD_TGT1(reg),
+			 (u32)TAD_TGT2(reg),
+			 (u32)TAD_TGT3(reg),
+			 reg);
+		prv = limit;
+	}
+
+	/*
+	 * Step 4) Get TAD offsets, per each channel
+	 */
+	for (i = 0; i < NUM_CHANNELS; i++) {
+		if (!pvt->channel[i].dimms)
+			continue;
+		for (j = 0; j < n_tads; j++) {
+			pci_read_config_dword(pvt->pci_tad[i],
+					      tad_ch_nilv_offset[j],
+					      &reg);
+			tmp_mb = TAD_OFFSET(reg) >> 20;
+			gb = div_u64_rem(tmp_mb, 1024, &mb);
+			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
+				 i, j,
+				 gb, (mb*1000)/1024,
+				 ((u64)tmp_mb) << 20L,
+				 reg);
+		}
+	}
+
+	/*
+	 * Step 6) Get RIR Wayness/Limit, per each channel
+	 */
+	for (i = 0; i < NUM_CHANNELS; i++) {
+		if (!pvt->channel[i].dimms)
+			continue;
+		for (j = 0; j < MAX_RIR_RANGES; j++) {
+			pci_read_config_dword(pvt->pci_tad[i],
+					      rir_way_limit[j],
+					      &reg);
+
+			if (!IS_RIR_VALID(reg))
+				continue;
+
+			tmp_mb = pvt->info.rir_limit(reg) >> 20;
+			rir_way = 1 << RIR_WAY(reg);
+			gb = div_u64_rem(tmp_mb, 1024, &mb);
+			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
+				 i, j,
+				 gb, (mb*1000)/1024,
+				 ((u64)tmp_mb) << 20L,
+				 rir_way,
+				 reg);
+
+			for (k = 0; k < rir_way; k++) {
+				pci_read_config_dword(pvt->pci_tad[i],
+						      rir_offset[j][k],
+						      &reg);
+				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
+
+				gb = div_u64_rem(tmp_mb, 1024, &mb);
+				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
+					 i, j, k,
+					 gb, (mb*1000)/1024,
+					 ((u64)tmp_mb) << 20L,
+					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
+					 reg);
+			}
+		}
+	}
+}
+
+static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
+{
+	struct sbridge_dev *sbridge_dev;
+
+	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
+			return sbridge_dev->mci;
+	}
+	return NULL;
+}
+
+static int get_memory_error_data(struct mem_ctl_info *mci,
+				 u64 addr,
+				 u8 *socket, u8 *ha,
+				 long *channel_mask,
+				 u8 *rank,
+				 char **area_type, char *msg)
+{
+	struct mem_ctl_info	*new_mci;
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	struct pci_dev		*pci_ha;
+	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
+	int			sad_interl, idx, base_ch;
+	int			interleave_mode, shiftup = 0;
+	unsigned int		sad_interleave[MAX_INTERLEAVE];
+	u32			reg, dram_rule;
+	u8			ch_way, sck_way, pkg, sad_ha = 0;
+	u32			tad_offset;
+	u32			rir_way;
+	u32			mb, gb;
+	u64			ch_addr, offset, limit = 0, prv = 0;
+
+
+	/*
+	 * Step 0) Check if the address is at special memory ranges
+	 * The check bellow is probably enough to fill all cases where
+	 * the error is not inside a memory, except for the legacy
+	 * range (e. g. VGA addresses). It is unlikely, however, that the
+	 * memory controller would generate an error on that range.
+	 */
+	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
+		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
+		return -EINVAL;
+	}
+	if (addr >= (u64)pvt->tohm) {
+		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
+		return -EINVAL;
+	}
+
+	/*
+	 * Step 1) Get socket
+	 */
+	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
+		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
+				      &reg);
+
+		if (!DRAM_RULE_ENABLE(reg))
+			continue;
+
+		limit = pvt->info.sad_limit(reg);
+		if (limit <= prv) {
+			sprintf(msg, "Can't discover the memory socket");
+			return -EINVAL;
+		}
+		if  (addr <= limit)
+			break;
+		prv = limit;
+	}
+	if (n_sads == pvt->info.max_sad) {
+		sprintf(msg, "Can't discover the memory socket");
+		return -EINVAL;
+	}
+	dram_rule = reg;
+	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
+	interleave_mode = pvt->info.interleave_mode(dram_rule);
+
+	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
+			      &reg);
+
+	if (pvt->info.type == SANDY_BRIDGE) {
+		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
+		for (sad_way = 0; sad_way < 8; sad_way++) {
+			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
+			if (sad_way > 0 && sad_interl == pkg)
+				break;
+			sad_interleave[sad_way] = pkg;
+			edac_dbg(0, "SAD interleave #%d: %d\n",
+				 sad_way, sad_interleave[sad_way]);
+		}
+		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
+			 pvt->sbridge_dev->mc,
+			 n_sads,
+			 addr,
+			 limit,
+			 sad_way + 7,
+			 !interleave_mode ? "" : "XOR[18:16]");
+		if (interleave_mode)
+			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
+		else
+			idx = (addr >> 6) & 7;
+		switch (sad_way) {
+		case 1:
+			idx = 0;
+			break;
+		case 2:
+			idx = idx & 1;
+			break;
+		case 4:
+			idx = idx & 3;
+			break;
+		case 8:
+			break;
+		default:
+			sprintf(msg, "Can't discover socket interleave");
+			return -EINVAL;
+		}
+		*socket = sad_interleave[idx];
+		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
+			 idx, sad_way, *socket);
+	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
+		int bits, a7mode = A7MODE(dram_rule);
+
+		if (a7mode) {
+			/* A7 mode swaps P9 with P6 */
+			bits = GET_BITFIELD(addr, 7, 8) << 1;
+			bits |= GET_BITFIELD(addr, 9, 9);
+		} else
+			bits = GET_BITFIELD(addr, 6, 8);
+
+		if (interleave_mode == 0) {
+			/* interleave mode will XOR {8,7,6} with {18,17,16} */
+			idx = GET_BITFIELD(addr, 16, 18);
+			idx ^= bits;
+		} else
+			idx = bits;
+
+		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
+		*socket = sad_pkg_socket(pkg);
+		sad_ha = sad_pkg_ha(pkg);
+
+		if (a7mode) {
+			/* MCChanShiftUpEnable */
+			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
+			shiftup = GET_BITFIELD(reg, 22, 22);
+		}
+
+		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
+			 idx, *socket, sad_ha, shiftup);
+	} else {
+		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
+		idx = (addr >> 6) & 7;
+		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
+		*socket = sad_pkg_socket(pkg);
+		sad_ha = sad_pkg_ha(pkg);
+		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
+			 idx, *socket, sad_ha);
+	}
+
+	*ha = sad_ha;
+
+	/*
+	 * Move to the proper node structure, in order to access the
+	 * right PCI registers
+	 */
+	new_mci = get_mci_for_node_id(*socket, sad_ha);
+	if (!new_mci) {
+		sprintf(msg, "Struct for socket #%u wasn't initialized",
+			*socket);
+		return -EINVAL;
+	}
+	mci = new_mci;
+	pvt = mci->pvt_info;
+
+	/*
+	 * Step 2) Get memory channel
+	 */
+	prv = 0;
+	pci_ha = pvt->pci_ha;
+	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
+		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
+		limit = TAD_LIMIT(reg);
+		if (limit <= prv) {
+			sprintf(msg, "Can't discover the memory channel");
+			return -EINVAL;
+		}
+		if  (addr <= limit)
+			break;
+		prv = limit;
+	}
+	if (n_tads == MAX_TAD) {
+		sprintf(msg, "Can't discover the memory channel");
+		return -EINVAL;
+	}
+
+	ch_way = TAD_CH(reg) + 1;
+	sck_way = TAD_SOCK(reg);
+
+	if (ch_way == 3)
+		idx = addr >> 6;
+	else {
+		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
+		if (pvt->is_chan_hash)
+			idx = haswell_chan_hash(idx, addr);
+	}
+	idx = idx % ch_way;
+
+	/*
+	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
+	 */
+	switch (idx) {
+	case 0:
+		base_ch = TAD_TGT0(reg);
+		break;
+	case 1:
+		base_ch = TAD_TGT1(reg);
+		break;
+	case 2:
+		base_ch = TAD_TGT2(reg);
+		break;
+	case 3:
+		base_ch = TAD_TGT3(reg);
+		break;
+	default:
+		sprintf(msg, "Can't discover the TAD target");
+		return -EINVAL;
+	}
+	*channel_mask = 1 << base_ch;
+
+	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
+
+	if (pvt->mirror_mode == FULL_MIRRORING ||
+	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
+		*channel_mask |= 1 << ((base_ch + 2) % 4);
+		switch(ch_way) {
+		case 2:
+		case 4:
+			sck_xch = (1 << sck_way) * (ch_way >> 1);
+			break;
+		default:
+			sprintf(msg, "Invalid mirror set. Can't decode addr");
+			return -EINVAL;
+		}
+
+		pvt->is_cur_addr_mirrored = true;
+	} else {
+		sck_xch = (1 << sck_way) * ch_way;
+		pvt->is_cur_addr_mirrored = false;
+	}
+
+	if (pvt->is_lockstep)
+		*channel_mask |= 1 << ((base_ch + 1) % 4);
+
+	offset = TAD_OFFSET(tad_offset);
+
+	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
+		 n_tads,
+		 addr,
+		 limit,
+		 sck_way,
+		 ch_way,
+		 offset,
+		 idx,
+		 base_ch,
+		 *channel_mask);
+
+	/* Calculate channel address */
+	/* Remove the TAD offset */
+
+	if (offset > addr) {
+		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
+			offset, addr);
+		return -EINVAL;
+	}
+
+	ch_addr = addr - offset;
+	ch_addr >>= (6 + shiftup);
+	ch_addr /= sck_xch;
+	ch_addr <<= (6 + shiftup);
+	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
+
+	/*
+	 * Step 3) Decode rank
+	 */
+	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
+		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
+
+		if (!IS_RIR_VALID(reg))
+			continue;
+
+		limit = pvt->info.rir_limit(reg);
+		gb = div_u64_rem(limit >> 20, 1024, &mb);
+		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
+			 n_rir,
+			 gb, (mb*1000)/1024,
+			 limit,
+			 1 << RIR_WAY(reg));
+		if  (ch_addr <= limit)
+			break;
+	}
+	if (n_rir == MAX_RIR_RANGES) {
+		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
+			ch_addr);
+		return -EINVAL;
+	}
+	rir_way = RIR_WAY(reg);
+
+	if (pvt->is_close_pg)
+		idx = (ch_addr >> 6);
+	else
+		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
+	idx %= 1 << rir_way;
+
+	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
+	*rank = RIR_RNK_TGT(pvt->info.type, reg);
+
+	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
+		 n_rir,
+		 ch_addr,
+		 limit,
+		 rir_way,
+		 idx);
+
+	return 0;
+}
+
+/****************************************************************************
+	Device initialization routines: put/get, init/exit
+ ****************************************************************************/
+
+/*
+ *	sbridge_put_all_devices	'put' all the devices that we have
+ *				reserved via 'get'
+ */
+static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
+{
+	int i;
+
+	edac_dbg(0, "\n");
+	for (i = 0; i < sbridge_dev->n_devs; i++) {
+		struct pci_dev *pdev = sbridge_dev->pdev[i];
+		if (!pdev)
+			continue;
+		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
+			 pdev->bus->number,
+			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
+		pci_dev_put(pdev);
+	}
+}
+
+static void sbridge_put_all_devices(void)
+{
+	struct sbridge_dev *sbridge_dev, *tmp;
+
+	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
+		sbridge_put_devices(sbridge_dev);
+		free_sbridge_dev(sbridge_dev);
+	}
+}
+
+static int sbridge_get_onedevice(struct pci_dev **prev,
+				 u8 *num_mc,
+				 const struct pci_id_table *table,
+				 const unsigned devno,
+				 const int multi_bus)
+{
+	struct sbridge_dev *sbridge_dev = NULL;
+	const struct pci_id_descr *dev_descr = &table->descr[devno];
+	struct pci_dev *pdev = NULL;
+	int seg = 0;
+	u8 bus = 0;
+	int i = 0;
+
+	sbridge_printk(KERN_DEBUG,
+		"Seeking for: PCI ID %04x:%04x\n",
+		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+			      dev_descr->dev_id, *prev);
+
+	if (!pdev) {
+		if (*prev) {
+			*prev = pdev;
+			return 0;
+		}
+
+		if (dev_descr->optional)
+			return 0;
+
+		/* if the HA wasn't found */
+		if (devno == 0)
+			return -ENODEV;
+
+		sbridge_printk(KERN_INFO,
+			"Device not found: %04x:%04x\n",
+			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+		/* End of list, leave */
+		return -ENODEV;
+	}
+	seg = pci_domain_nr(pdev->bus);
+	bus = pdev->bus->number;
+
+next_imc:
+	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
+				      multi_bus, sbridge_dev);
+	if (!sbridge_dev) {
+		/* If the HA1 wasn't found, don't create EDAC second memory controller */
+		if (dev_descr->dom == IMC1 && devno != 1) {
+			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
+				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+			pci_dev_put(pdev);
+			return 0;
+		}
+
+		if (dev_descr->dom == SOCK)
+			goto out_imc;
+
+		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
+		if (!sbridge_dev) {
+			pci_dev_put(pdev);
+			return -ENOMEM;
+		}
+		(*num_mc)++;
+	}
+
+	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
+		sbridge_printk(KERN_ERR,
+			"Duplicated device for %04x:%04x\n",
+			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+		pci_dev_put(pdev);
+		return -ENODEV;
+	}
+
+	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
+
+	/* pdev belongs to more than one IMC, do extra gets */
+	if (++i > 1)
+		pci_dev_get(pdev);
+
+	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
+		goto next_imc;
+
+out_imc:
+	/* Be sure that the device is enabled */
+	if (unlikely(pci_enable_device(pdev) < 0)) {
+		sbridge_printk(KERN_ERR,
+			"Couldn't enable %04x:%04x\n",
+			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+		return -ENODEV;
+	}
+
+	edac_dbg(0, "Detected %04x:%04x\n",
+		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+	/*
+	 * As stated on drivers/pci/search.c, the reference count for
+	 * @from is always decremented if it is not %NULL. So, as we need
+	 * to get all devices up to null, we need to do a get for the device
+	 */
+	pci_dev_get(pdev);
+
+	*prev = pdev;
+
+	return 0;
+}
+
+/*
+ * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
+ *			     devices we want to reference for this driver.
+ * @num_mc: pointer to the memory controllers count, to be incremented in case
+ *	    of success.
+ * @table: model specific table
+ *
+ * returns 0 in case of success or error code
+ */
+static int sbridge_get_all_devices(u8 *num_mc,
+					const struct pci_id_table *table)
+{
+	int i, rc;
+	struct pci_dev *pdev = NULL;
+	int allow_dups = 0;
+	int multi_bus = 0;
+
+	if (table->type == KNIGHTS_LANDING)
+		allow_dups = multi_bus = 1;
+	while (table && table->descr) {
+		for (i = 0; i < table->n_devs_per_sock; i++) {
+			if (!allow_dups || i == 0 ||
+					table->descr[i].dev_id !=
+						table->descr[i-1].dev_id) {
+				pdev = NULL;
+			}
+			do {
+				rc = sbridge_get_onedevice(&pdev, num_mc,
+							   table, i, multi_bus);
+				if (rc < 0) {
+					if (i == 0) {
+						i = table->n_devs_per_sock;
+						break;
+					}
+					sbridge_put_all_devices();
+					return -ENODEV;
+				}
+			} while (pdev && !allow_dups);
+		}
+		table++;
+	}
+
+	return 0;
+}
+
+/*
+ * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
+ * the format: XXXa. So we can convert from a device to the corresponding
+ * channel like this
+ */
+#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
+
+static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
+				 struct sbridge_dev *sbridge_dev)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	struct pci_dev *pdev;
+	u8 saw_chan_mask = 0;
+	int i;
+
+	for (i = 0; i < sbridge_dev->n_devs; i++) {
+		pdev = sbridge_dev->pdev[i];
+		if (!pdev)
+			continue;
+
+		switch (pdev->device) {
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
+			pvt->pci_sad0 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
+			pvt->pci_sad1 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
+			pvt->pci_br0 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
+			pvt->pci_ha = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
+			pvt->pci_ta = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
+			pvt->pci_ras = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
+		{
+			int id = TAD_DEV_TO_CHAN(pdev->device);
+			pvt->pci_tad[id] = pdev;
+			saw_chan_mask |= 1 << id;
+		}
+			break;
+		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
+			pvt->pci_ddrio = pdev;
+			break;
+		default:
+			goto error;
+		}
+
+		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
+			 pdev->vendor, pdev->device,
+			 sbridge_dev->bus,
+			 pdev);
+	}
+
+	/* Check if everything were registered */
+	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
+	    !pvt->pci_ras || !pvt->pci_ta)
+		goto enodev;
+
+	if (saw_chan_mask != 0x0f)
+		goto enodev;
+	return 0;
+
+enodev:
+	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+	return -ENODEV;
+
+error:
+	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
+		       PCI_VENDOR_ID_INTEL, pdev->device);
+	return -EINVAL;
+}
+
+static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
+				 struct sbridge_dev *sbridge_dev)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	struct pci_dev *pdev;
+	u8 saw_chan_mask = 0;
+	int i;
+
+	for (i = 0; i < sbridge_dev->n_devs; i++) {
+		pdev = sbridge_dev->pdev[i];
+		if (!pdev)
+			continue;
+
+		switch (pdev->device) {
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
+			pvt->pci_ha = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
+			pvt->pci_ta = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
+			pvt->pci_ras = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
+		{
+			int id = TAD_DEV_TO_CHAN(pdev->device);
+			pvt->pci_tad[id] = pdev;
+			saw_chan_mask |= 1 << id;
+		}
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
+			pvt->pci_ddrio = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
+			pvt->pci_ddrio = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
+			pvt->pci_sad0 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
+			pvt->pci_br0 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
+			pvt->pci_br1 = pdev;
+			break;
+		default:
+			goto error;
+		}
+
+		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+			 sbridge_dev->bus,
+			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+			 pdev);
+	}
+
+	/* Check if everything were registered */
+	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
+	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
+		goto enodev;
+
+	if (saw_chan_mask != 0x0f && /* -EN/-EX */
+	    saw_chan_mask != 0x03)   /* -EP */
+		goto enodev;
+	return 0;
+
+enodev:
+	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+	return -ENODEV;
+
+error:
+	sbridge_printk(KERN_ERR,
+		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
+			pdev->device);
+	return -EINVAL;
+}
+
+static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
+				 struct sbridge_dev *sbridge_dev)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	struct pci_dev *pdev;
+	u8 saw_chan_mask = 0;
+	int i;
+
+	/* there's only one device per system; not tied to any bus */
+	if (pvt->info.pci_vtd == NULL)
+		/* result will be checked later */
+		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
+						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
+						   NULL);
+
+	for (i = 0; i < sbridge_dev->n_devs; i++) {
+		pdev = sbridge_dev->pdev[i];
+		if (!pdev)
+			continue;
+
+		switch (pdev->device) {
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
+			pvt->pci_sad0 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
+			pvt->pci_sad1 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
+			pvt->pci_ha = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
+			pvt->pci_ta = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
+			pvt->pci_ras = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
+		{
+			int id = TAD_DEV_TO_CHAN(pdev->device);
+			pvt->pci_tad[id] = pdev;
+			saw_chan_mask |= 1 << id;
+		}
+			break;
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
+		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
+			if (!pvt->pci_ddrio)
+				pvt->pci_ddrio = pdev;
+			break;
+		default:
+			break;
+		}
+
+		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+			 sbridge_dev->bus,
+			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+			 pdev);
+	}
+
+	/* Check if everything were registered */
+	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
+	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
+		goto enodev;
+
+	if (saw_chan_mask != 0x0f && /* -EN/-EX */
+	    saw_chan_mask != 0x03)   /* -EP */
+		goto enodev;
+	return 0;
+
+enodev:
+	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+	return -ENODEV;
+}
+
+static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
+				 struct sbridge_dev *sbridge_dev)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	struct pci_dev *pdev;
+	u8 saw_chan_mask = 0;
+	int i;
+
+	/* there's only one device per system; not tied to any bus */
+	if (pvt->info.pci_vtd == NULL)
+		/* result will be checked later */
+		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
+						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
+						   NULL);
+
+	for (i = 0; i < sbridge_dev->n_devs; i++) {
+		pdev = sbridge_dev->pdev[i];
+		if (!pdev)
+			continue;
+
+		switch (pdev->device) {
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
+			pvt->pci_sad0 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
+			pvt->pci_sad1 = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
+			pvt->pci_ha = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
+			pvt->pci_ta = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
+			pvt->pci_ras = pdev;
+			break;
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
+		{
+			int id = TAD_DEV_TO_CHAN(pdev->device);
+			pvt->pci_tad[id] = pdev;
+			saw_chan_mask |= 1 << id;
+		}
+			break;
+		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
+			pvt->pci_ddrio = pdev;
+			break;
+		default:
+			break;
+		}
+
+		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+			 sbridge_dev->bus,
+			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+			 pdev);
+	}
+
+	/* Check if everything were registered */
+	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
+	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
+		goto enodev;
+
+	if (saw_chan_mask != 0x0f && /* -EN/-EX */
+	    saw_chan_mask != 0x03)   /* -EP */
+		goto enodev;
+	return 0;
+
+enodev:
+	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+	return -ENODEV;
+}
+
+static int knl_mci_bind_devs(struct mem_ctl_info *mci,
+			struct sbridge_dev *sbridge_dev)
+{
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	struct pci_dev *pdev;
+	int dev, func;
+
+	int i;
+	int devidx;
+
+	for (i = 0; i < sbridge_dev->n_devs; i++) {
+		pdev = sbridge_dev->pdev[i];
+		if (!pdev)
+			continue;
+
+		/* Extract PCI device and function. */
+		dev = (pdev->devfn >> 3) & 0x1f;
+		func = pdev->devfn & 0x7;
+
+		switch (pdev->device) {
+		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
+			if (dev == 8)
+				pvt->knl.pci_mc0 = pdev;
+			else if (dev == 9)
+				pvt->knl.pci_mc1 = pdev;
+			else {
+				sbridge_printk(KERN_ERR,
+					"Memory controller in unexpected place! (dev %d, fn %d)\n",
+					dev, func);
+				continue;
+			}
+			break;
+
+		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
+			pvt->pci_sad0 = pdev;
+			break;
+
+		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
+			pvt->pci_sad1 = pdev;
+			break;
+
+		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
+			/* There are one of these per tile, and range from
+			 * 1.14.0 to 1.18.5.
+			 */
+			devidx = ((dev-14)*8)+func;
+
+			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
+				sbridge_printk(KERN_ERR,
+					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
+					dev, func);
+				continue;
+			}
+
+			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
+
+			pvt->knl.pci_cha[devidx] = pdev;
+			break;
+
+		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
+			devidx = -1;
+
+			/*
+			 *  MC0 channels 0-2 are device 9 function 2-4,
+			 *  MC1 channels 3-5 are device 8 function 2-4.
+			 */
+
+			if (dev == 9)
+				devidx = func-2;
+			else if (dev == 8)
+				devidx = 3 + (func-2);
+
+			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
+				sbridge_printk(KERN_ERR,
+					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
+					dev, func);
+				continue;
+			}
+
+			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
+			pvt->knl.pci_channel[devidx] = pdev;
+			break;
+
+		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
+			pvt->knl.pci_mc_info = pdev;
+			break;
+
+		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
+			pvt->pci_ta = pdev;
+			break;
+
+		default:
+			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
+				pdev->device);
+			break;
+		}
+	}
+
+	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
+	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
+	    !pvt->pci_ta) {
+		goto enodev;
+	}
+
+	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
+		if (!pvt->knl.pci_channel[i]) {
+			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
+			goto enodev;
+		}
+	}
+
+	for (i = 0; i < KNL_MAX_CHAS; i++) {
+		if (!pvt->knl.pci_cha[i]) {
+			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
+			goto enodev;
+		}
+	}
+
+	return 0;
+
+enodev:
+	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+	return -ENODEV;
+}
+
+/****************************************************************************
+			Error check routines
+ ****************************************************************************/
+
+/*
+ * While Sandy Bridge has error count registers, SMI BIOS read values from
+ * and resets the counters. So, they are not reliable for the OS to read
+ * from them. So, we have no option but to just trust on whatever MCE is
+ * telling us about the errors.
+ */
+static void sbridge_mce_output_error(struct mem_ctl_info *mci,
+				    const struct mce *m)
+{
+	struct mem_ctl_info *new_mci;
+	struct sbridge_pvt *pvt = mci->pvt_info;
+	enum hw_event_mc_err_type tp_event;
+	char *type, *optype, msg[256];
+	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
+	bool overflow = GET_BITFIELD(m->status, 62, 62);
+	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
+	bool recoverable;
+	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
+	u32 mscod = GET_BITFIELD(m->status, 16, 31);
+	u32 errcode = GET_BITFIELD(m->status, 0, 15);
+	u32 channel = GET_BITFIELD(m->status, 0, 3);
+	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
+	long channel_mask, first_channel;
+	u8  rank, socket, ha;
+	int rc, dimm;
+	char *area_type = NULL;
+
+	if (pvt->info.type != SANDY_BRIDGE)
+		recoverable = true;
+	else
+		recoverable = GET_BITFIELD(m->status, 56, 56);
+
+	if (uncorrected_error) {
+		core_err_cnt = 1;
+		if (ripv) {
+			type = "FATAL";
+			tp_event = HW_EVENT_ERR_FATAL;
+		} else {
+			type = "NON_FATAL";
+			tp_event = HW_EVENT_ERR_UNCORRECTED;
+		}
+	} else {
+		type = "CORRECTED";
+		tp_event = HW_EVENT_ERR_CORRECTED;
+	}
+
+	/*
+	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
+	 * memory errors should fit in this mask:
+	 *	000f 0000 1mmm cccc (binary)
+	 * where:
+	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
+	 *	    won't be shown
+	 *	mmm = error type
+	 *	cccc = channel
+	 * If the mask doesn't match, report an error to the parsing logic
+	 */
+	if (! ((errcode & 0xef80) == 0x80)) {
+		optype = "Can't parse: it is not a mem";
+	} else {
+		switch (optypenum) {
+		case 0:
+			optype = "generic undef request error";
+			break;
+		case 1:
+			optype = "memory read error";
+			break;
+		case 2:
+			optype = "memory write error";
+			break;
+		case 3:
+			optype = "addr/cmd error";
+			break;
+		case 4:
+			optype = "memory scrubbing error";
+			break;
+		default:
+			optype = "reserved";
+			break;
+		}
+	}
+
+	/* Only decode errors with an valid address (ADDRV) */
+	if (!GET_BITFIELD(m->status, 58, 58))
+		return;
+
+	if (pvt->info.type == KNIGHTS_LANDING) {
+		if (channel == 14) {
+			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
+				overflow ? " OVERFLOW" : "",
+				(uncorrected_error && recoverable)
+				? " recoverable" : "",
+				mscod, errcode,
+				m->bank);
+		} else {
+			char A = *("A");
+
+			/*
+			 * Reported channel is in range 0-2, so we can't map it
+			 * back to mc. To figure out mc we check machine check
+			 * bank register that reported this error.
+			 * bank15 means mc0 and bank16 means mc1.
+			 */
+			channel = knl_channel_remap(m->bank == 16, channel);
+			channel_mask = 1 << channel;
+
+			snprintf(msg, sizeof(msg),
+				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
+				overflow ? " OVERFLOW" : "",
+				(uncorrected_error && recoverable)
+				? " recoverable" : " ",
+				mscod, errcode, channel, A + channel);
+			edac_mc_handle_error(tp_event, mci, core_err_cnt,
+				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
+				channel, 0, -1,
+				optype, msg);
+		}
+		return;
+	} else {
+		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
+				&channel_mask, &rank, &area_type, msg);
+	}
+
+	if (rc < 0)
+		goto err_parsing;
+	new_mci = get_mci_for_node_id(socket, ha);
+	if (!new_mci) {
+		strcpy(msg, "Error: socket got corrupted!");
+		goto err_parsing;
+	}
+	mci = new_mci;
+	pvt = mci->pvt_info;
+
+	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
+
+	if (rank < 4)
+		dimm = 0;
+	else if (rank < 8)
+		dimm = 1;
+	else
+		dimm = 2;
+
+
+	/*
+	 * FIXME: On some memory configurations (mirror, lockstep), the
+	 * Memory Controller can't point the error to a single DIMM. The
+	 * EDAC core should be handling the channel mask, in order to point
+	 * to the group of dimm's where the error may be happening.
+	 */
+	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
+		channel = first_channel;
+
+	snprintf(msg, sizeof(msg),
+		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
+		 overflow ? " OVERFLOW" : "",
+		 (uncorrected_error && recoverable) ? " recoverable" : "",
+		 area_type,
+		 mscod, errcode,
+		 socket, ha,
+		 channel_mask,
+		 rank);
+
+	edac_dbg(0, "%s\n", msg);
+
+	/* FIXME: need support for channel mask */
+
+	if (channel == CHANNEL_UNSPECIFIED)
+		channel = -1;
+
+	/* Call the helper to output message */
+	edac_mc_handle_error(tp_event, mci, core_err_cnt,
+			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
+			     channel, dimm, -1,
+			     optype, msg);
+	return;
+err_parsing:
+	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
+			     -1, -1, -1,
+			     msg, "");
+
+}
+
+/*
+ * Check that logging is enabled and that this is the right type
+ * of error for us to handle.
+ */
+static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
+				   void *data)
+{
+	struct mce *mce = (struct mce *)data;
+	struct mem_ctl_info *mci;
+	struct sbridge_pvt *pvt;
+	char *type;
+
+	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
+		return NOTIFY_DONE;
+
+	mci = get_mci_for_node_id(mce->socketid, IMC0);
+	if (!mci)
+		return NOTIFY_DONE;
+	pvt = mci->pvt_info;
+
+	/*
+	 * Just let mcelog handle it if the error is
+	 * outside the memory controller. A memory error
+	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
+	 * bit 12 has an special meaning.
+	 */
+	if ((mce->status & 0xefff) >> 7 != 1)
+		return NOTIFY_DONE;
+
+	if (mce->mcgstatus & MCG_STATUS_MCIP)
+		type = "Exception";
+	else
+		type = "Event";
+
+	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
+
+	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
+			  "Bank %d: %016Lx\n", mce->extcpu, type,
+			  mce->mcgstatus, mce->bank, mce->status);
+	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
+	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
+	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
+
+	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
+			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
+			  mce->time, mce->socketid, mce->apicid);
+
+	sbridge_mce_output_error(mci, mce);
+
+	/* Advice mcelog that the error were handled */
+	return NOTIFY_STOP;
+}
+
+static struct notifier_block sbridge_mce_dec = {
+	.notifier_call	= sbridge_mce_check_error,
+	.priority	= MCE_PRIO_EDAC,
+};
+
+/****************************************************************************
+			EDAC register/unregister logic
+ ****************************************************************************/
+
+static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
+{
+	struct mem_ctl_info *mci = sbridge_dev->mci;
+	struct sbridge_pvt *pvt;
+
+	if (unlikely(!mci || !mci->pvt_info)) {
+		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
+
+		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
+		return;
+	}
+
+	pvt = mci->pvt_info;
+
+	edac_dbg(0, "MC: mci = %p, dev = %p\n",
+		 mci, &sbridge_dev->pdev[0]->dev);
+
+	/* Remove MC sysfs nodes */
+	edac_mc_del_mc(mci->pdev);
+
+	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
+	kfree(mci->ctl_name);
+	edac_mc_free(mci);
+	sbridge_dev->mci = NULL;
+}
+
+static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
+{
+	struct mem_ctl_info *mci;
+	struct edac_mc_layer layers[2];
+	struct sbridge_pvt *pvt;
+	struct pci_dev *pdev = sbridge_dev->pdev[0];
+	int rc;
+
+	/* allocate a new MC control structure */
+	layers[0].type = EDAC_MC_LAYER_CHANNEL;
+	layers[0].size = type == KNIGHTS_LANDING ?
+		KNL_MAX_CHANNELS : NUM_CHANNELS;
+	layers[0].is_virt_csrow = false;
+	layers[1].type = EDAC_MC_LAYER_SLOT;
+	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
+	layers[1].is_virt_csrow = true;
+	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
+			    sizeof(*pvt));
+
+	if (unlikely(!mci))
+		return -ENOMEM;
+
+	edac_dbg(0, "MC: mci = %p, dev = %p\n",
+		 mci, &pdev->dev);
+
+	pvt = mci->pvt_info;
+	memset(pvt, 0, sizeof(*pvt));
+
+	/* Associate sbridge_dev and mci for future usage */
+	pvt->sbridge_dev = sbridge_dev;
+	sbridge_dev->mci = mci;
+
+	mci->mtype_cap = type == KNIGHTS_LANDING ?
+		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
+	mci->edac_ctl_cap = EDAC_FLAG_NONE;
+	mci->edac_cap = EDAC_FLAG_NONE;
+	mci->mod_name = EDAC_MOD_STR;
+	mci->dev_name = pci_name(pdev);
+	mci->ctl_page_to_phys = NULL;
+
+	pvt->info.type = type;
+	switch (type) {
+	case IVY_BRIDGE:
+		pvt->info.rankcfgr = IB_RANK_CFG_A;
+		pvt->info.get_tolm = ibridge_get_tolm;
+		pvt->info.get_tohm = ibridge_get_tohm;
+		pvt->info.dram_rule = ibridge_dram_rule;
+		pvt->info.get_memory_type = get_memory_type;
+		pvt->info.get_node_id = get_node_id;
+		pvt->info.rir_limit = rir_limit;
+		pvt->info.sad_limit = sad_limit;
+		pvt->info.interleave_mode = interleave_mode;
+		pvt->info.dram_attr = dram_attr;
+		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+		pvt->info.interleave_list = ibridge_interleave_list;
+		pvt->info.interleave_pkg = ibridge_interleave_pkg;
+		pvt->info.get_width = ibridge_get_width;
+
+		/* Store pci devices at mci for faster access */
+		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
+		if (unlikely(rc < 0))
+			goto fail0;
+		get_source_id(mci);
+		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
+			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
+		break;
+	case SANDY_BRIDGE:
+		pvt->info.rankcfgr = SB_RANK_CFG_A;
+		pvt->info.get_tolm = sbridge_get_tolm;
+		pvt->info.get_tohm = sbridge_get_tohm;
+		pvt->info.dram_rule = sbridge_dram_rule;
+		pvt->info.get_memory_type = get_memory_type;
+		pvt->info.get_node_id = get_node_id;
+		pvt->info.rir_limit = rir_limit;
+		pvt->info.sad_limit = sad_limit;
+		pvt->info.interleave_mode = interleave_mode;
+		pvt->info.dram_attr = dram_attr;
+		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
+		pvt->info.interleave_list = sbridge_interleave_list;
+		pvt->info.interleave_pkg = sbridge_interleave_pkg;
+		pvt->info.get_width = sbridge_get_width;
+
+		/* Store pci devices at mci for faster access */
+		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
+		if (unlikely(rc < 0))
+			goto fail0;
+		get_source_id(mci);
+		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
+			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
+		break;
+	case HASWELL:
+		/* rankcfgr isn't used */
+		pvt->info.get_tolm = haswell_get_tolm;
+		pvt->info.get_tohm = haswell_get_tohm;
+		pvt->info.dram_rule = ibridge_dram_rule;
+		pvt->info.get_memory_type = haswell_get_memory_type;
+		pvt->info.get_node_id = haswell_get_node_id;
+		pvt->info.rir_limit = haswell_rir_limit;
+		pvt->info.sad_limit = sad_limit;
+		pvt->info.interleave_mode = interleave_mode;
+		pvt->info.dram_attr = dram_attr;
+		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+		pvt->info.interleave_list = ibridge_interleave_list;
+		pvt->info.interleave_pkg = ibridge_interleave_pkg;
+		pvt->info.get_width = ibridge_get_width;
+
+		/* Store pci devices at mci for faster access */
+		rc = haswell_mci_bind_devs(mci, sbridge_dev);
+		if (unlikely(rc < 0))
+			goto fail0;
+		get_source_id(mci);
+		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
+			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
+		break;
+	case BROADWELL:
+		/* rankcfgr isn't used */
+		pvt->info.get_tolm = haswell_get_tolm;
+		pvt->info.get_tohm = haswell_get_tohm;
+		pvt->info.dram_rule = ibridge_dram_rule;
+		pvt->info.get_memory_type = haswell_get_memory_type;
+		pvt->info.get_node_id = haswell_get_node_id;
+		pvt->info.rir_limit = haswell_rir_limit;
+		pvt->info.sad_limit = sad_limit;
+		pvt->info.interleave_mode = interleave_mode;
+		pvt->info.dram_attr = dram_attr;
+		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+		pvt->info.interleave_list = ibridge_interleave_list;
+		pvt->info.interleave_pkg = ibridge_interleave_pkg;
+		pvt->info.get_width = broadwell_get_width;
+
+		/* Store pci devices at mci for faster access */
+		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
+		if (unlikely(rc < 0))
+			goto fail0;
+		get_source_id(mci);
+		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
+			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
+		break;
+	case KNIGHTS_LANDING:
+		/* pvt->info.rankcfgr == ??? */
+		pvt->info.get_tolm = knl_get_tolm;
+		pvt->info.get_tohm = knl_get_tohm;
+		pvt->info.dram_rule = knl_dram_rule;
+		pvt->info.get_memory_type = knl_get_memory_type;
+		pvt->info.get_node_id = knl_get_node_id;
+		pvt->info.rir_limit = NULL;
+		pvt->info.sad_limit = knl_sad_limit;
+		pvt->info.interleave_mode = knl_interleave_mode;
+		pvt->info.dram_attr = dram_attr_knl;
+		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
+		pvt->info.interleave_list = knl_interleave_list;
+		pvt->info.interleave_pkg = ibridge_interleave_pkg;
+		pvt->info.get_width = knl_get_width;
+
+		rc = knl_mci_bind_devs(mci, sbridge_dev);
+		if (unlikely(rc < 0))
+			goto fail0;
+		get_source_id(mci);
+		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
+			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
+		break;
+	}
+
+	if (!mci->ctl_name) {
+		rc = -ENOMEM;
+		goto fail0;
+	}
+
+	/* Get dimm basic config and the memory layout */
+	rc = get_dimm_config(mci);
+	if (rc < 0) {
+		edac_dbg(0, "MC: failed to get_dimm_config()\n");
+		goto fail;
+	}
+	get_memory_layout(mci);
+
+	/* record ptr to the generic device */
+	mci->pdev = &pdev->dev;
+
+	/* add this new MC control structure to EDAC's list of MCs */
+	if (unlikely(edac_mc_add_mc(mci))) {
+		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
+		rc = -EINVAL;
+		goto fail;
+	}
+
+	return 0;
+
+fail:
+	kfree(mci->ctl_name);
+fail0:
+	edac_mc_free(mci);
+	sbridge_dev->mci = NULL;
+	return rc;
+}
+
+#define ICPU(model, table) \
+	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
+
+static const struct x86_cpu_id sbridge_cpuids[] = {
+	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
+	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
+	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
+	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
+	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
+	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
+	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
+	{ }
+};
+MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
+
+/*
+ *	sbridge_probe	Get all devices and register memory controllers
+ *			present.
+ *	return:
+ *		0 for FOUND a device
+ *		< 0 for error code
+ */
+
+static int sbridge_probe(const struct x86_cpu_id *id)
+{
+	int rc = -ENODEV;
+	u8 mc, num_mc = 0;
+	struct sbridge_dev *sbridge_dev;
+	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
+
+	/* get the pci devices we want to reserve for our use */
+	rc = sbridge_get_all_devices(&num_mc, ptable);
+
+	if (unlikely(rc < 0)) {
+		edac_dbg(0, "couldn't get all devices\n");
+		goto fail0;
+	}
+
+	mc = 0;
+
+	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
+			 mc, mc + 1, num_mc);
+
+		sbridge_dev->mc = mc++;
+		rc = sbridge_register_mci(sbridge_dev, ptable->type);
+		if (unlikely(rc < 0))
+			goto fail1;
+	}
+
+	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
+
+	return 0;
+
+fail1:
+	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
+		sbridge_unregister_mci(sbridge_dev);
+
+	sbridge_put_all_devices();
+fail0:
+	return rc;
+}
+
+/*
+ *	sbridge_remove	cleanup
+ *
+ */
+static void sbridge_remove(void)
+{
+	struct sbridge_dev *sbridge_dev;
+
+	edac_dbg(0, "\n");
+
+	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
+		sbridge_unregister_mci(sbridge_dev);
+
+	/* Release PCI resources */
+	sbridge_put_all_devices();
+}
+
+/*
+ *	sbridge_init		Module entry function
+ *			Try to initialize this module for its devices
+ */
+static int __init sbridge_init(void)
+{
+	const struct x86_cpu_id *id;
+	const char *owner;
+	int rc;
+
+	edac_dbg(2, "\n");
+
+	owner = edac_get_owner();
+	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
+		return -EBUSY;
+
+	id = x86_match_cpu(sbridge_cpuids);
+	if (!id)
+		return -ENODEV;
+
+	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
+	opstate_init();
+
+	rc = sbridge_probe(id);
+
+	if (rc >= 0) {
+		mce_register_decode_chain(&sbridge_mce_dec);
+		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
+			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
+		return 0;
+	}
+
+	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
+		      rc);
+
+	return rc;
+}
+
+/*
+ *	sbridge_exit()	Module exit function
+ *			Unregister the driver
+ */
+static void __exit sbridge_exit(void)
+{
+	edac_dbg(2, "\n");
+	sbridge_remove();
+	mce_unregister_decode_chain(&sbridge_mce_dec);
+}
+
+module_init(sbridge_init);
+module_exit(sbridge_exit);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mauro Carvalho Chehab");
+MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
+MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
+		   SBRIDGE_REVISION);